Einflussfunktionen und finite Elemente

Größe: px
Ab Seite anzeigen:

Download "Einflussfunktionen und finite Elemente"

Transkript

1 Einflussfunktionen und finite Elemente F. Hartmann Institut für Baustatik und Baudynamik Universität Kassel 16. Juni 2009

2 Messen = Bewegen

3 Was kommt bei der Last an?

4

5 Zu jeder Schnittgröße gehört eine Schaukel.

6 Y Y Z Z X X Y Y Z Z X X

7

8 Eisenbahn auf Brücke

9 Thesen Mechanik ist Kinematik. Zu jeder Zahl gehört eine Bewegung. Jede Zahl ist eine Energie. u(x) 1 = Ω G(y, x) p(y) dy (Betti)

10 Der zentrale Satz Ein FE-Programm berechnet alle Werte mittels Einflussfunktionen. Einflussfunktionen = Look-Up functions = Tabellen

11 Spannung in einem Punkt

12 Verbessertes Netz

13

14 Konsequenz Mit falschen Einflussfunktionen erhält man falsche Werte. Also müssen die Einflussfunktionen verbessert werden!

15 Einflussfunktionen sind normale Lastfälle.

16 Wie kann man Einflussfunktionen verbessern?

17 Adaptive Verfeinerung des Netzes

18 Strategie

19 Verbesserte Strategie In einem Punkt x soll die Spannung möglichst genau sein! Fehlermaß im Element σ(x) σ h (x) u u h G 1 G h 1 η = η u η G = Fehler in u Fehler in G 1 K u = f K u G =f G Lastfall Einflussfunktion

20

21

22 Goal oriented refinement

23

24 Etwas Theorie: Funktionale l J(u) = u(x) = 0 l J(u) = N(x) = J(u) = 1 σ xx dω = Ω Ω Zu jedem Funktional gehört eine Bewegung. 0 Ω G 0 (y, x) p(y) dy G 1 (y, x) p(y) dy G Σ (y, x) p(y) dω y J(.) G(y, x) G h (y, x) J h (.) (Riesz) und es gilt u h V h : J(u h ) = J h (u) J(.) V

25 FEM = Approximation von Funktionalen Lehrbücher: FE = Interpolation mit Hütchenfunktionen u h (x) = i u i ϕ i (x) Alternativ: FE = Approximation von Funktionalen J(u h ) = u h (x i ) = G h (y, x i ) p(y) dω y ( der Daumen auf dem Keilriemen ) Ω

26 Die ganze Mathematik steckt in drei Zeilen...

27 Unendlich große Energie Kann man den Daumendruck (= Einzelkraft) überhaupt mit finiten Elementen darstellen? Die meisten Einflussfunktionen haben unendlich große Energie! Wie will man den Abstand zum Punkt klein machen?

28 Membran und Einzelkraft Z Y X

29 Unendlich große Energie auch bei Scheiben

30 Funktionale, Knoten und Gausspunkte

31 Fast alle Daten im Ausdruck und auf dem Bildschirm stammen von schlecht gestellten Problemen ( ill posed problems )! (?) Die Singularitäten der Einflussfunktionen in den Knoten und Gausspunkten sind viel größer als die Singularitäten auf den Rändern!

32 Modellanpassung Änderungen von Steifigkeiten Grobes Modell - feines Modell: Abschätzungen Optimierung

33 Wann ist fein fein genug?

34 Lokale Änderungen haben globale Effekte

35 Änderungen in den Steifigkeiten

36 Der Trick

37 Geänderte Einflussfunktion G G c Globale Analyse (Der ganze Koffer) J(u c u) = l 0 [G c (y, x) G(y, x)] p(y) dy (Betti) Lokale Analyse [x 1, x 2 ] (nur der Ziegelstein) J(u c u) = x2 EI w c G dy = EI x 1 EI x2 x 1 M c M G EI dy Die lokale Analyse misst die Änderung über die virtuelle innere Energie.

38

39

40 Vereinfachung ,5 3 2,5 2 1,5 1 0, J(u c u) = d(u, G c ) = d(u, G) d(u, G c G) d(u, G)

41 Retrofitting structures

42 Retrofitting structures J(u h c u h ) d(g h, u h )

43 Inklusionen

44 Zusammenfassung Mechanik ist angewandte Kinematik Zu jeder Zahl gehört eine Bewegung, eine Einflussfunktion FE = eingeschränkte Kinematik = ungenaue Einflussfunktionen = ungenaue Ergebnisse Goal oriented refinement = gezielte Anpassung des Netz Sensitvitätsanalyse mit Einflussfunktionen

45 Literatur Bangerth W, Rannacher R. (2003) Adaptive Finite Element Methods for Differential Equations. Birkhäuser Verlag Braack M, Ern A (2003) A posteriori control of modeling errors and discretization errors, Multiscale Model. Simul. 1: Ern A, Guermond J-L (2004) Theory and Practice of Finite Elements, Springer-Verlag Hartmann F, Katz C. (2007) Structural Analysis with Finite Elements, 2nd ed., Springer-Verlag (Diplomarbeiten, Doktorarbeiten, Programme zu dem Thema)

Statik mit finiten Elementen

Statik mit finiten Elementen Statik mit finiten Elementen Fachgebiet Baustatik Prof. Dr.-Ing. Friedel Hartmann 28.02.2003 Universität Kassel 1 Was sind finite Elemente? Knotenkräfte gibt es die? Der äquivalente Lastfall Einflussfunktionen

Mehr

l p h (x) δw(x) dx für alle δw(x).

l p h (x) δw(x) dx für alle δw(x). 1.3 Potentielle Energie 5 In der modernen Statik benutzen wir statt dessen einen schwächeren Gleichheitsbegriff. Wir verlangen nur, dass die beiden Streckenlasten bei jeder virtuellen Verrückung dieselbe

Mehr

Dipl.-Ing. Christoph Erath 10. November FVM-BEM Kopplung. Was gewinnen wir, wenn wir zwei numerische Methoden miteinander koppeln?

Dipl.-Ing. Christoph Erath 10. November FVM-BEM Kopplung. Was gewinnen wir, wenn wir zwei numerische Methoden miteinander koppeln? Dipl.-Ing. Christoph Erath 10. November 2007 FVM-BEM Kopplung Was gewinnen wir, wenn wir zwei numerische Methoden miteinander koppeln? Seite 2 FVM-BEM Kopplung 10. November 2007 Dipl.-Ing. Christoph Erath

Mehr

Finite Elemente Methoden (aus der Sicht des Mathematikers) Alfred Schmidt

Finite Elemente Methoden (aus der Sicht des Mathematikers) Alfred Schmidt Finite Elemente Methoden (aus der Sicht des Mathematikers) Alfred Schmidt Übersicht Partielle Differentialgleichungen, Approximation der Lösung Finite Elemente, lineare und höhere Ansatzfunktionen Dünn

Mehr

16 A-posteriori-Fehlerabschätzungen

16 A-posteriori-Fehlerabschätzungen Numerik partieller Differentialgleichungen 16 A-posteriori-Fehlerabschätzungen Die A-priori-Fehlerabschätzungen u u h # c h p u H m (Ω) aus 15 haben folgende praktische Nachteile: Die Konstante c und die

Mehr

3. Das Prinzip der virtuellen Arbeit

3. Das Prinzip der virtuellen Arbeit 3.1 Stab 3.2 Scheibe 3. Das Prinzip der virtuellen Arbeit Prof. Dr. Wandinger 3. Prinzip der virtuellen Arbeit FEM 3.3-1 3.1 Stab Herleitung des Prinzips der virtuellen Arbeit: Am Stab greifen als äußere

Mehr

Johannes Veit. 8. Januar 2016

Johannes Veit. 8. Januar 2016 Finite im Ein Blick über den Tellerrand... mit FreeFem++ 8. Januar 2016 im 1 2 im 3 4 Gliederung 5 im 1 2 im 3 4 Gliederung 5 dem Einheitsquadrat Laplace - Gleichung: im u(x) = 0 Man betrachte das Problem

Mehr

Finite Elemente Methoden (aus der Sicht des Mathematikers)

Finite Elemente Methoden (aus der Sicht des Mathematikers) Finite Elemente Methoden (aus der Sicht des Mathematikers) Alfred Schmidt Übersicht: Partielle Differentialgleichungen, Approximation der Lösung, Finite Elemente, lineare und höhere Ansatzfunktionen, Dünn

Mehr

Kapitel 9 Räumlicher Spannungszustand

Kapitel 9 Räumlicher Spannungszustand Kapitel 9 Räumlicher Spannungszustand 9 9 9 Räumlicher Spannungszustand 9.1 Problemdefinition... 297 9.2 Die Grundgleichungen des räumlichen Problems... 297 9.2.1 Die Feldgleichungen des räumlichen Problems...

Mehr

Finite Elemente I Konvergenzaussagen

Finite Elemente I Konvergenzaussagen Finite Elemente I 195 5 onvergenzaussagen 5 onvergenzaussagen TU Bergakademie Freiberg, SoS 2006 Finite Elemente I 196 5.1 Interpolation in Sobolev-Räumen Wesentlicher Baustein der FE-onvergenzanalyse

Mehr

Fehlerschätzer und adaptive Verfahren

Fehlerschätzer und adaptive Verfahren Fehlerschätzer und adaptive Verfahren Kurzzusammenfassung D. MATERNA F.-J. BARTHOLD Universität Dortmund / Fakultät Bauwesen Lehrstuhl Numerische Methoden und Informationsverarbeitung Prof. Dr.-Ing. habil.

Mehr

6. Adaptive Finite-Element-Methoden

6. Adaptive Finite-Element-Methoden 6. Adaptive Finite-Element-Methoden Adaptive Finite-Element-Methoden werden eingesetzt, um die FE-Lösung lokal oder global zu verbessern. Dieses Thema ist Gegenstand der heutigen Vorlesung. 6.1 Herleitung

Mehr

3. Prinzip der virtuellen Arbeit

3. Prinzip der virtuellen Arbeit 3. Prinzip der virtuellen rbeit Mit dem Satz von Castigliano können erschiebungen für Freiheitsgrade berechnet werden, an denen Lasten angreifen. Dabei werden nicht immer alle Terme der Formänderungsenergie

Mehr

Der Satz von Betti besagt, dass die reziproken äußeren Arbeiten zweier Systeme, die im Gleichgewicht sind, gleich groß sind A 1,2 = A 2,1.

Der Satz von Betti besagt, dass die reziproken äußeren Arbeiten zweier Systeme, die im Gleichgewicht sind, gleich groß sind A 1,2 = A 2,1. Der Satz von Betti oder warum Statik nicht statisch ist. Der Satz von Betti besagt, dass die reziproken äußeren Arbeiten zweier Systeme, die im Gleichgewicht sind, gleich groß sind A 1,2 = A 2,1. (1) Bevor

Mehr

Dankert/Dankert: Technische Mechanik, 5. Auflage Lösungen zu den Aufgaben, Teil 5 (Kapitel 18)

Dankert/Dankert: Technische Mechanik, 5. Auflage Lösungen zu den Aufgaben, Teil 5 (Kapitel 18) Dankert/Dankert: Technische Mechanik, 5. Auflage Lösungen zu den Aufgaben, Teil 5 (Kapitel 18) Lösung 18.1: Die Aufgabe wird nach der im Beispiel des Abschnitt 18.1.5 demonstrierten Strategie für die Lösung

Mehr

Sensitivitätsanalyse mit Einflussfunktionen

Sensitivitätsanalyse mit Einflussfunktionen Prof. Dr.-Ing. Friedel Hartmann Fachgebiet Baustatik Fachbereich 14 Bauingenieurwesen Diplomarbeit 2 Sensitivitätsanalyse mit Einflussfunktionen von Oliver Carl Bearbeitungszeit: 13. Mai 24 bis 4. August

Mehr

CAD-FEM-MKS, CAD FEM MKS. von der dreidimensionalen Konstruktionszeichnung zum guten mechanischen Simulationsmodell

CAD-FEM-MKS, CAD FEM MKS. von der dreidimensionalen Konstruktionszeichnung zum guten mechanischen Simulationsmodell CAD-FEM-MKS, 24.11.16 CAD FEM MKS von der dreidimensionalen Konstruktionszeichnung zum guten mechanischen Simulationsmodell der erste Schritt zum digitalen Zwilling im Rahmen von Industrie 4.0 Bocholt,

Mehr

Baustatik II und III (PO 2013)

Baustatik II und III (PO 2013) Bachelorprüfung Frühjahr 2016 Modul 18 (BI) Baustatik II und III (PO 2013) Klausur am 20.02.2016 Name: Vorname: Matrikelnummer: (bitte deutlich schreiben) (9stellig!) Aufgabe 1 2 3 4 5 6 7 Summe mögliche

Mehr

Finite Elemente Modellierung

Finite Elemente Modellierung Finite Elemente Modellierung Modellerstellung Diskretisierung des Kontinuums Methode der Finite Elemente Anwendungsbeispiele der FEM Zugstab: Kraftmethode Zugstab: Energiemethode Zugstab: Ansatzfunktion

Mehr

10 Der Integralsatz von Gauß

10 Der Integralsatz von Gauß 10 Der Integralsatz von Gauß In diesem Abschnitt beweisen wir den Integralsatz von Gauß, die mehrdimensionale Verallgemeinerung des Hauptsatzes der Differential- und Integralrechnung. Aussage des Satzes

Mehr

Kleines Einmaleins der Baustatik

Kleines Einmaleins der Baustatik IBSD Institut für Baustatik und Baudynamik Fachbereich Bauingenieurwesen Buchvorstellung Ein einfacher Einstieg I Ein einfacher Einstieg I Ein einfacher Einstieg I Ein einfacher Einstieg I Ein einfacher

Mehr

WINFEM. User s Manual. Thomas Grätsch, Friedel Hartmann

WINFEM. User s Manual. Thomas Grätsch, Friedel Hartmann WINFEM User s Manual Thomas Grätsch, Friedel Hartmann 1 Vorbemerkungen WINFEM ist ein auf der Methode der finiten Elemente basierendes Programm zur linear elastischen Berechnung von Scheiben für den ebenen

Mehr

Kapitel 12 Berechnung nach Theorie 2. Ordnung DSM & das Eigenwertproblem

Kapitel 12 Berechnung nach Theorie 2. Ordnung DSM & das Eigenwertproblem Institute of Structural Engineering Page 1 Kapitel 12 Berechnung nach Theorie 2. Ordnung DSM & das Eigenwertproblem Institute of Structural Engineering Page 2 Lernziele: Sie können Stabilitätsprobleme

Mehr

Entwicklung einer hp-fast-multipole-

Entwicklung einer hp-fast-multipole- Entwicklung einer hp-fast-multipole- Boundary-Elemente-Methode Übersicht: 1. Motivation 2. Theoretische Grundlagen a) Boundary-Elemente-Methode b) Fast-Multipole-Methode 3. Erweiterungen a) Elementordnung

Mehr

Einführung. Vita Rutka. Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik SS 2009

Einführung. Vita Rutka. Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik SS 2009 Einführung Vita Rutka Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik SS 2009 Was ist FEM? Die Finite-Elemente-Methode (FEM) ist ein numerisches Verfahren zur näherungsweisen Lösung,

Mehr

Angewandte Mathematik am Rechner 1

Angewandte Mathematik am Rechner 1 Michael Wand Institut für Informatik. Angewandte Mathematik am Rechner 1 SOMMERSEMESTER 2017 Kapitel 5 Grundlagen Analysis Kontinuierliche Mengen Vollständige Mengen Folgen Iterative Berechnungen Grenzwert:

Mehr

Numerische Methoden I FEM/REM

Numerische Methoden I FEM/REM Numerische Methoden I FEM/REM Dr.-Ing. Markus Kästner ZEU 353 Tel.: 035 463 32656 E-Mail: Markus.Kaestner@tu-dresden.de Dresden, 06.0.206 Zusammenfassung 8. Vorlesung. Schiefwinklige Scheibenelemente Numerischer

Mehr

Algorithmische Geometrie: Einstimmung

Algorithmische Geometrie: Einstimmung Algorithmische Geometrie: Einstimmung Nico Düvelmeyer WS 2009/2010, 20.10.2009 Überblick 1 Organisatorisches 2 Fachgebiet Typische Untersuchungsgegenstände Typische Anwendungsgebiete 3 Inhalte der Vorlesung

Mehr

Optimierung der Geometrie eines Kühlkörpers

Optimierung der Geometrie eines Kühlkörpers Johann Jakob Preuß Jan Michael Schulte Institut für Numerische und Angewandte Mathematik Westfälische Wilhelms-Universität Münster Abschlusspräsentation, 2. Februar 2009 Inhaltsverzeichnis 1 Modellierung

Mehr

Finite Element Analyse (FEA) (Solver & Post-Processing)

Finite Element Analyse (FEA) (Solver & Post-Processing) Finite Element Analyse (FEA) (Solver & Post-Processing) Vortrag im Rahmen des 3D Druck ProSeminars 2016 Lars Lamberti Gliederung Solver Zuverlässigkeit und Genauigkeit Genauigkeitssteigerung Post-Processing

Mehr

Numerische Verfahren zur Lösung der Monge-Ampère-Gleichung, Teil II

Numerische Verfahren zur Lösung der Monge-Ampère-Gleichung, Teil II für zur Lösung der Monge-Ampère-Gleichung, Teil II Andreas Platen Institut für Geometrie und Praktische Mathematik RWTH Aachen Seminar zur Approximationstheorie im Wintersemester 2009/2010 1 / 27 Gliederung

Mehr

Finite-Elemente-Simulation und Optimierung in der frühen Entwicklungsphase. Isabel Braun 19. April 2018

Finite-Elemente-Simulation und Optimierung in der frühen Entwicklungsphase. Isabel Braun 19. April 2018 Finite-Elemente-Simulation und Optimierung in der frühen Entwicklungsphase Isabel Braun 19. April 2018 Inhalt Konventioneller und verbesserter Entwurfsprozess Grundlagen der Strukturoptimierung Topologieoptimierung

Mehr

Modellieren in der Angewandten Geologie II. Sebastian Bauer

Modellieren in der Angewandten Geologie II. Sebastian Bauer Modellieren in der Angewandten Geologie II Geohydromodellierung Institut für Geowissenschaften Christian-Albrechts-Universität zu Kiel CAU 3-1 Die Finite Elemente Method (FEM) ist eine sehr allgemeine

Mehr

Projekt 3. Verbesserte Berechnung von lokalen Zielgrößen mit der Methode der finiten Elemente unter Verwendung von Grundlösungen

Projekt 3. Verbesserte Berechnung von lokalen Zielgrößen mit der Methode der finiten Elemente unter Verwendung von Grundlösungen Prof. Dr.-Ing. Friedel Hartmann Fachgebiet Baustatik Fachbereich 4 Bauingenieurwesen Projekt 3 Verbesserte Berechnung von lokalen Zielgrößen mit der Methode der finiten Elemente unter Verwendung von Grundlösungen

Mehr

Lösungen zu Mathematik I/II

Lösungen zu Mathematik I/II Dr. A. Caspar ETH Zürich, August BIOL-B GES+T PHARM Lösungen zu Mathematik I/II. ( Punkte) a) Wir führen Polynomdivision durch und erhalten (x 3 5) : (x ) = x +x+ 4 x. Also ist g(x) die Asymptote von f(x)

Mehr

Thorsten Kunow. Modellfehler und Greensche Funktionen in der Statik

Thorsten Kunow. Modellfehler und Greensche Funktionen in der Statik Thorsten Kunow Modellfehler und Greensche Funktionen in der Statik Universität Kassel Fachgebiet Baustatik Dissertation 28 Diese Arbeit wurde vom Fachbereich Bauingenieurwesen der Universität Kassel als

Mehr

FEM-Anwendungen in der maritimen Branche

FEM-Anwendungen in der maritimen Branche Familie STRAK, 2009-10-15 FEM-Anwendungen in der maritimen Branche Ronald Horn - FEM GmbH Vita Dr. Ronald Horn seit 10/08 S.M.I.L.E.-FEM GmbH, Heikendorf Geschäftsführer 04/08-09/08 Lindenau GmbH, Schiffswerft

Mehr

Modellierung elastischer Materialien Variationsformulierung Galerkin-Approximation FreeFem++ Ausblick: Lineare Thermoelastiz. Lineare Elastizität

Modellierung elastischer Materialien Variationsformulierung Galerkin-Approximation FreeFem++ Ausblick: Lineare Thermoelastiz. Lineare Elastizität Lineare Elastizität Dominik Woznica Universität des Saarlandes 05.02.2016 Gliederung 1 Modellierung elastischer Materialien 2 Variationsformulierung 3 Galerkin-Approximation 4 FreeFem++ 5 Ausblick: Lineare

Mehr

Diskontinuierliche Galerkin-Analyse für die lineare Elastizität. CES-Seminararbeit. Vorgelegt von: Siamak Mirzagholipour. Matr.Nr.:

Diskontinuierliche Galerkin-Analyse für die lineare Elastizität. CES-Seminararbeit. Vorgelegt von: Siamak Mirzagholipour. Matr.Nr.: Diskontinuierliche Galerkin-Analyse für die lineare Elastizität CES-Seminararbeit Vorgelegt von: Siamak Mirzagholipour Matr.Nr.: 284442 Betreuer: M. Sc. Hamid Reza Bayat November 2015 1 Inhaltsverzeichnis

Mehr

Die Formelsprache der Nichtstandardanalysis (NSA) und das Axiom vom idealen Punkt. Antje Rogalla Freie Universität Berlin

Die Formelsprache der Nichtstandardanalysis (NSA) und das Axiom vom idealen Punkt. Antje Rogalla Freie Universität Berlin Die Formelsprache der Nichtstandardanalysis (NSA) und das Axiom vom idealen Punkt Antje Rogalla Freie Universität Berlin 31.10.2012 1 Inhaltsverzeichnis 1 Einleitung 3 2 Die Formelsprache der NSA 4 3 Das

Mehr

Inverse und implizite Funktionen

Inverse und implizite Funktionen Kapitel 8 Inverse und implizite Funktionen Josef Leydold Mathematik für VW WS 2017/18 8 Inverse und implizite Funktionen 1 / 21 Inverse Funktion Sei f : D f R n W f R m, x y = f(x). Eine Funktion f 1 :

Mehr

Kapitel 5: Einfaktorielle Varianzanalyse

Kapitel 5: Einfaktorielle Varianzanalyse Rasch, Friese, Hofmann & Naumann (006). Quantitative Methoden. Band (. Auflage). Heidelberg: Springer. Kapitel 5: Einfaktorielle Varianzanalyse Berechnen der Teststärke a priori bzw. Stichprobenumfangsplanung

Mehr

Finite Elemente am Beispiel der Poissongleichung

Finite Elemente am Beispiel der Poissongleichung am Beispiel der Poissongleichung Roland Tomasi 11.12.2013 Inhalt 1 2 3 Poissongleichung Sei R n ein Gebiet mit abschnittsweise glattem Rand und f L 2 (). Wir suchen u : R, so dass u = f in, u = 0 Physikalische

Mehr

Praktikum. Vita Rutka. Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik WS 2007

Praktikum. Vita Rutka. Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik WS 2007 Praktikum Vita Rutka Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik WS 2007 Block 1 jeder Anfang ist eindimensional Was ist FEM? Die Finite-Elemente-Methode (FEM) ist ein numerisches

Mehr

Numerische Qualität von FEM-Analysen Vergleich der h- und p-methode

Numerische Qualität von FEM-Analysen Vergleich der h- und p-methode Numerische Qualität von FEM-Analysen Vergleich der h- und p-methode Dr. Stefan Reul, PRETECH GmbH 2. Norddeutsches Simulationsforum 27. Mai 2010 All rights reserved Copyright per DIN 34 Seite 1 Diskussionspunkte»

Mehr

Bionik Wirtschaftszentrum. Bionische Optimierung bei der Konstruktion technischer Bauteile in der Automobilindustrie

Bionik Wirtschaftszentrum. Bionische Optimierung bei der Konstruktion technischer Bauteile in der Automobilindustrie Bionik Wirtschaftszentrum B-I-C Bremen, BIOKON, IBZ, Kompetenznetz Biomimetrik, VDI, DBU 8. und 9. April 2008, Osnabrück Bionische Optimierung bei der Konstruktion technischer Bauteile in der Automobilindustrie

Mehr

Kleines Einmaleins der

Kleines Einmaleins der Wolfram Franke, Thorsten Kunow Kleines Einmaleins der Baustatik Wissenswertes für Neu- und Wiederlerner ULB Darmstadt Illlllllllllllllllllllll 16544701 kassel univershy Grundwissen 1 1.1 Statik sehen 1

Mehr

Partielle Differentialgleichungen Kapitel 7

Partielle Differentialgleichungen Kapitel 7 Partielle Differentialgleichungen Kapitel 7 Intermezzo zu Distributionen Die Physik hat der Mathematik die Dirac-δ-Funktion gebracht. Diese δ-funktion soll folgende Eigenschaften haben: n δ (x ϕ (x dx

Mehr

Beitrag AM zum Lehrveranstaltungsplan SoSe 2010 (Stand: 30. November 2009)

Beitrag AM zum Lehrveranstaltungsplan SoSe 2010 (Stand: 30. November 2009) Beitrag AM zum Lehrveranstaltungsplan SoSe 2010 (Stand: 30. November 2009) A. Mathematik I. BACHELOR (MATHEMATIK, WIRTSCHAFTSMATHEMATIK, MATHEMATIK LEHRAMT AN GYMNASIEN UND LEHRAMT AN BERUFLICHEN SCHULEN)

Mehr

Thema für eine Diplomarbeit Gemischte Finite-Elemente-Methoden für konvektionsdominante elliptische Randwertprobleme

Thema für eine Diplomarbeit Gemischte Finite-Elemente-Methoden für konvektionsdominante elliptische Randwertprobleme Gemischte Finite-Elemente-Methoden für konvektionsdominante elliptische Randwertprobleme Ziel: Numerische Diskretisierung und Lösung des elliptischen Randwertproblems div(a(x) u) + b(x)u = f in Ω, u =

Mehr

Baustatik III SS Platten

Baustatik III SS Platten Baustatik III SS 016 3. Platten 3.1 Scheiben und Platten 3. Annahmen der Kirchhoffschen Platentheorie 3.3 Schnittgrößen in Platten 3.4 Praktische Methoden zur Bestimmung der Schnittgrößen in Platten 3.4.1

Mehr

Diplomarbeit I. Sensitivitätsanalyse

Diplomarbeit I. Sensitivitätsanalyse Diplomarbeit I Sensitivitätsanalyse an ebenen und räumlichen Rahmen von Walid Kh. A. Al Otaibi wk 1985@hotmail.com Bearbeitungszeit: 1. Februar 29 bis 7. April 29 Betreuer: Prof. Dr.-Ing. F. Hartmann 2.

Mehr

Institut für Angewandte und Experimentelle Mechanik. Anwendungsfach Adaptive Strukturen. Prof. Dr.-Ing. Michael Hanss. Pfaffenwaldring 9, 3.

Institut für Angewandte und Experimentelle Mechanik. Anwendungsfach Adaptive Strukturen. Prof. Dr.-Ing. Michael Hanss. Pfaffenwaldring 9, 3. Institut für Angewandte und Experimentelle Mechanik Pfaffenwaldring 9, 3. OG Institutsdirektor: Stellvertreter: Anwendungsfach Adaptive Strukturen o.prof. Dr.-Ing.habil. Lothar Gaul Prof. Dr.-Ing. Arnold

Mehr

Approximation flächenhaft harmonischer Funktionen mittels bikubisch finiter Elemente

Approximation flächenhaft harmonischer Funktionen mittels bikubisch finiter Elemente . Session 6: Theoretische Geodäsie Approximation flächenhaft harmonischer Funktionen mittels bikubisch finiter Elemente 1 Jessica Franken Institut für Geodäsie und Geoinformation Professur für Theoretische

Mehr

BlendaX Grundlagen der Computergrafik

BlendaX Grundlagen der Computergrafik BlendaX Grundlagen der Computergrafik Beleuchtungsmodelle (Reflection Models) 16.11.2007 BlendaX Grundlagen der Computergrafik 1 Rendering von Polygonen Der Renderingprozess lässt sich grob in folgende

Mehr

Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06

Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06 Ergänzende Materialien zur Vorlesung Theoretische Mechanik, WS 2005/06 Dörte Hansen Seminar 8 1 d Alembertsches Prinzip und Lagrangegleichungen 1. Art Teil II 2 Das d Alembertsche Prinzip für N-Teilchensysteme

Mehr

Bildsegmentierung mit Snakes und aktiven Konturen

Bildsegmentierung mit Snakes und aktiven Konturen Bildsegmentierung mit Snakes und aktiven Konturen 5. Dezember 2005 Vortrag zum Seminar Bildsegmentierung und Computer Vision Übersicht 1 2 Definition der Snake Innere Energie S(c) 3 Statisches Optimierungsproblem

Mehr

Wiederholung einiger Rechenregeln

Wiederholung einiger Rechenregeln Wiederholung einiger Rechenregeln 1 Ableitungsrechenregeln 1. Potenzfunktion Potenzregel) 2. Produktregel f x) x b df x) bx b 1 h x) f x) g x) dh x) df x) g x) + f x) dg x) hx) x c + a) b x) dh x) cx c

Mehr

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 19. März AUFGABE 1 (16 Punkte)

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 19. März AUFGABE 1 (16 Punkte) KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 9. März 2 AUFGABE (6 Punkte) Der Stab 2 in Abb. mit l =,5 m ist in gelenkig gelagert und in 2 abgestützt. In wirkt die Kraft F = 5. N. a) Man bestimme die Reaktionen

Mehr

Inverse Problems In Medical Imaging

Inverse Problems In Medical Imaging Inverse Problems In Medical Imaging 07.05.18 Simon Krug physics654: Seminar Medical Imaging University of Bonn Inverse Problems Problem solving Inverse problems Noise Object and Image Radon transform Silent

Mehr

Baustatik 2. Semestrale am Aufgabe 2 (3 Punkte) (Biegemoment u. Krümmung infolge T) (Normalkraft u. Dehnung infolge T s ) (Senkfeder)

Baustatik 2. Semestrale am Aufgabe 2 (3 Punkte) (Biegemoment u. Krümmung infolge T) (Normalkraft u. Dehnung infolge T s ) (Senkfeder) Baustatik 2 --- Sommersemester 2001 Semestrale Seite 2 Technische Universität München Name :... Lehrstuhl für Statik Vorname :... Sommersemester 2001 Matr.---Nr. :... Fachsemester:... Aufgabe 1 (4 Punkte)

Mehr

Protokoll E 3 - Wheatstonesche Messbrücke

Protokoll E 3 - Wheatstonesche Messbrücke Protokoll E 3 - Wheatstonesche Messbrücke Martin Braunschweig 10.06.2004 Andreas Bück 1 Aufgabenstellung 1. Der ohmsche Widerstand einer Widerstandskombination ist in einer Wheatstoneschen Brückenschaltung

Mehr

Inhaltsverzeichnis. Raimond Dallmann. Baustatik 1. Berechnung statisch bestimmter Tragwerke ISBN:

Inhaltsverzeichnis. Raimond Dallmann. Baustatik 1. Berechnung statisch bestimmter Tragwerke ISBN: Inhaltsverzeichnis Raimond Dallmann Baustatik 1 Berechnung statisch bestimmter Tragwerke ISBN: 978-3-446-42319-0 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-42319-0 sowie

Mehr

Exakte Differentialgleichungen

Exakte Differentialgleichungen Exakte Differentialgleichungen M. Vock Universität Heidelberg Seminar Mathematische Modellierung am 11.11.2008 Gliederung Differentialgleichungen eine erste Begegnung Definition Gewöhnliche DGL Die exakte

Mehr

Anwendungsfach: Adaptive Strukturen. Lehrveranstaltungen:

Anwendungsfach: Adaptive Strukturen. Lehrveranstaltungen: Anwendungsfach: Adaptive Strukturen Lehrveranstaltungen: - Smart Structures (SS, 2V, 1Ü) Brad Beadle, Ph.D. - Finite Elemente Methode (WS, 2V, 2Ü) Dr. Wagner - Boundary Element Methods (SS, 3V, 1Ü) Prof.

Mehr

Hodge Theorie. Viktoria Vilenska. Seminar über Kählermannigfaltigkeiten WS 2007/08 Veranstalter: Prof. Dr. Lorenz Schwachhöfer

Hodge Theorie. Viktoria Vilenska. Seminar über Kählermannigfaltigkeiten WS 2007/08 Veranstalter: Prof. Dr. Lorenz Schwachhöfer Hodge Theorie Viktoria Vilenska Seminar über Kählermannigfaltigkeiten WS 2007/08 Veranstalter: Prof. Dr. Lorenz Schwachhöfer 1 Inhaltsverzeichnis 1 Einführung des Hodge -Operators 3 2 Hodge Theorie auf

Mehr

4. Das Verfahren von Galerkin

4. Das Verfahren von Galerkin 4. Das Verfahren von Galerkin 4.1 Grundlagen 4.2 Methode der finiten Elemente 4.3 Beispiel: Stab mit Volumenkraft Prof. Dr. Wandinger 3. Prinzip der virtuellen Arbeit FEM 3.4-1 4.1 Grundlagen Das Verfahren

Mehr

Institut für Entwicklung. Mechatronischer Systeme. 2. Swiss VPE Symposium, 14. April 2011, Hochschule für Technik Rapperswil 1

Institut für Entwicklung. Mechatronischer Systeme. 2. Swiss VPE Symposium, 14. April 2011, Hochschule für Technik Rapperswil 1 Virtuelle Prototypen am Beispiel von Luftfahrt- und Elektromobilgetrieben Josef Althaus NTB Buchs 2. Swiss VPE Symposium, 14. April 2011, Hochschule für Technik Rapperswil 1 Warum virtuelle Prototypen?

Mehr

Kapitel 10 Stabilitätsprobleme

Kapitel 10 Stabilitätsprobleme Institute of Structural Engineering Page 1 Kapitel 10 Stabilitätsprobleme Institute of Structural Engineering Page 2 Lernziele: Was ist Stabilität und wann ist ein Sstem stabil Stabilitätsprobleme klassifizieren

Mehr

Mathematik I Herbstsemester 2018 Kapitel 2: Stetigkeit

Mathematik I Herbstsemester 2018 Kapitel 2: Stetigkeit Mathematik I Herbstsemester 2018 Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 33 2. Stetigkeit Reelle Zahlenfolgen Grenzwert einer Folge Grenzwert einer Funktion Stetigkeit einer Funktion

Mehr

Baustatik II. Kapitel IV. Einflusslinien für statisch unbestimmte Systeme. Institute of Structural Engineering Seite 1

Baustatik II. Kapitel IV. Einflusslinien für statisch unbestimmte Systeme. Institute of Structural Engineering Seite 1 Institute of Structural Engineering Seite Baustatik II Kapitel IV Einflusslinien für statisch unbestimmte Systeme Institute of Structural Engineering Seite 2 Lernziele dieses Kapitels. Sich mit der Form

Mehr

Optimale Steuerung Studieren geht über Probieren

Optimale Steuerung Studieren geht über Probieren Studieren geht über Probieren Antrittsvorlesung 23. Oktober 2008 Danksagungen Hans Josef Pesch Fredi Tröltzsch Karl Kunisch Martin Bernauer Frank Schmidt Gerd Wachsmuth Wegweiser Einmal von A nach B bitte!

Mehr

Higher order lower bounds on eigenvalues of symmetric elliptic operators

Higher order lower bounds on eigenvalues of symmetric elliptic operators Higher order lower bounds on eigenvalues of symmetric elliptic operators Tomáš Vejchodský (vejchod@math.cas.cz) Institute of Mathematics Czech Academy of Sciences INSTITUTEofMATHEMATICS Czech Academy of

Mehr

Berechnung von Einflussfunktionen mit der Methode der finiten Elemente

Berechnung von Einflussfunktionen mit der Methode der finiten Elemente Prof. Dr.-Ing. Friedel Hartmann Fachgebiet Baustatik Fachbereich 14 Bauingenieurwesen Diplomarbeit 1 Berechnung von Einflussfunktionen mit der Methode der finiten Elemente von Thorsten Panke Bearbeitungszeit:

Mehr

Grundlagen der Objektmodellierung

Grundlagen der Objektmodellierung Grundlagen der Objektmodellierung Daniel Göhring 30.10.2006 Gliederung Grundlagen der Wahrscheinlichkeitsrechnung Begriffe zur Umweltmodellierung Bayesfilter Zusammenfassung Grundlagen der Wahrscheinlichkeitsrechnung

Mehr

Adaptivität II - Theorie

Adaptivität II - Theorie Adaptivität II - Theorie Hubertus Bromberger, Manuel Nesensohn, Johannes Reinhardt, Johannes Schnur 8. November 2007 Fazit des ersten Vortrages Ein geeignet verfeinertes Gitter ermöglicht massive Einsparung

Mehr

Kapitel 5: Einfaktorielle Varianzanalyse

Kapitel 5: Einfaktorielle Varianzanalyse Rasch, Friese, Hofmann & Naumann (010). Quantitative Methoden. Band (3. Auflage). Heidelberg: Springer. Kapitel 5: Einfaktorielle Varianzanalyse Berechnen der Teststärke a priori bzw. Stichprobenumfangsplanung

Mehr

Hinreichende Bedingungen für Optimalsteuerungsprobleme mit nichtglatten Zuständen

Hinreichende Bedingungen für Optimalsteuerungsprobleme mit nichtglatten Zuständen Hinreichende Bedingungen für Optimalsteuerungsprobleme mit nichtglatten Zuständen Ricki Rosendahl Schwerpunkt Optimierung und Approximation Department Mathematik - Universität Hamburg Hamburg, 10. April

Mehr

Technische Universität München Name :... Lehrstuhl für Statik Vorname :... Sommersemester 2004 Matr.---Nr. :... Fachsemester:...

Technische Universität München Name :... Lehrstuhl für Statik Vorname :... Sommersemester 2004 Matr.---Nr. :... Fachsemester:... Technische Universität München Name :... Lehrstuhl für Statik Vorname :... Sommersemester 2004 Matr.---Nr. :... Fachsemester:... Baustatik 2 Semestrale am 13.7.2004 (Bearbeitungszeit 45 Minuten) max. Punkte

Mehr

Probabilistische, strukturmechanische Untersuchung von Rotorscheiben unter Berücksichtigung geometrischer Streuungen

Probabilistische, strukturmechanische Untersuchung von Rotorscheiben unter Berücksichtigung geometrischer Streuungen Probabilistische, strukturmechanische Untersuchung von Rotorscheiben unter Berücksichtigung geometrischer Streuungen I. Reuter, M. Voigt, K. Vogeler - Technische Universität Dresden T. Weiß, H. Schlums

Mehr

Studienschwerpunkt Numerische Mathematik

Studienschwerpunkt Numerische Mathematik Studienschwerpunkt Numerische Mathematik Ralf Hiptmair Seminar for Applied Mathematics, ETH Zürich Wahlfachvorstellung SS 25 R.Hiptmair (SAM, ETH Zürich) Numerische Mathematik SS 25 / 3 Vorlesungsangebot

Mehr

Das Problem der inneren Kräfte in den Zugbändern der Tragkonstruktion des Schachtfördergefäßes

Das Problem der inneren Kräfte in den Zugbändern der Tragkonstruktion des Schachtfördergefäßes IMW - Institutsmitteilung Nr. 8 (00) 117 Das Problem der inneren Kräfte in den Zugbändern der Tragkonstruktion des Schachtfördergefäßes Dzik, S.; Wolny, S.; Siemieniec, A. In dieser Abhandlung werden die

Mehr

Anwendung von FEMAG-Script: Mehrkriterielle Optimierung - Algorithmus, Umsetzung und Beispiele

Anwendung von FEMAG-Script: Mehrkriterielle Optimierung - Algorithmus, Umsetzung und Beispiele FEMAG-Anwendertreffen am 2. und 3. Dezember 2010 Anwendung von FEMAG-Script: Mehrkriterielle Optimierung - Algorithmus, Umsetzung und Beispiele Jens Krotsch, Bernhard Piepenbreier Lehrstuhl für Elektrische

Mehr

Der Taylorsche Satz Herleitung und Anwendungen

Der Taylorsche Satz Herleitung und Anwendungen Der Taylorsche Satz Herleitung und Anwendungen Joachim Schneider Juni 2004 Zusammenfassung Es wird ein enfacher Beweis des Taylorsche Satz über die lokale Approximierbarkeit hinreichend glatter Funktionen

Mehr

TU Dortmund. Vorname: Nachname: Matr.-Nr.: Aufgabe 1 (Seite 1 von 3)

TU Dortmund. Vorname: Nachname: Matr.-Nr.: Aufgabe 1 (Seite 1 von 3) Aufgabe 1 (Seite 1 von 3) Bei der Messung eines belasteten Blechs wurden drei Dehnungs-Messstreifen (DMS) verwendet und wie rechts dargestellt appliziert. Die Dehnungen der entsprechenden DMS wurden zu

Mehr

Umkehrfunktion. g (y) = f (x) 1, x = g(y), Umkehrfunktion 1-1

Umkehrfunktion. g (y) = f (x) 1, x = g(y), Umkehrfunktion 1-1 Umkehrfunktion Ist für eine stetig differenzierbare n-variate Funktion f : D R n die Jacobi-Matrix f (x ) für einen Punkt x im Innern des Definitionsbereiches D R n nicht singulär, so ist f lokal invertierbar,

Mehr

Balkentragwerke mit dem FEM-System MEANS V10 berechnen. Homepage: Telefon:

Balkentragwerke mit dem FEM-System MEANS V10 berechnen. Homepage:    Telefon: Balkentragwerke mit dem FEM-System MEANS V10 berechnen Homepage: www.femcad.de Email: info@femcad.de Telefon: 07844 98 641 Kapitel 14: Balkentragwerke mit MEANS V10 berechnen 1 Kapitel 14: Balkentragwerke

Mehr

7. Übung zur Numerik partieller Differentialgleichungen I

7. Übung zur Numerik partieller Differentialgleichungen I MATHEMATISCHES INSTITUT Sommersemester 2018 DER UNIVERSITÄT ZU KÖLN Prof. Dr. A. Klawonn J. Knepper, M. Sc. M. Kühn, M. Sc. 29. Mai 2018 7. Übung zur Numerik partieller Differentialgleichungen I Hinweis:

Mehr

12. Die Galois Gruppe einer auflösbaren Gleichung.

12. Die Galois Gruppe einer auflösbaren Gleichung. 12. Die Galois Gruppe einer auflösbaren Gleichung. Wir wollen zeigen, dass die Gleichung p(x) = x 5 6x + 2 = 0 nicht auflösbar ist. Hierfür brauchen wir zunächst neue Definitionen, die mit dem Begriff

Mehr

Eine objektorientierte Programmierumgebung für differentialgeometrische Berechnungen in MuPAD

Eine objektorientierte Programmierumgebung für differentialgeometrische Berechnungen in MuPAD 1 Eine objektorientierte Programmierumgebung für differentialgeometrische Berechnungen in MuPAD Studienarbeit von WOLFGANG GLOBKE Betreuer: Dipl. Inf. Marcus Hausdorf Dr. Werner Seiler Institut für Algorithmen

Mehr

Übung 3: Balkenstruktur Nachbesprechung

Übung 3: Balkenstruktur Nachbesprechung Folie 4-1 Übung 3: Balkenstruktur Nachbesprechung Übung 3: Balkenstruktur Nachbesprechung Punkt auf Linie setzen: Punkt gehört nicht zur Linie Linie hier aufbrechen, oder von Anfang an zwei Linien zeichnen

Mehr

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009

UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl. Sommersemester 2009 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz Dr P C Kunstmann Dipl-Math M Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe

Mehr

FEM Isoparametric Concept

FEM Isoparametric Concept FEM Isoparametric Concept home/lehre/vl-mhs--e/cover_sheet.tex. p./26 Table of contents. Interpolation Functions for the Finite Elements 2. Finite Element Types 3. Geometry 4. Interpolation Approach Function

Mehr

Potential und Spannung

Potential und Spannung Potential und Spannung Arbeit bei Ladungsverschiebung: Beim Verschieben einer Ladung q im elektrischen Feld E( r) entlang dem Weg C wird Arbeit geleistet: W el = F C d s = q E d s Vorzeichen: W el > 0

Mehr

H.J. Oberle Analysis II SoSe Interpolation

H.J. Oberle Analysis II SoSe Interpolation HJ Oberle Analysis II SoSe 2012 7 Interpolation 71 Allgemeine Problemstellung Interpolation ist die Kunst, zwischen den Zeilen einer Tabelle zu lesen (Rutishauser) Von f : R R seien Funktionswerte (x j,

Mehr

Singularitäten in der FEM und deren Bewertung

Singularitäten in der FEM und deren Bewertung Singularitäten in der FEM und deren Bewertung Jeder FEM-Anwender wird früher oder später mit Spannungssingularitäten konfrontiert werden, sich dessen aber nicht unbedingt im Klaren sein. Dafür gibt es

Mehr

5. Ebene Probleme. 5.1 Ebener Spannungszustand 5.2 Ebener Verzerrungszustand Höhere Festigkeitslehre Prof. Dr.

5. Ebene Probleme. 5.1 Ebener Spannungszustand 5.2 Ebener Verzerrungszustand Höhere Festigkeitslehre Prof. Dr. 5. Ebene Probleme 5.1 Ebener Spannungszustand 5.2 Ebener Verzerrungszustand 1.5-1 Definition: Bei einem ebenen Spannungszustand ist eine Hauptspannung null. Das Koordinatensystem kann so gewählt werden,

Mehr

4 Fehlerabschätzungen und Konvergenz der FEM

4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 153 Es sei V der Lösungsraum und V N V ein endlich dimensionaler Unterraum. Weiters sei u V die exakte Lösung und

Mehr