Logik für Informatiker

Größe: px
Ab Seite anzeigen:

Download "Logik für Informatiker"

Transkript

1 Vorlesung Logik für Informatiker 11. Prädikatenlogik Normalformen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1

2 Negationsnormalform Definition: Negationsnormalform Eine Formel A For Σ ist in Negationsnormalform (NNF), falls: und kommen in A nicht vor jedes Negationszeichen in A steht direkt vor einem Atom (insbes. auch kein ) Logik für Informatiker, SS 06 p.2

3 Negationsnormalform: Beispiele NNF p p ( p q) (r ( r q)) Logik für Informatiker, SS 06 p.3

4 Negationsnormalform: Beispiele NNF p p ( p q) (r ( r q)) Nicht NNF p (p q) p q Logik für Informatiker, SS 06 p.3

5 Bereinigte Formeln Definition: Bereinigte Formel Eine Formel A For Σ ist bereinigt, falls: Keine Variable in A sowohl gebunden als auch frei vorkommt Keine Variable mehr als einmal in A quantifiziert ist Logik für Informatiker, SS 06 p.4

6 Bereinigte Formeln: Beispiele Bereinigt p q x y(p(x) q(x, y) z(r(x, z))) Logik für Informatiker, SS 06 p.5

7 Bereinigte Formeln: Beispiele Bereinigt p q x y(p(x) q(x, y) z(r(x, z))) Nicht bereinigt p(x) x q(x) ( x p(x)) ( x q(x)) Logik für Informatiker, SS 06 p.5

8 Pränexnormalform Definition: Pränexnormalform Eine Formel A For Σ ist in Pränexnormalform (PNF), falls: A = Q 1 x 1 Q n x n B wobei Q 1..., Q n {, } x 1,..., x n Var B quantorenfrei (dann heißt B Matrix von A) Logik für Informatiker, SS 06 p.6

9 Pränexnormalform: Beispiele In PNF p(x) q(x) x y(p(x) q(y)) Logik für Informatiker, SS 06 p.7

10 Pränexnormalform: Beispiele In PNF p(x) q(x) x y(p(x) q(y)) Nicht in PNF ( x p(x)) ( y q(y)) Logik für Informatiker, SS 06 p.7

11 Umwandlung in Pränexnormalform Theorem Zu jeder Formel A For Σ gibt es eine äquivalente Formel in Pränexnormalform Logik für Informatiker, SS 06 p.8

12 Umwandlung in Pränexnormalform Theorem Zu jeder Formel A For Σ gibt es eine äquivalente Formel in Pränexnormalform Konstruktiver Beweis 1. Formel bereinigen 2. Formel in NNF transformieren (Negationszeichen nach innen) und aussagenlogische Umformungen 3. Alle Quantoren nach vorne (Reihenfolge unverändert lassen) Logik für Informatiker, SS 06 p.8

13 Skolemnormalform Definition: Skolemnormalform Eine Formel A For Σ ist in Skolemnormalform (SNF), falls: A ist in Pränexnormalform A ist geschlossen (enthält keine freien Variablen) enthält nur universelle Quantoren die Matrix von A ist in konjunktiver Normalform Logik für Informatiker, SS 06 p.9

14 Skolemnormalform Definition: Skolemnormalform Eine Formel A For Σ ist in Skolemnormalform (SNF), falls: A ist in Pränexnormalform A ist geschlossen (enthält keine freien Variablen) enthält nur universelle Quantoren die Matrix von A ist in konjunktiver Normalform Bemerkung In der Literatur manchmal: Skolemnormalform als Klauselnormalform bezeichnet Logik für Informatiker, SS 06 p.9

15 Skolemnormalform: Beispiele In Skolemnormalform x y(p(x) q(y)) Logik für Informatiker, SS 06 p.10

16 Skolemnormalform: Beispiele In Skolemnormalform x y(p(x) q(y)) Nicht in Skolemnormalform y(p(x) q(y)) ( x p(x)) ( y q(y)) x y(p(x) q(y)) x y(p(x) (q(y) r(x))) Logik für Informatiker, SS 06 p.10

17 Umformung in Skolemnormalform Leider... Es gibt NICHT zu jeder Formel eine äquivalente Formel in Skolemnormalform (Existenzquantoren können nicht wegtransformiert werden) Jedoch... Logik für Informatiker, SS 06 p.11

18 Umformung in Skolemnormalform Leider... Es gibt NICHT zu jeder Formel eine äquivalente Formel in Skolemnormalform (Existenzquantoren können nicht wegtransformiert werden) Jedoch... Definition: Ërfüllbarkeitsäquivalenz Formeln A, B For Σ sind erfüllbarkeitsäquivalent, falls sie beide erfüllbar oder beide unerfüllbar sind Logik für Informatiker, SS 06 p.11

19 Existenzquantoren vs. Funktionssymbole Darstellung mit Existenzquantor 1. x y(y = x + x) 2. x y(x < y) 3. x y z(x < y x + z = y) Logik für Informatiker, SS 06 p.12

20 Existenzquantoren vs. Funktionssymbole Darstellung mit Existenzquantor 1. x y(y = x + x) 2. x y(x < y) 3. x y z(x < y x + z = y) Darstellung mit Funktionszeichen 1. x(do(x) = x + x) 2. x(x < gr(x)) 3. x y(x < y x + diff (x, y) = y) Logik für Informatiker, SS 06 p.12

21 Existenzquantoren vs. Funktionssymbole Darstellung mit Existenzquantor 1. x y(y = x + x) 2. x y(x < y) 3. x y z(x < y x + z = y) Darstellung mit Funktionszeichen 1. x(do(x) = x + x) 2. x(x < gr(x)) 3. x y(x < y x + diff (x, y) = y) Gib den existierenden Elementen einen Namen (wenn mehr als eines existiert wähle eines) Logik für Informatiker, SS 06 p.12

22 Skolemisierung Definition: Skolemisierung Gegeben A = x B Dann ist A sk = B{x/ f (y 1,..., y n )} die Skolemisierung von A, wobei f neu (nicht in A) y 1,..., y n die in A frei vorkommenden Variablen Logik für Informatiker, SS 06 p.13

23 Skolemisierung Theorem A sk die Skolemisierung von A, dann: A und A sk erfüllbarkeitsäquivalent A sk = A Im allgemeinen NICHT: A = A sk Theorem C hat Unterformel A C entsteht durch Ersetzung von A durch A sk Dann sind C und C erfüllbarkeitsäquivalent Logik für Informatiker, SS 06 p.14

24 Skolemisierung Theorem A sk die Skolemisierung von A, dann: A und A sk erfüllbarkeitsäquivalent A sk = A Im allgemeinen NICHT: A = A sk Theorem C hat Unterformel A C entsteht durch Ersetzung von A durch A sk Dann sind C und C erfüllbarkeitsäquivalent Logik für Informatiker, SS 06 p.14

25 Umformung in Skolemnormalform Theorem Zu jeder Formel A For Σ gibt es eine erfüllbarkeitsäquivalente Formel in Skolemnormalform Logik für Informatiker, SS 06 p.15

26 Umformung in Skolemnormalform Theorem Zu jeder Formel A For Σ gibt es eine erfüllbarkeitsäquivalente Formel in Skolemnormalform Konstruktiver Beweis 1. Formel in Pränexnormalform umformen 2. Alle freien Variablen existentiell quantifizieren 3. Existenzquantoren durch Skolemisierung entfernen 4. Matrix in konjunktive Normalform transformieren (aussagenlogische Umformungen) Logik für Informatiker, SS 06 p.15

27 Umformung in Skolemnormalform Beispiel Gegeben x(p(y) z q(x, z)) Erfüllbarkeitsäquivalente Formel in SNF x(p(c) q(x, f (x))) Logik für Informatiker, SS 06 p.16

28 Umformung in Skolemnormalform Beispiel Gegeben w( x(p(w, x) y(q(w, x, y) z r(y, z)))) Erfüllbarkeitsäquivalente Formel in SNF x y ((p(w, f (w)) q(w, f (w), y)) (p(w, f (w)) r(y, g(w, y)))) Logik für Informatiker, SS 06 p.17

29 Klauselnormalform Definition: Klauselnormalform Eine Formel A For Σ ist in Klauselnormalform, falls sie eine Konjunktion von Disjunktion von Literalen ist: n^ i=1 m i _ j=1 L ij Logik für Informatiker, SS 06 p.18

30 Klauselnormalform Definition: Klauselnormalform Eine Formel A For Σ ist in Klauselnormalform, falls sie eine Konjunktion von Disjunktion von Literalen ist: n^ i=1 m i _ j=1 L ij (wie in Aussagenlogik, jedoch mit prädikatenlogischen Literalen) Logik für Informatiker, SS 06 p.18

31 Klauselnormalform Definition: Klauselnormalform Eine Formel A For Σ ist in Klauselnormalform, falls sie eine Konjunktion von Disjunktion von Literalen ist: n^ i=1 m i _ j=1 L ij (wie in Aussagenlogik, jedoch mit prädikatenlogischen Literalen) Mengenschreibweise { {L 1,1,..., L 1,m1 },..., {L n,1,..., L n,mn } } Logik für Informatiker, SS 06 p.18

32 Umformung in Klauselnormalfom Theorem Zu jeder Formel gibt es eine erfüllbarkeitsäquivalente Formel in Klauselnormalform Logik für Informatiker, SS 06 p.19

33 Umformung in Klauselnormalfom Theorem Zu jeder Formel gibt es eine erfüllbarkeitsäquivalente Formel in Klauselnormalform Konstruktiver Beweis 1. Umformung in Skolemnormalform 2. Allquantoren weglassen (freie Variablen in Klauseln sind implizit allquantifiziert) Logik für Informatiker, SS 06 p.19

34 Umformung in Klauselnormalfom Beispiel Gegeben x(p(w, x) y(q(w, x, y) z r(y, z))) Erfüllbarkeitsäquivalente Formel in Skolemnormalform x y ((p(w, f (w)) q(w, f (w), y)) (p(w, f (w)) r(y, g(w, y)))) Logik für Informatiker, SS 06 p.20

35 Umformung in Klauselnormalfom Beispiel Gegeben x(p(w, x) y(q(w, x, y) z r(y, z))) Erfüllbarkeitsäquivalente Formel in Skolemnormalform x y ((p(w, f (w)) q(w, f (w), y)) (p(w, f (w)) r(y, g(w, y)))) Erfüllbarkeitsäquivalente Formel in Klauselnormalform ((p(w, f (w)) q(w, f (w), y)) (p(w, f (w)) r(y, g(w, y)))) Logik für Informatiker, SS 06 p.20

36 Umformung in Klauselnormalfom Beispiel (Fortsetzung) Erfüllbarkeitsäquivalente Formel in Klauselnormalform ((p(w, f (w)) q(w, f (w), y)) (p(w, f (w)) r(y, g(w, y)))) Logik für Informatiker, SS 06 p.21

37 Umformung in Klauselnormalfom Beispiel (Fortsetzung) Erfüllbarkeitsäquivalente Formel in Klauselnormalform in Mengenschreibweise ((p(w, f (w)) q(w, f (w), y)) (p(w, f (w)) r(y, g(w, y)))) ({ p(w, f (w)), q(w, f (w), y)) }, { p(w, f (w)), r(y, g(w, y)) } Logik für Informatiker, SS 06 p.21

38 Zusammenfassung: Normalformen Negationsnormalform Logik für Informatiker, SS 06 p.22

39 Zusammenfassung: Normalformen Negationsnormalform Bereinigte Formel Logik für Informatiker, SS 06 p.22

40 Zusammenfassung: Normalformen Negationsnormalform Bereinigte Formel Pränexnormalform Logik für Informatiker, SS 06 p.22

41 Zusammenfassung: Normalformen Negationsnormalform Bereinigte Formel Pränexnormalform Umwandlung in Pränexnormalform Logik für Informatiker, SS 06 p.22

42 Zusammenfassung: Normalformen Negationsnormalform Bereinigte Formel Pränexnormalform Umwandlung in Pränexnormalform Skolemnormalform Logik für Informatiker, SS 06 p.22

43 Zusammenfassung: Normalformen Negationsnormalform Bereinigte Formel Pränexnormalform Umwandlung in Pränexnormalform Skolemnormalform Erfüllbarkeitsäquivalenz Logik für Informatiker, SS 06 p.22

44 Zusammenfassung: Normalformen Negationsnormalform Bereinigte Formel Pränexnormalform Umwandlung in Pränexnormalform Skolemnormalform Erfüllbarkeitsäquivalenz Skolemisierung Logik für Informatiker, SS 06 p.22

45 Zusammenfassung: Normalformen Negationsnormalform Bereinigte Formel Pränexnormalform Umwandlung in Pränexnormalform Skolemnormalform Erfüllbarkeitsäquivalenz Skolemisierung Umwandlung in Skolemnormalform Logik für Informatiker, SS 06 p.22

46 Zusammenfassung: Normalformen Negationsnormalform Bereinigte Formel Pränexnormalform Umwandlung in Pränexnormalform Skolemnormalform Erfüllbarkeitsäquivalenz Skolemisierung Umwandlung in Skolemnormalform Klauselnormalform Logik für Informatiker, SS 06 p.22

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 3. Prädikatenlogik Teil 6 25.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letzte Vorlesungen Prädikatenlogik: Syntax Semantik

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 12. Prädikatenlogik Resolution Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Zur Erinnerung Definition: Aussagenlogische

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 5. Aussagenlogik Normalformen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Normalformen Definition: Literal Atom (aussagenlogische

Mehr

Prädikatenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Normalformen und Grenzen der Prädikatenlogik 1. Stufe

Prädikatenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Normalformen und Grenzen der Prädikatenlogik 1. Stufe Prädikatenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Normalformen und Grenzen der Prädikatenlogik 1. Stufe 3 Teil 3: Modellierung und Beweise 4 Teil 4: Substitution, Unifikation und Resolution

Mehr

Logik Vorlesung 10: Herbrand-Theorie

Logik Vorlesung 10: Herbrand-Theorie Logik Vorlesung 10: Herbrand-Theorie Andreas Maletti 9. Januar 2015 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen Weitere Eigenschaften

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 06.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax (Formeln) Semantik Wertebelegungen/Valuationen/Modelle

Mehr

Logik Vorlesung 10: Herbrand-Theorie

Logik Vorlesung 10: Herbrand-Theorie Logik Vorlesung 10: Herbrand-Theorie Andreas Maletti 9. Januar 2015 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen Weitere Eigenschaften

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 6. Aussagenlogik Resolution Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Der aussagenlogische Resolutionkalkül Wesentliche

Mehr

Logik Vorlesung 9: Normalformen

Logik Vorlesung 9: Normalformen Logik Vorlesung 9: Normalformen Andreas Maletti 19. Dezember 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen Weitere Eigenschaften

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 6 14.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

Modellierungsmethoden der Informatik Kapitel 2: Logikkalküle

Modellierungsmethoden der Informatik Kapitel 2: Logikkalküle smethoden der Informatik Kapitel 2: Logikkalküle Prädikatenlogik 1. Stufe Norbert Fuhr Gudrun Fischer 29.11.2005 Organisatorisches Organisatorisches Klausur Termin: 20.2.2006, 13-15 Uhr, Audimax Anmeldung

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 9. Prädikatenlogik Syntax und Semantik der Prädikatenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Syntax der

Mehr

7. Prädikatenlogik. Aussagenlogik hat wünschenswerte Eigenschaften wie Korrektheit, Vollständigkeit, Entscheidbarkeit.

7. Prädikatenlogik. Aussagenlogik hat wünschenswerte Eigenschaften wie Korrektheit, Vollständigkeit, Entscheidbarkeit. 7. Prädikatenlogik Aussagenlogik hat wünschenswerte Eigenschaften wie Korrektheit, Vollständigkeit, Entscheidbarkeit. Aber: Aussagenlogik ist sehr beschränkt in der Ausdrucksmächtigkeit. Wissen kann nur

Mehr

Modellierungsmethoden der Informatik Kapitel 2: Logikkalküle

Modellierungsmethoden der Informatik Kapitel 2: Logikkalküle smethoden der Informatik Kapitel 2: Logikkalküle Prädikatenlogik 1. Stufe Norbert Fuhr Gudrun Fischer 29.11.2005 Organisatorisches Organisatorisches Klausur Termin: 20.2.2006, 13-15 Uhr, Audimax Anmeldung

Mehr

Ralf Möller, TUHH. Beim vorigen Mal: Heute: Prädikatenlogik: Algorithmus für Erfüllbarkeitsproblem. Lernziele: Beweisverfahren für Prädikatenlogik

Ralf Möller, TUHH. Beim vorigen Mal: Heute: Prädikatenlogik: Algorithmus für Erfüllbarkeitsproblem. Lernziele: Beweisverfahren für Prädikatenlogik Ralf Möller, TUHH Beim vorigen Mal: Heute: Prädikatenlogik: Algorithmus für Erfüllbarkeitsproblem Lernziele: Beweisverfahren für Prädikatenlogik Danksagung Bildmaterial: S. Russell, P. Norvig, Artificial

Mehr

Prädikatenlogik. Einführende Beispiele Geschwister x y ( u v (Eltern(u, v, x) Eltern(u, v, y) Geschwister(x, y)))

Prädikatenlogik. Einführende Beispiele Geschwister x y ( u v (Eltern(u, v, x) Eltern(u, v, y) Geschwister(x, y))) Prädikatenlogik Einführende Beispiele Geschwister x y ( u v (Eltern(u, v, x) Eltern(u, v, y) Geschwister(x, y))) symmetrische Relation x y (R(x, y) R(y, x)) Das Zeichen bezeichnen wir als Existenzquantor

Mehr

Wozu formale Logik? Programmiersprachen Logik im Fingerhut. Formeln. Logik im Fingerhut (24. Januar 2005) Belegung und Interpretation

Wozu formale Logik? Programmiersprachen Logik im Fingerhut. Formeln. Logik im Fingerhut (24. Januar 2005) Belegung und Interpretation Wozu formale Logik? Logik im Fingerhut Studiengang Informatik Universität Bremen präzise Beschreibung von Aussagen über die Welt bzw. über verschiedene Welten Ziehen und Überprüfen von Schlussfolgerungen

Mehr

Formale Grundlagen der Informatik 1 Wiederholung zum Logik-Teil

Formale Grundlagen der Informatik 1 Wiederholung zum Logik-Teil Formale Grundlagen der Informatik 1 zum Logik-Teil Frank Heitmann heitmann@informatik.uni-hamburg.de 20. Juni 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/32 Überblick Im hatten wir Aussagenlogik

Mehr

Normalformen. Wie bei der Aussagenlogik lassen sich Formeln wieder in dazu äquivalente umwandeln, die eine bestimmte Form haben.

Normalformen. Wie bei der Aussagenlogik lassen sich Formeln wieder in dazu äquivalente umwandeln, die eine bestimmte Form haben. Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 4.5 Prädikatenlogik Normalformen 148 Normalformen Wie bei der Aussagenlogik lassen sich Formeln wieder in dazu äquivalente umwandeln, die eine

Mehr

Terme. Dann ist auch f(t 1. Terme. Dann ist P (t 1

Terme. Dann ist auch f(t 1. Terme. Dann ist P (t 1 Prädikatenlogik 1. Syntax und Semantik Man kann die Prädikatenlogik unter einem syntaktischen und einem semantischen Gesichtspunkt sehen. Bei der Behandlung syntaktischer Aspekte macht man sich Gedanken

Mehr

Formale Systeme, WS 2013/2014. Lösungen zu Übungsblatt 5

Formale Systeme, WS 2013/2014. Lösungen zu Übungsblatt 5 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter H. Schmitt Dr. V. Klebanov, Dr. M. Ulbrich, C. Scheben Formale Systeme, WS 2013/2014 Lösungen zu Übungsblatt 5 Dieses

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 4 07.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Gestern Normalformen Atome, Literale, Klauseln Konjunktive

Mehr

Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen. notwendig: Existenz- und Allaussagen

Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen. notwendig: Existenz- und Allaussagen Prädikatenlogik 1. Stufe (kurz: PL1) Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen notwendig: Existenz- und Allaussagen Beispiel: 54 Syntax der Prädikatenlogik erster Stufe (in der

Mehr

Klausur zur Vorlesung Logik für Informatiker Sommersemester 2017

Klausur zur Vorlesung Logik für Informatiker Sommersemester 2017 Prof. Dr. Viorica Sofronie-Stokkermans Dipl.-Inform. Markus Bender AG Formale Methoden und Theoretische Informatik Fachbereich Informatik Universität Koblenz-Landau Klausur zur Vorlesung Logik für Informatiker

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 13. Prädikatenlogik Der Satz von Herbrand Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Semantische Bäume Eine klassische

Mehr

Klausur zur Vorlesung Logik für Informatiker Sommersemester 2015

Klausur zur Vorlesung Logik für Informatiker Sommersemester 2015 Prof. Dr. Viorica Sofronie-Stokkermans Dipl.-Inform. Markus Bender AG Formale Methoden und Theoretische Informatik Fachbereich Informatik Universität Koblenz-Landau Klausur zur Vorlesung Logik für Informatiker

Mehr

Prädikatenlogik. Prädikatenlogik. Prädikatenlogik. Prädikatenlogik. Wirklichkeit bzw. Modell. Relation. Logische Form. Liebt(John, Mary) Sprache

Prädikatenlogik. Prädikatenlogik. Prädikatenlogik. Prädikatenlogik. Wirklichkeit bzw. Modell. Relation. Logische Form. Liebt(John, Mary) Sprache Modell, Formalisierung und natürliche Sprache. Formeltransformation Entscheidungsverfahren Logische Form Relation Wirklichkeit bzw. Modell Sprache Liebt(John, Mary) John liebt Mary. [Roland Potthast, 2001]

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 9. Prädikatenlogik Syntax und Semantik der Prädikatenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Syntax der

Mehr

Logische und funktionale Programmierung

Logische und funktionale Programmierung Logische und funktionale Programmierung Vorlesung 2 und 3: Resolution Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 3. November 2017 1/43 HERBRAND-STRUKTUR Sei

Mehr

How To Prove A Propositional Logic

How To Prove A Propositional Logic Klausur Formale Systeme Fakultät für Informatik SS 2015 Prof. Dr. Bernhard Beckert 31. Juli 2015 Vorname: Matrikel-Nr.: Die Bearbeitungszeit beträgt 60 Minuten. A1 (10) A2 (8) A3 (6) A4 (7) A5 (9) A6 (11)

Mehr

Signatur einer prädikatenlogische Sprache

Signatur einer prädikatenlogische Sprache Signatur einer prädikatenlogische Sprache Das Alphabet einer prädikatenlogische Sprache (erster Stufe) besteht aus den logischen Funktoren,,,,, and den Klammersymbolen ( und ) und dem Komma, einer (abzählbar

Mehr

Formale Systeme, WS 2012/2013. Lösungen zu Übungsblatt 7

Formale Systeme, WS 2012/2013. Lösungen zu Übungsblatt 7 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter H. Schmitt David Faragó, Christoph Scheben, Mattias Ulbrich Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 4 7.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 4. Aussagenlogik Syntax und Semantik der Aussagenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Syntax der Aussagenlogik:

Mehr

Klausur Formale Systeme Fakultät für Informatik 2. Klausur zum WS 2010/2011

Klausur Formale Systeme Fakultät für Informatik 2. Klausur zum WS 2010/2011 Fakultät für Informatik 2. Klausur zum WS 2010/2011 Prof. Dr. Bernhard Beckert 08. April 2011 Vorname: Matrikel-Nr.: Platz: Klausur-ID: **Platz** **Id** Die Bearbeitungszeit beträgt 60 Minuten. A1 (17)

Mehr

3. Prädikatenlogik. Im Sinne der Aussagenlogik sind das verschiedene Sätze, repräsentiert etwa durch A, B, C. Natürlich gilt nicht: A B = C

3. Prädikatenlogik. Im Sinne der Aussagenlogik sind das verschiedene Sätze, repräsentiert etwa durch A, B, C. Natürlich gilt nicht: A B = C 3. Prädikatenlogik 3.1 Motivation In der Aussagenlogik interessiert Struktur der Sätze nur, insofern sie durch "und", "oder", "wenn... dann", "nicht", "genau dann... wenn" entsteht. Für viele logische

Mehr

Logik Vorlesung 5: Grundlagen Resolution

Logik Vorlesung 5: Grundlagen Resolution Logik Vorlesung 5: Grundlagen Resolution Andreas Maletti 21. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen Weitere

Mehr

Beweisen mit Semantischen Tableaux

Beweisen mit Semantischen Tableaux Beweisen mit Semantischen Tableaux Semantische Tableaux geben ein Beweisverfahren, mit dem ähnlich wie mit Resolution eine Formel dadurch bewiesen wird, dass ihre Negation als widersprüchlich abgeleitet

Mehr

Grundlagen der Programmierung

Grundlagen der Programmierung GdP4 Slide 1 Grundlagen der Programmierung Vorlesung 4 vom 04.11.2004 Sebastian Iwanowski FH Wedel Grundlagen der Programmierung 1. Einführung Grundlegende Eigenschaften von Algorithmen und Programmen

Mehr

Wissensbasierte Systeme 7. Prädikatenlogik

Wissensbasierte Systeme 7. Prädikatenlogik Wissensbasierte Systeme 7. Prädikatenlogik Syntax und Semantik, Normalformen, Herbrandexpansion Michael Beetz Plan-based Robot Control 1 Inhalt 7.1 Motivation 7.2 Syntax und Semantik 7.3 Normalformen 7.4

Mehr

f(1, 1) = 1, f(x, y) = 0 sonst üblicherweise Konjunktion, manchmal auch

f(1, 1) = 1, f(x, y) = 0 sonst üblicherweise Konjunktion, manchmal auch Belegungen, Wahrheitsfunktionen 1. Wie viele binäre Funktionen gibt es auf der Menge {0, 1} (d.h., Funktionen von {0, 1} 2 nach {0, 1})? Geben Sie alle diese Funktionen an, und finden Sie sinnvolle Namen

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 5 8.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

Formale Systeme. Aussagenlogik: Resolutionskalku l. Prof. Dr. Bernhard Beckert, WS 2018/2019

Formale Systeme. Aussagenlogik: Resolutionskalku l. Prof. Dr. Bernhard Beckert, WS 2018/2019 Formale Systeme Prof. Dr. Bernhard Beckert, WS 2018/2019 Aussagenlogik: Resolutionskalku l KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Mehr

Formale Systeme. Das Erfu llbarkeitsproblem. Prof. Dr. Bernhard Beckert, WS 2017/2018

Formale Systeme. Das Erfu llbarkeitsproblem. Prof. Dr. Bernhard Beckert, WS 2017/2018 Formale Systeme Prof. Dr. Bernhard Beckert, WS 2017/2018 Das Erfu llbarkeitsproblem KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Mehr

Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2.

Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2. Theorie der Informatik 24. Februar 2014 2. Aussagenlogik II Theorie der Informatik 2. Aussagenlogik II 2.1 Äquivalenzen Malte Helmert Gabriele Röger 2.2 Vereinfachte Schreibweise Universität Basel 24.

Mehr

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25 Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/25 Einführendes Beispiel Falls Lisa Peter trifft, dann trifft Lisa auch Gregor.

Mehr

GDI Medieninformatik. 13. VL: Einführung in die mathematische Logik Prädikatenlogik (II)

GDI Medieninformatik. 13. VL: Einführung in die mathematische Logik Prädikatenlogik (II) GDI Medieninformatik 13. VL: Einführung in die mathematische Logik Prädikatenlogik (II) Prädikatenlogik erster Stufe (FOL): Syntax: Sprachelemente 27.01.2008 GDI - Logik 2 FOL: Syntax 27.01.2008 GDI -

Mehr

3.2 Prädikatenlogik. WS 06/07 mod 321

3.2 Prädikatenlogik. WS 06/07 mod 321 3.2 Prädikatenlogik WS 06/07 mod 321 Prädikatenlogik umfasst Aussagenlogik mit atomaren Aussagen, Variablen, Junktoren. Zusätzliche Konzepte: A = (τ, Σ) sei die so genannte Termalgebra (mit Variablen,

Mehr

Logik Vorlesung 3: Äquivalenz und Normalformen

Logik Vorlesung 3: Äquivalenz und Normalformen Logik Vorlesung 3: Äquivalenz und Normalformen Andreas Maletti 7. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen

Mehr

Kapitel L:II. II. Aussagenlogik

Kapitel L:II. II. Aussagenlogik Kapitel L:II II. Aussagenlogik Syntax der Aussagenlogik Semantik der Aussagenlogik Eigenschaften des Folgerungsbegriffs Äquivalenz Formeltransformation Normalformen Bedeutung der Folgerung Erfüllbarkeitsalgorithmen

Mehr

Klausur Formale Systeme Fakultät für Informatik SS Prof. Dr. Bernhard Beckert. 31. Juli Die Bearbeitungszeit beträgt 60 Minuten.

Klausur Formale Systeme Fakultät für Informatik SS Prof. Dr. Bernhard Beckert. 31. Juli Die Bearbeitungszeit beträgt 60 Minuten. Name: Vorname: Klausur Formale Systeme Fakultät für Informatik Matrikel-Nr.: SS 2015 Prof. Dr. Bernhard Beckert 31. Juli 2015 Die Bearbeitungszeit beträgt 60 Minuten. A1 (10) A2 (8) A3 (6) A4 (7) A5 (9)

Mehr

Logische Äquivalenz. Definition Beispiel 2.23

Logische Äquivalenz. Definition Beispiel 2.23 Logische Äquivalenz Definition 2.22 Zwei aussagenlogische Formeln α, β A heißen logisch äquivalent, falls für jede Belegung I von α und β gilt: Schreibweise: α β. Beispiel 2.23 Aus Folgerung 2.6 ergibt

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 3. Prädikatenlogik Teil 7 26.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Unser Ziel Kalküle zur systematischen Überprüfung von

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 3. Aussagenlogik Syntax und Semantik der Aussagenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.16 Syntax der Aussagenlogik:

Mehr

Logik Vorlesung 8: Modelle und Äquivalenz

Logik Vorlesung 8: Modelle und Äquivalenz Logik Vorlesung 8: Modelle und Äquivalenz Andreas Maletti 12. Dezember 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen Weitere

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 3. Prädikatenlogik Teil 1 5.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Rückblick: Vor- und Nachteile von Aussagenlogik + Aussagenlogik

Mehr

Logik Vorlesung 4: Horn-Logik und Kompaktheit

Logik Vorlesung 4: Horn-Logik und Kompaktheit Logik Vorlesung 4: Horn-Logik und Kompaktheit Andreas Maletti 14. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen

Mehr

Was bisher geschah: klassische Aussagenlogik

Was bisher geschah: klassische Aussagenlogik Was bisher geschah: klassische Aussagenlogik Syntax Symbole und Struktur Junktoren: t, f,,,,, aussagenlogische Formeln AL(P) induktive Definition: IA Atome (Aussagenvariablen) p, q, r,... P IS zusammengesetzte

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 5 14.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Normalformen Atome, Literale, Klauseln Konjunktive

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 10. Prädikatenlogik Substitutionen und Unifikation Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Substitutionen Definition:

Mehr

Ersetzbarkeitstheorem

Ersetzbarkeitstheorem Ersetzbarkeitstheorem Die Abgeschlossenheit läßt sich auch folgendermaßen formulieren: Ersetzbarkeitstheorem Seien F und G Formeln mit F G. SeienH und H Formeln, so daß H aus H hervorgeht, indem ein Vorkommen

Mehr

Formale Grundlagen der Informatik II

Formale Grundlagen der Informatik II Formale Grundlagen der Informatik II FO: Axiome und Theorie (de-)motivierendes Beispiel: S=(+,0) Strukturen ({0,1}*,,ε) Strukturen (P(X),, ) Formale Grundlagen der Informatik II Interessieren uns für alle

Mehr

Normalformen der Prädikatenlogik

Normalformen der Prädikatenlogik Normalformen der Prädikatenlogik prädikatenlogische Ausdrücke können in äquivalente Ausdrücke umgeformt werden Beispiel "X (mensch(x) Æ sterblich(x)) "X (ÿ mensch(x) sterblich(x)) "X (ÿ (mensch(x) Ÿ ÿ

Mehr

das Konzept der Gleichung in der Algebra Robert Recorde Spielsemantik Semantik-Spiel FO mit oder ohne =? Abschnitt 2.5

das Konzept der Gleichung in der Algebra Robert Recorde Spielsemantik Semantik-Spiel FO mit oder ohne =? Abschnitt 2.5 Teil 2: FO Syntax und Semantik FO 2 Spielsemantik Semantik-Spiel Satz: A = ψ[a] V hat Gewinnstrategie in Position (ψ, a. Teil 2: FO Syntax und Semantik FO 2 das Konzept der Gleichung in der Algebra Robert

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik FH Wedel Prof. Dr. Sebastian Iwanowski GTI22 Folie 1 Grundlagen der Theoretischen Informatik Sebastian Iwanowski FH Wedel Kap. 2: Logik, Teil 2.2: Prädikatenlogik FH Wedel Prof. Dr. Sebastian Iwanowski

Mehr

Syntax der Prädikatenlogik: Komplexe Formeln

Syntax der Prädikatenlogik: Komplexe Formeln Syntax der Prädikatenlogik: Komplexe Formeln Σ = P, F eine prädikatenlogische Signatur Var eine Menge von Variablen Definition: Menge For Σ der Formeln über Σ Logik für Informatiker, SS 06 p.10 Syntax

Mehr

Hauptklausur zur Vorlesung Logik für Informatiker im Sommersemester 2012 Lösung

Hauptklausur zur Vorlesung Logik für Informatiker im Sommersemester 2012 Lösung Universität Koblenz-Landau FB 4 Informatik Prof. Dr. Viorica Sofronie-Stokkermans 23.07.2012 Dipl.-Inform. Markus Bender Hauptklausur zur Vorlesung Logik für Informatiker im Sommersemester 2012 Lösung

Mehr

Normalform. 2.1 Äquivalenz und Folgerung. 2.2 Die pränexe Normalform

Normalform. 2.1 Äquivalenz und Folgerung. 2.2 Die pränexe Normalform 2 Normalformen 2.1 Äquivalenz und Folgerung Definition 2.1 Äquivalenz, Folgerung). Seien ϕ, ψ FO[σ]. a) ϕ und ψ heißen äquivalent kurz: ϕ ψ, bzw. ϕ = ψ), wenn für alle zu ϕ und ψ äquivalent passenden σ-interpretationen

Mehr

Formale Systeme. Wiederholung. Prof. Dr. Bernhard Beckert, WS 2017/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Formale Systeme. Wiederholung. Prof. Dr. Bernhard Beckert, WS 2017/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft Formale Systeme Prof. Dr. Bernhard Beckert, WS 2017/2018 Wiederholung KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft Themen Aussagenlogik

Mehr

Beachte: Mit n = 0 sind auch Konstanten Terme.

Beachte: Mit n = 0 sind auch Konstanten Terme. Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 4.2 Prädikatenlogik ohne Gleichheit Syntax und Semantik 107 Terme Ab sofort wird Signatur τ als festgelegt angenommen. Sei V = {x, y,...} Vorrat

Mehr

THEORETISCHE INFORMATIK UND LOGIK

THEORETISCHE INFORMATIK UND LOGIK THEORETISCHE INFORMATIK UND LOGIK 13. Vorlesung: Prädikatenlogik: Syntax und Semantik Markus Krötzsch Lehrstuhl Wissensbasierte Systeme TU Dresden, 1. Juni 2018 Halbzeit: Zusammenfassung und Ausblick Markus

Mehr

Klausur zur Vorlesung Mathematische Logik

Klausur zur Vorlesung Mathematische Logik Universität Heidelberg 25. Januar 2012 Institut für Informatik Prof. Dr. Klaus Ambos-Spies Dipl.-Math. Thorsten Kräling Klausur zur Vorlesung Mathematische Logik LÖSUNGEN Aufgabe 1 (Aussagenlogik - 8 Punkte)

Mehr

Formale Grundlagen der Informatik 1 Kapitel 19. Syntax & Semantik

Formale Grundlagen der Informatik 1 Kapitel 19. Syntax & Semantik Formale Grundlagen der Informatik 1 Kapitel 19 & Frank Heitmann heitmann@informatik.uni-hamburg.de 23. Juni 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/25 Motivation Die ist eine Erweiterung

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 7 15.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Unser Ziel Kalkül(e) zur systematischen Überprüfung

Mehr

Formale Systeme, WS 2015/2016 Übungsblatt 3

Formale Systeme, WS 2015/2016 Übungsblatt 3 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Bernhard Beckert Thorsten Bormer, Dr. Vladimir Klebanov, Dr. Mattias Ulbrich Formale Systeme, WS 25/26 Übungsblatt 3 Dieses

Mehr

Logik für Informatiker Musterlösung Aufgabenblatt 11

Logik für Informatiker Musterlösung Aufgabenblatt 11 Universität Koblenz-Landau SS 06 Institut für Informatik Bernhard Beckert www.uni-koblenz.de/~beckert Christoph Gladisch www.uni-koblenz.de/~gladisch Claudia Obermaier www.uni-koblenz.de/~obermaie Übung

Mehr

Formale Systeme, WS 2014/2015 Übungsblatt 5

Formale Systeme, WS 2014/2015 Übungsblatt 5 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Bernhard Beckert Thorsten Bormer, Dr. Vladimir Klebanov, Dr. Mattias Ulbrich Formale Systeme, WS 2014/2015 Übungsblatt

Mehr

Aussagenlogik. (MAF2) MAF(I, t) = t und MAF(I, f ) = f. Die Semantik aussagenlogischer Formeln ist durch die Funktion

Aussagenlogik. (MAF2) MAF(I, t) = t und MAF(I, f ) = f. Die Semantik aussagenlogischer Formeln ist durch die Funktion 43 Vergleiche mit MBA! (MAF4) MAF(I, (F G)) = MAF(I, F) MAF(I, G), wobei die zum Symbol gehörende Funktion ist. (MAF3) MAF(I, F) = MAF(I, F) (MAF2) MAF(I, t) = t und MAF(I, f ) = f (MAF1) MAF(I, A) = I(A),

Mehr

Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise:

Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise: Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 4.9 Prädikatenlogik Resolution 207 Beispiel Bsp.: Betrachte Schlussweise in: 1 Wenn es regnet, dann wird die Straße nass. R N 2 Es regnet. R

Mehr

Entscheidungsverfahren mit Anwendungen in der Softwareverifikation

Entscheidungsverfahren mit Anwendungen in der Softwareverifikation Entscheidungsverfahren mit Anwendungen in der Softwareverifikation XII: Quantoren-Elimination Carsten Sinz Institut für Theoretische Informatik 23.01.2019 Foliensatz basiert z.t. auf Folien von Erika Abraham

Mehr

Tableaukalkül für Aussagenlogik

Tableaukalkül für Aussagenlogik Tableaukalkül für Aussagenlogik Tableau: Test einer Formel auf Widersprüchlichkeit Fallunterscheidung baumförmig organisiert Keine Normalisierung, d.h. alle Formeln sind erlaubt Struktur der Formel wird

Mehr

Logik Vorlesung 7: Grundlagen Prädikatenlogik

Logik Vorlesung 7: Grundlagen Prädikatenlogik Logik Vorlesung 7: Grundlagen Prädikatenlogik Andreas Maletti 5. Dezember 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen

Mehr

Klausur Formale Systeme Fakultät für Informatik SS 2017

Klausur Formale Systeme Fakultät für Informatik SS 2017 Klausur Formale Systeme Fakultät für Informatik SS 2017 Prof. Dr. Bernhard Beckert 3. August 2017 Name: Vorname: Matrikel-Nr.: Die Bearbeitungszeit beträgt 60 Minuten. A1 (14) A2 (6) A3 (6) A4 (8) A5 (11)

Mehr

Einführung in die Methoden der Künstlichen Intelligenz. Prädikatenlogik

Einführung in die Methoden der Künstlichen Intelligenz. Prädikatenlogik Einführung in die Methoden der Künstlichen Intelligenz Prädikatenlogik Dr. David Sabel WS 2012/13 Stand der Folien: 13. Dezember 2012 Prädikatenlogik In der Aussagenlogik, sind Zusammenhänge, wie Beziehungen

Mehr

Formale Systeme. Tableaukalku l (ohne Gleichheit) Prof. Dr. Bernhard Beckert, WS 2015/ KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK

Formale Systeme. Tableaukalku l (ohne Gleichheit) Prof. Dr. Bernhard Beckert, WS 2015/ KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert, WS 2015/2016 Tableaukalku l (ohne Gleichheit) KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK KIT Universita t des Landes Baden-Wu rttemberg und nationales Forschungszentrum

Mehr

Zusammenfassung des Stoffes zur Vorlesung Formale Systeme

Zusammenfassung des Stoffes zur Vorlesung Formale Systeme Zusammenfassung des Stoffes zur Vorlesung Formale Systeme Max Kramer 13. Februar 2009 Diese Zusammenfassung entstand als persönliche Vorbereitung auf die Klausur zur Vorlesung Formale Systeme von Prof.

Mehr

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2015/2016 Teil 2: Logik 1 Prädikatenlogik (Einleitung) 2 Aussagenlogik Motivation Grundlagen Eigenschaften Eigenschaften Normalformen

Mehr

Einführung in die Logik, Übungsklausur 2016/07/11

Einführung in die Logik, Übungsklausur 2016/07/11 Institut für Theoretische Informatik ITI Dr. Jürgen Koslowski Einführung in die Logik, Übungsklausur 2016/07/11 Diese Aufgaben werden in der Extra-Übung am Freitag, 2016-07-15, 13:15, im SN 19.4 besprochen,

Mehr

Logische und funktionale Programmierung

Logische und funktionale Programmierung Logische und funktionale Programmierung Vorlesung 2: Prädikatenkalkül erster Stufe Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 14. Oktober 2016 1/38 DIE INTERPRETATION

Mehr

Prädikatenlogik: Syntax

Prädikatenlogik: Syntax Prädikatenlogik: Syntax Signatur : Welche Zeichen gibt es? Funktionssymbole Prädikatensymbol (Eigenschaften) Terme: Variablen f(t 1,... t n ) wenn t i Terme und f Funktionssymbol Formeln: P (t 1,... t

Mehr

Informatik A. Prof. Dr. Norbert Fuhr auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser

Informatik A. Prof. Dr. Norbert Fuhr auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser Informatik A Prof. Dr. Norbert Fuhr fuhr@uni-duisburg.de auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser 1 Teil I Logik 2 Geschichte R. Descartes (17. Jhdt): klassische

Mehr

Allgemeingültige Aussagen

Allgemeingültige Aussagen Allgemeingültige Aussagen Definition 19 Eine (aussagenlogische) Formel p heißt allgemeingültig (oder auch eine Tautologie), falls p unter jeder Belegung wahr ist. Eine (aussagenlogische) Formel p heißt

Mehr

TU5 Aussagenlogik II

TU5 Aussagenlogik II TU5 Aussagenlogik II Daniela Andrade daniela.andrade@tum.de 21.11.2016 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;)

Mehr

Das SAT Problem oder Erfüllbarkeitsproblem. Formale Systeme. Teilklassen. Satz von Cook. SAT Instanz: Eine aussagenlogische Formel F For 0

Das SAT Problem oder Erfüllbarkeitsproblem. Formale Systeme. Teilklassen. Satz von Cook. SAT Instanz: Eine aussagenlogische Formel F For 0 Das SAT Problem oder Erfüllbarkeitsproblem Formale Systeme Prof. Dr. Bernhard Beckert Fakultät für Informatik Universität Karlsruhe TH SAT Instanz: Eine aussagenlogische Formel F For 0 Frage: Ist F erfüllbar?

Mehr

FORMALE SYSTEME. 10. Januar Aussagenlogik. Logische Schlussfolgerung. Happy 80th Birthday, Don Knuth!

FORMALE SYSTEME. 10. Januar Aussagenlogik. Logische Schlussfolgerung. Happy 80th Birthday, Don Knuth! 10. Januar 2018 FORMALE SYSTEME 22. Vorlesung: Äquivalenzen und Normalformen Markus Krötzsch Professur für Wissensbasierte Systeme TU Dresden, 11. Januar 2018 Happy 80th Birthday, Don Knuth! If you find

Mehr

Syntax der Prädikatenlogik: Variablen, Terme. Formeln. Freie und gebundene Variablen, Aussagen. Aufgabe

Syntax der Prädikatenlogik: Variablen, Terme. Formeln. Freie und gebundene Variablen, Aussagen. Aufgabe Syntax der Prädikatenlogik: Variablen, Terme Formeln Eine Variable hat die Form x i mit i = 1, 2, 3.... Ein Prädikatensymbol hat die Form Pi k und ein Funktionssymbol hat die Form fi k mit i = 1, 2, 3...

Mehr

FORMALE SYSTEME. 22. Vorlesung: Äquivalenzen und Normalformen. TU Dresden, 11. Januar Markus Krötzsch Professur für Wissensbasierte Systeme

FORMALE SYSTEME. 22. Vorlesung: Äquivalenzen und Normalformen. TU Dresden, 11. Januar Markus Krötzsch Professur für Wissensbasierte Systeme FORMALE SYSTEME 22. Vorlesung: Äquivalenzen und Normalformen Markus Krötzsch Professur für Wissensbasierte Systeme TU Dresden, 11. Januar 2018 Rückblick Markus Krötzsch, 11. Januar 2018 Formale Systeme

Mehr

Normalformen. Aussagenlogik. Aussagenlogik

Normalformen. Aussagenlogik. Aussagenlogik Literale Normalformen Definition Ein Literal ist eine Aussagenvariable oder die Negation einer Aussagenvariablen. Literale Normalformen Prolog-Programm p03.pl (Anfang) :- op(550,fx,p). %Aussagenvariable

Mehr