52 5 Gleichgewicht des ebenen Kraftsystems. Festlager

Größe: px
Ab Seite anzeigen:

Download "52 5 Gleichgewicht des ebenen Kraftsystems. Festlager"

Transkript

1 52 5 Gleichgewicht des ebenen Kraftsystems Loslager A estlager B BH Einspannung A M A AH A BV AV Abbildung 5.11: Typische Lagerungen eines starren Körpers in der Ebene (oben) und die zugehörigen Schnittskizzen zur Berechnung der Lagerreaktionen (unten) ür die ein-, zwei- und dreiwertigen Lager werden (unabhängig von der technischen Realisierung) die in der Abbildung 5.11 verwendeten Symbole vereinbart. Die Kräfte und Momente, die von den Lagern auf den starren Körper aufgebracht werden (Lagerreaktionen), sind im Allgemeinen zunächst unbekannt und werden mit Hilfe der Gleichgewichtsbedingungen berechnet. Dafür sollten unbedingt Schnittskizzen angefertigt werden, in denen die weggeschnittenen Lager durch die Lagerreaktionen ersetzt werden (siehe Abbildung 5.11). Da der Richtungssinn der zu berechnenden Lagerreaktionen häufig nicht vorausgesagt werden kann, wird er willkürlich festgelegt (durch Einzeichnen der Pfeilspitzen in die Schnittskizze). Die Rechnung korrigiert die Annahme gegebenenfalls über das Vorzeichen des Ergebnisses. 5.3 Statisch bestimmte Lagerung Wenn durch die Lagerung eines starren Körpers in der Ebene seine drei Bewegungsmöglichkeiten behindert werden, so bleibt er auch unter Belastung in Ruhe. Dafür ist mindestens eine der drei folgenden Kombinationen von Lagern erforderlich: Ein dreiwertiges Lager oder ein einwertiges und ein zweiwertiges Lager oder drei einwertige Lager. Bei gegebener Belastung können für diese drei Kombinationen von Lagern für den starren Körper die Lagerreaktionen aus den drei Gleichgewichtsbedingungen berechnet werden. Dieser all hat besondere praktische Bedeutung: Ein Körper ist statisch bestimmt gelagert, wenn alle Lagerreaktionen allein aus den Gleichgewichtsbedingungen berechnet werden können.

2 5.3 Statisch bestimmte Lagerung 53 Ist der starre Körper durch mehr als drei Bindungen gefesselt, so liegt ein statisch unbestimmtes Problem vor, das mit den für die Statik getroffenen Annahmen (starrer Körper) nicht zu lösen ist. Unter Einbeziehung der Verformbarkeit der Körper (wird in der estigkeitslehre behandelt) können auch für statisch unbestimmt gelagerte Körper die Lagerreaktionen berechnet werden. Beispiel 1: Die in Abbildung 5.12 skizzierten Tragwerke mit statisch bestimmter Lagerung gestatten die Berechnung sämtlicher (drei) Lagerreaktionen ausschließlich über Gleichgewichtsbetrachtungen. Abbildung 5.12: Beispiele statisch bestimmt gelagerter Tragwerke Beispiel 2: Tragwerke mit statisch unbestimmter (überbestimmter) Lagerung (Abbildung 5.13) können nicht mit den Mitteln der Statik allein berechnet werden: Abbildung 5.13: Beispiele statisch unbestimmt gelagerter Tragwerke Beispiel 3: Eine statisch unterbestimmte Lagerung (Abbildung 5.14) nimmt dem Körper nicht sämtliche Bewegungsmöglichkeiten: Abbildung 5.14: Statisch unterbestimmte Lagerung. Mit den gestrichelt gezeichneten Lagen wird angedeutet, dass trotz der Lagerung eine Starrkörperbewegung möglich ist (Bewegung ohne Verformung).

3 54 5 Gleichgewicht des ebenen Kraftsystems Aus der Tatsache, dass eine der eingangs (auf Seite 52) genannten Lagerkombinationen (ein dreiwertiges, ein ein- und ein zweiwertiges oder drei einwertige Lager) den starren Körper bindet, kann noch nicht zwingend auf die statische Bestimmtheit der Lagerung geschlossen werden (drei Bindungen sind dafür notwendige, nicht auch hinreichende Bedingung, siehe nachfolgendes Beispiel). Beispiel 4: Es ist sofort zu sehen (Abbildung 5.15), dass der durch drei Loslager gebundene Träger sich noch horizontal bewegen kann. Die Kraft-Gleichgewichtsbedingung in horizontaler Richtung ist statisch nicht erfüllbar. Abbildung 5.15: Drei einwertige Lager sind keine Garantie für statisch bestimmte Lagerung Beispiel 5: Schwieriger zu erkennen ist, dass dem durch ein estlager und ein Loslager gefesselten Rahmen (Abbildung 5.16) noch eine (unendlich kleine) Rotation um den Punkt A möglich ist, weil keine der Lagerreaktionen ein Moment um diesen Punkt erzeugen kann. Aber auch dieser Sonderfall äußert sich durch unerfüllbare Gleichungen. Die Summe aller Momente um Punkt A z. B. führt auf A' a = 0. Abbildung 5.16: Schwierig zu erkennen: Statisch unbestimmtes System, weil unendlich kleine Drehungen um den Punkt A möglich sind Der statisch bestimmt gelagerte Körper ist in der technischen Praxis nicht etwa die zufällige Ausnahme (unter den unendlich vielen Möglichkeiten, einen Körper zu lagern). Zahlreiche Vorteile sprechen dafür, statisch bestimmte Lagerungen zu bevorzugen, z. B.: Die Lagerreaktionen statisch bestimmt gelagerter Körper sind mit den Mitteln der Statik (und damit besonders einfach) zu berechnen. ertigungsungenauigkeiten führen bei statisch bestimmter Lagerung weder zu Spannungen im Bauteil noch zu einem völlig veränderten Tragverhalten (dies demonstrieren die beiden nachfolgenden Beispiele). Thermische Dehnungen (z. B. durch Temperaturerhöhung) können sich bei statisch bestimmter Lagerung frei ausbilden und führen nicht zu inneren Spannungen im Bauteil (dies wird ausführlich im Abschnitt 14.3 behandelt). Beispiel 6: Der zweifach gelagerte gerade Träger der Abbildung 5.17 stellt sich bei geringer Absenkung einer Stütze etwas schräg, was zu keiner nennenswerten Änderung der Lagerreaktionen führt, während der dreifach gelagerte Träger einer Stützenabsenkung nur durch Verbiegung (verbunden mit inneren Spannungen) folgen kann:

4 5.3 Statisch bestimmte Lagerung 55 Abbildung 5.17: ertigungsungenauigkeit bei statisch bestimmter Lagerung (oben) kein Problem, bei statisch unbestimmter Lagerung (unten) Verformung und innere Spannungen Beispiel 7: Ein an drei Seilen aufgehängter Körper (Abbildung 5.18) belastet die Seile eindeutig (z. B. errechnet man: S3 = G 2 ). Die Seilkräfte ändern sich kaum, wenn eines der Seile etwas länger (oder kürzer) ist und der Körper etwas schräg hängt (in Abbildung 5.18 als all a rechts dargestellt). Abbildung 5.18: Statisch bestimmte Aufhängung: Die Seilkräfte sind weitgehend unabhängig von kleinen Ungenauigkeiten der Seillängen. Durch Anbringen eines vierten Seiles (Abbildung 5.19) ändert sich das Tragverhalten grundlegend, wenn eines der Seile nicht exakt die vorgeschriebene Länge hat, weil der Körper der Längenänderung nicht durch Schrägstellung folgen kann, beispielsweise: Wenn Seil 4 etwas zu lang ist (all b), trägt es nicht mit, und die Seilkräfte 1 bis 3 haben die gleichen Werte wie im all a. Ist dagegen Seil 3 etwas zu lang (all c), muss Seil 4 die gesamte Gewichtskraft aufnehmen: Abbildung 5.19: Statisch unbestimmte Aufhängung: Keine (all b) bzw. drastische Änderung (all c) der Seilkräfte (im Vergleich mit der Aufhängung an drei Seilen) bei kleinen Ungenauigkeiten der Seillängen.

5 56 5 Gleichgewicht des ebenen Kraftsystems Beispiel 8: Wenn zwei Menschen einen Gegenstand (z. B. eine Leiter, Abbildung 5.20) tragen, hat jeder eindeutig eine anteilige Last zu bewältigen. Ein dritter Träger könnte schummeln (oder es schummeln sogar zwei auf Kosten des dritten). Abbildung 5.20: Eindeutige Lastverteilung Beispiel 9: Der skizzierte gerade Träger ist durch die Linienlast q 0 und die Einzelkraft belastet. Er ist bei A gelenkig gelagert und wird zusätzlich durch ein Seil gehalten. Gegeben: l, q 0, = 3q 0 l. Man berechne die Lagerreaktionen bei A und die Seilkraft. Nach dem reischneiden des Trägers können die Unbekannten z. B. durch Momenten-Gleichgewicht um die Punkte A, B und C unabhängig voneinander berechnet und könnten durch eine weitere Gleichgewichtsbeziehung (z. B.: Summe aller Vertikalkräfte) kontrolliert werden: A' q 0 0,6l 0,7l + l S 0,4l sinα = 0 B' q 0 0,6l 0,7l + l AH 0,3l = 0 C' q 0 0,6l 0,3l + 0,6l + AV 0,4l = 0 Die benötigte Winkelfunktion kann unmittelbar aus der Geometrie abgelesen werden: sinα = 0,3l 0,09l 2 + 0,16l 2 = 3 5 und aus den Momenten-Gleichungen ergeben sich die gesuchten Kräfte: S = 14,25q 0 l ; AH = 11,4q 0 l ; AV = 4,95q 0 l. Beispiel 10: Das in Abbildung 5.21 skizzierte Modell eines Krans ist durch seine Eigengewichtskraft K und die Last G belastet. Es ist bei A durch ein estlager, bei B durch ein Loslager abgestützt. Das Seil, an dem die Last G hängt, ist im all a am Kran befestigt, im all b außerhalb des Krans am Boden (technische Realisierung z. B.: Die Winde, die die Last hebt, befindet sich im Kran bzw. außerhalb des Krans).,

6 5.3 Statisch bestimmte Lagerung 57 Abbildung 5.21: Modell eines Krans mit unterschiedlicher Befestigung der Last Gegeben: K = 2kN ; G = 1kN ; a = 0,2c ; b = 0,7c ; d = 0,5c. Man bestimme für beide Varianten die Lagerreaktionen bei A und B. Die unterschiedlichen Befestigungen des Seils zwingen zu unterschiedlichen Schnittführungen (Abbildung 5.22). Um ein von äußeren Bindungen freies System zu erreichen, muss bei der Variante a das Seil überhaupt nicht geschnitten werden. Bei der Variante b dagegen muss auch das Seil von der Unterlage gelöst werden, so dass eine zusätzliche Belastung durch G entsteht. Abbildung 5.22: In Abhängigkeit von der Befestigung des Seils muss unterschiedlich geschnitten werden. Die Auflagerreaktionen ergeben sich unmittelbar aus den Momenten-Gleichgewichtsbeziehungen um die Punkte A und B und das Kräfte-Gleichgewicht in horizontaler Richtung. all a A' K b + G (c + d) B c = 0 B' AV c K (c b) + G d = 0 B = 2,9kN AV = 0,1kN AH = 0 all b A' K b + G (a + c + d) B c = 0 B' AV c + G (d c + a) K (c b) = 0 B = 3,1kN AV = 0,9kN AH = 0

7 58 5 Gleichgewicht des ebenen Kraftsystems Beispiel 11: Ein Motor und eine Arbeitsmaschine sind auf einem gemeinsamen undament (undamentmasse: m ) gelagert und belasten dieses durch die Momente M 1 und M 2 und die Gewichtskräfte ihrer Massen m 1 und m 2. Gegeben: α = 45 ; β = 20 ; m 2 = 2m 1 ; m = 4m 1 ; M 1 = m 1 ga ; M 2 = 3m 1 ga. Gesucht: Kräfte in den Stäben 1, 2 und 3. Die Angriffspunkte der Momente werden nicht benötigt, weil Momente am starren Körper in der Ebene beliebig verschoben und zusammengefasst werden können. Deshalb wurde in der Schnittskizze gleich die Differenz M 1 M 2 eingetragen. An dem freigeschnittenen System gelingt es nur mit Mühe, die Gleichgewichtsbeziehungen so aufzuschreiben, dass jeweils nur eine Unbekannte eingeht (man müsste die Schnittpunkte der Wirkungslinien von jeweils zwei Stabkräften ermitteln und diese als Momentenbezugspunkte wählen). Da der dafür erforderliche Rechenaufwand nicht kleiner ist als das Auflösen gekoppelter linearer Gleichungen 2, werden die beiden Kraft-Gleichgewichtsbeziehungen in horizontaler und vertikaler Richtung und das Momenten-Gleichgewicht um den Befestigungspunkt des Stabes 2 formuliert. ür das Aufschreiben des Momenten-Gleichgewichts verschiebt man die Kräfte 1 und 3 bis in die Punkte ➀ bzw. ➂ und zerlegt sie in zwei Komponenten, von denen jeweils nur eine einen Anteil liefert. Aus den drei Gleichungen 3 cosβ + 2 cosα 1 cosα = 0, 3 sinβ ( )sinα (m 1 + m 2 + m )g = 0, ➁' 3 4acosβ 1 6asinα (4,5m 1 + m 2 + 3m )ga + M 1 M 2 = 0 errechnet man z. B. durch Umstellen der ersten Gleichung nach 2, Einsetzen in die zweite Gleichung, die dann nach 1 umgestellt und in die dritte Gleichung eingesetzt wird: 3 = 1 2 m 1 gcotα cosβ(3 4cotα) + 3sinβ cotα = 5,789m 1g und damit: 1 = 0,297m 1 g ; 2 = 7,396m 1 g. 2 Auch wenn die Lösung von Hand für dieses Problem durchaus noch zumutbar ist, soll schon hier auf Abschnitt 6.3 (Lineare Gleichungssysteme) verwiesen werden. Unter findet man außerdem die Lösung des Gleichungssystems für das hier behandelte Beispiel 11 mit Hilfe unterschiedlicher Software-Produkte.

8 5.4 Aufgaben Aufgaben Aufgabe 5.1: ür den skizzierten Träger sind die Lagerreaktionen bei A und B zu ermitteln. Gegeben: a = 220mm ; b = 800 mm ; c = 210mm ; d = 270 mm ; q 0 = 1N/mm ; = 2 kn. Aufgabe 5.2: Der skizzierte Hebel ist bei A gelenkig gelagert und wird zusätzlich durch ein über eine Umlenkrolle geführtes Seil gehalten (die Hinweise auf Seite 60 können sicher hilfreich sein). Gegeben: a,. Gesucht: Komponenten der Lagerkraft bei A. Aufgabe 5.3: Eine starre Kreisscheibe ist durch ihre im Mittelpunkt angreifende Eigengewichtskraft und die Momente M 1, M 2 und M 3 belastet. Gegeben: M 1 = 120Nm ; M 2 = 180Nm ; M 3 = 200Nm ; G = 200N ; R = 0,3m. Gesucht: Stabkräfte in den Stäben 1, 2 und 3. Aufgabe 5.4: Das skizzierte statische Modell eines Hubwerks ist durch seine Eigengewichtskraft K und die Massen m 1 und m 2 belastet. Die Masse m 2 hängt an einem Seil, das am Hubwerk befestigt ist, m 1 ist über ein Seil an einer Wand außerhalb des Hubwerks befestigt. Gegeben: K = 3kN ; m 1 = 50kg ; m 2 = 150kg. Gesucht: Lagerreaktionen bei A und B.

1. Einfache ebene Tragwerke

1. Einfache ebene Tragwerke Die Ermittlung der Lagerreaktionen einfacher Tragwerke erfolgt in drei Schritten: Freischneiden Aufstellen der Gleichgewichtsbedingungen Auflösen der Gleichungen Prof. Dr. Wandinger 3. Tragwerksanalyse

Mehr

2. Zentrale Kraftsysteme

2. Zentrale Kraftsysteme 2. Zentrale Kraftsysteme Definition: Ein Kraftsystem, bei dem sich die Wirkungslinien aller Kräfte in einem Punkt schneiden, wird als zentrales Kraftsystem bezeichnet. Die Kräfte dürfen entlang ihrer Wirkungslinie

Mehr

4. Allgemeines ebenes Kräftesystem

4. Allgemeines ebenes Kräftesystem 4. llgemeines ebenes Kräftesystem Eine Gruppe von Kräften, die an einem starren Körper angreifen, bilden ein allgemeines Kräftesystem, wenn sich ihre Wirkungslinien nicht in einem gemeinsamen Punkt schneiden.

Mehr

3. Allgemeine Kraftsysteme

3. Allgemeine Kraftsysteme 3. Allgemeine Kraftsysteme 3.1 Parallele Kräfte 3.2 Kräftepaar und Moment 3.3 Gleichgewicht in der Ebene Prof. Dr. Wandinger 1. Statik TM 1.3-1 3.1 Parallele Kräfte Bei parallelen Kräften in der Ebene

Mehr

Dankert/Dankert: Technische Mechanik, 5. Auflage Lösungen zu den Aufgaben, Teil 4 (Kapitel 15-17)

Dankert/Dankert: Technische Mechanik, 5. Auflage Lösungen zu den Aufgaben, Teil 4 (Kapitel 15-17) Dankert/Dankert: Technische Mechanik, 5. Auflage Lösungen zu den Aufgaben, Teil 4 (Kapitel 15-17) Lösung 15.1: Element-Steifigkeitsmatrix Jeweils drei 2*2-Untermatrizen einer Element- Steifigkeitsmatrix

Mehr

1. Aufgabe (ca % der Gesamtpunktzahl)

1. Aufgabe (ca % der Gesamtpunktzahl) . Aufgabe (ca. 7.5 % der Gesamtpunktzahl) S 4 b G S S S 3 F A B 8a Das dargestellte Tragwerk besteht aus 4 Stäben und einer starren Scheibe. Es wird durch die Kraft F und durch die Gewichtskraft G (im

Mehr

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik S 1. Seilkräfte ufgaben zur Statik 28 0 F 1 = 40 kn 25 0 F 2 = 32 kn m Mast einer Überlandleitung greifen in der angegebenen Weise zwei Seilkräfte an. Bestimmen Sie die resultierende Kraft. S 2: Zentrales

Mehr

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik

Hochschule Karlsruhe Technische Mechanik Statik. Aufgaben zur Statik Aufgaben zur Statik S 1. Seilkräfte 28 0 F 1 = 40 kn 25 0 F 2 = 32 kn Am Mast einer Überlandleitung greifen in der angegebenen Weise zwei Seilkräfte an. Bestimmen Sie die resultierende Kraft. Addition

Mehr

Musterlösungen (ohne Gewähr)

Musterlösungen (ohne Gewähr) Herbst 010 Seite 1/0 rage 1 ( Punkte) Ein masseloser Balken der Länge l stützt sich wie skizziert über einen masselosen Stab auf dem Mittelpunkt P einer Rolle ab. Ein horizontal verlaufendes Seil verbindet

Mehr

Dankert/Dankert: Technische Mechanik, 5. Auflage Lösungen zu den Aufgaben, Teil 5 (Kapitel 18)

Dankert/Dankert: Technische Mechanik, 5. Auflage Lösungen zu den Aufgaben, Teil 5 (Kapitel 18) Dankert/Dankert: Technische Mechanik, 5. Auflage Lösungen zu den Aufgaben, Teil 5 (Kapitel 18) Lösung 18.1: Die Aufgabe wird nach der im Beispiel des Abschnitt 18.1.5 demonstrierten Strategie für die Lösung

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 5 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 31 7,5 17,5 9 10 5 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

Mechanik 1. Übungsaufgaben

Mechanik 1. Übungsaufgaben Mechanik 1 Übungsaufgaben Universitätsprofessor Dr.-Ing. habil. Jörg Schröder Universität Duisburg-Essen, Standort Essen Fachbereich 10 - Bauwesen Institut für Mechanik Übung zu Mechanik 1 Seite 1 Aufgabe

Mehr

3. Zentrales ebenes Kräftesystem

3. Zentrales ebenes Kräftesystem 3. Zentrales ebenes Kräftesystem Eine ruppe von Kräften, die an einem starren Körper angreifen, bilden ein zentrales Kräftesystem, wenn sich die Wirkungslinien aller Kräfte in einem Punkt schneiden. f

Mehr

Baumechanik - Repetitorium

Baumechanik - Repetitorium Mechanik und Numerische Methoden Thema 1: Fachwerke Aufgabe 1.1 Ein ebenes Fachwerk wird durch eine Reihe von Einzelkräften unterschiedlicher Größe belastet. a) Weisen Sie nach, dass das Fachwerk statisch

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 6 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 29,5 7 17 10 9,5 7 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

Mehmet Maraz. MechanikNachhilfe

Mehmet Maraz. MechanikNachhilfe Mehmet Maraz MechanikNachhilfe 1. Auflage 015 Inhaltsverzeichnis 1 Statik 1 1.1 Lagerungen und Lagerreaktionen................. 1. Kräftegleichgewichte......................... 5 1..1 Drehmoment.........................

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 5 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 3 4 5 6 Summe Punkte: 31 7,5 17,5 9 10 5 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 6 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 29,5 7 17 10 9,5 7 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

Universität für Bodenkultur

Universität für Bodenkultur Baustatik Übungen Kolloquiumsvorbereitung Universität für Bodenkultur Department für Bautechnik und Naturgefahren Wien, am 15. Oktober 2004 DI Dr. techn. Roman Geier Theoretischer Teil: Ziele / Allgemeine

Mehr

Gleichgewicht am Punkt

Gleichgewicht am Punkt Gleichgewicht am Punkt 3.1 Gleichgewichtsbedingung für einen Massenpunkt.. 52 3.2 Freikörperbild................................... 52 3.3 Ebene Kräftesysteme............................ 55 3.4 Räumliche

Mehr

2. Statisch bestimmte Systeme

2. Statisch bestimmte Systeme 1 von 14 2. Statisch bestimmte Systeme 2.1 Definition Eine Lagerung nennt man statisch bestimmt, wenn die Lagerreaktionen (Kräfte und Momente) allein aus den Gleichgewichtsbedingungen bestimmbar sind.

Mehr

4. Das Verfahren von Galerkin

4. Das Verfahren von Galerkin 4. Das Verfahren von Galerkin 4.1 Grundlagen 4.2 Methode der finiten Elemente 4.3 Beispiel: Stab mit Volumenkraft Prof. Dr. Wandinger 3. Prinzip der virtuellen Arbeit FEM 3.4-1 4.1 Grundlagen Das Verfahren

Mehr

Theoretische Einleitung Fachwerkbrücken Parabelbrücken

Theoretische Einleitung Fachwerkbrücken Parabelbrücken Quellen: www.1000steine.com, www.professorbeaker.com, http://andrea2007.files.wordpress.com, www.zum.de, www.morgenweb.de, www1.pictures.gi.zimbio.com Quellen: www.1000steine.com, www.professorbeaker.com,

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 8 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 Summe Punkte: 29 18,5 11 11 10,5 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

5 Gleichgewicht gebundener Systeme

5 Gleichgewicht gebundener Systeme 29 Technische Systeme bestehen aus mehreren miteinander und mit der Umwelt verbundenen Maschinenteilen. Die Bewegung erfolgt über die Lagerfreiheiten, die Verformung der Körper kann i. Allg. vernachlässigt

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 8 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 3 4 Summe Punkte: 9 8,, 8 Davon erreicht Punkte: Gesamtergebnis Klausur Testate Summe

Mehr

Fragen aus dem Repetitorium II

Fragen aus dem Repetitorium II Fragen aus dem Repetitorium II Folgend werden die Fragen des Repetitoriums II, welche ihr im Skript ab Seite 182 findet, behandelt. Die Seiten werden ständig aktualisiert und korrigiert, so daß es sich

Mehr

Technische Mechanik. Fachwerke

Technische Mechanik. Fachwerke 7 Fachwerke Fachwerke Fachwerke Anwendungsbeispiele... Beispiele aus dem Ingenieurwesen (wikipedia.org) Fachwerke 1 Fachwerke Anwendungsbeispiele nanowerk.com (T. Bückmann) wikipedia.org Beispiele aus

Mehr

Übung zu Mechanik 1 Seite 65

Übung zu Mechanik 1 Seite 65 Übung zu Mechanik 1 Seite 65 Aufgabe 109 Gegeben ist das skizzierte System. a) Bis zu welcher Größe kann F gesteigert werden, ohne daß Rutschen eintritt? b) Welches Teil rutscht, wenn F darüber hinaus

Mehr

Aufgabe 1 (6 Punkte) Prüfungsklausur Technische Mechanik I. Techn. Mechanik & Fahrzeugdynamik

Aufgabe 1 (6 Punkte) Prüfungsklausur Technische Mechanik I. Techn. Mechanik & Fahrzeugdynamik Techn. Mechanik & Fahrzeugdynamik TM I Prof. Dr.-Ing. habil. Hon. Prof. (NUST) D. Bestle 8. September 018 Prüfungsklausur Technische Mechanik I Aufgabe 1 (6 Punkte) Zwei Gewichte (Massen m 1, m ) sind

Mehr

Der Satz von Betti besagt, dass die reziproken äußeren Arbeiten zweier Systeme, die im Gleichgewicht sind, gleich groß sind A 1,2 = A 2,1.

Der Satz von Betti besagt, dass die reziproken äußeren Arbeiten zweier Systeme, die im Gleichgewicht sind, gleich groß sind A 1,2 = A 2,1. Der Satz von Betti oder warum Statik nicht statisch ist. Der Satz von Betti besagt, dass die reziproken äußeren Arbeiten zweier Systeme, die im Gleichgewicht sind, gleich groß sind A 1,2 = A 2,1. (1) Bevor

Mehr

2. Sätze von Castigliano und Menabrea

2. Sätze von Castigliano und Menabrea 2. Sätze von Castigliano und Menabrea us der Gleichheit von äußerer rbeit und Formänderungsenergie kann die Verschiebung am Lastangriffspunkt berechnet werden, wenn an der Struktur nur eine Last angreift.

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 4 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 31 9 15 10 9 6 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

Raimond Dallmann. Baustatik 1. Berechnung statisch bestimmter Tragwerke. 5., aktualisierte Auflage

Raimond Dallmann. Baustatik 1. Berechnung statisch bestimmter Tragwerke. 5., aktualisierte Auflage Raimond Dallmann Baustatik Berechnung statisch bestimmter Tragwerke., aktualisierte uflage .3 leichgewicht am Punkt 9 F + F 3 Hinweis: Da die Länge des Richtungsvektors beliebig ist, wurde für n nicht

Mehr

Technische Mechanik. Statik II. Technische Mechanik Inhaltsübersicht. Prof. (FH) Dr. techn. Andreas Schrempf SS 2016

Technische Mechanik. Statik II. Technische Mechanik Inhaltsübersicht. Prof. (FH) Dr. techn. Andreas Schrempf SS 2016 Technische Mechanik Statik II Prof. (FH) Dr. techn. ndreas Schrempf SS 216. Schrempf (Studiengang Medizintechnik) TME2 SS 216 1/ 22 Technische Mechanik Inhaltsübersicht 1 llgemeines Kraftsystem. Schrempf

Mehr

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 19. März AUFGABE 1 (16 Punkte)

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 19. März AUFGABE 1 (16 Punkte) KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 9. März 2 AUFGABE (6 Punkte) Der Stab 2 in Abb. mit l =,5 m ist in gelenkig gelagert und in 2 abgestützt. In wirkt die Kraft F = 5. N. a) Man bestimme die Reaktionen

Mehr

Zentrale Kräftesysteme

Zentrale Kräftesysteme 2 Zentrale Kräftesysteme Zentrale Kräftesysteme http://www.fotocommunity.de Einteilung von Kräften Grundsätzliches: Einzelkraft ist eine Idealisierung. Volumenkräfte Beispiel: Eigengewicht Flächenkräfte

Mehr

5) GLEICHGEWICHT VON KRAEFTEN (Auflagerreaktionen)

5) GLEICHGEWICHT VON KRAEFTEN (Auflagerreaktionen) BAULEITER HOCHBAU S T A T I K / F E S T I G K E I T S L E H R E 5) GLEICHGEWICHT VON KRAEFTEN (Auflagerreaktionen) 1) Einleitung 2) Definition 3) Gleichgewichtsbedingungen der Ebene 4) Beispiele zur Bestimmung

Mehr

Ebene & räumliche Bewegungen. Eine starre ebene Bewegung ist entweder eine. Translation: alle Punkte haben parallele Geschwindigk.

Ebene & räumliche Bewegungen. Eine starre ebene Bewegung ist entweder eine. Translation: alle Punkte haben parallele Geschwindigk. TechMech Zusammenfassung Ebene & räumliche Bewegungen Drehmoment M [Nm] Andreas Biri, D-ITET 31.07.13 1. Grundlagen Eine starre ebene Bewegung ist entweder eine Translation: alle Punkte haben parallele

Mehr

1. Zug und Druck in Stäben

1. Zug und Druck in Stäben 1. Zug und Druck in Stäben Stäbe sind Bauteile, deren Querschnittsabmessungen klein gegenüber ihrer änge sind: D Sie werden nur in ihrer ängsrichtung auf Zug oder Druck belastet. D Prof. Dr. Wandinger

Mehr

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 17. März 2012 Die Bearbeitungszeit für alle drei Aufgaben beträgt 90 Minuten.

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 17. März 2012 Die Bearbeitungszeit für alle drei Aufgaben beträgt 90 Minuten. KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 7. März Die Bearbeitungszeit für alle drei Aufgaben beträgt 9 Minuten. AUFGABE (6 Punkte) Der Stab in Abb. mit l =,5 m ist in gelenkig gelagert und in abgestützt.

Mehr

Übung 2: Innerer Kräfteverlauf in Fachwerken, Stahlbau

Übung 2: Innerer Kräfteverlauf in Fachwerken, Stahlbau Übung 2: Innerer Kräfteverlauf in Fachwerken, Stahlbau Aufgabe 1 Innerer Kräfteverlauf in Fachwerkträgern. Bestimmen Sie qualitativ (ohne Cremonaplan) die inneren Kräfte in allen Elementen dieser vier

Mehr

5.1 Grundlagen zum Prinzip der virtuellen Kräfte

5.1 Grundlagen zum Prinzip der virtuellen Kräfte 5 Prinzip der virtuellen Kräfte 5. Grundlagen zum Prinzip der virtuellen Kräfte Das Prinzip der virtuellen Kräfte (PvK) stellt eine nwendung des Prinzips der virtuellen rbeit dar. Es dient zur Bestimmung

Mehr

Baustatik und Holzbau. Übungen Technische Mechanik I

Baustatik und Holzbau. Übungen Technische Mechanik I Prof. Ralf-W. oddenberg austatik und Holzbau Hochschule Wismar Übungen Technische Mechanik I Wintersemester 216/217 Inhalt Inhaltsverzeichnis der Übungsaufgaben 2 Zentrale Kraftsysteme Übungen... 2 2.1

Mehr

20 Statik Die resultierende Kraft im ebenen Kräftesystem

20 Statik Die resultierende Kraft im ebenen Kräftesystem 20 Statik Die resultierende Kraft im ebenen Kräftesstem 6.1.3 Beispiel zur Resultierenden im allgemeinen Kräftesstem An einem Brückenträger mit der Segmentlänge a=4m greifen die äußeren Kräfte F 1 =F 2

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Klausur Technische Mechanik 05/08/13 Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Die Bearbeitungszeit der Klausur beträgt drei Stunden. Die Prüfung umfasst die

Mehr

1.1.2 Stabkräfte berechnen

1.1.2 Stabkräfte berechnen 1.1.2 Stabkräfte berechnen Wozu brauche ich dieses Thema? Man braucht die Berechnungsmethoden dieses Themas, um die Kräfte in Fachwerken zu berechnen. Auch Seilkräfte, z.b. im Bridle, können so ermittelt

Mehr

Fachwerkelemente sind an ihren Enden durch reibungsfreie Gelenke miteinander verbunden

Fachwerkelemente sind an ihren Enden durch reibungsfreie Gelenke miteinander verbunden 47 8 achwerke achwerke sind Tragwerkstrukturen aus geraden Stäben. Sie finden ihren Einsatz überall dort, wo große Distanzen zu überbrücken sind. Durch ihren Aufbau vermeiden sie Momentenbelastungen und

Mehr

4. Balken. Brücken Tragflügel KFZ-Karosserie: A-Säule, B-Säule Rahmen: Fahrrad, Motorrad. Prof. Dr. Wandinger 2. Festigkeitslehre TM 2.

4. Balken. Brücken Tragflügel KFZ-Karosserie: A-Säule, B-Säule Rahmen: Fahrrad, Motorrad. Prof. Dr. Wandinger 2. Festigkeitslehre TM 2. 4. Balken Balken sind eindimensionale Idealisierungen für Bauteile, die Längskräfte, Querkräfte und Momente übertragen können. Die Querschnittsabmessungen sind klein gegenüber der Länge. Beispiele: Brücken

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Institut für Mechanik und Fluiddynamik Prof. Dr.-Ing. Ams Matrikelnummer: Klausur Technische Mechanik 05/02/13 Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Die Bearbeitungszeit

Mehr

1. Ebene gerade Balken

1. Ebene gerade Balken 1. Ebene gerade Balken Betrachtet werden gerade Balken, die nur in der -Ebene belastet werden. Prof. Dr. Wandinger 4. Schnittlasten bei Balken TM 1 4.1-1 1. Ebene gerade Balken 1.1 Schnittlasten 1.2 Balken

Mehr

Übung 9: Ebene Schubfeldträger II

Übung 9: Ebene Schubfeldträger II Ausgabe: 25..25 Übung 9: Ebene Schubfeldträger II Einleitung und Lernziele Schubfeldträger sind zentrale Strukturelemente im Leichtbau. Sie bieten gegenüber den einfacheren achwerkkonstruktionen einige

Mehr

1 Fragestellungen der Statik... 1

1 Fragestellungen der Statik... 1 VII 1 Fragestellungen der Statik... 1 2 Kräfte und ihre Wirkungen... 5 2.1 Äußere Kräfte, wirkende Lasten... 5 2.2 Reaktionskräfte und innere Kräfte... 8 2.3 Kräfte am starren Körper... 10 2.3.1 Linienflüchtigkeitsaxiom...

Mehr

Umwelt-Campus Birkenfeld

Umwelt-Campus Birkenfeld Klausur GRUMEMA SS 2017 Name: Vorname: Mat.-Nr.: Bitte nicht ausfüllen Gesamtpunktzahl: Unterschrift Technische Mechanik: Maschinenelemente: 120 Erreichte Punktzahl: Note: Termin: Mi, 20.07.2017, 13 00

Mehr

Technische Mechanik. Statik

Technische Mechanik. Statik Hans Albert Richard Manuela Sander Technische Mechanik. Statik Lehrbuch mit Praxisbeispielen, Klausuraufgaben und Lösungen 4., überarbeitete und erweiterte Auflage Mit 263 Abbildungen ^ Springer Vieweg

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 3 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 5 6 Summe Punkte: 31 5,5 15,5 10,5 11,5 6 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

VEKTOREN. Beispiel: Ermitteln Sie die Resultierende aus den beiden Kräften graphisch.

VEKTOREN. Beispiel: Ermitteln Sie die Resultierende aus den beiden Kräften graphisch. Beispiel: Ermitteln Sie die Resultierende aus den beiden Kräften graphisch. 4 kn 6 kn 5 kn 3,5 kn Seite 1 von 19 Beispiel: Die Kraft F soll auf 2 Kraftkomponenten entlang der Wirkungslinien aufgeteilt

Mehr

9 Mehrkörpersysteme. Anwendungsbeispiele

9 Mehrkörpersysteme. Anwendungsbeispiele 63 Bei vielen technischen Fragestellungen kann man die Verformungen der Maschinenteile gegenüber den durch Lager ermöglichten Bewegungen vernachlässigen. Die daraus resultierenden Modelle bezeichnet man

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Klausur Technische Mechanik 10.09.2012 Matrikel: Folgende Angaben sind freiwillig: Name: Studiengang: Hinweise: Die Bearbeitungszeit der Klausur beträgt drei Stunden. Die Prüfung umfasst die drei Stoffgebiete

Mehr

Grundlagen der Physik 1 Lösung zu Übungsblatt 8

Grundlagen der Physik 1 Lösung zu Übungsblatt 8 Grundlagen der Physik 1 Lösung zu Übungsblatt 8 Daniel Weiss 1. Dezember 29 Inhaltsverzeichnis Aufgabe 1 - inhomogener hängender Balken 1 a) Seilkräfte...................................... 1 b) Schwerpunkt....................................

Mehr

Fachwerke

Fachwerke 1. Fachwerke Ein Fachwerk besteht aus einzelnen Stäben, die in den Knoten gelenkig miteinander verbunden sind. Am Beispiel des Fachwerks lassen sich die einzelnen Berechnungsschritte einer Finite-Elemente-Rechnung

Mehr

Hauptdiplomprüfung Statik und Dynamik Pflichtfach

Hauptdiplomprüfung Statik und Dynamik Pflichtfach UNIVERSITÄT STUTTGART Institut für Statik und Dynamik der Luft- und Raumfahrtkonstruktionen Komm. Leiter: Prof. Dr.-Ing. S. Staudacher Hauptdiplomprüfung Statik und Dynamik Pflichtfach Herbst 2011 Aufgabenteil

Mehr

Baustatik I (WS 2017/2018) 1. Einführung. 1.2 Modellbildung LEHRSTUHL FÜR BAUSTATIK UNIVERSITÄT SIEGEN

Baustatik I (WS 2017/2018) 1. Einführung. 1.2 Modellbildung LEHRSTUHL FÜR BAUSTATIK UNIVERSITÄT SIEGEN Baustatik I (WS 2017/2018) 1. Einführung 1.2 Modellbildung 1 Statische Berechnungen Für die statischen Berechnungen sind geeignete Tragwerksmodelle mit den maßgebenden Einflussgrößen zu wählen, welche

Mehr

5.5.2 Kräfte am Auflager (http://www.ki-smile.de/kismile/view70,6,382.html)

5.5.2 Kräfte am Auflager (http://www.ki-smile.de/kismile/view70,6,382.html) Eckleinjarten a. 7580 remerhaven 047 46 rath-u@t-online.de 5.5. Kräfte am uflager (http://www.ki-smile.de/kismile/view70,6,8.html) ufgaben mit Löser ür eine rässpindel von 50 mm Länge sind die uflagerkräfte

Mehr

Übung zu Mechanik 4 Seite 17

Übung zu Mechanik 4 Seite 17 Übung zu Mechanik 4 Seite 17 Aufgabe 31 Gegeben sei der dargestellte, gedämpfte Schwinger. Die beiden homogenen Kreisscheiben (m B, r B und m C, r C ) sind fest miteinander verbunden und frei drehbar auf

Mehr

1.3. Aufgaben zur Statik

1.3. Aufgaben zur Statik 1.3. Aufgaben ur Statik Aufgabe 1: Kräfteerlegung Ein Schlitten kann auf einer Schiene horiontal bewegt werden. Im Winkel von = 40 ur Schiene ieht ein Seil mit der Kraft = 100 N an dem Schlitten. Bestimme

Mehr

Kräfte. Vorlesung und Übungen 1. Semester BA Architektur. Institut Entwerfen und Bautechnik, Fachgebiet Bautechnologie/Tragkonstruktionen

Kräfte. Vorlesung und Übungen 1. Semester BA Architektur.  Institut Entwerfen und Bautechnik, Fachgebiet Bautechnologie/Tragkonstruktionen Kräfte Vorlesung und Übungen 1. Semester BA Architektur Institut Entwerfen und Bautechnik, / KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Unregelmäßig geformte Scheibe Best.- Nr. MD02256

Unregelmäßig geformte Scheibe Best.- Nr. MD02256 Unregelmäßig geformte Scheibe Best.- Nr. MD02256 Momentenlehre Ziel Die unregelmäßig geformte Scheibe wurde gewählt, um den Statik-Kurs zu vervollständigen und um einige praktische Versuche durchzuführen.

Mehr

2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay

2. Momentanpol. Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: y A ), v Py. =v Ay ufgabenstellung: Für die Geschwindigkeit eines beliebigen Punktes P eines starren Körpers gilt: Gesucht ist der Punkt П, dessen momentane Geschwindigkeit null ist. Lösung: v Px =x ( y P y ), v Py =y +

Mehr

3. Das Gleichungssystem

3. Das Gleichungssystem Lagerung: Damit das Fachwerk Kräfte aufnehmen kann, muss es gelagert werden, Die Lagerung muss so beschaffen sein, dass keine Starrkörperbewegungen oder Mechanismen mehr möglich sind. Die Verschiebungen

Mehr

Drehimpuls, Drehmoment, Kraft-/Drehmoment-"Wandler"

Drehimpuls, Drehmoment, Kraft-/Drehmoment-Wandler Aufgaben 5 Rotations-Mechanik Drehimpuls, Drehmoment, Kraft-/Drehmoment-"Wandler" Lernziele - das Drehimpulsbilanzgesetz verstehen und anwenden können. - wissen und verstehen, dass sich die Wirkung einer

Mehr

Berufsakademie Stuttgart Prof. Dr.-Ing. Alexander Jickeli Aufgabensammlung: Klausuraufgaben Technische Mechanik, Statik Seite 1

Berufsakademie Stuttgart Prof. Dr.-Ing. Alexander Jickeli Aufgabensammlung: Klausuraufgaben Technische Mechanik, Statik Seite 1 Aufgabensammlung: Klausuraufgaben Technische Mechanik, Statik Seite 1 Aufgabe 1.: Freischnitt, 13 Punkte, Klausur vom 10.5.99 Aufgabe 2.: (insgesamt 11 Punkte) Aufgabensammlung: Klausuraufgaben Technische

Mehr

Mechanik II: Deformierbare Körper für D-BAUG, D-MAVT Haus- & Schnellübung 1

Mechanik II: Deformierbare Körper für D-BAUG, D-MAVT Haus- & Schnellübung 1 Aufgabe S1: Ein Würfel mit Kantenlänge L und Gewicht G liegt reibungsbehaftet auf einer schiefen Ebene (Winkel 45 ). Wie in der Skizze dargestellt, wirkt am Würfel eine dreiecksverteilte Linienlast mit

Mehr

1.Fachwerke. F1 = 4,5 kn, F2 = 3,4 kn,

1.Fachwerke. F1 = 4,5 kn, F2 = 3,4 kn, 1.Fachwerke # Frage Antw. P. F1 = 4,5 kn, F =,4 kn, 1 a Prüfen Sie das Fachwerk auf statische Bestimmtheit k=s+ ist hier 5 = 7 +, stimmt. Also ist das FW statisch bestimmt. 4 b Bestimmen Sie die Auflagerkraft

Mehr

Vorlesung Technische Mechanik 1 Statik, Wintersemester 2007/2008. Technische Mechanik

Vorlesung Technische Mechanik 1 Statik, Wintersemester 2007/2008. Technische Mechanik Technische Mechanik 1. Einleitung 2. Statik des starren Körpers 3. Statik von Systemen starrer Körper 3.1 Gleichgewichtsbedingungen, das Erstarrungsprinzip 3.2 Lager 3.2.1 Lagerung in der Ebene 3.2.2 Allgemeiner

Mehr

In der Technik treten Fachwerke als Brückenträger, Masten, Gerüste, Kräne, Dachbindern usw. auf.

In der Technik treten Fachwerke als Brückenträger, Masten, Gerüste, Kräne, Dachbindern usw. auf. 6. Ebene Fachwerke In der Technik treten Fachwerke als Brückenträger, Masten, Gerüste, Kräne, Dachbindern usw. auf. 6.1 Definition Ein ideales Fachwerk besteht aus geraden, starren Stäben, die miteinander

Mehr

Einführung in die Statik und räumliche Kraftsysteme

Einführung in die Statik und räumliche Kraftsysteme Leseprobe Kirbs Einführung in die Statik und räumliche Kraftsysteme TECHNISCHE MECHANIK Studienbrief 2-050-0904 3. Auflage 2008 HOCHSCHULVERBUND DISTANCE LEARNING Impressum Verfasser: Prof. Dr.-Ing. Jörg

Mehr

2.4 Systeme starrer Körper in der Ebene, das Erstarrungsprinzip

2.4 Systeme starrer Körper in der Ebene, das Erstarrungsprinzip 56 2 Statik des starren Körpers 2.4 Systeme starrer Körper in der Ebene, das Erstarrungsprinzip isher haben wir uns lediglich mit dem leichgewicht einzelner starrer Körper befaßt; in diesem Kapitel behandeln

Mehr

Lehrveranstaltung Stereostatik

Lehrveranstaltung Stereostatik Lehrveranstaltung Stereostatik Thema 2: Zentrale Kräftesysteme Bergische Universität Wuppertal Baumechanik und Numerische Methoden Prof. Dr.-Ing. W. Zahlten Mechanik 1 Zentrale Kräftesysteme 2.1 Problemstellung

Mehr

Drehimpuls, Drehmoment, Kraft-/Drehmoment-"Wandler"

Drehimpuls, Drehmoment, Kraft-/Drehmoment-Wandler Aufgaben 5 Rotations-Mechanik Drehimpuls, Drehmoment, Kraft-/Drehmoment-"Wandler" Lernziele - das Drehimpulsbilanzgesetz verstehen und anwenden können. - wissen, dass sich die Wirkung einer Kraft nicht

Mehr

5 Haftreibung Technische Mechanik Haftreibung

5 Haftreibung Technische Mechanik Haftreibung 5 Haftreibung Haftreibung 1 Haftkraft kompakt: Spezielles Lager Kontaktkraft: Aufgrund der Rauhigkeit kann sowohl vertikale Kraft N als auch horizontale Kraft H übertragen werden Kraft N ist Druckkraft

Mehr

1.6 Nichtzentrale Kräftesysteme

1.6 Nichtzentrale Kräftesysteme 1.6 Nichtzentrale Kräftesysteme 1.6.1 Zusammensetzen von ebenen Kräften mit verschiedenen ngriffspunkten Je zwei Kräfte bilden ein zentrales Kräftesystem, wenn sie nicht gerade zueinander parallel verlaufen

Mehr

Kraftwinder S = a = a

Kraftwinder S = a = a Prof. Dr.-ng. Prof. E.h. P. Eberhard A Kraftwinder Der skizzierte Eckpfosten eines Gartenzaunes ist bei A fest im Boden verankert. Er wird in B durch die Kräfte, und belastet. Die Punkte B und C sind durch

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Institut für Mechanik und Fluiddynamik Klausur Technische Mechanik 11/02/14 Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Die Bearbeitungszeit der Klausur beträgt

Mehr

FACHBEREICH ARCHITEKTUR WS 16/17 TECHNISCHE UNIVERSITÄT KAISERSLAUTERN VEKTOREN

FACHBEREICH ARCHITEKTUR WS 16/17 TECHNISCHE UNIVERSITÄT KAISERSLAUTERN VEKTOREN FACHBEREICH ARCHITEKTUR WS 16/17 Beispiel: Ermitteln Sie die Resultierende aus den beiden Kräften graphisch. 4 kn 6 kn 5 kn 3,5 kn Seite 1 von 18 FACHBEREICH ARCHITEKTUR WS 16/17 Beispiel: Die Kraft F

Mehr

Mechanik I. Statik und Festigkeitslehre

Mechanik I. Statik und Festigkeitslehre Mechanik I Statik und Festigkeitslehre Vorlesungsbegleitende Unterlagen Bernd Binninger Aachen im Herbst 2018 Institut fu r Technische Verbrennung RWTH Aachen Inhaltsverzeichnis 1 Statik 1 1.1 Kraft...........................................

Mehr

MECHANIK & WERKSTOFFE

MECHANIK & WERKSTOFFE MECHANIK & WERKSTOFFE Statik Lagerung von Körpern 1-wertig Pendelstütze Seil (keine Lasten dazwischen) (nur Zug) Loslager Anliegender Stab Kraft in Stabrichtung Kraft in Seilrichtung Kraft in Auflagefläche

Mehr

Lineare Gleichungssysteme mit 2 Variablen

Lineare Gleichungssysteme mit 2 Variablen Lineare Gleichungssysteme mit 2 Variablen Lineare Gleichungssysteme mit 2 Variablen Einzelne lineare Gleichungen mit zwei Variablen Bis jetzt haben wir nur lineare Gleichungen mit einer Unbekannten (x)

Mehr

Innere Beanspruchungen - Schnittgrößen

Innere Beanspruchungen - Schnittgrößen Innere Beanspruchungen - Schnittgrößen Vorlesung und Übungen 1. Semester BA Architektur Q () M () M () Q () N () N () L - KIT Universität des Landes Baden-Württemberg und nationales orschungszentrum in

Mehr

4. Verzerrungen. Der Abstand von zwei Punkten ändert sich. Der Winkel zwischen drei Punkten ändert sich

4. Verzerrungen. Der Abstand von zwei Punkten ändert sich. Der Winkel zwischen drei Punkten ändert sich 4. Verzerrungen Wird ein Körper belastet, so ändert sich seine Geometrie. Die Punkte des Körpers ändern ihre Lage. Sie erfahren eine Verschiebung. Ist die Verschiebung für benachbarte Punkte unterschiedlich,

Mehr

Rheinische Fachhochschule Köln

Rheinische Fachhochschule Köln Rheinische Fachhochschule Köln Matrikel-Nr. Nachname Dozent Ianniello e-mail: Semester Klausur Datum BM II, S K 01. 07. 13 Genehmigte Hilfsmittel: Fach Urteil Statik u. Festigkeit Ergebnis: Punkte Taschenrechner

Mehr

D-MAVT Lineare Algebra I HS 2018 Prof. Dr. N. Hungerbühler. Lösungen 7

D-MAVT Lineare Algebra I HS 2018 Prof. Dr. N. Hungerbühler. Lösungen 7 D-MAVT Lineare Algebra I HS 8 Prof. Dr. N. Hungerbühler Lösungen 7. Gegeben seien: A := ( ), A := 5 ( ) 3 4. 4 3 Welche der folgenden Aussagen gelten? (a) A ist orthogonal. (b) A ist orthogonal. Lösung.

Mehr

tgt HP 2007/08-5: Krabbenkutter

tgt HP 2007/08-5: Krabbenkutter tgt HP 2007/08-5: Krabbenkutter Zum Fang von Krabben werden die Ausleger in die Waagrechte gebracht. Die Fanggeschirre werden zum Meeresboden abgesenkt. Nach Beendigung des Fanges werden die Ausleger in

Mehr

tgt HP 1997/98-1: Verladeanlage

tgt HP 1997/98-1: Verladeanlage Mit Hilfe der skizzierten Verladeanlage wird Schüttgut vom Lkw auf Schiffe verladen. Beim An- und Ablegen der Schiffe muss wegen der Aufbauten und Masten die Brücke der Verladeanlage durch eine Seilwinde

Mehr

1. Stabsysteme. 1.1 Statisch bestimmte Stabsysteme 1.2 Statisch unbestimmte Stabsysteme 1.3 Stabsysteme mit starren Körpern

1. Stabsysteme. 1.1 Statisch bestimmte Stabsysteme 1.2 Statisch unbestimmte Stabsysteme 1.3 Stabsysteme mit starren Körpern 1. Stbsysteme 1.1 Sttisch bestimmte Stbsysteme 1.2 Sttisch unbestimmte Stbsysteme 1.3 Stbsysteme mit strren Körpern Prof. Dr. Wndinger 4. Trgwerke TM 2 4.1-1 1.1 Sttisch bestimmte Stbsysteme Längenänderung

Mehr

Webinar: Statik Thema: Cremonaplan Zeicherische Ermittlung der Stabkräfte eines Fachwerks. 4 kn 6 kn I IV V VI III

Webinar: Statik Thema: Cremonaplan Zeicherische Ermittlung der Stabkräfte eines Fachwerks. 4 kn 6 kn I IV V VI III Webinar: Statik Thema: Cremonaplan Zeicherische Ermittlung der Stabkräfte eines Fachwerks Aufgabe: Cremonaplan 8 9 0 Gegeben sei das obige Fachwerk welches durch die beiden äußeren Kräfte belastet wird.

Mehr

Die Kraft. F y. f A. F x. e y. Institut für Mechanik und Fluiddynamik Festkörpermechanik: Prof. Dr. M. Kuna

Die Kraft. F y. f A. F x. e y. Institut für Mechanik und Fluiddynamik Festkörpermechanik: Prof. Dr. M. Kuna Institut für echanik und luiddnamik estkörpermechanik: Prof. Dr.. Kuna Technische echanik rbeitsblätter Die Kraft f e e T rbeitsblätter_7.0.00_neu.doc Institut für echanik und luiddnamik estkörpermechanik:

Mehr