Logik für Informatiker Logic for Computer Scientists

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Logik für Informatiker Logic for Computer Scientists"

Transkript

1 Logik für Informatiker Logic for Computer Scientists Till Mossakowski Wintersemester 2014/15 Till Mossakowski Logik 1/ 18

2 Vollständigkeit der Aussagenlogik Till Mossakowski Logik 2/ 18

3 Objekt- und Metatheorie Objekttheorie = Beweise innerhalb eines formalen Beweissystems (z. B. Fitch) Metatheorie = Beweise über ein formales Beweissystem Till Mossakowski Logik 3/ 18

4 Vollständigkeit und Korrektheit von F T Korrektheits-Satz. Das Beweissystem F T ist korrekt, d. h., wenn T T S gilt, dann auch T = T S. Vollständigkeit-Satz (Bernays, Post). Das Beweissystem F T ist vollständig, d. h. wenn T = T S gilt, dann auch T T S. Till Mossakowski Logik 4/ 18

5 Kompaktheits-Theorem Kompaktheits-Theorem. Es sei T eine Menge von Sätzen. Wenn jede endliche Teilmenge von T wt-erfüllbar ist, so ist auch T wt-erfüllbar. Till Mossakowski Logik 5/ 18

6 Till Mossakowski Logik 6/ 18

7 Wiederholung: Konjunktive Normalform (KNF) Für jeden aussagenlogischen Satz gibt es einen äquivalenten Satz in konjuntiver Normalform (KNF), d. h. einen Satz der Form (ϕ 1,1 ϕ 1,m1 ) (ϕ n,1 ϕ n,mn ) (n 1, m i 1), wobei ϕ i,j Literale sind, d. h. atomare Sätze oder negierte atomare Sätze. Man beachte, dass n auch 1 sein kann, z. B. ist A B in KNF. Man beachte, dass m i auch 1 sein kann, z. B. sind sowohl A als auch A B in KNF. Till Mossakowski Logik 7/ 18

8 Hornformeln Vollständigkeit der Aussagenlogik Ein Satz in KNF heißt Hornformel, wenn in dem Satz jede Disjunktion von Literalen höchstens ein positives Literal, d. h. einen nichtnegierten atomaren Satz, enthält. Till Mossakowski Logik 8/ 18

9 Beispiele für Hornformeln Home(claire) ( Home(max) Happy(carl)) Home(claire) Home(max) Home(carl) Home(claire) Home(max) Home(carl) Home(claire) Home(max) ( Home(max) Home(max)) Till Mossakowski Logik 9/ 18

10 Beispiele für Nicht-Hornformeln Home(claire) (Home(max) Happy(carl)) (Home(claire) Home(max) Happy(claire)) Happy(carl) Home(claire) (Home(max) Home(carl)) Till Mossakowski Logik 10/ 18

11 Alternative Darstellung der Disjunktionen in Hornformeln A 1 A n B (A 1 A n ) B A 1 A n (A 1 A n ) B B Jede Hornformel ist äquivalent zu einer Konjunktion von Implikationen der obigen drei Formen. Till Mossakowski Logik 11/ 18

12 Erfüllbarkeitsalgorithmus für Hornformeln Es sei S eine Hornformel in konditionaler Form, die aus atomaren Sätzen sowie aus und besteht. 1 Für jede Implikation der Form B belege B mit wahr. 2 Falls für eine Implikation der Form (A 1 A n ) B die atomaren Sätze A 1,..., A n bereits mit wahr belegt sind, so belege auch B mit wahr. 3 Wiederhole Schritt 2 so lange als möglich. 4 Falls es eine Implikation der Form (A 1 A n ) gibt, wobei alle atomaren Sätze A 1,..., A n bereits mit wahr belegt sind, so ist S nicht wt-erfüllbar. Andernfalls belege alle noch nicht belegten atomaren Sätze von S mit falsch. Die so erhaltene Belegung macht S wahr. Till Mossakowski Logik 12/ 18

13 Korrektheit des Erfüllbarkeitsalgorithmus für Hornformeln Theorem. Der Erfüllbarkeitsalgorithmus für Hornformeln ist korrekt, d. h. er klassifizert genau die wt-erfüllbaren Hornformeln als wt-erfüllbar. Till Mossakowski Logik 13/ 18

14 Aussagenlogisches Prolog AncestorOf (a, b) : MotherOf (a, b). AncestorOf (b, c) : MotherOf (b, c). AncestorOf (a, b) : FatherOf (a, b). AncestorOf (b, c) : FatherOf (b, c). AncestorOf (a, c) : AncestorOf (a, b), AncestorOf (b, c). MotherOf (a, b). FatherOf (b, c). FatherOf (b, d). Für die Frage, ob diese Menge von Sätzen zu B führt, fügt Prolog den Satz B hinzu und führt den Erfüllbarkeits-Algorithmus von Horn aus. Falls der Algorithmus unerfüllbar ergibt, antwortet Prolog mit ja, andernfalls mit nein Till Mossakowski Logik 14/ 18

15 Klauseln Vollständigkeit der Aussagenlogik Eine Klausel ist eine endliche Menge von Literalen. Beispiele: C 1 = {Small(a), Cube(a), BackOf (b, a)} C 2 = {Small(a), Cube(b)} C 3 = (auch bezeichnet mit ) Jede Menge T von Sätzen in KNF kann durch eine äquivalente Menge S von Klauseln ersetzt werden, dabei entspricht jede Disjunktion eines Satzes aus T einer Klausel. Till Mossakowski Logik 15/ 18

16 Vollständigkeit der Aussagenlogik Eine Klausel R heißt Resolvente der Klauseln C 1 und C 2, wenn es einen atomaren Satz A gibt, mit A C 1 and ( A) C 2 und R = (C 1 \ {A}) (C 2 \ { A}). salgorithmus: Gegeben sei eine Menge S von Klauseln. 1 Bilde (falls möglich) aus zwei Klauseln von S eine Resolvente und füge sie zu S hinzu. 2 Wiederhole Schritt 1 solange als möglich. Falls die leere Klausel zu S hinzugefügt wurde, ist die ursprüngliche Satzmenge S nicht wt-erfüllbar, andernfalls wt-erfüllbar. Till Mossakowski Logik 16/ 18

17 Beispiel einer Wir starten mit folgendem Satz in KNF. A (B C B) ( C D) (A D) ( B D) Wir erhalten folgende Menge von Klauseln: {{ A}, {B, C}, { C, D}, {A, D}, { B, D}} Anwenden des sverfahrens: {A, D} { A} {D} {B, C} { C, D} {B, D} { D} { B, D} Till Mossakowski Logik 17/ 18

18 Korrektheit und Vollständigkeit Theorem. Der salgorithmus ist korrekt und vollständig, d. h. für eine gegebene Menge S von Klauseln lässt sich durch den salgorithmus genau dann die leere Klausel herleiten, wenn S nicht wt-erfüllbar ist. Damit erhalten wir ein alternatives korrektes und vollständiges Beweisverfahren für die tautologische Folgerung: T = T S gilt genau dann, wenn mittels die leere Klausel aus der Klauselmenge für T { S} hergeleitet werden kann. Till Mossakowski Logik 18/ 18

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 6 14.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

Beispiel Aussagenlogik nach Schöning: Logik...

Beispiel Aussagenlogik nach Schöning: Logik... Beispiel Aussagenlogik nach Schöning: Logik... Worin besteht das Geheimnis Ihres langen Lebens? wurde ein 100-jähriger gefragt. Ich halte mich streng an die Diätregeln: Wenn ich kein Bier zu einer Mahlzeit

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 5 8.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

TU5 Aussagenlogik II

TU5 Aussagenlogik II TU5 Aussagenlogik II Daniela Andrade daniela.andrade@tum.de 21.11.2016 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;)

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 5. Aussagenlogik Normalformen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Normalformen Definition: Literal Atom (aussagenlogische

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 6. Aussagenlogik Resolution Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Der aussagenlogische Resolutionkalkül Wesentliche

Mehr

1 Aussagenlogischer Kalkül

1 Aussagenlogischer Kalkül 1 Aussagenlogischer Kalkül Ein Kalkül in der Aussagenlogik soll die Wahrheit oder Algemeingültigkeit von Aussageformen allein auf syntaktischer Ebene zeigen. Die Wahrheit soll durch Umformung von Formeln

Mehr

5.1 Inferenz. Theorie der Informatik. Theorie der Informatik. 5.1 Inferenz. 5.2 Resolutionskalkül. 5.3 Zusammenfassung. Inferenz: Motivation

5.1 Inferenz. Theorie der Informatik. Theorie der Informatik. 5.1 Inferenz. 5.2 Resolutionskalkül. 5.3 Zusammenfassung. Inferenz: Motivation Theorie der Informatik 9. März 2015 5. Aussagenlogik III Theorie der Informatik 5. Aussagenlogik III 5.1 Inferenz Malte Helmert Gabriele Röger 5.2 Resolutionskalkül Universität Basel 9. März 2015 5.3 Zusammenfassung

Mehr

Computational Logic Algorithmische Logik Boolesche Algebra und Resolution

Computational Logic Algorithmische Logik Boolesche Algebra und Resolution Computational Logic Algorithmische Logik Boolesche Algebra und Resolution Ralf Moeller Hamburg Univ. of Technology Boole'sche Algebra Äquivalenzen als "Transformationsgesetze" Ersetzbarkeitstheorem Zentrale

Mehr

Fakultät für Informatik Universität Magdeburg Jürgen Dassow. Vorbemerkungen

Fakultät für Informatik Universität Magdeburg Jürgen Dassow. Vorbemerkungen Vorbemerkungen if (x > y) z = x; else z = y; Wenn es blaue Tiger regnet, dann fressen alle Kirschbäume schwarze Tomaten. q(1) = 1, q(i) = q(i 1) + 2i 1 für i 2 Welchen Wert hat q(6)? 24 ist durch 2 teilbar.

Mehr

Syntax der Aussagenlogik. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Formel als Syntaxbaum. Teilformel A 3 A 1 A 4

Syntax der Aussagenlogik. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Formel als Syntaxbaum. Teilformel A 3 A 1 A 4 Syntax der Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume Eine atomare Formel hat die Form A i (wobei i = 1, 2, 3,...). Definition (Formel)

Mehr

Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen

Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume & Dr. Sander Bruggink Barbara König Logik 1 (Motivation) Wir benötigen Algorithmen für Erfüllbarkeitstests,

Mehr

Ersetzbarkeitstheorem

Ersetzbarkeitstheorem Ersetzbarkeitstheorem Die Abgeschlossenheit läßt sich auch folgendermaßen formulieren: Ersetzbarkeitstheorem Seien F und G Formeln mit F G. SeienH und H Formeln, so daß H aus H hervorgeht, indem ein Vorkommen

Mehr

Aussagenlogische Widerlegungsverfahren zum Nachweis logischer Eigenschaften und Beziehungen

Aussagenlogische Widerlegungsverfahren zum Nachweis logischer Eigenschaften und Beziehungen Einführung in die Logik - 4 Aussagenlogische Widerlegungsverfahren zum Nachweis logischer Eigenschaften und Beziehungen Widerlegungsverfahren zum Aufwärmen: Bestimmung von Tautologien mittels Quick Falsification

Mehr

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 9.

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 9. Formale Logik PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg Wintersemester 16/17 Sitzung vom 9. November 2016 Weitere Begriffe Eine Zuweisung von Wahrheitswerten W bzw. F

Mehr

3. Grundlegende Begriffe von Logiken - Aussagenlogik

3. Grundlegende Begriffe von Logiken - Aussagenlogik 3. Grundlegende Begriffe von Logiken - Aussagenlogik Wichtige Konzepte und Begriffe in Logiken: Syntax (Signatur, Term, Formel,... ): Festlegung, welche syntaktischen Gebilde als Formeln (Aussagen, Sätze,

Mehr

Erfüllbarkeit und Allgemeingültigkeit

Erfüllbarkeit und Allgemeingültigkeit Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.3 Aussagenlogik Erfüllbarkeit 44 Erfüllbarkeit und Allgemeingültigkeit Def.: eine Formel ϕ heißt erfüllbar, wennesein I gibt, so dass I = ϕ

Mehr

Informatik A. Prof. Dr. Norbert Fuhr auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser

Informatik A. Prof. Dr. Norbert Fuhr auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser Informatik A Prof. Dr. Norbert Fuhr fuhr@uni-duisburg.de auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser 1 Teil I Logik 2 Geschichte R. Descartes (17. Jhdt): klassische

Mehr

Einiges zu Resolutionen anhand der Aufgaben 6 und 7

Einiges zu Resolutionen anhand der Aufgaben 6 und 7 Einiges zu Resolutionen anhand der Aufgaben 6 und 7 Es gibt eine Fülle von verschiedenen Resolutionen. Die bis jetzt behandelten möchte ich hier noch ein Mal kurz erläutern. Ferner möchte ich noch auf

Mehr

Übung 4: Aussagenlogik II

Übung 4: Aussagenlogik II Übung 4: Aussagenlogik II Diskrete Strukturen im Wintersemester 2013/2014 Markus Kaiser 8. Januar 2014 1/10 Äquivalenzregeln Identität F true F Dominanz F true true Idempotenz F F F Doppelte Negation F

Mehr

Kapitel 1.3. Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln

Kapitel 1.3. Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln Kapitel 1.3 Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln Mathematische Logik (WS 2011/12) Kapitel 1.3: Normalformen 1/ 29 Übersicht

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Vorsemesterkurs Informatik Mario Holldack WS2015/16 30. September 2015 Vorsemesterkurs Informatik 1 Einleitung 2 Aussagenlogik 3 Mengen Vorsemesterkurs Informatik > Einleitung

Mehr

Resolutionsalgorithmus

Resolutionsalgorithmus 112 Resolutionskalkül Mit dem Begriff Kalkül bezeichnet man eine Menge von syntaktischen Umformungsregeln, mit denen man semantische Eigenschaften der Eingabeformel herleiten kann. Für den Resolutionskalkül:

Mehr

Logik Teil 1: Aussagenlogik. Vorlesung im Wintersemester 2010

Logik Teil 1: Aussagenlogik. Vorlesung im Wintersemester 2010 Logik Teil 1: Aussagenlogik Vorlesung im Wintersemester 21 Aussagenlogik Aussagenlogik behandelt die logische Verknüpfung von Aussagen mittels Junktoren wie und, oder, nicht, gdw. Jeder Aussage ist ein

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik FH Wedel Pro. Dr. Sebastian Ianoski GTI21 Folie 1 Grundlagen der Theoretischen Inormatik Sebastian Ianoski FH Wedel Kap. 2: Logik, Teil 2.1: Aussagenlogik FH Wedel Pro. Dr. Sebastian Ianoski GTI21 Folie

Mehr

Logik Vorlesung 3: Äquivalenz und Normalformen

Logik Vorlesung 3: Äquivalenz und Normalformen Logik Vorlesung 3: Äquivalenz und Normalformen Andreas Maletti 7. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen

Mehr

Grundlagen der Programmierung

Grundlagen der Programmierung GdP2 Slide 1 Grundlagen der Programmierung Vorlesung 2 Sebastian Ianoski FH Wedel GdP2 Slide 2 Beispiel ür eine Programmveriikation Gegeben sei olgender Algorithmus: i (x>0) ((y+x) 0) then z := x y else

Mehr

Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie. Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen

Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie. Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen Was ist Logik? Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen Beschränkung auf "Aussage A folgt nach einer gegebenen

Mehr

Logic in a Nutshell. Christian Liguda

Logic in a Nutshell. Christian Liguda Logic in a Nutshell Christian Liguda Quelle: Kastens, Uwe und Büning, Hans K., Modellierung: Grundlagen und formale Methoden, 2009, Carl Hanser Verlag Übersicht Logik - Allgemein Aussagenlogik Modellierung

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Beweise)

Diskrete Strukturen Kapitel 2: Grundlagen (Beweise) WS 2014/15 Diskrete Strukturen Kapitel 2: Grundlagen (Beweise) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_14

Mehr

Aussagenlogik Prädikatenlogik erster Stufe. Logik. Logik

Aussagenlogik Prädikatenlogik erster Stufe. Logik. Logik Grundzeichen Aussagenlogik Aussagenvariablen P, Q, R,... Junktoren nicht und oder Runde Klammern (, ) Formeln Aussagenlogik Formeln sind spezielle Zeichenreihen aus Grundzeichen, und zwar 1 Jede Aussagenvariable

Mehr

Beweisen mit Semantischen Tableaux

Beweisen mit Semantischen Tableaux Beweisen mit Semantischen Tableaux Semantische Tableaux geben ein Beweisverfahren, mit dem ähnlich wie mit Resolution eine Formel dadurch bewiesen wird, dass ihre Negation als widersprüchlich abgeleitet

Mehr

Teil 7. Grundlagen Logik

Teil 7. Grundlagen Logik Teil 7 Grundlagen Logik Was ist Logik? etymologische Herkunft: griechisch bedeutet Wort, Rede, Lehre (s.a. Faust I ) Logik als Argumentation: Alle Menschen sind sterblich. Sokrates ist ein Mensch. Also

Mehr

Klausur zur Vorlesung Mathematische Logik

Klausur zur Vorlesung Mathematische Logik Universität Heidelberg 13. Februar 2014 Institut für Informatik Prof. Dr. Klaus Ambos-Spies Dipl.-Math. Thorsten Kräling Klausur zur Vorlesung Mathematische Logik Musterlösung Aufgabe 1 (Aussagenlogik

Mehr

Algorithmischer Aufbau der Aussagenlogik

Algorithmischer Aufbau der Aussagenlogik Algorithmischer Aufbau der Aussagenlogik In diesem Abschnitt betrachten wir Verfahren die bei gegebener endlichen Menge Σ und A-Form A entscheiden ob Σ = A gilt. Die bisher betrachteten Verfahren prüfen

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 10 4.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Organisatorisches Hauptklausur: Montag, 23.07.2012, 16:00-18:00,

Mehr

Einführung in die Logik. Sommersemester Juli 2010 Institut für Theoretische Informatik

Einführung in die Logik. Sommersemester Juli 2010 Institut für Theoretische Informatik Einführung in die Logik Jiří Adámek Sommersemester 2010 14. Juli 2010 Institut für Theoretische Informatik Inhaltsverzeichnis 1 Einleitung: Logische Systeme 4 I Aussagenlogik 6 2 Aussagenlogik 7 2.i Syntax

Mehr

Kapitel 1. Aussagenlogik

Kapitel 1. Aussagenlogik Kapitel 1 Aussagenlogik Einführung Mathematische Logik (WS 2012/13) Kapitel 1: Aussagenlogik 1/17 Übersicht Teil I: Syntax und Semantik der Aussagenlogik (1.0) Junktoren und Wahrheitsfunktionen (1.1) Syntax

Mehr

Tableaukalkül für Aussagenlogik

Tableaukalkül für Aussagenlogik Tableaukalkül für Aussagenlogik Tableau: Test einer Formel auf Widersprüchlichkeit Fallunterscheidung baumförmig organisiert Keine Normalisierung, d.h. alle Formeln sind erlaubt Struktur der Formel wird

Mehr

Was ist Logik? Was ist Logik? Logische Konnektoren. Aussagenlogik. Logik stellt Sprachen zur Darstellung von Wissen zur Verfügung

Was ist Logik? Was ist Logik? Logische Konnektoren. Aussagenlogik. Logik stellt Sprachen zur Darstellung von Wissen zur Verfügung Was ist Logik? Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen Beschränkung auf "Aussage A folgt nach einer gegebenen

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 27. Aussagenlogik: Logisches Schliessen und Resolution Malte Helmert Universität Basel 28. April 2014 Aussagenlogik: Überblick Kapitelüberblick Aussagenlogik: 26.

Mehr

Logik Teil 1: Aussagenlogik

Logik Teil 1: Aussagenlogik Aussagenlogik Aussagenlogik behandelt die logische Verknüpfung von Aussagen mittels Junktoren wie und, oder, nicht, gdw. Logik Teil : Aussagenlogik Jeder Aussage ist ein Wahrheitswert (wahr/falsch) zugeordnet

Mehr

Theoretische Informatik SS 03 Übung 11

Theoretische Informatik SS 03 Übung 11 Theoretische Informatik SS 03 Übung 11 Aufgabe 1 Zeigen Sie, dass es eine einfachere Reduktion (als die in der Vorlesung durchgeführte) von SAT auf 3KNF-SAT gibt, wenn man annimmt, dass die Formel des

Mehr

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015 Teil 3: Logik 1 Aussagenlogik Einleitung Eigenschaften Äquivalenz Folgerung Normalformen 2 Prädikatenlogik Wenn eine Karte

Mehr

Reduktionen. Algorithmen und Datenstrukturen Kapitel 6.2 Komplexitätstheorie. Exkurs: Reduktionen allgemein. Reduktionen: Erläuterungen

Reduktionen. Algorithmen und Datenstrukturen Kapitel 6.2 Komplexitätstheorie. Exkurs: Reduktionen allgemein. Reduktionen: Erläuterungen en Algorithmen und Datenstrukturen Kapitel 6.2 Komplexitätstheorie P, und C Definition () Seien L 1, L 2 {0, 1} zwei Sprachen. Wir sagen, dass L 1 auf L 2 in polynomialer Zeit reduziert wird, wenn eine

Mehr

Algorithmen für Hornlogik

Algorithmen für Hornlogik Prof. Dr. Heribert Vollmer Institut für Theoretische Informatik Lebniz Universität Hannover Jing Liu Algorithmen für Hornlogik Studienarbeit 2010 1 Einleitung Die Aussagenlogik ist der Bereich der Logik,

Mehr

wenn es regnet ist die Straße nass.

wenn es regnet ist die Straße nass. Aussagenlogik 2 In der Aussagenlogik werden, wie der Name schon sagt, Aussagen über logische Operatoren verknüpft. Der Satz diestraßeistnass ist eine Aussage, genauso wie es regnet. Diese beiden Aussagen

Mehr

Aussagenlogik. Formale Methoden der Informatik WiSe 2010/2011 teil 7, folie 1 (von 50)

Aussagenlogik. Formale Methoden der Informatik WiSe 2010/2011 teil 7, folie 1 (von 50) Aussagenlogik Formale Methoden der Informatik WiSe 2/2 teil 7, folie (von 5) Teil VII: Aussagenlogik. Einführung 2. Boolesche Funktionen 3. Boolesche Schaltungen Franz-Josef Radermacher & Uwe Schöning,

Mehr

Kapitel L:II. II. Aussagenlogik

Kapitel L:II. II. Aussagenlogik Kapitel L:II II. Aussagenlogik Syntax der Aussagenlogik Semantik der Aussagenlogik Eigenschaften des Folgerungsbegriffs Äquivalenz Formeltransformation Normalformen Bedeutung der Folgerung Erfüllbarkeitsalgorithmen

Mehr

Zusammenfassung des Stoffes zur Vorlesung Formale Systeme

Zusammenfassung des Stoffes zur Vorlesung Formale Systeme Zusammenfassung des Stoffes zur Vorlesung Formale Systeme Max Kramer 13. Februar 2009 Diese Zusammenfassung entstand als persönliche Vorbereitung auf die Klausur zur Vorlesung Formale Systeme von Prof.

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik FH Wedel Prof. Dr. Sebastian Iwanowski GTI22 Folie 1 Grundlagen der Theoretischen Informatik Sebastian Iwanowski FH Wedel Kap. 2: Logik, Teil 2.2: Prädikatenlogik FH Wedel Prof. Dr. Sebastian Iwanowski

Mehr

Aussagenlogische Kalküle

Aussagenlogische Kalküle Aussagenlogische Kalküle Ziel: mit Hilfe von schematischen Regeln sollen alle aus einer Formel logisch folgerbaren Formeln durch (prinzipiell syntaktische) Umformungen abgeleitet werden können. Derartige

Mehr

Logik Vorlesung 6: Resolution

Logik Vorlesung 6: Resolution Logik Vorlesung 6: Resolution Andreas Maletti 28. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen Weitere Eigenschaften

Mehr

WS 2013/14. Diskrete Strukturen

WS 2013/14. Diskrete Strukturen WS 2013/14 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws1314

Mehr

Logik. Markus Lohrey. Wintersemester 2012/2013. Universität Leipzig. Markus Lohrey (Universität Leipzig) Logik Wintersem.

Logik. Markus Lohrey. Wintersemester 2012/2013. Universität Leipzig. Markus Lohrey (Universität Leipzig) Logik Wintersem. Logik Markus Lohrey Universität Leipzig Wintersemester 2012/2013 Markus Lohrey (Universität Leipzig) Logik Wintersem. 2012/2013 1 / 214 Organisatorisches zur Vorlesung Informationen finden Sie unter z.

Mehr

Kapitel 1.3. Normalformen aussagenlogischer Formeln. Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1

Kapitel 1.3. Normalformen aussagenlogischer Formeln. Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1 Kapitel 1.3 Normalformen aussagenlogischer Formeln Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1 Boolesche Formeln, Literale und Klauseln Eine Boolesche Formel ist eine aussagenlogische

Mehr

Vorlesung Logiksysteme

Vorlesung Logiksysteme Vorlesung Logiksysteme Teil 1 - Aussagenlogik Martin Mundhenk Univ. Jena, Institut für Informatik 15. Mai 2014 Formalien zur Vorlesung/Übung Termine: dienstags 16:15 17:45 Uhr freitags 10:15 11:45 Uhr

Mehr

Logik. Markus Lohrey. Sommersemester Universität Siegen. Markus Lohrey (Universität Siegen) Logik Sommersem / 299

Logik. Markus Lohrey. Sommersemester Universität Siegen. Markus Lohrey (Universität Siegen) Logik Sommersem / 299 Logik Markus Lohrey Universität Siegen Sommersemester 2014 Markus Lohrey (Universität Siegen) Logik Sommersem. 2014 1 / 299 Organisatorisches zur Vorlesung Informationen finden Sie unter z. B. http://www.eti.uni-siegen.de/ti/lehre/ss14/logik/

Mehr

3. Logik 3.1 Aussagenlogik

3. Logik 3.1 Aussagenlogik 3. Logik 3.1 Aussagenlogik WS 06/07 mod 301 Kalkül zum logischen Schließen. Grundlagen: Aristoteles 384-322 v. Chr. Aussagen: Sätze, die prinzipiell als ahr oder falsch angesehen erden können. z. B.: Es

Mehr

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie und, oder, nicht, wenn... dann zwischen atomaren und komplexen Sätzen. I. Aussagenlogik 2.1 Syntax Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen. Sätze selbst sind entweder wahr oder falsch. Ansonsten

Mehr

Algorithmen für OBDD s. 1. Reduziere 2. Boole sche Operationen

Algorithmen für OBDD s. 1. Reduziere 2. Boole sche Operationen Algorithmen für OBDD s 1. Reduziere 2. Boole sche Operationen 1 1. Reduziere siehe auch M.Huth und M.Ryan: Logic in Computer Science - Modelling and Reasoning about Systems, Cambridge Univ.Press, 2000

Mehr

Einführung in die Logik

Einführung in die Logik Einführung in die Logik Klaus Madlener und Roland Meyer 24. April 2013 Inhaltsverzeichnis 1 Aussagenlogik 1 1.1 Syntax................................. 1 1.2 Semantik............................... 3 1.3

Mehr

Hilbert-Kalkül (Einführung)

Hilbert-Kalkül (Einführung) Hilbert-Kalkül (Einführung) Es gibt viele verschiedene Kalküle, mit denen sich durch syntaktische Umformungen zeigen läßt, ob eine Formel gültig bzw. unerfüllbar ist. Zwei Gruppen von Kalkülen: Kalküle

Mehr

Kapitel 1.0. Aussagenlogik: Einführung. Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1

Kapitel 1.0. Aussagenlogik: Einführung. Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1 Kapitel 1.0 Aussagenlogik: Einführung Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1 Ziele der Aussagenlogik In der Aussagenlogik analysiert man die Wahrheitswerte zusammengesetzter

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 4. Aussagenlogik Syntax und Semantik der Aussagenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Syntax der Aussagenlogik:

Mehr

Logische und funktionale Programmierung

Logische und funktionale Programmierung Logische und funktionale Programmierung Vorlesung 2: Prädikatenkalkül erster Stufe Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 14. Oktober 2016 1/38 DIE INTERPRETATION

Mehr

Mathematik-Vorkurs für Informatiker Aussagenlogik 1

Mathematik-Vorkurs für Informatiker Aussagenlogik 1 Christian Eisentraut & Julia Krämer www.vorkurs-mathematik-informatik.de Mathematik-Vorkurs für Informatiker Aussagenlogik 1 Aufgabe 1. (Wiederholung wichtiger Begriffe) Kategorie 1 Notieren Sie die Definitionen

Mehr

Normalformen boolescher Funktionen

Normalformen boolescher Funktionen Normalformen boolescher Funktionen Jeder boolesche Ausdruck kann durch (äquivalente) Umformungen in gewisse Normalformen gebracht werden! Disjunktive Normalform (DNF) und Vollkonjunktion: Eine Vollkonjunktion

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 13. Prädikatenlogik Der Satz von Herbrand Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Semantische Bäume Eine klassische

Mehr

Zusammenfassung der Vorlesung. Mathematische Logik. Bodo von der Heiden Letzte Aktualisierung: 2. Februar 2005

Zusammenfassung der Vorlesung. Mathematische Logik. Bodo von der Heiden Letzte Aktualisierung: 2. Februar 2005 Zusammenfassung der Vorlesung Mathematische Logik Bodo von der Heiden Letzte Aktualisierung: 2. Februar 2005 Zeitraum der Vorlesung: WS 2004/2005 Professor: Prof. Grädel Diese Zusammenfassung erhebt keinen

Mehr

Mathematik-Vorkurs für Informatiker Aussagenlogik 1

Mathematik-Vorkurs für Informatiker Aussagenlogik 1 Christian Eisentraut & Julia Krämer www.vorkurs-mathematik-informatik.de Mathematik-Vorkurs für Informatiker Aussagenlogik 1 Aufgabe 1. (Wiederholung wichtiger Begriffe) Notieren Sie die Definitionen der

Mehr

Logik für Informatiker Logic for computer scientists

Logik für Informatiker Logic for computer scientists Logik für Informatiker Logic for computer scientists Till Mossakowski Wintersemester 2014/15 Till Mossakowski Logik 1/ 31 Die Logik der Quantoren Till Mossakowski Logik 2/ 31 Wahrheitsfunktionale Form

Mehr

wichtiger, effizient zu behandelnder Spezialfall (benannt nach Alfred Horn)

wichtiger, effizient zu behandelnder Spezialfall (benannt nach Alfred Horn) 2.4 Hornformeln wichtiger, effizient zu behandelnder Spezialfall (benannt nach Alfred Horn) Def.: (Hornformel) Eine Formel F ist eine Hornformel, falls F in KNF ist und jedes Konjunktionsglied (also jede

Mehr

Wissensbasierte Systeme 7. Prädikatenlogik

Wissensbasierte Systeme 7. Prädikatenlogik Wissensbasierte Systeme 7. Prädikatenlogik Syntax und Semantik, Normalformen, Herbrandexpansion Michael Beetz Plan-based Robot Control 1 Inhalt 7.1 Motivation 7.2 Syntax und Semantik 7.3 Normalformen 7.4

Mehr

Aussagenlogik. Syntax und Semantik Boolesche Algebra Erfüllbarkeit SAT-Solver Kompaktheit Beweiskalküle

Aussagenlogik. Syntax und Semantik Boolesche Algebra Erfüllbarkeit SAT-Solver Kompaktheit Beweiskalküle Aussagenlogik Syntax und Semantik Boolesche Algebra Erfüllbarkeit SAT-Solver Kompaktheit Beweiskalküle Logik für Informatiker, M. Lange, IFI/LMU: Aussagenlogik Syntax und Semantik 26 Einführendes Beispiel

Mehr

Sudoku ist NP-vollständig

Sudoku ist NP-vollständig Sudoku ist NP-vollständig Seminar über Algorithmen und Komplexität Freie Universität Berlin Institut für Informatik SS 007 Sarah Will 8.07.007 Einführung Sudoku ist ein japanisches Logikrätsel und hat

Mehr

Formale Systeme. Aussagenlogik: Sequenzenkalkül. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Aussagenlogik: Sequenzenkalkül. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz

Mehr

Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung Winter-Semester 2003/04. Wissensrepräsentation: Resolution (im PK1)

Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung Winter-Semester 2003/04. Wissensrepräsentation: Resolution (im PK1) Einführung in die KI Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung Wissensrepräsentation: Resolution (im PK1) 2. Resolution Vorbild für Formalismus : exakt, präzise, (theoretisch) beherrscht Aufbau: Zeichen

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 7. Aussagenlogik Analytische Tableaus Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Der aussagenlogische Tableaukalkül

Mehr

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 6 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Satz 1 Seien F, G Boolesche Ausdrücke

Mehr

Klausur Formale Systeme Fakultät für Informatik WS 2009/2010. Prof. Dr. Bernhard Beckert. 18. Februar 2010

Klausur Formale Systeme Fakultät für Informatik WS 2009/2010. Prof. Dr. Bernhard Beckert. 18. Februar 2010 Klausur Formale Systeme Fakultät für Informatik Name: Mustermann Vorname: Peter Matrikel-Nr.: 0000000 Klausur-ID: 0000 WS 2009/2010 Prof. Dr. Bernhard Beckert 18. Februar 2010 A1 (15) A2 (10) A3 (10) A4

Mehr

Schlussregeln aus anderen Kalkülen

Schlussregeln aus anderen Kalkülen Was bisher geschah Klassische Aussagenlogik: Syntax Semantik semantische Äquivalenz und Folgern syntaktisches Ableiten (Resolution) Modellierung in Aussagenlogik: Wissensrepräsentation, Schaltungslogik,

Mehr

Atomare Sätze Prädikat der Stelligkeit n mit n Individuenkonstanten Reihenfolge der Individuenkonstanten ist entscheidend

Atomare Sätze Prädikat der Stelligkeit n mit n Individuenkonstanten Reihenfolge der Individuenkonstanten ist entscheidend Vokabelliste Logik (bis einschließlich Kapitel 12) Vorbemerkung: Die folgenden Erläuterungen sind nicht sauber formatiert, sollten aber selbsterklärend sein. Blaue Begriffe fallen unter den optionalen

Mehr

Musterlösung der Klausur zur Vorlesung Logik für Informatiker

Musterlösung der Klausur zur Vorlesung Logik für Informatiker Musterlösung der Klausur zur Vorlesung Logik für Informatiker Bernhard Beckert Christoph Gladisch Claudia Obermaier Arbeitsgruppe Künstliche Intelligenz Fachbereich Informatik, Universität Koblenz-Landau

Mehr

Weitere Beweistechniken und aussagenlogische Modellierung

Weitere Beweistechniken und aussagenlogische Modellierung Weitere Beweistechniken und aussagenlogische Modellierung Vorlesung Logik in der Informatik, HU Berlin 2. Übungsstunde Aussagenlogische Modellierung Die Mensa versucht ständig, ihr Angebot an die Wünsche

Mehr

Logik und Diskrete Strukturen

Logik und Diskrete Strukturen Skript zum Logikteil der Vorlesung Logik und Diskrete Strukturen SS 2016 Martin Hofmann Lehr- und Forschungseinheit Theoretische Informatik Institut für Informatik Ludwig-Maximilians-Universität München

Mehr

Hauptklausur zur Vorlesung Logik für Informatiker im Sommersemester 2012 Lösung

Hauptklausur zur Vorlesung Logik für Informatiker im Sommersemester 2012 Lösung Universität Koblenz-Landau FB 4 Informatik Prof. Dr. Viorica Sofronie-Stokkermans 23.07.2012 Dipl.-Inform. Markus Bender Hauptklausur zur Vorlesung Logik für Informatiker im Sommersemester 2012 Lösung

Mehr

Eigenschaften der Resolution für PL1 Formeln

Eigenschaften der Resolution für PL1 Formeln Eigenschaften der Resolution für PL1 Formeln Widerlegungsvollständigkeit (ohne Beweis): Sofern man Resolution auf eine widersprüchliche Klauselmenge anwendet, so existiert eine endliche Folge von Resolutionsschritten,

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 NP-Vollständigkeit Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr, o.n.v.

Mehr

Entscheidungsverfahren für Bernays/Schönfinkelbzw. Datenlogik-Formeln

Entscheidungsverfahren für Bernays/Schönfinkelbzw. Datenlogik-Formeln Vorlesung Letz WS 2002/2003 TU München: Logikbasierte Entscheidungsverfahren Entscheidungsverfahren für Bernays/Schönfinkelbzw. Datenlogik-Formeln INHALTE Die Bernays-Schönfinkel-Klasse bzw. Datenlogik-Formeln

Mehr

6. AUSSAGENLOGIK: TABLEAUS

6. AUSSAGENLOGIK: TABLEAUS 6. AUSSAGENLOGIK: TABLEAUS 6.1 Motivation 6.2 Wahrheitstafeln, Wahrheitsbedingungen und Tableauregeln 6.3 Tableaus und wahrheitsfunktionale Konsistenz 6.4 Das Tableauverfahren 6.5 Terminologie und Definitionen

Mehr

Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik

Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik WS 2013/14 Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 21. Oktober 2013 1/33 1 Boolesche

Mehr

Informatik A (Autor: Max Willert)

Informatik A (Autor: Max Willert) 2. Aufgabenblatt Wintersemester 2012/2013 - Musterlösung Informatik A (Autor: Max Willert) 1. Logik im Alltag (a) Restaurant A wirbt mit dem Slogan Gutes Essen ist nicht billig!, das danebenliegende Restaurant

Mehr

Neuronalen Netzen. Jens Lehmann. 1. März Institut für Künstliche Intelligenz Fakultät Informatik Technische Universität Dresden

Neuronalen Netzen. Jens Lehmann. 1. März Institut für Künstliche Intelligenz Fakultät Informatik Technische Universität Dresden Institut für Künstliche Intelligenz Fakultät Informatik Technische Universität Dresden 1. März 2005 Neurosymbolische Integration versucht künstliche neuronale Netze und Logikprogrammierung zu vereinen

Mehr

Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise:

Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise: Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 192 Beispiel Bsp.: Betrachte Schlussweise in: 1 Wenn es regnet, dann wird die Straße nass. R N

Mehr

3.1.1 Die Variante T1 und ein Entscheidungsverfahren für die Aussagenlogik

3.1.1 Die Variante T1 und ein Entscheidungsverfahren für die Aussagenlogik Deduktionssysteme der Aussagenlogik, Kap. 3: Tableaukalküle 38 3 Tableaukalküle 3.1 Klassische Aussagenlogik 3.1.1 Die Variante T1 und ein Entscheidungsverfahren für die Aussagenlogik Ein zweites Entscheidungsverfahren

Mehr

Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13)

Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13) Berlin, 21. Februar 2013 Name:... Matr.-Nr.:... Klausur Informatik-Propädeutikum (Niedermeier/Hartung/Nichterlein, Wintersemester 2012/13) 1 2 3 4 5 6 7 8 9 Σ Bearbeitungszeit: 90 min. max. Punktezahl:

Mehr

Hat KAI also die Uhr gestohlen oder nicht? (Mit Begründung, natürlich!) 1

Hat KAI also die Uhr gestohlen oder nicht? (Mit Begründung, natürlich!) 1 INTA - Lösungshinweise zum Übungsblatt 3, Version 1.0α. Aufgabe 13 (Meta-Logik, die Zweite). Nachdem sie erfolgreich den Zauberer identifiziert haben (hatten sie doch, oder?), werden sie kurzzeitig als

Mehr

Eine Aussage ist ein Satz der Umgangssprache, der wahr oder falsch sein kann. Man geht von dem Folgenden aus:

Eine Aussage ist ein Satz der Umgangssprache, der wahr oder falsch sein kann. Man geht von dem Folgenden aus: Karlhorst Meyer Formallogik Die Umgangssprache ist für mathematische Bedürfnisse nicht exakt genug. Zwei Beispiele: In Folge können u. U. Beweise, die in Umgangssprache geschrieben werden, nicht vollständig,

Mehr

Übungsblatt Nr. 5. Lösungsvorschlag

Übungsblatt Nr. 5. Lösungsvorschlag Institut für Kryptographie und Sicherheit Prof. Dr. Jörn Müller-Quade Dirk Achenbach Tobias Nilges Vorlesung Theoretische Grundlagen der Informatik Übungsblatt Nr. 5 Aufgabe 1: Eine schöne Bescherung (K)

Mehr