Der Satz von Betti besagt, dass die reziproken äußeren Arbeiten zweier Systeme, die im Gleichgewicht sind, gleich groß sind A 1,2 = A 2,1.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Der Satz von Betti besagt, dass die reziproken äußeren Arbeiten zweier Systeme, die im Gleichgewicht sind, gleich groß sind A 1,2 = A 2,1."

Transkript

1 Der Satz von Betti oder warum Statik nicht statisch ist. Der Satz von Betti besagt, dass die reziproken äußeren Arbeiten zweier Systeme, die im Gleichgewicht sind, gleich groß sind A 1,2 = A 2,1. (1) Bevor man den Satz von Betti anwendet, entfernt man alle Lager von den beiden Tragwerken und setzt dafür die Lagerkräfte als äußere Kräfte an. In Gedanken hat man es also mit zwei frei schwebenden Tragwerken zu tun, die von den Lagerkräften in der Luft gehalten werden. Dieses Gedankenmodell ist deswegen wichtig, weil bei den aller einfachsten Anwendungen des Satzes von Betti nur Starrkörperbewegungen am System 2 ausgeführt werden, d.h. das System 1 wird als ganzes gedreht oder verschoben. Lager wären dann nur hinderlich. Beispiel: Man nehme als System 1 den Eiffelturm unter Wind aus Osten. Nach Voraussetzung sind die Lagerkräfte mit dem Wind im Gleichgewicht. Nun entfernt man die Lager und bringt statt dessen die Lagerkräfte als äußere Kräfte in den Lagern an. Das System 2 ist der Eiffelturm ohne jede Belastung und natürlich ohne jede Lager. Die Arbeiten, die die (nicht vorhandenen) Kräfte des Systems 2 auf den Wegen des Systems 1 leisten ist Null, A 2,1 =. Nach dem Satz von Betti ist aber die Arbeit A 1,2, die die Kräfte am System 1 auf den Wegen des Systems 2 leisten genauso groß wie A 2,1. Als Bewegung des Systems 2 wählen wir nun eine Verschiebung: Wir verschieben das Spiegelbild des Eiffelturms, das System 2, um 1 m nach Osten (dazu sind keine Kräfte notwendig das System 2 bleibt also wirklich frei von jeder Art von äußeren Kräften). Auf den Wegen des Systems 2 leisten die Kräfte des Systems 1 also die Arbeit A 1,2 = Wind 1 m + Horizontale Lagerkräfte 1 m = A 2,1 =, (2) die wegen des Satzes von Betti gleich A 2,1 und damit Null sein muss. Anders gesagt: Die horizontalen Lagerkräfte sind gerade so groß wie die Windlast. (Wind + Horizontale Lagerkräfte ) 1 m =. (3) Die Gleichgewichtsbedingungen der Statik H =, V = und M = kann man also auch durch Bewegungen ausdrücken! Ein Tragwerk ist genau dann im Gleichgewicht, wenn das freigeschnittene Tragwerk (als System 1) bei jeder Starrkörperbewegung (des unbelasteten Zwillingssystems 2) Null Arbeit leistet. In Gedanken kann man das System 2 weglassen, und man sagt einfach: Die Lagerkräfte sind mit den äußeren Lasten am System 1 im Gleichgewicht, wenn bei jeder möglichen Starrkörperbewegung des Tragwerks Null Arbeit geleistet wird. 1

2 Berechnung von Einflussfunktionen mit dem Satz von Betti Indem man den Satz von Betti in geeigneter Weise auf die Tragwerke anwendet, kann man Einflussfunktionen für alle interessierenden Größen eines Tragwerks berechnen. Hierzu geht man wie folgt vor: Die Schnittkraft, die Lagerkraft, deren Einflussfunktion man sucht, macht man zu einer äußeren Kraft, indem man ein entsprechendes Gelenk in das Tragwerk einbaut. (Durch das Gelenk unterbricht man den Kraftfluss, und daher muss man die vorher verborgene, innere Größe nun als äußere Größe anbringen, damit das Tragwerk weiterhin die Last abtragen kann). Dann erzwingt man an dem so modifizierten Tragwerk eine Spreizung des Gelenks (bzw. Bewegung des Lagers) um Eins. Die Biegelinie, die sich dabei einstellt, ist die Einflussfunktion für die Schnitt- bzw. Lagerkraft. Der Beweis dafür, dass die Biegelinie wirklich die Einflussfunktion ist, wurde in der Vorlesung erbracht und beruht auf dem Satz von Betti. Es gilt: Alle Einflussfunktionen sind Biegelinien, bzw. Verformungsfiguren Die Einflusslinie für eine Lagerkraft erhält man, indem man das Lager wegnimmt und das Lager um eine Strecke 1 verschiebt. Die Einflusslinie für das Moment M(x) an einer Stelle x erhält man, indem man ein Momentengelenk im Punkt x einbaut und die beiden Tangenten um den Winkel ϕ = 1 verdreht. (Genauer: Der Tangens des Winkels ϕ beträgt Eins). Die Einflusslinie für eine Querkraft V (x) an einer Stelle x erhält man, indem man ein Querkraftgelenk im Punkt x einbaut und die beiden Teile des V-Gelenks (= Parallelgetriebe) um eine Längeneinheit gegeneinander verschiebt. Die Einflusslinie für eine Normalkraft N(x) an einer Stelle x erhält man, indem man ein Normalkraftgelenk im Punkt x einbaut und die beiden Teile des N-Gelenks (= Schiebehülse) um eine Längeneinheit gegeneinander verschiebt. Die Einflusslinie für die Durchbiegung w(x) an einer Stelle x erhält man, indem man eine Kraft P = 1 im Punkt x anbringt. Die Biegelinie ist die Einflussfunktion für w(x). Die Einflusslinie für die Verdrehung w (x) an einer Stelle x erhält man, indem man ein Moment M = 1 im Punkt x anbringt. Die Biegelinie ist die Einflussfunktion für w (x). 2

3 Figure 1: Einflussfunktionen a) für w(x), b) für w (x), c) für M(x), d) für V (x), e) für die Lagerkraft A, f) M-Gelenk, g) V -Gelenk, h) N-Gelenk 3

4 Einflussfunktionen erlauben also zu studieren, wie sich eine Größe in Abhängigkeit von der Stellung einer Wanderlast ändert. In dem folgenden Bild 1 sind einige solche Einflussfunktionen dargestellt. Einflussfunktionen stellen somit das Werkzeug dar, mit dem man die Qualität eines Tragwerks beurteilen kann. Das Ziel eines guten Entwurfs muss es sein, die Lasten mit möglichst wenig Aufwand abzutragen, also die Schnittkräfte und die Lagerkräfte möglichst klein zu halten. Daraus folgt sofort: Lager muss man so anordnen, dass die Lagerkräfte * große * Wege gehen und die Lasten * kleine * Wege. Bauteile sind so zu gestalten, dass die Schnittkräfte * große * Wege gehen und die Lasten * kleine * Wege. Was bedeutet dies? Die Einflussfunktion für die Lagerkraft A, s. Bild 1 e, erhält man, wenn man das Lager A wegnimmt und das Lager um eine Längeneinheit (1 mm, oder 1 cm oder 1 m) nach unten drückt, denn dann leistet die nach oben gerichtete Lagerkraft A die negative Arbeit A 1. Gleichzeitig leistet die Last P, die in dem Punkt x steht, die Arbeit P η(x) und die beiden Arbeiten sind nach dem Satz von Betti zusammen Null A 1,2 = A 1 + P η(x) = A 2,1 =. (4) (Weil sich die Längeneinheit aus dieser Gleichung herauskürzen lässt sie steckt in der 1 und in dem η(x) ist es egal, ob die Bewegung 1 m, 1 mm oder 1 cm ist. Eine große 1 führt zu einem großen η(x), aber das Verhältnis von η(x) zu der 1 bleibt immer dasselbe). Also ist A 1 = P η(x). (5) Die Lagerkraft A ist also umso kleiner, je kleiner die Bewegung η(x) ist, die die Lagerbewegung Eins des Lagers A in dem Angriffspunkt x auslöst. Anders gesagt, um A möglichst klein zu machen, muss man dafür sorgen, dass möglichst wenig von der Bewegung des Lagers im Punkt x ankommt, s. Bild 2. Sinngemäß ist das das Grundprinzip einer guten Konstruktion: Die Bewegungen im Tragwerk klein halten, die entstehen, wenn man an beliebigen Punkten ein M-, V - oder N-Gelenk einbaut und das Gelenk um Eins spreizt. Hinweis: Bei dem Beispiel in Bild 2 ist das System 1 der Balken. Das System 2 ist derselbe Balken, aber * ohne * jede Belastung. Das einzige was am System 2 passiert, ist, dass der Balken sich um das Lager B dreht. Weil am System 2 keine Lasten angreifen, können diese auch keine Arbeit leisten auf den Wegen des Systems 1, also ist A 1,2 =. Wegen A 1,2 = A 2,1 muss daher auch A 1,2 gleich Null sein. Zur Erinnerung: Bevor man den Satz von Betti formuliert, entfernt man alle Lager und setzt dafür die Lagerkräfte als äußere Kräfte an. Also das System 1 und auch das System 4

5 Figure 2: Eine schlechte Konstruktion und eine gute Konstruktion. Im ersten Fall, a), löst die Lagerbewegung Eins eine große Bewegung der Last aus. Die Kraft P leistet also eine große Arbeit, P η(x), und weil die Lagerkraft A nur den Weg Eins zur Verfügung hat, um Arbeit zu leisten, muss A selbst groß werden, um die Gesamtarbeit zu Null zu machen, P η(x) A 1 =. Im zweiten Fall, b), ist die Bewegung der Last viel kleiner und A kann viel kleiner bleiben. 5

6 Z Z Y X Y X Z Z Y X Y X Figure 3: Einflussfunktionen für a) die Durchbiegung w, b) die Verdrehung w, x, c) das Biegemoment m xx, und d) die Querkraft q x im Mittelpunkt einer gelenkig gelagerten Platte. 2 hängen in der Luft und werden von den Lagerkräften gestützt. Für das System 2 brauchen wir aber keine Lagerkräfte, weil keine Kräfte angreifen. Das System 2 ist also ein Bleistift, der in der Luft schwebt, und der beliebige Bewegungen ausführen kann, sich also auch um das (fortgenommene) Lager B drehen kann. All diese Überlegungen gelten sinngemäß für alle Tragwerke. Auch der Typ der Einflussfunktionen bleibt erhalten, wie man an Bild 3 erkennt. Dort sind die Einflussfunktionen für den Mittelpunkt eine Platte dargestellt. Unschwer erkennt man die Verwandtschaft dieser Einflussflächen mit den Einflussfunktionen des Balkens in Bild 1. Mit dem Programm TwoDFrame kann mehr sehr schön Einflussfunktionen berechnen. Die Bilder 4 und 5 zeigen Beispiele. Weil die Tragwerke statisch unbestimmt sind, entstehen durch die Spreizung der Momentengelenke Momente in den Tragwerken. Diese sind hier interessehalber mit angetragen. Die wesentliche Information steckt jedoch in den Verformungen. Diese sind die eigentliche Einflussfunktionen. Warum also Bewegungen darüber entscheiden, ob eine Größe richtig ist. Die V an einem Träger ist genau dann Null, wenn bei einer Starrkörperbewegung ŵ = 1 des Trägers man denke sich alle Lager entfernt die Arbeit der Lagerkräfte A und B 6

7 Figure 4: Einflussfunktion für ein Biegemoment und Momente aus der Einflussfunktion; berechnet mit TwoDFrame. 7

8 Figure 5: Einflussfunktion für das Biegemoment im letzten Stiel unterhalb des Anschnitts und Momente aus der Einflussfunktion; berechnet mit TwoDFrame. 8

9 gleich der Arbeit der verteilten Belastung ist, s. Bild 6, A 1 B 1 + p(x) dx =. (6) Die M an einem Träger ist genau dann Null, wenn bei einer Starrkörperdrehung ŵ = x des Trägers man denke sich alle Lager entfernt die Arbeit der Lagerkräfte A und B gleich der Arbeit der verteilten Belastung ist A B l + Natürlich sind die Gleichungen (6) und (7) identisch mit V = A B + p(x) dx = p(x) x dx =. (7) M = B l + p(x) x dx =. (8) Und so wie es für die Lagerkräfte Bewegungen (= Einflussfunktionen) gibt, die darüber entscheiden, ob die Größen richtig sind, also zur Belastung passen, so gibt es für jede Schnittgröße in einem Tragwerk eine Bewegung, die darüber entscheidet, ob die Größe zu der Last passt. Diese Bewegung ist gerade die Einflussfunktion der Schnittgröße. Die Kontrolle sieht also so aus: Man baut ein Gelenk in das Tragwerk ein, das zu der Schnittgröße passt und bewegt das Gelenk so, dass die Schnittkräfte auf den beiden Seiten des Gelenks insgesamt den Weg - 1 zurücklegen. (Minus heißt entgegengesetzt zur Richtung der Schnittkräfte). Die Schnittkräfte sind dann richtig, wenn die Bewegung, die sie im Fußpunkt der Einzelkraft P = 1 auslösen, genauso groß ist, wie die Schnittkräfte. Das ist die verbale Umschreibung der Gleichung oder A 1,2 = P Weg Schnittkraft 1 = (9) Schnittkraft = Weg. (1) Natürlich gilt die Logik auch dann, wenn eine Streckenlast p angreift. Dann ist der erste Ausdruck ein Integral oder A 1,2 = p Weg(x) dx Schnittkraft 1 = (11) Schnittkraft = p Weg(x) dx. (12) Das Integral rechts ist die Arbeit, die die Streckenlast p(x) auf den Wegen leistet, die durch die Spreizung des Gelenks in dem Tragwerk ausgelöst werden. Anders gesagt: Der Weg ist die Einflussfunktion für die Schnittgröße. Die Grundgleichung der Statik ist also die Arbeitsgleichung A 1,2 =. (13) 9

10 Figure 6: Kontrolle der Gleichgewichtsbedingungen mit dem Satz von Betti 1

11 Es sind also nicht nur die Kräfte allein, sondern Kraft und Bewegung bilden den Kern der Statik. Statik ist nicht statisch, sondern die (für den Laien) nicht sichtbaren Bewegungsmöglichkeiten eines Tragwerkes (Wie verformt sich das Tragwerk, wenn man ein M, V oder N-Gelenk einbaut?) entscheiden, wie groß die Spannungen sind, die durch die Lasten entstehen: Die Kinematik ist die Seele der Statik. Zusammenfassung Will man wissen, wie groß eine Schnittgröße an einer beliebigen Stelle ist, so baue man ein entsprechendes Gelenk ein und bewege die Schnittufer so, dass die Schnittkräfte den Weg Eins zurücklegen. Die Verformungsfigur des Tragwerks aus dieser Zwangsbewegung ist die Einflussfunktion für die Schnittgröße. 11

l p h (x) δw(x) dx für alle δw(x).

l p h (x) δw(x) dx für alle δw(x). 1.3 Potentielle Energie 5 In der modernen Statik benutzen wir statt dessen einen schwächeren Gleichheitsbegriff. Wir verlangen nur, dass die beiden Streckenlasten bei jeder virtuellen Verrückung dieselbe

Mehr

1. Einfache ebene Tragwerke

1. Einfache ebene Tragwerke Die Ermittlung der Lagerreaktionen einfacher Tragwerke erfolgt in drei Schritten: Freischneiden Aufstellen der Gleichgewichtsbedingungen Auflösen der Gleichungen Prof. Dr. Wandinger 3. Tragwerksanalyse

Mehr

Biegelinie

Biegelinie 3. Biegelinie Die Biegemomente führen zu einer Verformung der Balkenachse, die als Biegelinie bezeichnet wird. Die Biegelinie wird beschrieben durch die Verschiebung v in y-richtung und die Verschiebung

Mehr

52 5 Gleichgewicht des ebenen Kraftsystems. Festlager

52 5 Gleichgewicht des ebenen Kraftsystems. Festlager 52 5 Gleichgewicht des ebenen Kraftsystems Loslager A estlager B BH Einspannung A M A AH A BV AV Abbildung 5.11: Typische Lagerungen eines starren Körpers in der Ebene (oben) und die zugehörigen Schnittskizzen

Mehr

Potentielle Energie, P.d.v.K. und P.d.v.V.

Potentielle Energie, P.d.v.K. und P.d.v.V. IBSD Institut für Baustatik und Baudynamik Fachbereich Bauingenieurwesen Potentielle Energie, P.d.v.K. und P.d.v.V. Fachgebiet Baustatik 2. Februar 26 Inhaltsverzeichnis 1 Die potentielle Energie 1 1.1

Mehr

Schnittgrößen und Vorzeichenkonvention

Schnittgrößen und Vorzeichenkonvention Schnittgrößen und Vorzeichenkonvention Die äußeren Kräfte (Belastungen) auf einem Tragwerk verursachen innere Kräfte in einem Tragwerk. Da diese inneren Kräfte nur durch ein Freischneiden veranschaulicht

Mehr

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik S 1. Seilkräfte ufgaben zur Statik 28 0 F 1 = 40 kn 25 0 F 2 = 32 kn m Mast einer Überlandleitung greifen in der angegebenen Weise zwei Seilkräfte an. Bestimmen Sie die resultierende Kraft. S 2: Zentrales

Mehr

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik Aufgaben zur Statik S 1. Seilkräfte 28 0 F 1 = 40 kn 25 0 F 2 = 32 kn Am Mast einer Überlandleitung greifen in der angegebenen Weise zwei Seilkräfte an. Bestimmen Sie die resultierende Kraft. Addition

Mehr

3. Kraftgrößenverfahren

3. Kraftgrößenverfahren .Kraftgrößenverfahren von 8. Kraftgrößenverfahren. Prinzip Das Prinzip des Kraftgrößenverfahrens ist es ein statisch unbestimmtes System durch Einschalten von Gelenken und Zerschneiden von Stäben oder

Mehr

Arbeitsunterlagen. Statik 2

Arbeitsunterlagen. Statik 2 Arbeitsunterlagen Statik 2 WS 2014/15 Stand 07.10.2014 Inhalt 1. Vertiefung KGV 1.1 Eingeprägte Auflagerverformungen 1.2 Vorspannung 1.3 Systeme mit elastischer Lagerung 1.4 Ermittlung von Federsteifigkeiten

Mehr

Leseprobe. Kai-Uwe Bletzinger, Falko Dieringer, Rupert Fisch, Benedikt Philipp. Aufgabensammlung zur Baustatik

Leseprobe. Kai-Uwe Bletzinger, Falko Dieringer, Rupert Fisch, Benedikt Philipp. Aufgabensammlung zur Baustatik Leseprobe Kai-Uwe Bletzinger, Falko Dieringer, Rupert Fisch, Benedikt Philipp Aufgabensammlung zur Baustatik Übungsaufgaben zur Berechnung ebener Stabtragwerke ISBN (Buch): 978-3-446-4478-8 Weitere Informationen

Mehr

Inhaltsverzeichnis. 1 Einführung in die Statik der Tragwerke 1

Inhaltsverzeichnis. 1 Einführung in die Statik der Tragwerke 1 1 Einführung in die Statik der Tragwerke 1 1.1 Vorbemerkungen 1 1.1.1 Definition und Aufgabe der Baustatik l 1.1.2 Tragwerksformen irnd deren Idealisierung 2 1.1.2.1 Dreidimensionale Tragelemcnte: Räume

Mehr

Innere Beanspruchungen - Schnittgrößen

Innere Beanspruchungen - Schnittgrößen Innere Beanspruchungen - Schnittgrößen Vorlesung und Übungen 1. Semester BA Architektur Q () M () M () Q () N () N () L - KIT Universität des Landes Baden-Württemberg und nationales orschungszentrum in

Mehr

2.4.2 Ebene Biegung. 140 Kap. 2.4 Biegung

2.4.2 Ebene Biegung. 140 Kap. 2.4 Biegung 140 Kap. 2.4 Biegung Aufgabe 2 Ein exzentrischer Kreisring hat die Halbmesser R = 20 cm, r = 10 cm und die Exzentrizität e = 5 cm. Man suche die Hauptträgheitsmomente in Bezug auf seinen Schwerpunkt. 2.4.2

Mehr

1. Ebene gerade Balken

1. Ebene gerade Balken 1. Ebene gerade Balken Betrachtet werden gerade Balken, die nur in der -Ebene belastet werden. Prof. Dr. Wandinger 4. Schnittlasten bei Balken TM 1 4.1-1 1. Ebene gerade Balken 1.1 Schnittlasten 1.2 Balken

Mehr

1. Zug und Druck in Stäben

1. Zug und Druck in Stäben 1. Zug und Druck in Stäben Stäbe sind Bauteile, deren Querschnittsabmessungen klein gegenüber ihrer änge sind: D Sie werden nur in ihrer ängsrichtung auf Zug oder Druck belastet. D Prof. Dr. Wandinger

Mehr

Rahmen. Rahmenwirkung Berechnung einfacher Systeme. Institut für Tragwerksentwurf. Tragwerkslehre 2

Rahmen. Rahmenwirkung Berechnung einfacher Systeme. Institut für Tragwerksentwurf. Tragwerkslehre 2 Rahmen Rahmenwirkung Berechnung einfacher Systeme Rahmen Riegel vertikale Lasten horizontale Lasten Stiel biegesteife Ecke Vertikale und horizontale Lagerkräfte Vertikale und horizontale Lagerkräfte Rahmen

Mehr

www.statik-lernen.de Inhaltsverzeichnis Kräfte und Kraftarten Äußere und innere Kräfte Das zentrale Kräftesystem Momente Auflager Zustandslinien

www.statik-lernen.de Inhaltsverzeichnis Kräfte und Kraftarten Äußere und innere Kräfte Das zentrale Kräftesystem Momente Auflager Zustandslinien www.statik-lernen.de Grundlagen Inhaltsverzeichnis Kräfte und Kraftarten o Bestimmung von Kräften... Seite 1 o Graphische Darstellung... Seite 1 o Einheit der Kraft... Seite 1 o Kräftegleichgewicht...

Mehr

Eigenspannungszustand: Ermittlung der Schnittgrößen, die durch die Ersatzkräfte hervorgerufen

Eigenspannungszustand: Ermittlung der Schnittgrößen, die durch die Ersatzkräfte hervorgerufen www.statik-lernen.de Beispiele (Ein-) Gelenkrahmen Seite Auf den folgenden Seiten wird das 'Kraftgrößenverfahren' (X A -Methode) zur Berechnung der Schnittkräfte statischer Systeme am Beispiel eines 2-fach

Mehr

Technische Mechanik. Statik

Technische Mechanik. Statik Hans Albert Richard Manuela Sander Technische Mechanik. Statik Lehrbuch mit Praxisbeispielen, Klausuraufgaben und Lösungen 4., überarbeitete und erweiterte Auflage Mit 263 Abbildungen ^ Springer Vieweg

Mehr

Kräftepaar und Drehmoment

Kräftepaar und Drehmoment Kräftepaar und Drehmoment Vorlesung und Übungen 1. Semester BA Architektur KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Kräftepaar

Mehr

Grundfachklausur Teil 2 / Statik II

Grundfachklausur Teil 2 / Statik II Technische Universität Darmstadt Institut für Werkstoffe und Mechanik im Bauwesen Fachgebiet Statik Prof. Dr.-Ing. Jens Schneider Grundfachklausur Teil 2 / Statik II im Sommersemester 204, am 08.09.204

Mehr

RUHR-UNIVERSITÄT BOCHUM FAKULTÄT FÜR BAUINGENIEURWESEN STATIK UND DYNAMIK. Diplomprüfung Frühjahr Prüfungsfach. Statik. Klausur am

RUHR-UNIVERSITÄT BOCHUM FAKULTÄT FÜR BAUINGENIEURWESEN STATIK UND DYNAMIK. Diplomprüfung Frühjahr Prüfungsfach. Statik. Klausur am Diplomprüfung Frühjahr 00 Prüfungsfach Statik Klausur am 0.0.00 Name: Vorname: Matr.-Nr.: (bitte deutlich schreiben!) (9-stellig!) Aufgabe 5 6 7 8 9 Summe mögliche Punkte 7 5 5 6 0 8 0 6 0 erreichte Punkte

Mehr

Skript zur Vorlesung Baustatik II

Skript zur Vorlesung Baustatik II BS III Skript zur Vorlesung Baustatik II an der Hochschule Augsburg Hochschule für angewandte Wissenschaften University of Applied Sciences Prof. Dr.-Ing. Gerhard Zirwas BS III Inhalt I. Wiederholungen

Mehr

Diplomprüfung Frühjahr Prüfungsfach. Statik. Klausur am (bitte deutlich schreiben!)

Diplomprüfung Frühjahr Prüfungsfach. Statik. Klausur am (bitte deutlich schreiben!) Diplomprüfung Frühjahr 00 Prüfungsfach Statik Klausur am 04.0.00 Name: Vorname: (bitte deutlich schreiben) Matr.-Nr.: (9-stellig) Aufgabe 4 5 6 7 8 9 Summe mögliche Punkte 7 5 4 6 6 4 4 0 erreichte Punkte

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Institut für Mechanik und Fluiddynamik Institut für Mechanik und Fluiddynamik Klausur Technische Mechanik 10/02/10 Aufgabe S1 Gegeben ist ein durch eine Pendelstütze und ein Festlager A abgestütztes Fachwerk.

Mehr

Übungsaufgaben Systemmodellierung WT 2015

Übungsaufgaben Systemmodellierung WT 2015 Übungsaufgaben Systemmodellierung WT 2015 Robert Friedrich Prof. Dr.-Ing. Rolf Lammering Institut für Mechanik Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg Holstenhofweg 85, 22043 Hamburg

Mehr

Statik I Ergänzungen zum Vorlesungsskript Dr.-Ing. Stephan Salber Institut für Statik und Dynamik der Luft- und Raumfahrtkonstruktionen Statik I Vorlesungs- und Übungsmaterial Vorlesung Benutzername: Vorlesungsskript

Mehr

Beuth Hochschule für Technik Berlin

Beuth Hochschule für Technik Berlin Seite 1 Grundsatz Geschossbauten müssen gegen Horizontallasten ausgesteift sein. Aussteifende Bauteile können sein: Wandscheiben, Kerne, Rahmen, Verbände Bauformen Schotten- oder Wandbau, meist im Wohnungsbau.

Mehr

Statisch Unbestimmte Systeme

Statisch Unbestimmte Systeme 3. Semester Seite 1/13 Statisch Unbestimmte Systeme 0. Inhalt 0. Inhalt 1 1. Allgemeines 1 2. Begriffe 2 3. Grundlagen 2 4. Freischneiden 2 4.1 Darstellung des Verfahrens am Zweifeldträger 2 4.2 Verallgemeinerte

Mehr

3. Prinzip der virtuellen Arbeit

3. Prinzip der virtuellen Arbeit 3. Prinzip der virtuellen rbeit Mit dem Satz von Castigliano können erschiebungen für Freiheitsgrade berechnet werden, an denen Lasten angreifen. Dabei werden nicht immer alle Terme der Formänderungsenergie

Mehr

Mehmet Maraz. MechanikNachhilfe

Mehmet Maraz. MechanikNachhilfe Mehmet Maraz MechanikNachhilfe 1. Auflage 015 Inhaltsverzeichnis 1 Statik 1 1.1 Lagerungen und Lagerreaktionen................. 1. Kräftegleichgewichte......................... 5 1..1 Drehmoment.........................

Mehr

7. Inneres Gleichgewicht - Schnittgrößen

7. Inneres Gleichgewicht - Schnittgrößen 7. Inneres Gleichgewicht - Schnittgrößen Vorlesung und Übungen 1. Semester BA Architektur KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

Statik der Baukonstruktionen I: Statisch bestimmte Systeme kb07 13-1

Statik der Baukonstruktionen I: Statisch bestimmte Systeme kb07 13-1 Statik der Baukonstruktionen I: Statisch bestimmte Systeme kb07 13-1 13.0 Einfacher Lastabtrag für Vertikallasten 13.1 Konstruktionsbeispiele für Lastabträge Garage in Wandbauweise zugehöriger Lastabtrag

Mehr

BAUMECHANIK I Prof. Dr.-Ing. Christian Barth

BAUMECHANIK I Prof. Dr.-Ing. Christian Barth BAUMECHANIK I Umfang V/Ü/P (ECTS) 2/2/0 (5) 2/2/0 2/2/0 2/2/0-2*/2*/0 - Diplom 5. 6. 7. 8. 9. 10. Definitionen und Klassifizierungen Kräfte und Kraftarten, Vektor, Vektorsysteme Darstellung vektorieller

Mehr

Prinzip der virtuellen Verschiebung

Prinzip der virtuellen Verschiebung 1 Elektrostatik 52 Prinzip der virtuellen Verschiebung Wir verwenden hier das Prinzip der virtuellen Verschiebung (PVV) zur Berechnung der Kraft auf einen Körper im elektrostatischen Feld. Beim PVV wird

Mehr

Übung zu Mechanik 1 Seite 65

Übung zu Mechanik 1 Seite 65 Übung zu Mechanik 1 Seite 65 Aufgabe 109 Gegeben ist das skizzierte System. a) Bis zu welcher Größe kann F gesteigert werden, ohne daß Rutschen eintritt? b) Welches Teil rutscht, wenn F darüber hinaus

Mehr

Gelenkträger unter vertikalen und schrägen Einzellasten und einer vertikalen Streckenlast

Gelenkträger unter vertikalen und schrägen Einzellasten und einer vertikalen Streckenlast www.statik-lernen.de Beispiele Gelenkträger Seite 1 Auf den folgenden Seiten wird das Knotenschnittverfahren zur Berechnung statisch bestimmter Systeme am Beispiel eines Einfeldträgers veranschaulicht.

Mehr

Bitte tragen Sie vor Abgabe Ihren Namen und Matrikel-Nr. ein, versehen Sie jedes Blatt mit einer Seitenzahl und geben Sie auch die Aufgabenblätter ab!

Bitte tragen Sie vor Abgabe Ihren Namen und Matrikel-Nr. ein, versehen Sie jedes Blatt mit einer Seitenzahl und geben Sie auch die Aufgabenblätter ab! Klausur TM1 für WI SS 99 Prüfer: Prof. Dr. M. Lindner NAME: MATRIKEL-NR.: Aufgabe Punkte erreicht 1 20 2 26 3 28 4 26 Summe 100 Bitte tragen Sie vor Abgabe Ihren Namen und Matrikel-Nr. ein, versehen Sie

Mehr

Bestimmen Sie für den dargestellten Balken die Auflagerkräfte sowie die N-, Q- und M-Linie (ausgezeichnete Werte sind anzugeben).

Bestimmen Sie für den dargestellten Balken die Auflagerkräfte sowie die N-, Q- und M-Linie (ausgezeichnete Werte sind anzugeben). Technische Universität Darmstadt Technische Mechanik I B 13, G Kontinuumsmechanik Wintersemester 007/008 Prof. Dr.-Ing. Ch. Tsakmakis 9. Lösungsblatt Dr. rer. nat. P. Grammenoudis 07. Januar 008 Dipl.-Ing.

Mehr

Eigenspannungszustand: Ermittlung der Schnittgrößen, die durch die Ersatzkräfte hervorgerufen

Eigenspannungszustand: Ermittlung der Schnittgrößen, die durch die Ersatzkräfte hervorgerufen www.statik-lernen.de Beispiele Zweifeldträger Seite Auf den folgenden Seiten wird das 'Kraftgrößenverfahren' (X A -Methode) zur Berechnung der Schnittkräfte statischer Systeme am Beispiel eines -fach statisch

Mehr

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7

Einleitung 2. 1 Koordinatensysteme 2. 2 Lineare Abbildungen 4. 3 Literaturverzeichnis 7 Sonja Hunscha - Koordinatensysteme 1 Inhalt Einleitung 2 1 Koordinatensysteme 2 1.1 Kartesisches Koordinatensystem 2 1.2 Polarkoordinaten 3 1.3 Zusammenhang zwischen kartesischen und Polarkoordinaten 3

Mehr

Rheinische Fachhochschule Köln

Rheinische Fachhochschule Köln Rheinische Fachhochschule Köln Matrikel-Nr. Nachname Dozent Ianniello e-mail: Semester Klausur Datum BM II, S K 01. 07. 13 Genehmigte Hilfsmittel: Fach Urteil Statik u. Festigkeit Ergebnis: Punkte Taschenrechner

Mehr

2. Definieren Sie die 2 Arten von Verzerrungen. Vorzeichenregeln.

2. Definieren Sie die 2 Arten von Verzerrungen. Vorzeichenregeln. FESTIGKEITSLEHRE 1. Definieren Sie den Begriff "Widerstandsmoment". Erläutern Sie es für Rechteck und doppelt T Querschnitt. Antwort Die Widerstandsmomente sind geometrische Kennzeichen des Querschnittes.

Mehr

Staatlich geprüfte Techniker

Staatlich geprüfte Techniker Auszug aus dem Lernmaterial ortbildungslehrgang Staatlich geprüfte Techniker Auszug aus dem Lernmaterial Maschinenbautechnische Grundlagen DAA-Technikum Essen / www.daa-technikum.de, Infoline: 001 83 16

Mehr

ERLÄUTERUNGEN ZUM KRAFTGRÖßENVERFAHREN An einem einfachen Beispiel soll hier das Prinzip des Kraftgrößenverfahrens erläutert werden.

ERLÄUTERUNGEN ZUM KRAFTGRÖßENVERFAHREN An einem einfachen Beispiel soll hier das Prinzip des Kraftgrößenverfahrens erläutert werden. FACHBEREICH 0 BAUINGENIEURWESEN Arbeitsblätter ERLÄUTERUNGEN ZUM An einem einfachen Beispiel soll hier das Prinzip des Kraftgrößenverfahrens erläutert werden.. SYSTEM UND BELASTUNG q= 20 kn / m C 2 B 4

Mehr

6) DIE EINFACHSTEN STATISCH BESTIMMTEN TRAEGER

6) DIE EINFACHSTEN STATISCH BESTIMMTEN TRAEGER BAULEITER HOCHBAU S T A T I K / F E S T I G K E I T S L E H R E 6) DIE EINFACHSTEN STATISCH BESTIMMTEN TRAEGER 1) Definition für statisch bestimmte Systeme 2) Auflagerreaktionen beim einfachen Balken 3)

Mehr

Lösungen TM I Statik und Festigkeitslehre

Lösungen TM I Statik und Festigkeitslehre Technische Mechanik I L Lösungen TM I Statik und Festigkeitslehre Modellbildung in der Mechanik N Pa (Pascal). m.4536kg.38slug [a] m, [b] dimensionslos, [c] m, [d] m Dichte: kgm 3.94 3 slugft 3 Geschwindigkeit:

Mehr

1.Fachwerke. F1 = 4,5 kn, F2 = 3,4 kn,

1.Fachwerke. F1 = 4,5 kn, F2 = 3,4 kn, 1.Fachwerke # Frage Antw. P. F1 = 4,5 kn, F =,4 kn, 1 a Prüfen Sie das Fachwerk auf statische Bestimmtheit k=s+ ist hier 5 = 7 +, stimmt. Also ist das FW statisch bestimmt. 4 b Bestimmen Sie die Auflagerkraft

Mehr

Skript. Technische Mechanik. Festigkeitslehre

Skript. Technische Mechanik. Festigkeitslehre Fachhochschule Mannheim Hochschule für Technik und Gestaltung Fachbereich Verfahrens- und Chemietechnik Skript zur Vorlesung Technische Mechanik Teil Festigkeitslehre Prof. Dr. Werner Diewald Stand: März

Mehr

Schnittgrößen. Vorlesung und Übungen 1. Semester BA Architektur.

Schnittgrößen. Vorlesung und Übungen 1. Semester BA Architektur. Schnittgrößen Vorlesung und Übungen 1. Semester BA Architektur KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Schnittgrößen Verlauf

Mehr

Elastizitätslehre Biegebalken

Elastizitätslehre Biegebalken Baustatik II Seite 1/37 0. Inhalt 0. Inhalt 1 1. Allgemeines 3 2. Begriffe 3 3. Grundlagen 3 4. 4 4.1 Allgemeines 4 4.2 Werkstoff und Randfaserdehnung 4 4.3 Geometrische Beziehungen 6 4.4 DGL des s 7 4.5

Mehr

5. Tragsysteme. Vorlesung und Übungen 1. Semester BA Architektur.

5. Tragsysteme. Vorlesung und Übungen 1. Semester BA Architektur. 5. Tragsysteme Vorlesung und Übungen 1. Semester BA Architektur KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu BI - I Tragsysteme

Mehr

2. Exzentrischer Stoß

2. Exzentrischer Stoß 2. Exzentrischer Stoß 2.1 Ebener Stoß zwischen freien Körpern 2.2 Ebener Stoß auf gelagerten Körper 3.2-1 2.1 Ebener Stoß zwischen freien Körpern Aufgabenstellung: Zwei glatte Körper stoßen aufeinander.

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 5 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 31 7,5 17,5 9 10 5 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

Aufgabe Max. Punkte Erreichte Punkte Gesamt 100

Aufgabe Max. Punkte Erreichte Punkte Gesamt 100 Wintersemester 0/ Baumechanik II-Klausur ( tunden)-lösung. eptember 0 Name: Matrikelnummer: ufgabe Max. Punkte Erreichte Punkte 8 0 5 6 Gesamt 00 Bitte jede ufgabe auf einem neuen Blatt bearbeiten und

Mehr

3. VORLESUNG MASSIVBAU II. Platten. Allgemeines. Platten. Univ.-Prof. Dr.-Ing. Josef Hegger. Sommersemester Definition

3. VORLESUNG MASSIVBAU II. Platten. Allgemeines. Platten. Univ.-Prof. Dr.-Ing. Josef Hegger. Sommersemester Definition 1 1 3. Platten Univ.-Prof. Dr.-Ing. Josef Hegger Sommersemester 2010 Platten 2 Allgemeines 3 Definition Platten sind ebene Flächentragwerke, die senkrecht zu ihrer Mittelebene belastet werden Q Mittelebene

Mehr

9. Vorlesung Wintersemester

9. Vorlesung Wintersemester 9. Vorlesung Wintersemester 1 Die Phase der angeregten Schwingung Wertebereich: bei der oben abgeleiteten Formel tan φ = β ω ω ω0. (1) ist noch zu sehen, in welchem Bereich der Winkel liegt. Aus der ursprünglichen

Mehr

Übung zu Mechanik 3 Seite 36

Übung zu Mechanik 3 Seite 36 Übung zu Mechanik 3 Seite 36 Aufgabe 61 Ein Faden, an dem eine Masse m C hängt, wird über eine Rolle mit der Masse m B geführt und auf eine Scheibe A (Masse m A, Radius R A ) gewickelt. Diese Scheibe rollt

Mehr

3. Das Gleichungssystem

3. Das Gleichungssystem Lagerung: Damit das Fachwerk Kräfte aufnehmen kann, muss es gelagert werden, Die Lagerung muss so beschaffen sein, dass keine Starrkörperbewegungen oder Mechanismen mehr möglich sind. Die Verschiebungen

Mehr

Lösung: Mathematisches Denken in Arithmetik und Geometrie1 Funktionen und Abbildungen mit GeoGebra

Lösung: Mathematisches Denken in Arithmetik und Geometrie1 Funktionen und Abbildungen mit GeoGebra Hinweis: Alle Grafiken dieser Lösung finden Sie auch als GeoGebra-Dateien zum Ausprobieren. 1. Verschiebung: Zeichnen Sie einen beliebigen Vektor zwischen 2 Punkten. a) Verschieben Sie den Graphen von

Mehr

6. Arbeitssatz, Prinzip der virtuellen Verschiebungen (PvV) und Prinzip der virtuellen Kräfte (PvK)

6. Arbeitssatz, Prinzip der virtuellen Verschiebungen (PvV) und Prinzip der virtuellen Kräfte (PvK) Technische Mechanik 2 (SS 2011) 6. Arbeitssatz, Prinzip der virtuellen Verschiebungen (PvV) und Prinzip der virtuellen Kräfte (PvK) Arbeit: 6.1 Grundbegriffe und Arbeitssatz 6.1 Grundbegriffe und Arbeitssatz

Mehr

ad Physik A VL2 (11.10.2012)

ad Physik A VL2 (11.10.2012) ad Physik A VL2 (11.10.2012) korrigierte Varianz: oder: korrigierte Stichproben- Varianz n 2 2 2 ( x) ( xi ) n 1 i1 1 n 1 n i1 1 Begründung für den Vorfaktor : n 1 Der Mittelwert der Grundgesamtheit (=

Mehr

Vorlesung Technische Mechanik 1 Statik, Wintersemester 2007/2008. Technische Mechanik

Vorlesung Technische Mechanik 1 Statik, Wintersemester 2007/2008. Technische Mechanik Technische Mechanik 1. Einleitung 2. Statik des starren Körpers 3. Statik von Systemen starrer Körper 3.1 Gleichgewichtsbedingungen, das Erstarrungsprinzip 3.2 Lager 3.2.1 Lagerung in der Ebene 3.2.2 Allgemeiner

Mehr

Aufgaben TK II SS 2000 TRAGKONSTRUKTIONEN II. ETHZ Departement Architektur. Professur für Tragkonstruktionen. Prof. Dr. O.

Aufgaben TK II SS 2000 TRAGKONSTRUKTIONEN II. ETHZ Departement Architektur. Professur für Tragkonstruktionen. Prof. Dr. O. ETHZ Departement Architektur Prof. Dr. O. Künzle Aufgaben TK II www.kuenzle.hbt.arch.ethz.ch ETHZ - Abteilung für Architektur Aufgabe 1: Sprungbrett Übung 1: Schnittkräfte, Festigkeitslehre und Formänderungen

Mehr

Inhalt 1 Einführung 2 Wirkung der Kräfte 3 Bestimmung von Schwerpunkten

Inhalt 1 Einführung 2 Wirkung der Kräfte 3 Bestimmung von Schwerpunkten Inhalt (Abschnitte, die mit * gekennzeichnet sind, enthalten Übungsaufgaben) 1 Einführung... 1 1.1 Begriffe und Aufgaben der Statik... 2 1.1.1 Allgemeine Begriffe 1.1.2 Begriffe für Einwirkungen... 4 1.1.3

Mehr

Handbuch. Polplan-Applet

Handbuch. Polplan-Applet Handbuch für Polplan-Applet Andreas Bollinger Lehrstuhl für Numerische Mechanik Teschnische Universität München Inhaltsverzeichnis 1 Hinweis 3 2 Allgemeines 3 3 Systemeingabe 3 3.1 Auflager................................

Mehr

() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2

() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2 Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 212 P 2 BachelorPrüfung in Technischer Mechanik II/III Nachname, Vorname Matr.Nummer Fachrichtung 28.

Mehr

1. Bewegungsgleichung

1. Bewegungsgleichung 1. Bewegungsgleichung 1.1 Das Newtonsche Grundgesetz 1.2 Dynamisches Gleichgewicht 1.3 Geführte Bewegung 1.4 Massenpunktsysteme 1.5 Schwerpunktsatz Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik

Mehr

Aufgaben zum Thema Kraft

Aufgaben zum Thema Kraft Aufgaben zum Thema Kraft 1. Ein Seil ist mit einem Ende an einem Pfeiler befestigt und wird reibungsfrei über einen weiteren Pfeiler derselben Höhe im Abstand von 20 m geführt. Das andere Seilende ist

Mehr

Mathematik. Februar 2016 AHS. Kompensationsprüfung 2 Angabe für Kandidatinnen/Kandidaten

Mathematik. Februar 2016 AHS. Kompensationsprüfung 2 Angabe für Kandidatinnen/Kandidaten Name: Datum: Klasse: Kompensationsprüfung zur standardisierten kompetenzorientierten schriftlichen Reifeprüfung AHS Februar 2016 Mathematik Kompensationsprüfung 2 Angabe für Kandidatinnen/Kandidaten Hinweise

Mehr

Herbst 2010 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik II für Maschinenbau. Musterlösungen (ohne Gewähr)

Herbst 2010 Seite 1/14. Gottfried Wilhelm Leibniz Universität Hannover Klausur Technische Mechanik II für Maschinenbau. Musterlösungen (ohne Gewähr) Seite 1/14 rage 1 ( 2 Punkte) Ein Stab mit kreisförmiger Querschnittsfläche wird mit der Druckspannung σ 0 belastet. Der Radius des Stabes ist veränderlich und wird durch r() beschrieben. 0 r () Draufsicht:

Mehr

Fachhochschule München Fachbereich 02 BI 4. Semester Name:... 1. und 2. Studienarbeit aus Baustatik II

Fachhochschule München Fachbereich 02 BI 4. Semester Name:... 1. und 2. Studienarbeit aus Baustatik II Fachbereich 02 BI 4. Semester 1. und 2. Studienarbeit aus Baustatik II 1. Aufgabe: Bestimmen Sie mit Hilfe des Drehwinkelverfahrens die Schnittgrößen des obigen Tragwerkes und stellen Sie deren Verlauf

Mehr

2 Wirkung der Kräfte. 2.1 Zusammensetzen von Kräften Kräfte mit gemeinsamer Wirkungslinie

2 Wirkung der Kräfte. 2.1 Zusammensetzen von Kräften Kräfte mit gemeinsamer Wirkungslinie 2 Wirkung der Kräfte Kräfte, die auf einen Körper wirken, werden diesen verschieben, wenn kein gleichgroßer Widerstand dagegen wirkt. Dabei wird angenommen, dass die Wirkungslinie der Kraft durch den Schwerpunkt

Mehr

Statik- und Festigkeitslehre

Statik- und Festigkeitslehre Vorlesung und Übungen 1. Semester BA Architektur Institut Entwerfen und Bautechnik, / KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

Berechnung von Einflussfunktionen mit der Methode der finiten Elemente

Berechnung von Einflussfunktionen mit der Methode der finiten Elemente Prof. Dr.-Ing. Friedel Hartmann Fachgebiet Baustatik Fachbereich 14 Bauingenieurwesen Diplomarbeit 1 Berechnung von Einflussfunktionen mit der Methode der finiten Elemente von Thorsten Panke Bearbeitungszeit:

Mehr

Ruhr-Universität Bochum Bau- und Umweltingenieurwissenschaften Statik und Dynamik. Bachelorprüfung Frühjahr Klausur am

Ruhr-Universität Bochum Bau- und Umweltingenieurwissenschaften Statik und Dynamik. Bachelorprüfung Frühjahr Klausur am Bachelorprüfung Frühjahr 2013 Modul 13 (BI) / Modul IV 3b (UTRM) Baustatik I und II Klausur am 25.02.2013 Name: Vorname: Matrikelnummer: (bitte deutlich schreiben) (9stellig!) Aufgabe 1 2 3 4 5 Summe mögliche

Mehr

Numerische Berechnung von Leichtbaustrukturen

Numerische Berechnung von Leichtbaustrukturen von Leichtbaustrukturen 2.Vorlesung Institut für Mechanik 15. Oktober 2014 (IFME) 15. Oktober 2014 1 / 22 Folie 1 - Flächentragwerke Definition Als Zugsysteme werden Tragwerke bezeichnet, in denen vorzugsweise

Mehr

3. Das Prinzip der virtuellen Arbeit

3. Das Prinzip der virtuellen Arbeit 3.1 Stab 3.2 Scheibe 3. Das Prinzip der virtuellen Arbeit Prof. Dr. Wandinger 3. Prinzip der virtuellen Arbeit FEM 3.3-1 3.1 Stab Herleitung des Prinzips der virtuellen Arbeit: Am Stab greifen als äußere

Mehr

Inhaltsverzeichnis Einleitung Mathematische Grundlagen

Inhaltsverzeichnis Einleitung Mathematische Grundlagen Inhaltsverzeichnis 1 Einleitung 1.1 Vorgehensweise bei der FEM... 3 1.2 Verschiedene Elementtypen... 5 1.3 Beispiele zur Finite-Elemente-Methode... 10 1.3.1 Beispiel zu nichtlinearen Problemen... 10 1.3.2

Mehr

Formelsammlung. für die Klausur. Technische Mechanik I & II

Formelsammlung. für die Klausur. Technische Mechanik I & II Formelsammlung für die Klausur Technische Mechanik I & II Vorwort Diese Formelsammlung ist dazu gedacht, das Suchen und Herumblättern in den Büchern während der Klausur zu vermeiden und somit Zeit zu sparen.

Mehr

Beispiele für gerade (einachsige) und schiefe (zweiachsige) Biegung: Betrachtung der Kräfte und Momente, die auf ein Balkenelement der Länge wirken:

Beispiele für gerade (einachsige) und schiefe (zweiachsige) Biegung: Betrachtung der Kräfte und Momente, die auf ein Balkenelement der Länge wirken: UNIVERITÄT IEGEN B 10 Lehrstuhl für Baustatik - chiefe Biegung - chiefe Biegung Kommt es bei einem Balken nicht nur u Durchbiegungen w in -Richtung, sondern auch u Durchbiegungen v in -Richtung, so spricht

Mehr

Grundfachklausur Teil 1 / Statik I

Grundfachklausur Teil 1 / Statik I Technische Universität Darmstadt Institut für Werkstoffe und Mechanik im Bauwesen Fachgebiet Statik Prof. Dr.-Ing. Jens Schneider Grundfachklausur Teil / Statik I im Sommersemester 03, am 09.09.03 Die

Mehr

τ 30 N/mm bekannt. N mm N mm Aufgabe 1 (7 Punkte)

τ 30 N/mm bekannt. N mm N mm Aufgabe 1 (7 Punkte) Institut für Technische und Num. Mechanik Technische Mechanik IIIII Profs. P. Eberhard, M. Hanss WS 114 P 1. Februar 14 Bachelor-Prüfung in Technischer Mechanik IIIII Nachname, Vorname Matr.-Nummer Fachrichtung

Mehr

STATISCHE BERECHNUNG "Traverse Typ Foldingtruss F52F" Länge bis 24,00m Elementlängen 0,60m - 0,80m - 1,60m - 2,40m Taiwan Georgia Corp.

STATISCHE BERECHNUNG Traverse Typ Foldingtruss F52F Länge bis 24,00m Elementlängen 0,60m - 0,80m - 1,60m - 2,40m Taiwan Georgia Corp. Ing. Büro für Baustatik 75053 Gondelsheim Tel. 0 72 52 / 9 56 23 Meierhof 7 STATISCHE BERECHNUNG "Traverse Typ Foldingtruss F52F" Länge bis 24,00m Elementlängen 0,60m - 0,80m - 1,60m - 2,40m Taiwan Georgia

Mehr

STATISCHE BERECHNUNG "Traverse Typ F23" Länge bis 10,00m GLOBAL TRUSS

STATISCHE BERECHNUNG Traverse Typ F23 Länge bis 10,00m GLOBAL TRUSS Ing. Büro für Baustatik 75053 Gondelsheim Tel. 0 72 52 / 9 56 23 Meierhof 7 STATISCHE BERECHNUNG "Traverse Typ F23" Länge bis 10,00m GLOBAL TRUSS Die statische Berechnung ist ausschließlich aufgestellt

Mehr

KG-Oberkurs 2011 Vorlesungen: Grundlagen der Kinematik und Dynamik

KG-Oberkurs 2011 Vorlesungen: Grundlagen der Kinematik und Dynamik KG-Oberkurs 011 Vorlesungen: Grundlagen der Kinematik und Dynamik Dr.-Ing. Ulrich Simon 1 Allgemeines Biomechanik Biologie Mechanik Ziel der Vorlesung: Mechanische Grundlagen in anschaulicher Form aufzufrischen.

Mehr

STATISCHE BERECHNUNG "Traverse Typ F34" Länge bis 18,00m Taiwan Georgia Corp.

STATISCHE BERECHNUNG Traverse Typ F34 Länge bis 18,00m Taiwan Georgia Corp. Ing. Büro für Baustatik 75053 Gondelsheim Tel. 0 72 52 / 9 56 23 Meierhof 7 STATISCHE BERECHNUNG "Traverse Typ F34" Länge bis 18,00m Taiwan Georgia Corp. Die statische Berechnung ist ausschließlich aufgestellt

Mehr

4. Allgemeines ebenes Kräftesystem

4. Allgemeines ebenes Kräftesystem 4. llgemeines ebenes Kräftesystem Eine Gruppe von Kräften, die an einem starren Körper angreifen, bilden ein allgemeines Kräftesystem, wenn sich ihre Wirkungslinien nicht in einem gemeinsamen Punkt schneiden.

Mehr

Theoretische Mechanik

Theoretische Mechanik Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 2008 Theoretische Mechanik 9. Übung 9.1 d alembertsches Prinzip: Flaschenzug Wir betrachten

Mehr

Baustatik und Holzbau. Übungen Technische Mechanik I Lösungen

Baustatik und Holzbau. Übungen Technische Mechanik I Lösungen Prof. Ralf-W. oddenberg austatik und Holzbau Hochschule Wismar Übungen Technische echanik I Lösungen Wintersemester 16/17 Lösungen zu Übungen Technische echanik I Inhalt Inhaltserzeichnis Lösungen zu Übungen

Mehr

Berechnungen am Dreieck

Berechnungen am Dreieck 1 Stern Berechnungen am Dreieck Ein fünfzackiger Stern, wie abgebildet, soll völlig symmetrisch sein (alle fünf Linien sind gleich lang und alle gleichartigen Innenwinkel gleich groß) Die Gesamtlänge der

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

Berechnung von Trägerrosten mittels Kraftgrößenmethode

Berechnung von Trägerrosten mittels Kraftgrößenmethode Berechnung von Trägerrosten mittels Kraftgrößenmethode Bachelor Projekt eingereicht am Institut für Baustatik der Technischen Universität Graz im Oktober 2010 Verfasser: Betreuer: Novak Friedrich Dipl.-Ing.

Mehr

Statisch bestimmte Tragsysteme

Statisch bestimmte Tragsysteme Statisch bestimmte Tragsysteme Vorlesung und Übungen 1. Semester BA Architektur KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Statisch

Mehr

Lösungen. S. 167 Nr. 6. S. 167 Nr. 8. S.167 Nr.9

Lösungen. S. 167 Nr. 6. S. 167 Nr. 8. S.167 Nr.9 Lösungen S. 167 Nr. 6 Schätzung: Es können ca. 5000 Haushaltstanks gefüllt werden. Man beachte die Dimensionen der Tanks: Der Haushaltstank passt in ein kleines Zimmer, der große Öltank besitzt jedoch

Mehr

Dreigelenkrahmen unter vertikalen und horizontalen Einzellasten sowie horizontaler Streckenlast

Dreigelenkrahmen unter vertikalen und horizontalen Einzellasten sowie horizontaler Streckenlast www.statik-lernen.de Beispiele Dreigelenkrahmen Seite 1 Auf den folgenden Seiten wird das Knotenschnittverfahren zur Berechnung statisch bestimmter Systeme am Beispiel eines Dreigelenkrahmens veranschaulicht.

Mehr

2. Freie Schwingungen

2. Freie Schwingungen 2. Freie Schwingungen Bei freien Schwingungen greifen keine zeitlich veränderlichen äußeren Kräfte am schwingenden System an. Das System wird nach einer anfänglichen Störung sich selbst überlassen. Die

Mehr

Aufgaben TK II SS 2002 TRAGKONSTRUKTIONEN II. ETHZ Departement Architektur. Professur für Tragkonstruktionen. Prof. Dr. O.

Aufgaben TK II SS 2002 TRAGKONSTRUKTIONEN II. ETHZ Departement Architektur. Professur für Tragkonstruktionen. Prof. Dr. O. Aufgaben TK II Übung 1: Schnittkraftermittlung, Festigkeitslehre Aufgabe : Trog-Querschnitt Querschnitt z 0.2 0.2 Übung 1: Schnittkraftermittlung Festigkeitslehre 1.2 0.3 0.9 S 0.35 0.85 y Ausgabe : Freitag,

Mehr

Technische Mechanik I

Technische Mechanik I 1 Die Technische Mechanik ist ein Teilgebiet der Physik und wird definiert als Lehre von den Bewegungen und den Kräften. Sie lässt sich unterteilen in die Behandlung von Kräften an ruhenden Körpern (Statik,

Mehr