Logik für Informatiker

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Logik für Informatiker"

Transkript

1 Vorlesung Logik für Informatiker 1. Einführung Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1

2 Formale Logik Ziel Formalisierung und Automatisierung rationalen Denkens Rational richtige Ableitung von neuem Wissen aus gegebenem Logik für Informatiker, SS 06 p.2

3 Formale Logik Ziel Formalisierung und Automatisierung rationalen Denkens Rational richtige Ableitung von neuem Wissen aus gegebenem Rolle der Logik in der Informatik Anwendung innerhalb der Informatik Spezifikation, Programmentwicklung, Programmverifikation Werkzeug für Anwendungen außerhalb der Informatik Künstliche Intelligenz, Wissensrepräsentation Logik für Informatiker, SS 06 p.2

4 Modellierung Logik für Informatiker, SS 06 p.3

5 Modellierung? Abstraktion? Logik für Informatiker, SS 06 p.4

6 Modellierung: Adäquatheit des Modells Adäquatheit Wenn formulierbare Aussage wahr im Modell, dann entsprechende Aussage wahr in Wirklichkeit Logik für Informatiker, SS 06 p.5

7 Modellierung: Beispiel Aufzug oben mitte unten Logik für Informatiker, SS 06 p.6

8 Modellierung: Beispiel Aufzug oben mitte Modellierung der statischen Eigenschaften unten Logik für Informatiker, SS 06 p.6

9 Modellierung: Beispiel Aufzug oben oben mitte Modellierung der statischen Eigenschaften o mitte m unten unten u Logik für Informatiker, SS 06 p.6

10 Modellierung: Strukturen oben oben oben oben o o o o mitte mitte mitte mitte m m m m unten unten unten unten u u u u Logik für Informatiker, SS 06 p.7

11 Modellierung: Strukturen oben oben oben oben o o o o mitte mitte mitte mitte m m m m unten unten unten unten u u u u Logik für Informatiker, SS 06 p.7

12 Modellierung: Strukturen oben oben oben oben o o o o mitte mitte mitte mitte m m m m unten unten unten unten u u u u Aussagen beziehen sich auf Strukturen (Formale) Aussagen sind in jeder einzelnen Struktur zu wahr oder falsch auswertbar Logik für Informatiker, SS 06 p.7

13 Formale Logik Logik für Informatiker, SS 06 p.8

14 Formale Logik Syntax Welche Formeln? Logik für Informatiker, SS 06 p.9

15 Formale Logik Syntax Welche Formeln? Semantik Wann ist eine Formel wahr (in einer Struktur)? Logik für Informatiker, SS 06 p.9

16 Formale Logik Syntax Welche Formeln? Semantik Wann ist eine Formel wahr (in einer Struktur)? Deduktionsmechanismus Ableitung neuer wahrer Formeln Logik für Informatiker, SS 06 p.9

17 Aussagenlogik: Syntax Atomare Aussagen Aufzug ist oben aufzugoben Innen mittlerer Knopf gedrückt innenmittegedr ückt Logik für Informatiker, SS 06 p.10

18 Aussagenlogik: Syntax Atomare Aussagen Aufzug ist oben aufzugoben Innen mittlerer Knopf gedrückt innenmittegedr ückt Verknüpft mit logischen Operatoren und oder impliziert nicht Logik für Informatiker, SS 06 p.10

19 Aussagenlogik: Syntax Komplexe Aussagen Wenn innen mittlerer Knopf gedrückt, dann innenmittegedr ückt Aufzug nicht in der Mitte aufzugmitte Logik für Informatiker, SS 06 p.11

20 Aussagenlogik: Syntax Komplexe Aussagen Wenn innen mittlerer Knopf gedrückt, dann innenmittegedr ückt Aufzug nicht in der Mitte aufzugmitte Der Aufzug ist oben aufzugoben und der Aufzug ist nicht unten aufzugunten Logik für Informatiker, SS 06 p.11

21 Aussagenlogik: Semantik Der Aufzug ist oben aufzugoben und der Aufzug ist nicht unten aufzugunten ist wahr in oben o mitte m unten u Logik für Informatiker, SS 06 p.12

22 Aussagenlogik: Deduktionsmechanismus Syllogismen P Q Q P Logik für Informatiker, SS 06 p.13

23 Aussagenlogik: Deduktionsmechanismus Syllogismen P Q Q P aufzugoben aufzugunten aufzugunten aufzugoben Logik für Informatiker, SS 06 p.13

24 Deduktionsmechanismus Deduktionsmechanismus im allgemeinen Kalkül Logik für Informatiker, SS 06 p.14

25 Deduktionsmechanismus Deduktionsmechanismus im allgemeinen Kalkül In dieser Vorlesung Wahrheitstafeln Logische Umformung Resolutionskalkül Tableaukalkül Logik für Informatiker, SS 06 p.14

26 The Whole Picture Diskurs in natürlicher Sprache Mathematische Probleme Programm + Spezifikation Formalisierung Syntax Semantik Aussagenlogik Prädikatenlogik Kalkül Ableitung Gültige Formeln Vollständigkeit Korrektheit Beweisbare Formeln Logik für Informatiker, SS 06 p.15

27 The Whole Picture Diskurs in natürlicher Sprache Mathematische Probleme Programm + Spezifikation Modellierung Formalisierung Syntax Semantik Aussagenlogik Prädikatenlogik Kalkül Ableitung Gültige Formeln Vollständigkeit Korrektheit Beweisbare Formeln Logik für Informatiker, SS 06 p.16

28 The Whole Picture Diskurs in natürlicher Sprache Mathematische Probleme Programm + Spezifikation Formalisierung Semantik Syntax Aussagenlogik Prädikatenlogik Kalkül Ableitung (automatische) Deduktion Gültige Formeln Vollständigkeit Korrektheit Beweisbare Formeln Logik für Informatiker, SS 06 p.17

29 Inhalt der Vorlesung 1. Einführung Logik für Informatiker, SS 06 p.18

30 Inhalt der Vorlesung 1. Einführung 2. Aussagenlogik Syntax und Semantik Resolution, Vollständigkeits- und Korrektheitsbeweise Analytische Tableaus Logik für Informatiker, SS 06 p.18

31 Inhalt der Vorlesung 1. Einführung 2. Aussagenlogik Syntax und Semantik Resolution, Vollständigkeits- und Korrektheitsbeweise Analytische Tableaus 3. Prädikatenlogik Syntax und Semantik Resolution, Vollständigkeits- und Korrektheitsbeweise Analytische Tableaus Logik für Informatiker, SS 06 p.18

32 Das 8-Damen Problem Man plaziere acht Damen so auf einem Schachbrett, dass sie sich gegenseitig nicht bedrohen. Logik für Informatiker, SS 06 p.19

33 Das 8-Damen Problem Man plaziere acht Damen so auf einem Schachbrett, dass sie sich gegenseitig nicht bedrohen. Logik für Informatiker, SS 06 p.19

34 Das 8-Damen Problem Aussagenlogische Beschreibung des Problems Logik für Informatiker, SS 06 p.20

35 Das 8-Damen Problem Aussagenlogische Beschreibung des Problems Für jedes Feld des Schachbretts eine aussagenlogische Variable D i,j Mit der Vorstellung, dass D i,j den Wert wahr hat, wenn auf dem Feld (i, j) eine Dame steht. Wir benutzen kartesische Koordinaten zur Notation von Positionen. Logik für Informatiker, SS 06 p.20

36 Das 8-Damen Problem Beispiel: Auf dem Feld (5, 7) steht eine Dame Logik für Informatiker, SS 06 p.21

37 Das 8-Damen Problem Beispiel: Auf dem Feld (5, 7) steht eine Dame Einschränkungen pro Feld FE 5,7 D 5,7 D 5,8 D 5,6 D 5,5 D 5,4 D 5,3 D 5,2 D 5,1 D 5,7 D 4,7 D 3,7 D 2,7 D 1,7 D 6,7 D 7,7 D 8,7 D 5,7 D 6,8 D 4,6 D 3,5 D 2,4 D 1,3 D 5,7 D 4,8 D 6,6 D 7,5 D 8,4 Logik für Informatiker, SS 06 p.21

38 Das 8-Damen Problem Globale Einschränkungen Für jedes k mit 1 k 8: D 1,k D 2,k D 3,k D 4,k D 5,k D 6,k D 7,k D 8,k Logik für Informatiker, SS 06 p.22

39 Das 8-Damen Problem Eine aussagenlogische Struktur beschreibt eine Lösung des Acht- Damen-Problems genau dann, wenn sie ein Modell der Formeln ist F i,j für alle 1 i, j 8 R k für alle 1 k 8 Logik für Informatiker, SS 06 p.23

40 Einführung: Zusammenfassung Ziel und Rolle der Formalen Logik in der Informatik Logik für Informatiker, SS 06 p.31

41 Einführung: Zusammenfassung Ziel und Rolle der Formalen Logik in der Informatik Modellierung, Adäquatheit der Modellierung Logik für Informatiker, SS 06 p.31

42 Einführung: Zusammenfassung Ziel und Rolle der Formalen Logik in der Informatik Modellierung, Adäquatheit der Modellierung Wesentliche Komponenten für jede Logik: Syntax, Semantik, Deduktionsmeachanismus (Kalkül) Logik für Informatiker, SS 06 p.31

43 Einführung: Zusammenfassung Ziel und Rolle der Formalen Logik in der Informatik Modellierung, Adäquatheit der Modellierung Wesentliche Komponenten für jede Logik: Syntax, Semantik, Deduktionsmeachanismus (Kalkül) Beispiel Aussagenlogik: Syntax, Sematik, Syllogismen Logik für Informatiker, SS 06 p.31

44 Einführung: Zusammenfassung Ziel und Rolle der Formalen Logik in der Informatik Modellierung, Adäquatheit der Modellierung Wesentliche Komponenten für jede Logik: Syntax, Semantik, Deduktionsmeachanismus (Kalkül) Beispiel Aussagenlogik: Syntax, Sematik, Syllogismen The Whole Picture: Logik für Informatiker, SS 06 p.31

45 Einführung: Zusammenfassung Ziel und Rolle der Formalen Logik in der Informatik Modellierung, Adäquatheit der Modellierung Wesentliche Komponenten für jede Logik: Syntax, Semantik, Deduktionsmeachanismus (Kalkül) Beispiel Aussagenlogik: Syntax, Sematik, Syllogismen The Whole Picture: Formel in der wahren Welt / (semantisch) gültige Formel, gültige Formel / ableitbare Formel Logik für Informatiker, SS 06 p.31

46 Einführung: Zusammenfassung Ziel und Rolle der Formalen Logik in der Informatik Modellierung, Adäquatheit der Modellierung Wesentliche Komponenten für jede Logik: Syntax, Semantik, Deduktionsmeachanismus (Kalkül) Beispiel Aussagenlogik: Syntax, Sematik, Syllogismen The Whole Picture: Formel in der wahren Welt / (semantisch) gültige Formel, gültige Formel / ableitbare Formel Vollständigkeit und Korrektheit von Kalkülen Logik für Informatiker, SS 06 p.31

47 Einführung: Zusammenfassung Ziel und Rolle der Formalen Logik in der Informatik Modellierung, Adäquatheit der Modellierung Wesentliche Komponenten für jede Logik: Syntax, Semantik, Deduktionsmeachanismus (Kalkül) Beispiel Aussagenlogik: Syntax, Sematik, Syllogismen The Whole Picture: Formel in der wahren Welt / (semantisch) gültige Formel, gültige Formel / ableitbare Formel Vollständigkeit und Korrektheit von Kalkülen Beispiel für (nicht-triviale) aussagelogische Modellierung: Acht-Damen-Problem Logik für Informatiker, SS 06 p.31

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 7. Aussagenlogik Analytische Tableaus Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Der aussagenlogische Tableaukalkül

Mehr

Sudoku. Warum 6? Warum 6?

Sudoku. Warum 6? Warum 6? . / Sudoku Füllen Sie die leeren Felder so aus, dass in jeder Zeile, in jeder Spalte und in jedem x Kästchen alle Zahlen von bis stehen.. / Warum?. / Warum?. / Geschichte der Logik Syllogismen (I) Beginn

Mehr

Hilbert-Kalkül (Einführung)

Hilbert-Kalkül (Einführung) Hilbert-Kalkül (Einführung) Es gibt viele verschiedene Kalküle, mit denen sich durch syntaktische Umformungen zeigen läßt, ob eine Formel gültig bzw. unerfüllbar ist. Zwei Gruppen von Kalkülen: Kalküle

Mehr

Logic in a Nutshell. Christian Liguda

Logic in a Nutshell. Christian Liguda Logic in a Nutshell Christian Liguda Quelle: Kastens, Uwe und Büning, Hans K., Modellierung: Grundlagen und formale Methoden, 2009, Carl Hanser Verlag Übersicht Logik - Allgemein Aussagenlogik Modellierung

Mehr

Die Folgerungsbeziehung

Die Folgerungsbeziehung Kapitel 2: Aussagenlogik Abschnitt 2.1: Syntax und Semantik Die Folgerungsbeziehung Definition 2.15 Eine Formel ψ AL folgt aus einer Formelmenge Φ AL (wir schreiben: Φ = ψ), wenn für jede Interpretation

Mehr

Kapitel 1.0. Aussagenlogik: Einführung. Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1

Kapitel 1.0. Aussagenlogik: Einführung. Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1 Kapitel 1.0 Aussagenlogik: Einführung Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1 Ziele der Aussagenlogik In der Aussagenlogik analysiert man die Wahrheitswerte zusammengesetzter

Mehr

Mütze und Handschuhe trägt er nie zusammen. Handschuhe und Schal trägt er immer zugleich. (h s) Modellierung als Klauselmenge

Mütze und Handschuhe trägt er nie zusammen. Handschuhe und Schal trägt er immer zugleich. (h s) Modellierung als Klauselmenge Was bisher geschah Klassische Aussagenlogik: Syntax Semantik semantische Äquivalenz und Folgern syntaktisches Ableiten (Resolution) Modellierung in Aussagenlogik: Wissensrepräsentation, Schaltungslogik,

Mehr

Logik: aussagenlogische Formeln und Wahrheitstafeln

Logik: aussagenlogische Formeln und Wahrheitstafeln FH Gießen-Friedberg, Sommersemester 2010 Lösungen zu Übungsblatt 1 Diskrete Mathematik (Informatik) 7./9. April 2010 Prof. Dr. Hans-Rudolf Metz Logik: aussagenlogische Formeln und Wahrheitstafeln Aufgabe

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 3. Aussagenlogik Einführung: Logisches Schließen im Allgemeinen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Beispiel:

Mehr

Einführung in die mathematische Logik

Einführung in die mathematische Logik roseminar Maschinelles Beweisen SS 2000 Einführung in die mathematische Logik Ein Crashkurs über die Grundlagen wichtiger Logiken und Beweiskalküle Uwe Bubeck 13. Juli 2000 Logik-1 Einführung in die mathematische

Mehr

Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen. notwendig: Existenz- und Allaussagen

Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen. notwendig: Existenz- und Allaussagen Prädikatenlogik 1. Stufe (kurz: PL1) Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen notwendig: Existenz- und Allaussagen Beispiel: 54 Syntax der Prädikatenlogik erster Stufe (in der

Mehr

Prüfungsprotokoll Kurs 1825 Logik für Informatiker. Studiengang: MSc. Informatik Prüfer: Prof. Dr. Heinemann Termin: Januar 2015

Prüfungsprotokoll Kurs 1825 Logik für Informatiker. Studiengang: MSc. Informatik Prüfer: Prof. Dr. Heinemann Termin: Januar 2015 Prüfungsprotokoll Kurs 1825 Logik für Informatiker Studiengang: MSc. Informatik Prüfer: Prof. Dr. Heinemann Termin: Januar 2015 1. Aussagenlogik Alphabet und AS gegeben, wie sind die Aussagenlogischen

Mehr

SE PHILOSOPHISCHE LOGIK WS 2014 GÜNTHER EDER

SE PHILOSOPHISCHE LOGIK WS 2014 GÜNTHER EDER SE PHILOSOPHISCHE LOGIK WS 2014 GÜNTHER EDER FORMALE SPRACHEN Wie jede natürliche Sprache, hat auch auch jede formale Sprache Syntax/Grammatik Semantik GRAMMATIK / SYNTAX Die Grammatik / Syntax einer formalen

Mehr

Weitere Beweistechniken und aussagenlogische Modellierung

Weitere Beweistechniken und aussagenlogische Modellierung Weitere Beweistechniken und aussagenlogische Modellierung Vorlesung Logik in der Informatik, HU Berlin 2. Übungsstunde Aussagenlogische Modellierung Die Mensa versucht ständig, ihr Angebot an die Wünsche

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 7: Einführung Aussagenlogik schulz@eprover.org Logisches Schließen 2 gold +1000, 1 per step, Beispiel: Jage den Wumpus Performance measure death 1000 10

Mehr

Klausur Formale Systeme Fakultät für Informatik WS 2009/2010. Prof. Dr. Bernhard Beckert. 18. Februar 2010

Klausur Formale Systeme Fakultät für Informatik WS 2009/2010. Prof. Dr. Bernhard Beckert. 18. Februar 2010 Klausur Formale Systeme Fakultät für Informatik Name: Mustermann Vorname: Peter Matrikel-Nr.: 0000000 Klausur-ID: 0000 WS 2009/2010 Prof. Dr. Bernhard Beckert 18. Februar 2010 A1 (15) A2 (10) A3 (10) A4

Mehr

5.4 Die Prädikatenlogik 1.Stufe als Semantikformalismus

5.4 Die Prädikatenlogik 1.Stufe als Semantikformalismus 5.4 Die Prädikatenlogik 1.Stufe als Semantikformalismus 5.4.1 Einführung Einführung Verwendet wird die Sprache der Prädikatenlogik erster Stufe mit Identität (ohne Funktionskonstanten) mit dem folgenden

Mehr

Logik. Markus Lohrey. Wintersemester 2012/2013. Universität Leipzig. Markus Lohrey (Universität Leipzig) Logik Wintersem.

Logik. Markus Lohrey. Wintersemester 2012/2013. Universität Leipzig. Markus Lohrey (Universität Leipzig) Logik Wintersem. Logik Markus Lohrey Universität Leipzig Wintersemester 2012/2013 Markus Lohrey (Universität Leipzig) Logik Wintersem. 2012/2013 1 / 214 Organisatorisches zur Vorlesung Informationen finden Sie unter z.

Mehr

2. Vorlesung. Slide 40

2. Vorlesung. Slide 40 2. Vorlesung Slide 40 Knobelaufgabe Was tut dieses Programm? Informell Formal Wie stellt man dies sicher? knobel(a,b) { Wenn a = 0 dann return b sonst { solange b 0 wenn a > b dann { a := a - b sonst b

Mehr

Logik. Markus Lohrey. Sommersemester Universität Siegen. Markus Lohrey (Universität Siegen) Logik Sommersem / 299

Logik. Markus Lohrey. Sommersemester Universität Siegen. Markus Lohrey (Universität Siegen) Logik Sommersem / 299 Logik Markus Lohrey Universität Siegen Sommersemester 2014 Markus Lohrey (Universität Siegen) Logik Sommersem. 2014 1 / 299 Organisatorisches zur Vorlesung Informationen finden Sie unter z. B. http://www.eti.uni-siegen.de/ti/lehre/ss14/logik/

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume

Mehr

Klausur Formale Systeme Fakultät für Informatik 2. Klausur zum WS 2010/2011

Klausur Formale Systeme Fakultät für Informatik 2. Klausur zum WS 2010/2011 Fakultät für Informatik 2. Klausur zum WS 2010/2011 Prof. Dr. Bernhard Beckert 08. April 2011 Vorname: Matrikel-Nr.: Platz: Klausur-ID: **Platz** **Id** Die Bearbeitungszeit beträgt 60 Minuten. A1 (17)

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 30.04.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letztes Mal Aussagenlogik Syntax: welche Formeln? Semantik:

Mehr

ÜBUNG ZUM GRUNDKURS LOGIK SS 2016 GÜNTHER EDER

ÜBUNG ZUM GRUNDKURS LOGIK SS 2016 GÜNTHER EDER ÜBUNG ZUM GRUNDKURS LOGIK SS 2016 GÜNTHER EDER FORMALE SPRACHEN Bevor wir anfangen, uns mit formaler Logik zu beschäftigen, müssen wir uns mit formalen Sprachen beschäftigen Wie jede natürliche Sprache,

Mehr

Mathematik für Informatiker/Informatikerinnen 2

Mathematik für Informatiker/Informatikerinnen 2 Mathematik für Informatiker/Informatikerinnen 2 Koordinaten: Peter Buchholz Informatik IV Praktische Informatik Modellierung und Simulation Tel: 755 4746 Email: peter.buchholz@udo.edu OH 16, R 216 Sprechstunde

Mehr

Programmierkurs II. C und Assembler

Programmierkurs II. C und Assembler Programmierkurs II C und Assembler Prof. Dr. Wolfgang Effelsberg Universität Mannheim Sommersemester 2003 1-1 Inhalt Teil I: Die Programmiersprache C 2. Datentypen und Deklarationen 3. Operatoren und Ausdrücke

Mehr

Programmiersprachen. Organisation und Einführung. Berthold Hoffmann. Studiengang Informatik Universität Bremen

Programmiersprachen. Organisation und Einführung. Berthold Hoffmann. Studiengang Informatik Universität Bremen Organisation und Einführung Studiengang Informatik Universität Bremen Sommersemester 2010 (Vorlesung am Montag, der 12. April 2010) (Montag, der 12. April 2008) 1 Vorstellung 2 Organisation 3 Einführung

Mehr

Logik Vorlesung 1: Einführung

Logik Vorlesung 1: Einführung Logik Vorlesung 1: Einführung Andreas Maletti 17. Oktober 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen Weitere Eigenschaften

Mehr

Klausur Formale Systeme Fakultät für Informatik WS 2009/2010

Klausur Formale Systeme Fakultät für Informatik WS 2009/2010 Klausur Formale Systeme Fakultät für Informatik WS 2009/2010 Prof. Dr. Bernhard Beckert 18. Februar 2010 Name: Mustermann Vorname: Peter Matrikel-Nr.: 0000000 Klausur-ID: 0000 A1 (15) A2 (10) A3 (10) A4

Mehr

Deduktion in der Aussagenlogik

Deduktion in der Aussagenlogik Deduktion in der Aussagenlogik (Erläuterungen zu Kapitel 6, Teil 2 des FGI-1 Skriptes) Frank Heitmann 1 Motivation Wenn man sich erstmal darauf eingelassen hat, dass man mit Formeln etwas sinnvolles machen

Mehr

Semantik von Formeln und Sequenzen

Semantik von Formeln und Sequenzen Semantik von Formeln und Sequenzen 33 Grundidee der Verwendung von Logik im Software Entwurf Syntax: Menge von Formeln = Axiome Ax K ist beweisbar Formel ϕ beschreiben Korrektkeit Vollständigkeit beschreibt

Mehr

Handout zu Beweistechniken

Handout zu Beweistechniken Handout zu Beweistechniken erstellt vom Lernzentrum Informatik auf Basis von [Kre13],[Bün] Inhaltsverzeichnis 1 Was ist ein Beweis? 2 2 Was ist Vorraussetzung, was ist Behauptung? 2 3 Beweisarten 3 3.1

Mehr

Hausaufgaben Negation Aussagen Implikation Äquivalenz Zusammenfassung. Elementare Logik. Diskrete Strukturen. Uta Priss ZeLL, Ostfalia

Hausaufgaben Negation Aussagen Implikation Äquivalenz Zusammenfassung. Elementare Logik. Diskrete Strukturen. Uta Priss ZeLL, Ostfalia Elementare Logik Diskrete Strukturen Uta Priss ZeLL, Ostfalia Sommersemester 2016 Diskrete Strukturen Elementare Logik Slide 1/26 Agenda Hausaufgaben Negation Aussagen Implikation Äquivalenz Zusammenfassung

Mehr

Formeln. Signatur. aussagenlogische Formeln: Aussagenlogische Signatur

Formeln. Signatur. aussagenlogische Formeln: Aussagenlogische Signatur Signatur Formeln Am Beispiel der Aussagenlogik erklären wir schrittweise wichtige Elemente eines logischen Systems. Zunächst benötigt ein logisches System ein Vokabular, d.h. eine Menge von Namen, die

Mehr

Induktive Definitionen

Induktive Definitionen Induktive Definitionen Induktive Definition: Konstruktive Methode zur Definition einer Menge M von Objekten aus Basisobjekten mittels (Erzeugungs-) Regeln Slide 1 Rekursion über den Aufbau: Konstruktive

Mehr

23.1 Constraint-Netze

23.1 Constraint-Netze Grundlagen der Künstlichen Intelligenz 1. April 2015 2. Constraint-Satisfaction-Probleme: Constraint-Netze Grundlagen der Künstlichen Intelligenz 2. Constraint-Satisfaction-Probleme: Constraint-Netze Malte

Mehr

Logik Vorlesung 6: Resolution

Logik Vorlesung 6: Resolution Logik Vorlesung 6: Resolution Andreas Maletti 28. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen Weitere Eigenschaften

Mehr

Grundlagen der Logik und Logik-Programmierung

Grundlagen der Logik und Logik-Programmierung Grundlagen der Logik und Logik-Programmierung 9. Übung - Übungsblatt 8 Florian Wittmann Übungen zu GLoLoP Inhalt 1 Aufgabe 8-1: 2 Aufgabe 8-2: Frege Kalkül 3 Aufgabe 8-3: Vier-Farben-Satz Florian Wittmann

Mehr

Rhetorik und Argumentationstheorie.

Rhetorik und Argumentationstheorie. Rhetorik und Argumentationstheorie 2 [frederik.gierlinger@univie.ac.at] Teil 2 Was ist ein Beweis? 2 Wichtige Grundlagen Tautologie nennt man eine zusammengesetzte Aussage, die wahr ist, unabhängig vom

Mehr

Normalformen boolescher Funktionen

Normalformen boolescher Funktionen Normalformen boolescher Funktionen Jeder boolesche Ausdruck kann durch (äquivalente) Umformungen in gewisse Normalformen gebracht werden! Disjunktive Normalform (DNF) und Vollkonjunktion: Eine Vollkonjunktion

Mehr

Prolog basiert auf Prädikatenlogik

Prolog basiert auf Prädikatenlogik Software-Technologie Software-Systeme sind sehr komplex. Im Idealfall erfolgt die Programmierung problemorientiert, während die notwendige Übertragung in ausführbare Programme automatisch erfolgt. Prolog-Philosophie:

Mehr

1. Erläutern Sie die Aufgaben von Datentypen in der imperativen Programmierung.

1. Erläutern Sie die Aufgaben von Datentypen in der imperativen Programmierung. 1. Erläutern Sie die Aufgaben von Datentypen in der imperativen Programmierung. Beschreiben Sie ferner je einen frei gewählten Datentyp aus der Gruppe der skalaren und einen aus der Gruppe der strukturierten

Mehr

Teil 7. Grundlagen Logik

Teil 7. Grundlagen Logik Teil 7 Grundlagen Logik Was ist Logik? etymologische Herkunft: griechisch bedeutet Wort, Rede, Lehre (s.a. Faust I ) Logik als Argumentation: Alle Menschen sind sterblich. Sokrates ist ein Mensch. Also

Mehr

4. Exkurs: Einführung in die Logik

4. Exkurs: Einführung in die Logik 4. Exkurs: Einführung in die Logik 4. Einführung in die Logik 4.. Die Operatoren der Aussagenlogik 4..2 Formeln der Aussagenlogik 4..3 Arithmetische Vergleichsoperatoren 4..4 Anwendungen der Logik in der

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 9: Prädikatenlogik schulz@eprover.org Rückblick 2 Rückblick: Vor- und Nachteile von Aussagenlogik Aussagenlogik ist deklarativ: Syntaxelemente entsprechen

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 29/ Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws9

Mehr

Beschreibungslogiken. Daniel Schradick 1schradi@informatik.uni-hamburg.de

Beschreibungslogiken. Daniel Schradick 1schradi@informatik.uni-hamburg.de Beschreibungslogiken Daniel Schradick 1schradi@informatik.uni-hamburg.de Was sind Beschreibungslogiken? Definition: Formalisms that represent knowledge of some problem domain (the world ) by first defining

Mehr

6. Induktives Beweisen - Themenübersicht

6. Induktives Beweisen - Themenübersicht 6. Induktives Beweisen - Themenübersicht Ordnungsrelationen Partielle Ordnungen Quasiordnungen Totale Ordnungen Striktordnungen Ordnungen und Teilstrukturen Noethersche Induktion Anwendung: Terminierungsbeweise

Mehr

Aufgabe - Fortsetzung

Aufgabe - Fortsetzung Aufgabe - Fortsetzung NF: Nicht-Formel F: Formel A: Aussage x :( y : Q(x, y) R(x, y)) z :(Q(z, x) R(y, z)) y :(R(x, y) Q(x, z)) x :( P(x) P(f (a))) P(x) x : P(x) x y :((P(y) Q(x, y)) P(x)) x x : Q(x, x)

Mehr

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie und, oder, nicht, wenn... dann zwischen atomaren und komplexen Sätzen. I. Aussagenlogik 2.1 Syntax Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen. Sätze selbst sind entweder wahr oder falsch. Ansonsten

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Aussagenlogik 4 Komplexe Zahlen 5 Lineare Algebra 6 Lineare Programme 2 Grundlegende

Mehr

Grundlagen der Künstlichen Intelligenz. 9.1 Einführung und Beispiele. 9.2 Constraint-Netze. 9.3 Belegungen und Konsistenz. 9.

Grundlagen der Künstlichen Intelligenz. 9.1 Einführung und Beispiele. 9.2 Constraint-Netze. 9.3 Belegungen und Konsistenz. 9. Grundlagen der Künstlichen Intelligenz 8. April 201 9. Constraint-Satisfaction-Probleme: Einführung Grundlagen der Künstlichen Intelligenz 9. Constraint-Satisfaction-Probleme: Einführung Malte Helmert

Mehr

Wissensbasierte Systeme/ Expertensysteme. Teil 2

Wissensbasierte Systeme/ Expertensysteme. Teil 2 Wissensbasierte Systeme/ Expertensysteme Teil 2 BiTS, Sommersemester 2004 Dr. Stefan Kooths KOOTHS BiTS: Wissensbasierte Systeme/Expertensysteme Teil 2 1 Gliederung 1. Einführung und Einordnung 2. Entscheidungsunterstützung(ssysteme)

Mehr

Wahrheitswertesemantik Einführung Aussagenlogik

Wahrheitswertesemantik Einführung Aussagenlogik Wahrheitsbedingungen Wahrheitswertesemantik Einführung Aussagenlogik Sie haben sich in der ersten Sitzung mit verschiedenen Aspekten von Bedeutung auseinandergesetzt. Ein Aspekt, der dabei eine Rolle spielte,

Mehr

7. Formale Sprachen und Grammatiken

7. Formale Sprachen und Grammatiken 7. Formale Sprachen und Grammatiken Computer verwenden zur Verarbeitung von Daten und Informationen künstliche, formale Sprachen (Maschinenspr., Assemblerspachen, Programmierspr., Datenbankspr., Wissensrepräsentationsspr.,...)

Mehr

Logische Strukturen 7. Vorlesung

Logische Strukturen 7. Vorlesung Logische Strukturen 7. Vorlesung Martin Dietzfelbinger 18. Mai 2010 Kapitel 2 Prädikatenlogik Was ist das? Logik und Strukturen Natürliches Schließen Normalformen Herbrand-Theorie Prädikatenlogische Resolution

Mehr

KI: Wie testet man ein Hirn?

KI: Wie testet man ein Hirn? KI: Wie testet man ein Hirn? (Und warum?) Richard Jelinek PetaMem GmbH Nürnberg Richard Jelinek Künstliche Intelligenz 11. März 2016 1 / 15 Weltwissen & Repräsentation Weltwissen beschreibt das verfügbare

Mehr

Mai 2006. Hauptseminar: Nichtrelationale Datenbanken Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln

Mai 2006. Hauptseminar: Nichtrelationale Datenbanken Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln Hauptseminar: Nichtrelationale Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln Mai 2006 Was ist eine Datenbank? Erweiterung relationaler um eine Deduktionskomponente Diese

Mehr

Kleiner Ausflug in Logik und Verkehrssteuerung

Kleiner Ausflug in Logik und Verkehrssteuerung Kleiner usflug in Logik und Verkehrssteuerung Ein logisches Rätsel usgangslage: Drei Frauen stehen hintereinander. Jede trägt einen Hut auf dem Kopf und sieht nur die Hüte der voran stehenden Personen.

Mehr

Die Formalisierung des wise men puzzles mittels der modalen Logik KT45 n

Die Formalisierung des wise men puzzles mittels der modalen Logik KT45 n Universität Paderborn Institut Informatik Proseminar: Logik für Informatiker Dozent: Ekkart Kindler Sommersemester 2005 Die Formalisierung des wise men puzzles mittels der modalen Logik KT45 n erstellt

Mehr

Motivation. Formale Grundlagen der Informatik 1 Kapitel 19. Syntax & Semantik. Motivation - Beispiel. Motivation - Beispiel

Motivation. Formale Grundlagen der Informatik 1 Kapitel 19. Syntax & Semantik. Motivation - Beispiel. Motivation - Beispiel Motivation Formale Grundlagen der Informatik 1 Kapitel 19 & Die ist eine Erweiterung der Aussagenlogik. Sie hat eine größere Ausdrucksstärke und erlaub eine feinere Differenzierung. Ferner sind Beziehungen/Relationen

Mehr

Was bisher geschah. Aufgaben: Diagnose, Entscheidungsunterstützung Aufbau Komponenten und Funktion

Was bisher geschah. Aufgaben: Diagnose, Entscheidungsunterstützung Aufbau Komponenten und Funktion Was bisher geschah Daten, Information, Wissen explizites und implizites Wissen Wissensrepräsentation und -verarbeitung: Wissensbasis Kontextwissen Problemdarstellung fallspezifisches Wissen repräsentiert

Mehr

Einführung in die Constraint-Programmierung

Einführung in die Constraint-Programmierung examen.press Einführung in die Constraint-Programmierung Grundlagen, Methoden, Sprachen, Anwendungen Bearbeitet von Petra Hofstedt, Armin Wolf 1. Auflage 2007. Taschenbuch. xii, 388 S. Paperback ISBN 978

Mehr

TU8 Beweismethoden. Daniela Andrade

TU8 Beweismethoden. Daniela Andrade TU8 Beweismethoden Daniela Andrade daniela.andrade@tum.de 12.12.2016 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;) 2

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 27. Aussagenlogik: Logisches Schliessen und Resolution Malte Helmert Universität Basel 28. April 2014 Aussagenlogik: Überblick Kapitelüberblick Aussagenlogik: 26.

Mehr

Einführung in die Informatik 1

Einführung in die Informatik 1 Einführung in die Informatik 1 Algorithmen und algorithmische Sprachkonzepte Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag,

Mehr

Tabellenkalkulation 1. Einheit 5 Rechnerpraktikum EDV

Tabellenkalkulation 1. Einheit 5 Rechnerpraktikum EDV Tabellenkalkulation 1 Einheit 5 Rechnerpraktikum EDV Inhalt Einführung in die Tabellenkalkulation Berechnungen in Excel Formeln und Bezüge Funktionen Arbeiten mit Datenlisten Sortieren und Filtern Übungen

Mehr

Formalisierung von Logik, Berechenbarkeit und Typdisziplin

Formalisierung von Logik, Berechenbarkeit und Typdisziplin Kapitel 2 Formalisierung von Logik, Berechenbarkeit und Typdisziplin In diesem Kapitel wollen wir die mathematischen Grundlagen vorstellen, die für ein Verständnis formaler Methoden beim Beweis mathematischer

Mehr

Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen

Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume Barbara König Logik 1 Motivation: Wir beschäftigen uns nun im folgenden mit der, die gegenüber

Mehr

Program = Logic + Control

Program = Logic + Control Program = Logic + Control Prozedurale/imperative Sprachen: Abläufe formulieren Computer führt aus von-neumann-maschine Idee von deklarativen/logischen/funktionalen Programmiersprachen: Zusammenhänge formulieren

Mehr

Logik und Künstliche Intelligenz

Logik und Künstliche Intelligenz Logik und Künstliche Intelligenz Vorlesung an der Hochschule Heilbronn (Stand: 25. Juli 2008) Prof. Dr. V. Stahl Copyright 2006 by Volker Stahl. All rights reserved. Mathematics may be defined as the subject

Mehr

Notationen zur Prozessmodellierung

Notationen zur Prozessmodellierung Notationen zur Prozessmodellierung August 2014 Inhalt (erweiterte) ereignisgesteuerte Prozesskette (eepk) 3 Wertschöpfungskettendiagramm (WKD) 5 Business Process Model and Notation (BPMN) 7 Unified Modeling

Mehr

Mengen und Abbildungen

Mengen und Abbildungen Mengen und Abbildungen Der Mengenbegriff Durchschnitt, Vereinigung, Differenzmenge Kartesisches Produkt Abbildungen Prinzip der kleinsten natürlichen Zahl Vollständige Induktion Mengen und Abbildungen

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mathematische Sprache und naive Mengenlehre Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johann-von-Neumann-Haus Fachschaft Menge aller Studenten eines Institutes

Mehr

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 30.

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 30. Formale Logik PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg Wintersemester 16/17 Sitzung vom 30. November 2016 Süddeutsche Zeitung, 8. Januar 2010 Fehlschluss: G L (L G) vielleicht

Mehr

Information Retrieval

Information Retrieval Information Retrieval Norbert Fuhr 12. April 2010 Einführung 1 IR in Beispielen 2 Was ist IR? 3 Dimensionen des IR 4 Daten Information Wissen 5 Rahmenarchitektur für IR-Systeme IR in Beispielen IR-Aufgaben

Mehr

Semantic Web Technologies I Lehrveranstaltung im WS13/14

Semantic Web Technologies I Lehrveranstaltung im WS13/14 www.semantic-web-grundlagen.de Semantic Web Technologies I Lehrveranstaltung im WS13/14 Dr. Andreas Harth Dipl.-Inf. Martin Junghans Logik Grundlagen Einleitung und Ausblick XML und URIs Einführung in

Mehr

Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik. Seminar Entscheidungsverfahren für logische Theorien. Endliche Modelle.

Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik. Seminar Entscheidungsverfahren für logische Theorien. Endliche Modelle. Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik Seminar Entscheidungsverfahren für logische Theorien Tobias Hebel Koblenz, am 18.02.2005 Inhaltsverzeichnis 1 Einleitung... 3 2 Grundlagen...

Mehr

8. Objektorientierte Programmierung. Informatik II für Verkehrsingenieure

8. Objektorientierte Programmierung. Informatik II für Verkehrsingenieure 8. Objektorientierte Programmierung Informatik II für Verkehrsingenieure Grundbegriffe ALAN KAY, ERFINDER DER SPRACHE SMALLTALK, HAT DIE GRUNDBEGRIFFE DER OBJEKTORIENTIERTEN PROGRAMMIERUNG WIE FOLGT ZUSAMMENGEFASST:

Mehr

Induktive Definitionen

Induktive Definitionen Priv.-Doz. Dr.rer.nat.habil. Karl-Heinz Niggl Technische Universität Ilmenau Fakultät IA, Institut für Theoretische Informatik Fachgebiet Komplexitätstheorie und Effiziente Algorithmen J Induktive Definitionen

Mehr

Einführung in die Logik

Einführung in die Logik Einführung in die Logik Prof. Dr. Ansgar Beckermann Wintersemester 2001/2 Allgemeines vorab Wie es abläuft Vorlesung (Grundlage: Ansgar Beckermann. Einführung in die Logik. (Sammlung Göschen Bd. 2243)

Mehr

9. Übung Formale Grundlagen der Informatik

9. Übung Formale Grundlagen der Informatik Institut für Informatik Sommersemester 2001 Universität Zürich 9. Übung Formale Grundlagen der Informatik Norbert E. Fuchs (fuchs@ifi.unizh.ch) Reinhard Riedl (riedl@ifi.unizh.ch) Nadine Korolnik (korolnik@ifi.unizh.ch)

Mehr

Kapitel 1.3. Normalformen aussagenlogischer Formeln. Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1

Kapitel 1.3. Normalformen aussagenlogischer Formeln. Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1 Kapitel 1.3 Normalformen aussagenlogischer Formeln Mathematische Logik (WS 2010/11) Kapitel 1.3: Normalformen 1 / 1 Boolesche Formeln, Literale und Klauseln Eine Boolesche Formel ist eine aussagenlogische

Mehr

Geometrische Objekte im 3-dimensionalen affinen Raum oder,... wie nützlich ist ein zugehöriger Vektorraum der Verschiebungen

Geometrische Objekte im 3-dimensionalen affinen Raum oder,... wie nützlich ist ein zugehöriger Vektorraum der Verschiebungen Geometrische Objekte im -dimensionalen affinen Raum Bekanntlich versteht man unter geometrischen Objekten Punktmengen, auf die man die üblichen Mengenoperationen wie z.b.: Schnittmenge bilden: - aussagenlogisch:

Mehr

Strahlensätze anwenden. ähnliche Figuren erkennen und konstruieren. ähnliche Figuren mit Hilfe zentrischer Streckung konstruieren.

Strahlensätze anwenden. ähnliche Figuren erkennen und konstruieren. ähnliche Figuren mit Hilfe zentrischer Streckung konstruieren. MAT 09-01 Ähnlichkeit 14 Doppelstunden Leitidee: Raum und Form Thema im Buch: Zentrische Streckung (G), Ähnlichkeit (E) Strahlensätze anwenden. ähnliche Figuren erkennen und konstruieren. ähnliche Figuren

Mehr

4. Aussagenlogik 32 #WUUCIGPNQIKM

4. Aussagenlogik 32 #WUUCIGPNQIKM 4. Aussagenlogik Wir haben bisher beschrieben, auf welche Weise die Objekte und Individuen in unserer Welt als einfache Mengen und Mengen von n-tupeln erfasst werden können. Daraufhin haben wir Relationen

Mehr

PROLOG. Tutorium zur Vorlesung Datenbanken und Wissensrepräsentation (Prof. Dr. G. Büchel)

PROLOG. Tutorium zur Vorlesung Datenbanken und Wissensrepräsentation (Prof. Dr. G. Büchel) PROLOG Tutorium zur Vorlesung Datenbanken und Wissensrepräsentation (Prof. Dr. G. Büchel) Stand: April 2010 Verfasser: Dipl.-Ing. (FH) Andreas W. Lockermann Vorwort Der Name PROLOG leitet sich aus den

Mehr

Kapitel 1.3. Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln

Kapitel 1.3. Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln Kapitel 1.3 Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln Mathematische Logik (WS 2011/12) Kapitel 1.3: Normalformen 1/ 29 Übersicht

Mehr

Einführung in die Mathematik (Vorkurs 1 )

Einführung in die Mathematik (Vorkurs 1 ) Einführung in die Mathematik (Vorkurs 1 ) Wintersemester 2008/09 Dr. J. Jordan Institut für Mathematik Universität Würzburg Germany 1 Modulbezeichnung 10-M-VKM 1 Inhaltsverzeichnis 1 Aussagen und Beweise

Mehr

1 Bedingungen und der Typ bool. Informatik I: Einführung in die Programmierung 5. Bedingungen, bedingte Ausführung und Schleifen. Vergleichsoperatoren

1 Bedingungen und der Typ bool. Informatik I: Einführung in die Programmierung 5. Bedingungen, bedingte Ausführung und Schleifen. Vergleichsoperatoren 1 und der Informatik I: Einführung in die Programmierung 5., bedingte Ausführung und Albert-Ludwigs-Universität Freiburg Bernhard Nebel 27. Oktober 2015 27. Oktober 2015 B. Nebel Info I 3 / 21 Der Vergleichsoperatoren

Mehr

Inhaltsverzeichnis. Grundbegriffe und Grundideen. Geleitwort Vorwort

Inhaltsverzeichnis. Grundbegriffe und Grundideen. Geleitwort Vorwort Inhaltsverzeichnis Geleitwort Vorwort Inhaltsverzeichnis Symbole und Abkürzungen VII IX XIII XIX Einleitung 1 Anliegen und Besonderheiten des Buches...1 Hinweise zum Lesen des Buches...8 Teil 1 Grundbegriffe

Mehr

Nebenfach Informatik. Semester/CP. Lehrveranstaltung Turnus Typ SWS Jedes WS Grundlagen der Programmierung 1 Übungen zur Vorlesung 9 -

Nebenfach Informatik. Semester/CP. Lehrveranstaltung Turnus Typ SWS Jedes WS Grundlagen der Programmierung 1 Übungen zur Vorlesung 9 - Nebenfach Informatik Das Nebenfach besteht aus dem Pflichtmodul, das um andere Module aus dem Katalog ergänzt werden kann. Informatik kann sowohl im Bachelor als auch im Master gewählt werden. Im Master

Mehr

Jeweils am Montag um 18:30 treffen sich Studenten in Seminarraum 3 zum gemeinsamen Lernen.

Jeweils am Montag um 18:30 treffen sich Studenten in Seminarraum 3 zum gemeinsamen Lernen. Jeweils am Montag um 18:30 treffen sich Studenten in Seminarraum 3 zum gemeinsamen Lernen. Betrachtungen zu Sprache, Logik und Beweisen Sprache Wir gehen von unserem Alphabet einigen Zusatzsymbolen aus.

Mehr

Grundlagen von Mengenlehre und Logik

Grundlagen von Mengenlehre und Logik Mengenlehre und Logik: Wiederholung Repetitorium: Grundlagen von Mengenlehre und Logik 2002 Prof. Dr. Rainer Manthey Informationssysteme 1 Warum??? Warum um um alles alles in in der der Welt Welt muss

Mehr

Binäre Suchbäume (binary search trees, kurz: bst)

Binäre Suchbäume (binary search trees, kurz: bst) Binäre Suchbäume (binary search trees, kurz: bst) Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binärbaum T mit n := M Knoten Jeder Knoten v von T ist mit einer Zahl m v M markiert.

Mehr

Modellbildung und Analyse eingebetteter Systeme für mechatronische Anwendungen mit höheren Petri-Netze unter Verwendung verschiedener Erweiterungen

Modellbildung und Analyse eingebetteter Systeme für mechatronische Anwendungen mit höheren Petri-Netze unter Verwendung verschiedener Erweiterungen Modellbildung und Analyse eingebetteter Systeme für mechatronische Anwendungen mit höheren Petri-Netze unter Verwendung verschiedener Erweiterungen Wolfgang Fengler Vesselka Duridanova Technische Universität

Mehr

Zusammenhänge präzisieren im Modell

Zusammenhänge präzisieren im Modell Zusammenhänge präzisieren im Modell Dr. Roland Poellinger Munich Center for Mathematical Philosophy Begriffsfeld Logik 1 Mathematik und Logik Die Mathematik basiert auf logisch gültigen Folgerungsschritten

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 6. Formale Sprachen und Grammatiken Malte Helmert Gabriele Röger Universität Basel 17. März 2014 Einführung Beispiel: Aussagenlogische Formeln Aus dem Logikteil: Definition (Syntax

Mehr

Mengenlehre. Spezielle Mengen

Mengenlehre. Spezielle Mengen Mengenlehre Die Mengenlehre ist wie die Logik eine sehr wichtige mathematische Grundlage der Informatik und ist wie wir sehen werden auch eng verbunden mit dieser. Eine Menge ist eine Zusammenfassung von

Mehr