Logik für Informatiker

Größe: px
Ab Seite anzeigen:

Download "Logik für Informatiker"

Transkript

1 Vorlesung Logik für Informatiker 1. Einführung Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1

2 Formale Logik Ziel Formalisierung und Automatisierung rationalen Denkens Rational richtige Ableitung von neuem Wissen aus gegebenem Logik für Informatiker, SS 06 p.2

3 Formale Logik Ziel Formalisierung und Automatisierung rationalen Denkens Rational richtige Ableitung von neuem Wissen aus gegebenem Rolle der Logik in der Informatik Anwendung innerhalb der Informatik Spezifikation, Programmentwicklung, Programmverifikation Werkzeug für Anwendungen außerhalb der Informatik Künstliche Intelligenz, Wissensrepräsentation Logik für Informatiker, SS 06 p.2

4 Modellierung Logik für Informatiker, SS 06 p.3

5 Modellierung? Abstraktion? Logik für Informatiker, SS 06 p.4

6 Modellierung: Adäquatheit des Modells Adäquatheit Wenn formulierbare Aussage wahr im Modell, dann entsprechende Aussage wahr in Wirklichkeit Logik für Informatiker, SS 06 p.5

7 Modellierung: Beispiel Aufzug oben mitte unten Logik für Informatiker, SS 06 p.6

8 Modellierung: Beispiel Aufzug oben mitte Modellierung der statischen Eigenschaften unten Logik für Informatiker, SS 06 p.6

9 Modellierung: Beispiel Aufzug oben oben mitte Modellierung der statischen Eigenschaften o mitte m unten unten u Logik für Informatiker, SS 06 p.6

10 Modellierung: Strukturen oben oben oben oben o o o o mitte mitte mitte mitte m m m m unten unten unten unten u u u u Logik für Informatiker, SS 06 p.7

11 Modellierung: Strukturen oben oben oben oben o o o o mitte mitte mitte mitte m m m m unten unten unten unten u u u u Logik für Informatiker, SS 06 p.7

12 Modellierung: Strukturen oben oben oben oben o o o o mitte mitte mitte mitte m m m m unten unten unten unten u u u u Aussagen beziehen sich auf Strukturen (Formale) Aussagen sind in jeder einzelnen Struktur zu wahr oder falsch auswertbar Logik für Informatiker, SS 06 p.7

13 Formale Logik Logik für Informatiker, SS 06 p.8

14 Formale Logik Syntax Welche Formeln? Logik für Informatiker, SS 06 p.9

15 Formale Logik Syntax Welche Formeln? Semantik Wann ist eine Formel wahr (in einer Struktur)? Logik für Informatiker, SS 06 p.9

16 Formale Logik Syntax Welche Formeln? Semantik Wann ist eine Formel wahr (in einer Struktur)? Deduktionsmechanismus Ableitung neuer wahrer Formeln Logik für Informatiker, SS 06 p.9

17 Aussagenlogik: Syntax Atomare Aussagen Aufzug ist oben aufzugoben Innen mittlerer Knopf gedrückt innenmittegedr ückt Logik für Informatiker, SS 06 p.10

18 Aussagenlogik: Syntax Atomare Aussagen Aufzug ist oben aufzugoben Innen mittlerer Knopf gedrückt innenmittegedr ückt Verknüpft mit logischen Operatoren und oder impliziert nicht Logik für Informatiker, SS 06 p.10

19 Aussagenlogik: Syntax Komplexe Aussagen Wenn innen mittlerer Knopf gedrückt, dann innenmittegedr ückt Aufzug nicht in der Mitte aufzugmitte Logik für Informatiker, SS 06 p.11

20 Aussagenlogik: Syntax Komplexe Aussagen Wenn innen mittlerer Knopf gedrückt, dann innenmittegedr ückt Aufzug nicht in der Mitte aufzugmitte Der Aufzug ist oben aufzugoben und der Aufzug ist nicht unten aufzugunten Logik für Informatiker, SS 06 p.11

21 Aussagenlogik: Semantik Der Aufzug ist oben aufzugoben und der Aufzug ist nicht unten aufzugunten ist wahr in oben o mitte m unten u Logik für Informatiker, SS 06 p.12

22 Aussagenlogik: Deduktionsmechanismus Syllogismen P Q Q P Logik für Informatiker, SS 06 p.13

23 Aussagenlogik: Deduktionsmechanismus Syllogismen P Q Q P aufzugoben aufzugunten aufzugunten aufzugoben Logik für Informatiker, SS 06 p.13

24 Deduktionsmechanismus Deduktionsmechanismus im allgemeinen Kalkül Logik für Informatiker, SS 06 p.14

25 Deduktionsmechanismus Deduktionsmechanismus im allgemeinen Kalkül In dieser Vorlesung Wahrheitstafeln Logische Umformung Resolutionskalkül Tableaukalkül Logik für Informatiker, SS 06 p.14

26 The Whole Picture Diskurs in natürlicher Sprache Mathematische Probleme Programm + Spezifikation Formalisierung Syntax Semantik Aussagenlogik Prädikatenlogik Kalkül Ableitung Gültige Formeln Vollständigkeit Korrektheit Beweisbare Formeln Logik für Informatiker, SS 06 p.15

27 The Whole Picture Diskurs in natürlicher Sprache Mathematische Probleme Programm + Spezifikation Modellierung Formalisierung Syntax Semantik Aussagenlogik Prädikatenlogik Kalkül Ableitung Gültige Formeln Vollständigkeit Korrektheit Beweisbare Formeln Logik für Informatiker, SS 06 p.16

28 The Whole Picture Diskurs in natürlicher Sprache Mathematische Probleme Programm + Spezifikation Formalisierung Semantik Syntax Aussagenlogik Prädikatenlogik Kalkül Ableitung (automatische) Deduktion Gültige Formeln Vollständigkeit Korrektheit Beweisbare Formeln Logik für Informatiker, SS 06 p.17

29 Inhalt der Vorlesung 1. Einführung Logik für Informatiker, SS 06 p.18

30 Inhalt der Vorlesung 1. Einführung 2. Aussagenlogik Syntax und Semantik Resolution, Vollständigkeits- und Korrektheitsbeweise Analytische Tableaus Logik für Informatiker, SS 06 p.18

31 Inhalt der Vorlesung 1. Einführung 2. Aussagenlogik Syntax und Semantik Resolution, Vollständigkeits- und Korrektheitsbeweise Analytische Tableaus 3. Prädikatenlogik Syntax und Semantik Resolution, Vollständigkeits- und Korrektheitsbeweise Analytische Tableaus Logik für Informatiker, SS 06 p.18

32 Das 8-Damen Problem Man plaziere acht Damen so auf einem Schachbrett, dass sie sich gegenseitig nicht bedrohen. Logik für Informatiker, SS 06 p.19

33 Das 8-Damen Problem Man plaziere acht Damen so auf einem Schachbrett, dass sie sich gegenseitig nicht bedrohen. Logik für Informatiker, SS 06 p.19

34 Das 8-Damen Problem Aussagenlogische Beschreibung des Problems Logik für Informatiker, SS 06 p.20

35 Das 8-Damen Problem Aussagenlogische Beschreibung des Problems Für jedes Feld des Schachbretts eine aussagenlogische Variable D i,j Mit der Vorstellung, dass D i,j den Wert wahr hat, wenn auf dem Feld (i, j) eine Dame steht. Wir benutzen kartesische Koordinaten zur Notation von Positionen. Logik für Informatiker, SS 06 p.20

36 Das 8-Damen Problem Beispiel: Auf dem Feld (5, 7) steht eine Dame Logik für Informatiker, SS 06 p.21

37 Das 8-Damen Problem Beispiel: Auf dem Feld (5, 7) steht eine Dame Einschränkungen pro Feld FE 5,7 D 5,7 D 5,8 D 5,6 D 5,5 D 5,4 D 5,3 D 5,2 D 5,1 D 5,7 D 4,7 D 3,7 D 2,7 D 1,7 D 6,7 D 7,7 D 8,7 D 5,7 D 6,8 D 4,6 D 3,5 D 2,4 D 1,3 D 5,7 D 4,8 D 6,6 D 7,5 D 8,4 Logik für Informatiker, SS 06 p.21

38 Das 8-Damen Problem Globale Einschränkungen Für jedes k mit 1 k 8: D 1,k D 2,k D 3,k D 4,k D 5,k D 6,k D 7,k D 8,k Logik für Informatiker, SS 06 p.22

39 Das 8-Damen Problem Eine aussagenlogische Struktur beschreibt eine Lösung des Acht- Damen-Problems genau dann, wenn sie ein Modell der Formeln ist F i,j für alle 1 i, j 8 R k für alle 1 k 8 Logik für Informatiker, SS 06 p.23

40 Einführung: Zusammenfassung Ziel und Rolle der Formalen Logik in der Informatik Logik für Informatiker, SS 06 p.31

41 Einführung: Zusammenfassung Ziel und Rolle der Formalen Logik in der Informatik Modellierung, Adäquatheit der Modellierung Logik für Informatiker, SS 06 p.31

42 Einführung: Zusammenfassung Ziel und Rolle der Formalen Logik in der Informatik Modellierung, Adäquatheit der Modellierung Wesentliche Komponenten für jede Logik: Syntax, Semantik, Deduktionsmeachanismus (Kalkül) Logik für Informatiker, SS 06 p.31

43 Einführung: Zusammenfassung Ziel und Rolle der Formalen Logik in der Informatik Modellierung, Adäquatheit der Modellierung Wesentliche Komponenten für jede Logik: Syntax, Semantik, Deduktionsmeachanismus (Kalkül) Beispiel Aussagenlogik: Syntax, Sematik, Syllogismen Logik für Informatiker, SS 06 p.31

44 Einführung: Zusammenfassung Ziel und Rolle der Formalen Logik in der Informatik Modellierung, Adäquatheit der Modellierung Wesentliche Komponenten für jede Logik: Syntax, Semantik, Deduktionsmeachanismus (Kalkül) Beispiel Aussagenlogik: Syntax, Sematik, Syllogismen The Whole Picture: Logik für Informatiker, SS 06 p.31

45 Einführung: Zusammenfassung Ziel und Rolle der Formalen Logik in der Informatik Modellierung, Adäquatheit der Modellierung Wesentliche Komponenten für jede Logik: Syntax, Semantik, Deduktionsmeachanismus (Kalkül) Beispiel Aussagenlogik: Syntax, Sematik, Syllogismen The Whole Picture: Formel in der wahren Welt / (semantisch) gültige Formel, gültige Formel / ableitbare Formel Logik für Informatiker, SS 06 p.31

46 Einführung: Zusammenfassung Ziel und Rolle der Formalen Logik in der Informatik Modellierung, Adäquatheit der Modellierung Wesentliche Komponenten für jede Logik: Syntax, Semantik, Deduktionsmeachanismus (Kalkül) Beispiel Aussagenlogik: Syntax, Sematik, Syllogismen The Whole Picture: Formel in der wahren Welt / (semantisch) gültige Formel, gültige Formel / ableitbare Formel Vollständigkeit und Korrektheit von Kalkülen Logik für Informatiker, SS 06 p.31

47 Einführung: Zusammenfassung Ziel und Rolle der Formalen Logik in der Informatik Modellierung, Adäquatheit der Modellierung Wesentliche Komponenten für jede Logik: Syntax, Semantik, Deduktionsmeachanismus (Kalkül) Beispiel Aussagenlogik: Syntax, Sematik, Syllogismen The Whole Picture: Formel in der wahren Welt / (semantisch) gültige Formel, gültige Formel / ableitbare Formel Vollständigkeit und Korrektheit von Kalkülen Beispiel für (nicht-triviale) aussagelogische Modellierung: Acht-Damen-Problem Logik für Informatiker, SS 06 p.31

Logik: aussagenlogische Formeln und Wahrheitstafeln

Logik: aussagenlogische Formeln und Wahrheitstafeln FH Gießen-Friedberg, Sommersemester 2010 Lösungen zu Übungsblatt 1 Diskrete Mathematik (Informatik) 7./9. April 2010 Prof. Dr. Hans-Rudolf Metz Logik: aussagenlogische Formeln und Wahrheitstafeln Aufgabe

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 3. Aussagenlogik Einführung: Logisches Schließen im Allgemeinen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Beispiel:

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik roseminar Maschinelles Beweisen SS 2000 Einführung in die mathematische Logik Ein Crashkurs über die Grundlagen wichtiger Logiken und Beweiskalküle Uwe Bubeck 13. Juli 2000 Logik-1 Einführung in die mathematische

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 7: Einführung Aussagenlogik schulz@eprover.org Logisches Schließen 2 gold +1000, 1 per step, Beispiel: Jage den Wumpus Performance measure death 1000 10

Mehr

Klausur Formale Systeme Fakultät für Informatik WS 2009/2010. Prof. Dr. Bernhard Beckert. 18. Februar 2010

Klausur Formale Systeme Fakultät für Informatik WS 2009/2010. Prof. Dr. Bernhard Beckert. 18. Februar 2010 Klausur Formale Systeme Fakultät für Informatik Name: Mustermann Vorname: Peter Matrikel-Nr.: 0000000 Klausur-ID: 0000 WS 2009/2010 Prof. Dr. Bernhard Beckert 18. Februar 2010 A1 (15) A2 (10) A3 (10) A4

Mehr

2. Vorlesung. Slide 40

2. Vorlesung. Slide 40 2. Vorlesung Slide 40 Knobelaufgabe Was tut dieses Programm? Informell Formal Wie stellt man dies sicher? knobel(a,b) { Wenn a = 0 dann return b sonst { solange b 0 wenn a > b dann { a := a - b sonst b

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 30.04.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letztes Mal Aussagenlogik Syntax: welche Formeln? Semantik:

Mehr

Normalformen boolescher Funktionen

Normalformen boolescher Funktionen Normalformen boolescher Funktionen Jeder boolesche Ausdruck kann durch (äquivalente) Umformungen in gewisse Normalformen gebracht werden! Disjunktive Normalform (DNF) und Vollkonjunktion: Eine Vollkonjunktion

Mehr

Semantik von Formeln und Sequenzen

Semantik von Formeln und Sequenzen Semantik von Formeln und Sequenzen 33 Grundidee der Verwendung von Logik im Software Entwurf Syntax: Menge von Formeln = Axiome Ax K ist beweisbar Formel ϕ beschreiben Korrektkeit Vollständigkeit beschreibt

Mehr

Induktive Definitionen

Induktive Definitionen Induktive Definitionen Induktive Definition: Konstruktive Methode zur Definition einer Menge M von Objekten aus Basisobjekten mittels (Erzeugungs-) Regeln Slide 1 Rekursion über den Aufbau: Konstruktive

Mehr

Klausur Formale Systeme Fakultät für Informatik WS 2009/2010

Klausur Formale Systeme Fakultät für Informatik WS 2009/2010 Klausur Formale Systeme Fakultät für Informatik WS 2009/2010 Prof. Dr. Bernhard Beckert 18. Februar 2010 Name: Mustermann Vorname: Peter Matrikel-Nr.: 0000000 Klausur-ID: 0000 A1 (15) A2 (10) A3 (10) A4

Mehr

Prolog basiert auf Prädikatenlogik

Prolog basiert auf Prädikatenlogik Software-Technologie Software-Systeme sind sehr komplex. Im Idealfall erfolgt die Programmierung problemorientiert, während die notwendige Übertragung in ausführbare Programme automatisch erfolgt. Prolog-Philosophie:

Mehr

Formeln. Signatur. aussagenlogische Formeln: Aussagenlogische Signatur

Formeln. Signatur. aussagenlogische Formeln: Aussagenlogische Signatur Signatur Formeln Am Beispiel der Aussagenlogik erklären wir schrittweise wichtige Elemente eines logischen Systems. Zunächst benötigt ein logisches System ein Vokabular, d.h. eine Menge von Namen, die

Mehr

Beschreibungslogiken. Daniel Schradick 1schradi@informatik.uni-hamburg.de

Beschreibungslogiken. Daniel Schradick 1schradi@informatik.uni-hamburg.de Beschreibungslogiken Daniel Schradick 1schradi@informatik.uni-hamburg.de Was sind Beschreibungslogiken? Definition: Formalisms that represent knowledge of some problem domain (the world ) by first defining

Mehr

4. Exkurs: Einführung in die Logik

4. Exkurs: Einführung in die Logik 4. Exkurs: Einführung in die Logik 4. Einführung in die Logik 4.. Die Operatoren der Aussagenlogik 4..2 Formeln der Aussagenlogik 4..3 Arithmetische Vergleichsoperatoren 4..4 Anwendungen der Logik in der

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 9: Prädikatenlogik schulz@eprover.org Rückblick 2 Rückblick: Vor- und Nachteile von Aussagenlogik Aussagenlogik ist deklarativ: Syntaxelemente entsprechen

Mehr

Wissensbasierte Systeme/ Expertensysteme. Teil 2

Wissensbasierte Systeme/ Expertensysteme. Teil 2 Wissensbasierte Systeme/ Expertensysteme Teil 2 BiTS, Sommersemester 2004 Dr. Stefan Kooths KOOTHS BiTS: Wissensbasierte Systeme/Expertensysteme Teil 2 1 Gliederung 1. Einführung und Einordnung 2. Entscheidungsunterstützung(ssysteme)

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 29/ Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws9

Mehr

Notationen zur Prozessmodellierung

Notationen zur Prozessmodellierung Notationen zur Prozessmodellierung August 2014 Inhalt (erweiterte) ereignisgesteuerte Prozesskette (eepk) 3 Wertschöpfungskettendiagramm (WKD) 5 Business Process Model and Notation (BPMN) 7 Unified Modeling

Mehr

Mai 2006. Hauptseminar: Nichtrelationale Datenbanken Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln

Mai 2006. Hauptseminar: Nichtrelationale Datenbanken Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln Hauptseminar: Nichtrelationale Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln Mai 2006 Was ist eine Datenbank? Erweiterung relationaler um eine Deduktionskomponente Diese

Mehr

Motivation. Formale Grundlagen der Informatik 1 Kapitel 19. Syntax & Semantik. Motivation - Beispiel. Motivation - Beispiel

Motivation. Formale Grundlagen der Informatik 1 Kapitel 19. Syntax & Semantik. Motivation - Beispiel. Motivation - Beispiel Motivation Formale Grundlagen der Informatik 1 Kapitel 19 & Die ist eine Erweiterung der Aussagenlogik. Sie hat eine größere Ausdrucksstärke und erlaub eine feinere Differenzierung. Ferner sind Beziehungen/Relationen

Mehr

7. Formale Sprachen und Grammatiken

7. Formale Sprachen und Grammatiken 7. Formale Sprachen und Grammatiken Computer verwenden zur Verarbeitung von Daten und Informationen künstliche, formale Sprachen (Maschinenspr., Assemblerspachen, Programmierspr., Datenbankspr., Wissensrepräsentationsspr.,...)

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 27. Aussagenlogik: Logisches Schliessen und Resolution Malte Helmert Universität Basel 28. April 2014 Aussagenlogik: Überblick Kapitelüberblick Aussagenlogik: 26.

Mehr

Was bisher geschah. Aufgaben: Diagnose, Entscheidungsunterstützung Aufbau Komponenten und Funktion

Was bisher geschah. Aufgaben: Diagnose, Entscheidungsunterstützung Aufbau Komponenten und Funktion Was bisher geschah Daten, Information, Wissen explizites und implizites Wissen Wissensrepräsentation und -verarbeitung: Wissensbasis Kontextwissen Problemdarstellung fallspezifisches Wissen repräsentiert

Mehr

Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen

Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume Barbara König Logik 1 Motivation: Wir beschäftigen uns nun im folgenden mit der, die gegenüber

Mehr

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie und, oder, nicht, wenn... dann zwischen atomaren und komplexen Sätzen. I. Aussagenlogik 2.1 Syntax Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen. Sätze selbst sind entweder wahr oder falsch. Ansonsten

Mehr

Program = Logic + Control

Program = Logic + Control Program = Logic + Control Prozedurale/imperative Sprachen: Abläufe formulieren Computer führt aus von-neumann-maschine Idee von deklarativen/logischen/funktionalen Programmiersprachen: Zusammenhänge formulieren

Mehr

Induktive Definitionen

Induktive Definitionen Priv.-Doz. Dr.rer.nat.habil. Karl-Heinz Niggl Technische Universität Ilmenau Fakultät IA, Institut für Theoretische Informatik Fachgebiet Komplexitätstheorie und Effiziente Algorithmen J Induktive Definitionen

Mehr

herangezogenwerden,wiez.b.online-thesauri.diefurcorpusanfragenzurverfugung

herangezogenwerden,wiez.b.online-thesauri.diefurcorpusanfragenzurverfugung EinexiblesundmodularesAnfragesystemfurTextcorpora Niemeyer:LexicographicaSeriesMaior,Tubingen,Fruhjahr1995 Erscheintin:TagungsberichtedesArbeitstreensLexikon+Text 17./18.Februar1994,SchloHohentubingen

Mehr

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund Lineare Algebra 1 Detlev W. Hoffmann WS 2013/14, TU Dortmund 1 Mengen und Zahlen 1.1 Mengen und Abbildungen Eine Menge ist eine Zusammenfassung wohlunterscheidbarer Objekte unserer Anschauung/unseres Denkens/unserer

Mehr

Kapitel 1.3. Normalformen aussagenlogischer Formeln. Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1

Kapitel 1.3. Normalformen aussagenlogischer Formeln. Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1 Kapitel 1.3 Normalformen aussagenlogischer Formeln Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1 Boolesche Formeln, Literale und Klauseln Eine Boolesche Formel ist eine aussagenlogische

Mehr

Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik. Seminar Entscheidungsverfahren für logische Theorien. Endliche Modelle.

Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik. Seminar Entscheidungsverfahren für logische Theorien. Endliche Modelle. Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik Seminar Entscheidungsverfahren für logische Theorien Tobias Hebel Koblenz, am 18.02.2005 Inhaltsverzeichnis 1 Einleitung... 3 2 Grundlagen...

Mehr

M UNCHEN INSTITUT F UR INFORMATIK. Methoden und Werkzeuge fur die Nutzung. paralleler Rechnerarchitekturen. Formale Syntax zur

M UNCHEN INSTITUT F UR INFORMATIK. Methoden und Werkzeuge fur die Nutzung. paralleler Rechnerarchitekturen. Formale Syntax zur TECHNISCHE UNIVERSIT AT M UNCHEN INSTITUT F UR INFORMATIK Sonderforschungsbereich 342: Methoden und Werkzeuge fur die Nutzung paralleler Rechnerarchitekturen Formale Syntax zur logischen Kernsprache der

Mehr

PROLOG. Tutorium zur Vorlesung Datenbanken und Wissensrepräsentation (Prof. Dr. G. Büchel)

PROLOG. Tutorium zur Vorlesung Datenbanken und Wissensrepräsentation (Prof. Dr. G. Büchel) PROLOG Tutorium zur Vorlesung Datenbanken und Wissensrepräsentation (Prof. Dr. G. Büchel) Stand: April 2010 Verfasser: Dipl.-Ing. (FH) Andreas W. Lockermann Vorwort Der Name PROLOG leitet sich aus den

Mehr

Projektkurs Mathematik

Projektkurs Mathematik Projektkurs Mathematik zur besseren Vorbereitung auf die Mathematikanforderungen in MINT - Studiengängen Projektziele, Teilziele und Kompetenzen Allgemeine Ziele: Vermittlung von (mathematischem) Wissen

Mehr

Dipl.-Wirt.-Inf. Matthias Zapp

Dipl.-Wirt.-Inf. Matthias Zapp Semantische Wiki-Systeme in der vvandlungsfähigen Produktion Von der Fakultät Konstruktion-, Produktions- und Fahrzeugtechnik der Universität Stuttgart zur Erlangung der Würde eines Doktor-Ingenieurs (Dr.-Ing.)

Mehr

Binäre Suchbäume (binary search trees, kurz: bst)

Binäre Suchbäume (binary search trees, kurz: bst) Binäre Suchbäume (binary search trees, kurz: bst) Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binärbaum T mit n := M Knoten Jeder Knoten v von T ist mit einer Zahl m v M markiert.

Mehr

Zusammenhänge präzisieren im Modell

Zusammenhänge präzisieren im Modell Zusammenhänge präzisieren im Modell Dr. Roland Poellinger Munich Center for Mathematical Philosophy Begriffsfeld Logik 1 Mathematik und Logik Die Mathematik basiert auf logisch gültigen Folgerungsschritten

Mehr

1.4 Gradient, Divergenz und Rotation

1.4 Gradient, Divergenz und Rotation .4 Gradient, Divergenz und Rotation 5.4 Gradient, Divergenz und Rotation Die Begriffe Gradient, Divergenz und Rotation erfordern die partiellen Ableitung aus Abschnitt.. sowie das Konzept des Differentialoperators.

Mehr

Grundlagen von Mengenlehre und Logik

Grundlagen von Mengenlehre und Logik Mengenlehre und Logik: Wiederholung Repetitorium: Grundlagen von Mengenlehre und Logik 2002 Prof. Dr. Rainer Manthey Informationssysteme 1 Warum??? Warum um um alles alles in in der der Welt Welt muss

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 6. Formale Sprachen und Grammatiken Malte Helmert Gabriele Röger Universität Basel 17. März 2014 Einführung Beispiel: Aussagenlogische Formeln Aus dem Logikteil: Definition (Syntax

Mehr

Terme stehen für Namen von Objekten des Diskursbereichs (Subjekte, Objekte des natürlichsprachlichen Satzes)

Terme stehen für Namen von Objekten des Diskursbereichs (Subjekte, Objekte des natürlichsprachlichen Satzes) Prädikatenlogik Man kann den natürlichsprachlichen Satz Die Sonne scheint. in der Prädikatenlogik beispielsweise als logisches Atom scheint(sonne) darstellen. In der Sprache der Prädikatenlogik werden

Mehr

9. Übung Formale Grundlagen der Informatik

9. Übung Formale Grundlagen der Informatik Institut für Informatik Sommersemester 2001 Universität Zürich 9. Übung Formale Grundlagen der Informatik Norbert E. Fuchs (fuchs@ifi.unizh.ch) Reinhard Riedl (riedl@ifi.unizh.ch) Nadine Korolnik (korolnik@ifi.unizh.ch)

Mehr

Organisatorisches. Warum formale Modellierung? Modellierung Das Prinzip. Modellierung Beispiele. Modellierung Beispiele. Arten der Modellierung

Organisatorisches. Warum formale Modellierung? Modellierung Das Prinzip. Modellierung Beispiele. Modellierung Beispiele. Arten der Modellierung Organisatorisches Veranstalter: Formale Modellierung Vorlesung 1 vom 16.04.15: Einführung Christoph Lüth Universität Bremen Sommersemester 2015 Christoph Lüth christoph.lueth@dfki.de MZH 3110, Tel. 59830

Mehr

Informations- und Kommunikationssystemarchitekturen. Kommunikationssystemarchitekturen

Informations- und Kommunikationssystemarchitekturen. Kommunikationssystemarchitekturen Informations- und Kommunikationssystemarchitekturen Architekturbegriff Anwendungsarchitektur Technikarchitektur Rechnerarchitektur Betriebssystemarchitektur Kommunikationsarchitektur Übergeordnete Architekturbegriffe

Mehr

Mathematik für Informatiker I Mitschrift zur Vorlesung vom 14.12.2004

Mathematik für Informatiker I Mitschrift zur Vorlesung vom 14.12.2004 Mathematik für Informatiker I Mitschrift zur Vorlesung vom 14.12.2004 In der letzten Vorlesung haben wir gesehen, wie man die einzelnen Zahlenbereiche aufbaut. Uns fehlen nur noch die reellen Zahlen (siehe

Mehr

Wissensrepräsentation und -verarbeitung in Logiken. bereinigt Pränex Skolem ( -Eliminierung) Klausel (Menge von Klauseln, Notation ohne Quantoren)

Wissensrepräsentation und -verarbeitung in Logiken. bereinigt Pränex Skolem ( -Eliminierung) Klausel (Menge von Klauseln, Notation ohne Quantoren) Was bisher geschah Wissensrepräsentation und -verarbeitung in Logiken klassische Aussagenlogik klassische Prädikatenlogik: Wiederholung Syntax, Semantik Normalformen: bereinigt Pränex Skolem ( -Eliminierung)

Mehr

Algorithmen und Datenstrukturen 1 Kapitel 4.1

Algorithmen und Datenstrukturen 1 Kapitel 4.1 Algorithmen und Datenstrukturen 1 Kapitel 4.1 Technische Fakultät robert@techfak.uni-bielefeld.de Vorlesung, U. Bielefeld, Winter 2005/2006 Kapitel 4: Maschinenmodelle [Dieses Kapitel hält sich eng an

Mehr

Modellierung Zusammenfassung WS2000

Modellierung Zusammenfassung WS2000 Modellierung Zusammenfassung WS2000 Inhalt 1 Einführung in die Modellierung...2 2 Datenmodelle...3 3 Funktionsmodelle...3 4 Verhaltensmodelle...4 5 Objekt-/Klassenmodelle...6 6 Interaktionsmodelle...6

Mehr

C-Propädeutikum Höhere Datentypen

C-Propädeutikum Höhere Datentypen C-Propädeutikum Höhere Datentypen Dipl.-Inf. Stefan Freitag freitag@uni-leipzig.de Universitätsrechenzentrum Universitätsbibliothek Universität Leipzig basiert auf den Originalfolien von Jörn Hoffmann

Mehr

Formale Methoden II. Gerhard Jäger. SS 2008 Universität Bielefeld. Teil 8, 11. Juni 2008. Formale Methoden II p.1/30

Formale Methoden II. Gerhard Jäger. SS 2008 Universität Bielefeld. Teil 8, 11. Juni 2008. Formale Methoden II p.1/30 Formale Methoden II SS 2008 Universität Bielefeld Teil 8, 11. Juni 2008 Gerhard Jäger Formale Methoden II p.1/30 Beispiele Anmerkung: wenn der Wahrheitswert einer Formel in einem Modell nicht von der Belegungsfunktion

Mehr

Mathematik. Analysis Jahrgangsstufe 11/12

Mathematik. Analysis Jahrgangsstufe 11/12 FOS Mathematik Analysis - 0 - Mathematik für Berufskollegs Fachrichtung Technik Handreichungen zum Kursverlauf Analysis Jahrgangsstufe 11/12 FOS Mathematik Analysis - 1-1. Aussagen, Mengen und Gleichungen

Mehr

Relationales Datenmodell

Relationales Datenmodell Relationales Datenmodell Ein Datenmodell hat zwei Bestandteile: Eine mathematische Notation zur Darstellung von Daten und Beziehungen. Operationen auf den Daten, um Abfragen und andere Manipulationen zu

Mehr

Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung Winter-Semester 2003/04. Wissensrepräsentation: Resolution (im PK1)

Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung Winter-Semester 2003/04. Wissensrepräsentation: Resolution (im PK1) Einführung in die KI Prof. Dr. sc. Hans-Dieter Burkhard Vorlesung Wissensrepräsentation: Resolution (im PK1) 2. Resolution Vorbild für Formalismus : exakt, präzise, (theoretisch) beherrscht Aufbau: Zeichen

Mehr

Mathematik-2, Sommersemester 2014-15

Mathematik-2, Sommersemester 2014-15 Mathematik-2, Sommersemester 2014-15 Vorlesungsplan, Übungen, Hausaufgaben Vorlesungen: Lubov Vassilevskaya Übungen: Andreas Hofmann, Solvier Schüßler, Ansgar Schwarz, Lubov Vassilevskaya Die Vorlesungsunterlagen

Mehr

Formale Methoden im Software Engineering

Formale Methoden im Software Engineering Formale Methoden im Software Engineering Eine praktische Einführung Dominik Haneberg, Florian Nafz, Bogdan Tofan 1 Organisatorisches Vorlesung: Mittwoch 12:15 Uhr - 13:45 Uhr (1058 N) Versuche: (Raum 3017

Mehr

y(p F x) gebunden und in den Formeln F xy

y(p F x) gebunden und in den Formeln F xy Wirkungsbereich (Skopus) eines Quantors i bzw. i nennen wir die unmittelbar auf i bzw. i folgende Formel. Wir sagen, eine IV i kommt in einer Formel A gebunden vor, wenn sie unmittelbar auf oder folgt

Mehr

Logik für Informatiker

Logik für Informatiker Skript zur Vorlesung Logik für Informatiker SS 2008 Martin Hofmann Lehr- und Forschungseinheit Theoretische Informatik Institut für Informatik Ludwig-Maximilians-Universität München Inhaltsverzeichnis

Mehr

Relationen A = Z A = R. R = {(a, b) a, b Z, a b} R = {(a, b) a, b R, a 3 = b 3 } R =, R = {(a, b) a, b N 0, a b ist ungerade }, A = N 0 A = N

Relationen A = Z A = R. R = {(a, b) a, b Z, a b} R = {(a, b) a, b R, a 3 = b 3 } R =, R = {(a, b) a, b N 0, a b ist ungerade }, A = N 0 A = N Relationen Aufgabe 1. Überlegen Sie, wie man folgende Relationen R grafisch darstellen könnte und entscheiden Sie, ob die Relationen reflexiv auf A, symmetrisch bzw. transitiv sind. Geben Sie eine kurze

Mehr

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist. Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,

Mehr

Java Einführung Operatoren Kapitel 2 und 3

Java Einführung Operatoren Kapitel 2 und 3 Java Einführung Operatoren Kapitel 2 und 3 Inhalt dieser Einheit Operatoren (unär, binär, ternär) Rangfolge der Operatoren Zuweisungsoperatoren Vergleichsoperatoren Logische Operatoren 2 Operatoren Abhängig

Mehr

Induktive Beweise und rekursive Definitionen

Induktive Beweise und rekursive Definitionen Induktive Beweise und rekursive Definitionen Vorlesung Logik in der Informatik, HU Berlin 1. Übungsstunde Beweis durch vollständige Induktion über N Aufgabe 1 Zeige, dass für alle n N gilt: n 2 i = 2 n+1

Mehr

Informatik II Musterlösung

Informatik II Musterlösung Ludwig-Maximilians-Universität München SS 2006 Institut für Informatik Übungsblatt 4 Prof. Dr. M. Wirsing, M. Hammer, A. Rauschmayer Informatik II Musterlösung Zu jeder Aufgabe ist eine Datei abzugeben,

Mehr

Leseprobe. Uwe Lämmel, Jürgen Cleve. Künstliche Intelligenz ISBN: 978-3-446-42758-7. Weitere Informationen oder Bestellungen unter

Leseprobe. Uwe Lämmel, Jürgen Cleve. Künstliche Intelligenz ISBN: 978-3-446-42758-7. Weitere Informationen oder Bestellungen unter Leseprobe Uwe Lämmel, Jürgen Cleve Künstliche Intelligenz ISBN: 978-3-446-42758-7 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-42758-7 sowie im Buchhandel. Carl Hanser Verlag,

Mehr

Verlässliche Echtzeitsysteme

Verlässliche Echtzeitsysteme Verlässliche Echtzeitsysteme Grundlagen der statischen Programmanalyse Peter Ulbrich Friedrich-Alexander-Universität Erlangen-Nürnberg Lehrstuhl Informatik 4 (Verteilte Systeme und Betriebssysteme) www4.informatik.uni-erlangen.de

Mehr

Virtuelle onkologische Verbünde Leitlinienorientierte Versorgungspfade für ein interdisziplinäres Therapiemanagement

Virtuelle onkologische Verbünde Leitlinienorientierte Versorgungspfade für ein interdisziplinäres Therapiemanagement Virtuelle Leitlinienorientierte Versorgungspfade für ein interdisziplinäres Therapiemanagement Prof. Dr. Britta Böckmann 14.4.2015 Leitbild Medizinische Informatik bezieht sich auf eine konkrete Anwendungsdomäne

Mehr

Mathematik I. Modulbezeichnung Mathematik I Modulverantwortliche(r) Hofmann. EDV-Bezeichnung - Modulumfang (ECTS) 5 Semester 1 Lernziele & Kompetenzen

Mathematik I. Modulbezeichnung Mathematik I Modulverantwortliche(r) Hofmann. EDV-Bezeichnung - Modulumfang (ECTS) 5 Semester 1 Lernziele & Kompetenzen Mathematik I Modulbezeichnung Mathematik I Modulverantwortliche(r) Hofmann Modulniveau Bachelor - Modulumfang (ECTS) 5 Semester 1 Lernziele & Kompetenzen Die Vorlesung behandelt die wichtigsten Grundlagen

Mehr

5. Aussagenlogik und Schaltalgebra

5. Aussagenlogik und Schaltalgebra 5. Aussagenlogik und Schaltalgebra Aussageformen und Aussagenlogik Boolesche Terme und Boolesche Funktionen Boolesche Algebra Schaltalgebra Schaltnetze und Schaltwerke R. Der 1 Aussagen Information oft

Mehr

MOF Meta Object Facility. Veranstaltungsvortrag im Rahmen der Projektgruppe ComponentTools

MOF Meta Object Facility. Veranstaltungsvortrag im Rahmen der Projektgruppe ComponentTools MOF Meta Object Facility Veranstaltungsvortrag im Rahmen der Projektgruppe ComponentTools Überblick Object Management Group (OMG) Model Driven Architecture (MDA) Exkurs: Modelle, Metamodelle MOF Architektur

Mehr

Mathematischer Selbsttest für Studienanfänger(innen)

Mathematischer Selbsttest für Studienanfänger(innen) Mathematischer Selbsttest für Studienanfänger(innen) Der folgende Mathematiktest dient zur Einschätzung Ihrer eigenen mathematischen Fähigkeiten. Das Niveau entspricht ungefähr dem der gymnasialen Mittel-

Mehr

Logische Folgerung. Definition 2.11

Logische Folgerung. Definition 2.11 Logische Folgerung Definition 2.11 Sei 2A eine aussagenlogische Formel und F eine endliche Menge aussagenlogischer Formeln aus A. heißt logische Folgerung von F genau dann, wenn I ( ) =1für jedes Modell

Mehr

Softwarequalität. Gabriele Taentzer Philipps-Universität Marburg. Sommersemester 2016

Softwarequalität. Gabriele Taentzer Philipps-Universität Marburg. Sommersemester 2016 Softwarequalität Gabriele Taentzer Philipps-Universität Marburg Sommersemester 2016 Organisation der LV Umfang: 6 SWS, 9 ECTS Punkte Veranstalter: Gabriele Taentzer, Stefan John Kontakt: taentzer@mathematik.uni-marburg.de,

Mehr

SE PHILOSOPHISCHE LOGIK WS 2014 GÜNTHER EDER

SE PHILOSOPHISCHE LOGIK WS 2014 GÜNTHER EDER SE PHILOSOPHISCHE LOGIK WS 2014 GÜNTHER EDER WOZU PRÄDIKATENLOGIK (PL)? Aussagenlogik (AL) betrachtet Sätze / Argumente immer nur von ihrer aussagenlogischen Struktur her Ein Satz wie Jaime mag Cersai

Mehr

UML-Basics: Einführung in Objekt- Orientierte Modellierung mit der Unified Modeling Language

UML-Basics: Einführung in Objekt- Orientierte Modellierung mit der Unified Modeling Language UML-Basics: Einführung in Objekt- Orientierte Modellierung mit der Unified Modeling Language ADV-Seminar Leiter: Ziel dieses Seminars Verständnis von Objekt-Orientierung Was sind Klassen? Was ist Vererbung?

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik - das Quiz zur Vorlesung Teil I - Grundzüge der Logik In der Logik geht es um... (A) die Formen korrekten Folgerns (B) die Unterscheidung von wahr und falsch (C) das Finden von

Mehr

Endlicher Automat (EA)

Endlicher Automat (EA) Endlicher Automat (EA) siehe auch Formale Grundlagen 3 1 Motivation: Automaten für die Modellierung, Spezifikation und Verifikation verwenden! Definition Ein Endlicher Automat A = (S,I,Σ,T,F) besteht aus

Mehr

Formale Systeme. Binary Decision Diagrams. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Binary Decision Diagrams. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS / KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association

Mehr

Einführung in die Informatik

Einführung in die Informatik Einführung in die Informatik Jochen Hoenicke Software Engineering Albert-Ludwigs-University Freiburg Sommersemester 2014 Jochen Hoenicke (Software Engineering) Einführung in die Informatik Sommersemester

Mehr

Module Angewandte Informatik 2. Semester

Module Angewandte Informatik 2. Semester Module Angewandte Informatik 2. Semester Automaten und formale n AF Helga Carls Bettina Buth, Helga Carls, Erhard Fähnders, Franz Korf, Reinhard Völler 1 SWS Übung mit ca. 16 Studierenden Übung = 16h Kreditpunkte

Mehr

Funktionale Abhängigkeiten

Funktionale Abhängigkeiten Funktionale Abhängigkeiten Lehrplan Die Lehrpläne für die allgemein bildenden Schulen finden Sie online unter: http://www.bmukk.gv.at/schulen/unterricht/lp/lp_abs.xml 5. Klasse (Funktionen) Beschreiben

Mehr

Begriffsdefinitionen:

Begriffsdefinitionen: Begriffsdefinitionen: Zeitliche Einheiten: In der VWL unterscheidet man hauptsächlich zwischen drei zeitlichen Betrachtungsebenen, wobei diese in ihrem Umfang von denen abweichen, wie man sie in der BWL

Mehr

Zusammenfassung. 1 Wir betrachten die folgende Signatur F = {+,,, 0, 1} sodass. 3 Wir betrachten die Gleichungen E. 4 Dann gilt E 1 + x 1

Zusammenfassung. 1 Wir betrachten die folgende Signatur F = {+,,, 0, 1} sodass. 3 Wir betrachten die Gleichungen E. 4 Dann gilt E 1 + x 1 Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 7 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 1 Wir betrachten die folgende Signatur

Mehr

Funktion Erläuterung Beispiel

Funktion Erläuterung Beispiel WESTFÄLISCHE WILHELMS-UNIVERSITÄT WIRTSCHAFTSWISSENSCHAFTLICHE FAKULTÄT BETRIEBLICHE DATENVERARBEITUNG Folgende Befehle werden typischerweise im Excel-Testat benötigt. Die Beispiele in diesem Dokument

Mehr

Software- und Systementwicklung

Software- und Systementwicklung Software- und Systementwicklung Seminar: Designing for Privacy 11.11.2009 Moritz Vossenberg Inhalt Vorgehensmodelle Wasserfallmodell V-Modell Phasen (Pflichtenheft) UML Klassendiagramm Sequenzdiagramm

Mehr

Kräfte zwischen Ladungen: quantitative Bestimmung

Kräfte zwischen Ladungen: quantitative Bestimmung Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #3 am 25.04.2007 Vladimir Dyakonov Kräfte zwischen Ladungen: quantitative Bestimmung Messmethode:

Mehr

Ein Vergleich dreier aussagenlogischer Semantiken

Ein Vergleich dreier aussagenlogischer Semantiken Ein Vergleich dreier aussagenlogischer Semantiken Alexander Zimmermann Abstract In this article we compare three different semantic theories for a propositional language, namely a valuation-semantic, a

Mehr

Nichtmonotones Schließen

Nichtmonotones Schließen Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen klassischer Aussagenlogik: Entscheidungstabellen, -bäume, -diagramme Wissensrepräsentation und -verarbeitung durch

Mehr

Semantic-Web-Sprachen XML, RDF (und RDFS), OWL

Semantic-Web-Sprachen XML, RDF (und RDFS), OWL Semantic-Web-Sprachen XML, RDF (und RDFS), OWL PTI 991 Wissensmanagementsystemen Dozent: Prof. Sybilla Schwarz 1 Agenda Problem Semantisches Web Semantische Sprache XML RDF RDFS OWL Zusammenfassung 2 Problem

Mehr

L6. Operatoren und Ausdrücke

L6. Operatoren und Ausdrücke L6. Operatoren und Ausdrücke 1. Arithmetische Operatoren: +, -, *, /, %, --, ++ 2. Zuweisung-Operatoren: =, +=, -=, *=, /= 3. Vergleichsoperatoren: =, ==,!= 4. Logische Operatoren:!, &&, 5.

Mehr

Wissensbasierte Systeme

Wissensbasierte Systeme WBS4 Slide 1 Wissensbasierte Systeme Vorlesung 4 vom 03.11.2004 Sebastian Iwanowski FH Wedel WBS4 Slide 2 Wissensbasierte Systeme 1. Motivation 2. Prinzipien und Anwendungen 3. Logische Grundlagen 4. Suchstrategien

Mehr

Konjunktive und disjunktive Normalformen

Konjunktive und disjunktive Normalformen Konjunktive und disjunktive Normalformen Nachdem gesprochen wurde, wie man Boolesche Terme unter einer Belegung der Variablen interpretiert und dass somit jeder Boolesche Term eine Boolesche Funktion repräsentiert,

Mehr

Universität Paderborn Die Universität der Informationsgesellschaft. Validierung und Verifikation (inkl. Testen, Model-Checking, Theorem Proving)

Universität Paderborn Die Universität der Informationsgesellschaft. Validierung und Verifikation (inkl. Testen, Model-Checking, Theorem Proving) Universität Paderborn Die Universität der Informationsgesellschaft Analyse, Entwurf und Implementierung zuverlässiger Software und (inkl., Model-Checking, Theorem Proving) Torsten Bresser torbre@uni-paderborn.de

Mehr

Rechtsschutz für Ontologien

Rechtsschutz für Ontologien Mag. iur. Dr. techn. Michael Sonntag Rechtsschutz für Ontologien Wien, IRIS 2006: 16-18.2.2006 E-Mail: sonntag@fim.uni-linz.ac.at http://www.fim.uni-linz.ac.at/staff/sonntag.htm Institut für Informationsverarbeitung

Mehr

Methoden der KI in der Biomedizin Logische Agenten 1

Methoden der KI in der Biomedizin Logische Agenten 1 Methoden der KI in der Biomedizin Logische Agenten 1 Karl D. Fritscher Organisatorisches Voraussetzungen: Lehrstoff zu den Themengebieten: a. Einführung in die KI, Expertensysteme b. Problemlösung durch

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Einheit 3: Alphabete (und Relationen, Funktionen, Aussagenlogik) Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Oktober 2008 1/18 Überblick Alphabete ASCII Unicode

Mehr

Template zum Erstellen einer Hauptseminar Ausarbeitung

Template zum Erstellen einer Hauptseminar Ausarbeitung Fakultät Informatik und Automatisierung Technische Universität Ilmenau Template zum Erstellen einer Hauptseminar Ausarbeitung Vorname Nachname Matrikel-Nr. 12345 Studiengang Informatik Hauptseminar im

Mehr

SWP Logische Programme

SWP Logische Programme SWP Logische Programme Alexander Felfernig, Stephan Gspandl Institut für Softwaretechnologie {alexander.felfernig,sgspandl}@ist.tugraz.at Institute for Software Technology Inhalt Motivation Logische Programme

Mehr

Künstliche Intelligenz Unsicherheit. Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln

Künstliche Intelligenz Unsicherheit. Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Künstliche Intelligenz Unsicherheit Stephan Schwiebert WS 2009/2010 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Rückblick Agent in der Wumpuswelt konnte Entscheidungen

Mehr

Logik Grundlagen. Organisatorisches: Inhalt. Semantic Web Grundlagen

Logik Grundlagen. Organisatorisches: Inhalt. Semantic Web Grundlagen Birte Glimm nstitut für Künstliche ntelligenz 31. Okt 2011 Semantic Web Grundlagen Logik Grundlagen 3/36 Birte Glimm Semantic Web Grundlagen 31. Okt 2011 4/36 Birte Glimm Semantic Web Grundlagen 31. Okt

Mehr

1 Grundprinzipien statistischer Schlußweisen

1 Grundprinzipien statistischer Schlußweisen Grundprinzipien statistischer Schlußweisen - - Grundprinzipien statistischer Schlußweisen Für die Analyse zufallsbehafteter Eingabegrößen und Leistungsparameter in diskreten Systemen durch Computersimulation

Mehr