Zinsderivate. Stefan Waldenberger. 15. Jänner 2008

Größe: px
Ab Seite anzeigen:

Download "Zinsderivate. Stefan Waldenberger. 15. Jänner 2008"

Transkript

1 Zinsderivate Stefan Waldenberger 15. Jänner 2008 Inhaltsverzeichnis 1 Einführung und Begriffsbestimmung Wiederholung Zinskurven Verwendung der Zinskurven Zinskurvenszenarien Prinzip der Kursberechnung Zinsderivate Zinsswap (Plain Vanilla Swap) Wert eines Swaps Veränderung der Zinskurve Equity-Swap Rendite-Swap(Constant Maturity Swap) Interest Rate Derivatives Options Swaptions Caps Accrual Swaps Wertberechnung

2 1 Einführung und Begriffsbestimmung 1.1 Wiederholung Derivat Ein Derivat ist ein Finanzmarktinstrument, dessen Wert sich auf den Wert von Handelsgütern bezieht (Basiswert, Underlying asset). Dieser Basiswert kann ein Rohstoff, eine Aktie, oder auch etwas Anderes sein. In diesem Proseminar sind diese Underlyings Zinssätze, weswegen man auch von Zinsderivaten spricht. 1.2 Zinskurven Der Wert eines Zinsderivats muss natürlich von den aktuellen Zinskurven abhängen, da der Basiswert eines Zinsderivats immer mit Zinssätzen zu tun hat. Deswegen betrachten wir zuerst einmal Zinskurven, genauer gesagt Nullzinskurven (Zero-Curves, Spot-Curves). Man unterscheidet hier zwischen Geldmarkt (Veranlagungszeitraum bis zu einem Jahr) und Kapitalmarkt (Veranlagungszeitraum ab einem Jahr). Unten sehen Sie die aktuellen Kurven [3] [4] Auf der x-achse ist der Veranlagungszeitraum (Maturity) aufgetragen, auf der y-achse der Zinssatz (Zero), den man erhält, wenn man sein Kapital auf diese Dauer veranlagt. Diese Zerokurven müssen zuerst einmal durch Bootstrapping berechnet werden, d.h. indem man mehrere Coupon-Bonds hernimmt und sich aus deren Zinssätzen und Kursen seine Zerokurve berechnet. Dies soll hier jedoch aus zeitlichen Gründen nicht behandelt werden Verwendung der Zinskurven Die Notwendigkeit diese Zero-Kurven zu berechnen kommt daher, dass man aus ihnen die Forward Rates berechnen kann. Zur Wiederholung Forward Rates sind die Zinssätze, die ich bekomme, wenn ich mein Kapital zum Zeitpunkt T bis zum Zeitpunkt S veranlage. Zum Beispiel: Wenn ich mein Geld in 3 Jahren (also 2011) für 2 Jahre (bis 2013) veranlage, kann ich mit einem Zinssatz rechnen, der der Forward Rate entspricht. Mit diesen ist es dann leicht möglich, den Wert von Zinsderivaten zu bestimmen, allerdings werden die Forward Rates aus der aktuellen Zinskurve berechnet, d.h. sobald sich die Zinskurve verändert, ändern sich auch die Forward Rates, wodurch sich dann auch wieder der Wert meines Derivats verändert. Da also diese Zinskurvenveränderung hauptsächlich den Wert von Derivaten (und genauso von Anleihen) bestimmt, möchte ich hier zuerst ein paar Begriffe erklären. 2

3 1.2.2 Zinskurvenszenarien Die Veränderung der Zinskurve setzt sich im Wesentlichen aus Shifts und Twists zusammen. Bei Shifts handelt es sich um ein Verschieben der Zinskurve nach oben oder unten. Bei Twists wird die Zinskurve steiler oder flacher. Dafür haben sich folgende Bezeichnungen eingeführt: Bearish: Die Zinskurve verschiebt sich nach unten (i.a: Schlecht für Kurse) Bullish: Die Zinskurve verschiebt sich nach oben (i.a: Positiv für Kurse) Steepen: Eine Versteilerung der Zinskurve Flatten: Eine Verflachung der Zinskurve Das folgende Bild zeigt die Zinskurve im August 2007 und eventuell mögliche Szenarien. Zu erwähnen ist, dass die Zinskurve zum damaligen Zeitpunkt ausgesprochen flach war. 1.3 Prinzip der Kursberechnung Berechnungen erfolgen auf dem No-Arbitrage-Prinzip, d.h. dass keine der beiden Vertragsparteien einen risikolosen Gewinn machen kann. Um den Kurs eines Forwards zu berechnen, spielt also immer der Zeitwert des Geldes eine Rolle. Der Wert eines Forward Contracts ist nämlich immer die Summe der abgezinsten Zahlungsströme. Abgezinst bedeutet Zeitwert des Geldes, d. h. wie viel Geld ich heute risikolos veranlagen müsste, um dann den Wert des Zahlungsstroms zu dessen Zeitpunkt zu haben. Dies wird jedoch anschließend noch genauer behandelt. 3

4 2 Zinsderivate 2.1 Zinsswap (Plain Vanilla Swap) Bei einem Zinsswap tauscht man einen fixen (fix) Zinssatz gegen einen variablen (floating) auf einen ausgemachten Basiswert. Diese beiden Zinssätze nennt man die Legs eines Swaps. Leg 1 wäre hier der fixe Zinssatz, während Leg 2 der variable Zinssatz wäre. Der variable Zinssatz ist meist ein LIBOR oder EURIBOR Satz. Man zahlt zum Beispiel einen fixen Zinssatz und erhält dafür einen variablen. Man zahlt oder bekommt also effektiv immer genau die Differenz zwischen dem aktuellen variablen Zinssatz und dem Fixen. Diese Zahlungen finden zu bestimmten festgelegten Zeitpunkten statt (normalerweise jedes Viertel-, Halb- oder Jahr). Der Vertrag hat damit auch eine festgelegte Dauer. Zum Beispiel: Firma A und B gehen einen Swap auf den Basiswert von ein. Firma A verpflichtet sich einen fixen Zinssatz von 4% jährlich zu zahlen, während Firma B sich verpflichtet den 12-Monats- EURIBOR zu zahlen. Die Zahlungen sollen jährlich bis 2012 erfolgen. Wenn man nun über die Jahre die Zahlungen vergleicht und aufschreibt, erhält man eine Cash Flow Tabelle. Dies ist nun also die Cash Flow Tabelle der Firma A mit den erfundenen zukünftigen Werten für den EURIBOR Date 12-M-EUR Floating Fix Gesamt ,5% ,8% ,3% ,5% GESAMT Die Cash Flow Tabelle für Firma B würde genauso aussehen, nur dass hier die Vorzeichen vertauscht werden. Man sieht nun, dass es keinen Sinn macht den Basiswert zu tauschen, da dieser ja nur hin und her gewechselt werden würde. Man kann daher einen Swap auch als einen Austausch von 2 Anleihen betrachten, nämlich 2 Anleihen mit dem gleichen Basiswert und gleicher Laufzeit, wobei eine Anleihe 4% fix als Coupon zahlt und die andere den 12-M-EUR. In der Realität werden Verträge über Zinsderivate nur selten zwischen zwei Firmen direkt abgeschlossen, sondern normalerweise geht man diesen Vertrag mit einem Finanzinstitut ein, z.b. einer Bank. Die Bank verrechnet dann ca. 3 Basispoints (bp) Wert eines Swaps Berechnung über Anleihen Wie wir ja schon festgestellt haben, kann ein Swap ja auch als die Differenz von zwei verschiedenen Anleihen dargestellt werden (5% fix vs. 3-M-EURIBOR entspricht einer Fixcouponanleihe mit 5% und einem Geldmarktfloater mit dem 3-M-EURIBOR). Der Wert des Swaps V = B fix B float, also der Unterschied zwischen dem Wert der Fixzinsanleihe und dem Wert der variabel verzinsten Anleihe. Dies gilt wenn ich den fixen Coupon erhalte und den variablen zahle. Im umgekehrten Fall gilt dann natürlich V = B float B fix. B fix ist ja wie wir bereits wissen die Summe der abgezinsten Cash Flows B fix = n i=1 ke riti + Ke rntn 4

5 B float kann berechnet werden, indem man sich überlegt, dass ein Geldmarktfloater nach einem Zahlungstag immer Kurs 100 hat, also genau das eingesetzte Kapital wert ist. Zwischen zwei Zahlungsperioden hat er den Wert B float = Ke r1t1 + k e r1t1, wobei K das eingesetzte Kapital, k die inzwischen bekannte Floating Rate und r 1 der risikolose Zinssatz für die Dauer t 1 ist. Berechnung über Forwards Der Wert des Swaps muss der Zeitwert der kommenden Geldflüsse sein, da ansonsten ja Arbitrage möglich wäre. Deshalb ist es möglich, den Wert eines Forwards analog zu Anleihen durch die abgezinsten Zahlungsströme zu berechnen, wobei für die Zahlungsströme die Forwards zur Berechnung herangezogen werden. Beispiel Anschließend noch ein kleines Beispiel zur Berechnung von Swaps, das ich von [1] übernommen habe. Man sieht hier, dass auch wirklich mit beiden Methoden das gleiche herauskommt. Betrachten wir also einen Swap auf einen nominellen Wert von 100 Millionen mit halbjährlichen Zahlungen, indem wir einen 6-M-LIBOR bezahlen und dafür eine fixe Rate von 8% erhalten. Die Zinsraten für 3,9,15 Monate seien 10.0%,10.5%,11.0%. Dann folgt mit der Methode der Bewertung durch Anleihen: B fix = e , e e e = Der 6-M-LIBOR sei momentan 10.2%. Damit folgt: B float = e , e ,10 = 102, 51 Der Wert des Swaps ist also für uns = 4.27 Millionen. Die Forwards können, wie im Proseminar über Anleihen bereits erklärt, berechnet werden, wodurch man die Halbjahresforwardraten % und % für 3 bzw. 9 Monate erhält. Damit kann man nun also die Zahlungsströme berechnen: 1.Termin (3 Monate): 100 ( ) 1 2 e = Termin (9 Monate): 100 ( ) 1 2 e = Termin (15 Monate): 100 ( ) 1 2 e = 1.79 Zählt man nun diese Zahlungsströme zusammen, so erhält man ( 1.41) + ( 1.79) = 4.27 und damit das gleiche Ergebnis wie oben. Es führen also tatsächlich beide Methoden zur selben Antwort Veränderung der Zinskurve Ich möchte nun anhand dieses einfachen Swaps erklären wie sich der Wert verändert, wenn sich die Zinskurve verschiebt. Ich betrachte jetzt das Beispiel von oben: Bearish: Man sieht sofort, dass wenn die Zinskurve nach unten verschoben wird, dann der Wert des Derivats steigen wird, da die Differenz kleiner wird. Bullish: Hier ist es eben genau umgekehrt, da die Zinskurve nach oben verschoben wird und die Differenz sich jetzt noch weiter vergrößert. Flatten & Steepen: Eine Verflachung oder Versteilerung der Kurve wird unseren Swap kaum beeinflussen. Der Grund warum sich der Wert trotzdem ändern wird, ist, dass in einem Twist abhängig vom Drehpunkt immer noch ein Shift steckt. 5

6 2.2 Equity-Swap Bei einem Equity-Swap wird einem Zinssatz ein Aktienindex anstelle eines anderen Zinssatzes gegenübergestellt. Hierbei berechnet man dann die prozentuelle Veränderung des Aktienindex und vergleicht dann diese mit dem variablen Zinssatz. Zum Beispiel könnte man folgenden Equity Swap abschließen: Leg 1 sei ein fixer Zinssatz von 5%, Leg 2 der ATX und die Zahlungen sollen halbjährlich erfolgen. Der Betrag auf den der Vertrag abgeschlossen wird sei wieder Man zahlt also jetzt halbjährlich /2 = und erhält dafür die prozentuelle Veränderung des Aktienindex. Angenommen der ATX ist seit dem um 4 % gewachsen so erhält man = Man würde also zu diesem Zeitpunkt einen Gewinn von = machen. Würde der ATX um 3 % fallen, so müsste man erstens die zahlen und zweitens auch noch den Kursverlust , 03 = zahlen, also insgesamt = Man verliert also zu diesem Zeitpunkt Man kann Equity-Swaps auch auf einzelne Aktien abschließen. Somit kann man sich gegen das Risiko von Kursverlusten durch Aktien abzusichern: Befürchte ich zum Beispiel, dass der ATX stark verlieren wird, so gehe ich also einen Payer-Equity- Swap ein, d.h. ich bezahle die prozentuelle Veränderung des ATX und erhalte dafür einen fixen Zinssatz. Nehmen wir also das Beispiel von oben her: Steigt der ATX um maximal 5%, angenommen 4%, so habe ich immer noch einen Gewinn von ( ) = mit meinem Derivat. Die Gewinne die ich dabei außerdem noch mit meinen Aktien mache sind hier allerdings noch nicht dabei. Fällt der ATX, angenommen 4%, so habe ich einen hohen Gewinn ( ) = , wobei auch hier wieder zu bercksichtigen ist, dass meine Aktien dann wahrscheinlich auch Verluste erzielen werden. Steigt er jedoch um mehr als 5%, so habe ich einen Verlust. Wenn ich also bereits Aktien aus dem ATX besitze, diese jedoch aus vielleicht steuerlichen Gründen nicht verkaufen will (in Österreich zahlt man eine Spekulationssteuer, wenn man Aktien vor Ablauf eines Jahres mit Gewinn verkauft), so kann ich als Alternative einen Equity-Swap eingehen und mich gegen das Risiko von Kursverlusten absichern. 2.3 Rendite-Swap(Constant Maturity Swap) Bei einem Constant Maturity Swap wird ein Geldmarktzinssatz gegen einen Kapitalmarktzinssatz getauscht. Zum Beispiel könnte man einen 6-M-LIBOR gegen einen 10-J-Spotrate tauschen. Da meistens der 10-J-Satz höher liegen wird, als der 6-M-LIBOR, wird normalerweise dann auf den 6-M-LIBOR noch ein Aufschlag aufgerechnet. 6

7 2.4 Interest Rate Derivatives Options Swaptions Analog zu Anleihen kann man auch auf Zinsderivate Optionen kaufen. Diese sind also dann z.b. das Recht einen Zinsswap zu bestimmten Konditionen zu einem bestimmten Zeitpunkt in der Zukunft einzugehen (European Swaption). Mit einer Swaption kann eine Firma also zum Beispiel sicher gehen, einen gewissen variablen Zinssatz, den sie z.b. in einem Jahr 5 Jahre lang zahlen muss, gegen einen bereits heute feststehenden fixen Zinssatz tauschen zu können. Zum Beispiel könnte man einen 6-M-LIBOR gegen einen fixen Zinssatz von 8% in einem Jahr tauschen wollen. Liegt zu diesem Zeitpunkt dann der fixe Zinssatz eines solchen Swaps unter 8%, so verfällt der Vertrag einfach. Liegt er jedoch darüber, so wird er eingelöst und man erhält seinen Swap trotzdem mit 8% Caps Bei einem Cap ist ein Leg des Derivats die positive Differenz zwischen einem LIBOR Zinssatz und einem fixen Zinssatzes, während der andere Leg fix ist. Beispiel: Der Vertrag soll auf einen Basiswert von abgeschlossen werden. Leg 1 sei ein fixer Satz von 2%, Leg 2 sei das Max(6-M-LIBOR , 0), also der capped Leg. Steht also jetzt der 6-M- LIBOR auf 6,5%, so zahlt Leg , während Leg max( , 0) = zahlt. Wäre der 6-M-LIBOR auf 3,5% so wäre Leg 1 unverändert, während Leg 2 dieses mal max(0, , 0) = 0 zahlen müsste. Analog zu Caps existieren auch Floors, wobei diese genauso definiert sind. Hier ist also dann der 2. Leg z.b. das Max( M-LIBOR,0) Accrual Swaps Bei einem Accrual Swap wird der fixe Zinssatz nur an den Tagen gezahlt, wenn eine bestimmte Bedingung erfüllt ist (meist wenn der Floating Leg in einem bestimmten Prozentbereich liegt). Zum Beispiel könnte ein Accrual Swap so aussehen, dass die fixe Rate von 8% nur dann gezahlt wird, wenn der 3-M-LIBOR zwischen 5% und 7% ist. Ist dies zum Beispiel an 216 Tagen im Jahr der Fall gewesen, so müssten auf nur = bezahlt werden. Der Floating Leg wird aber ganz normal bezahlt Wertberechnung Die Wertberechnung von solchen Optionen auf Zinsderivaten wird in der Praxis mit dem Black s Modell durchgeführt. Das werde ich jedoch nicht mehr behandeln. Literatur [1] John C. Hull: Options, Futures and Other Derivates, Pearson Prentice Hall, 2006, 6. Auflage [2] Hansjörg Albrechter: Finanz- und Versicherungsmathematik 1, Version 2006 [3] [4] &Start=1&Count=30&Expand=1.2.3#1.2.3 (Raiffeisen Landesbank OÖ) 7

Zinsderivate. Stefan Waldenberger. 15.Jänner 2008

Zinsderivate. Stefan Waldenberger. 15.Jänner 2008 15.Jänner 2008 Outline Einführung und Begriffsbestimmung Derivat Ein Derivat ist ein Finanzmarktinstrument, dessen Wert sich auf den Wert von Handelsgütern bezieht (Basiswert, Underlying asset). Dieser

Mehr

Einfache Derivate. Stefan Raminger. 4. Dezember 2007. 2 Arten von Derivaten 3 2.1 Forward... 3 2.2 Future... 4 2.3 Optionen... 5

Einfache Derivate. Stefan Raminger. 4. Dezember 2007. 2 Arten von Derivaten 3 2.1 Forward... 3 2.2 Future... 4 2.3 Optionen... 5 Einfache Derivate Stefan Raminger 4. Dezember 2007 Inhaltsverzeichnis 1 Begriffsbestimmungen 1 2 Arten von Derivaten 3 2.1 Forward..................................... 3 2.2 Future......................................

Mehr

Kapitle 3: Swaps und Forward Swaps

Kapitle 3: Swaps und Forward Swaps Kapitle 3: Swaps und Forward Swaps Stefan Ehrenfried Institut für Finanzmathematik Universität Ulm 13.12.2011 Inhaltsverzeichnis 1 Grundlagen 2 Zinsswaps 3 Bewertung 1-jähriger Forward-Swaps Fixed for

Mehr

Hochschule Rhein-Main. Sommersemester 2015

Hochschule Rhein-Main. Sommersemester 2015 Vorlesung Hochschule Rhein-Main Sommersemester 2015 Dr. Roland Stamm 27. April 2015 Diskontfaktoren: Legt man heute (in t) 1 Einheit bis T an, und erhält dafür in T insgesamt x zurück (mit Zinseszins,

Mehr

Ein Cap ist eine vertragliche Vereinbarung, bei der der kaufenden Partei gegen Zahlung einer Prämie eine Zinsobergrenze garantiert wird.

Ein Cap ist eine vertragliche Vereinbarung, bei der der kaufenden Partei gegen Zahlung einer Prämie eine Zinsobergrenze garantiert wird. Zinsoptionen Eine Option ist eine Vereinbarung zwischen zwei Vertragsparteien, bei der die kaufende Partei das Recht hat, ein bestimmtes Produkt während eines definierten Zeitraums zu einem vorher bestimmten

Mehr

Korrigenda Handbuch der Bewertung

Korrigenda Handbuch der Bewertung Korrigenda Handbuch der Bewertung Kapitel 3 Abschnitt 3.5 Seite(n) 104-109 Titel Der Terminvertrag: Ein Beispiel für den Einsatz von Future Values Änderungen In den Beispielen 21 und 22 ist der Halbjahressatz

Mehr

Hochschule Rhein-Main. Sommersemester 2015

Hochschule Rhein-Main. Sommersemester 2015 von Vorlesung Hochschule Rhein-Main Sommersemester 2015 Dr. Roland Stamm 4. Mai 2015 von Diskontfaktoren: Legt man heute (in t) 1 Einheit bis T an, und erhält dafür in T insgesamt x zurück (mit Zinseszins,

Mehr

(24) Risikomanagement mit Swaps. Stefanie Kornek

(24) Risikomanagement mit Swaps. Stefanie Kornek (24) Risikomanagement mit Swaps Stefanie Kornek Inhaltsverzeichnis 1) Definition Swap 2) Formen des Swap 3) Zinsswap 3.1) Motive für Zinsswap 3.2) Beispiele für Zinsswap 4) Währungsswap 4.1) Motive für

Mehr

Forward Rate Agreements sind OTC-Produkte, werden meist telefonisch vereinbart.

Forward Rate Agreements sind OTC-Produkte, werden meist telefonisch vereinbart. 3.6 Derivate Finanzinstrumente / 3.6.2 Forward Rate Agreement EinForward-Kontrakt ist die Vereinbarung zwischen zwei Kontraktparteien über die Lieferung und Zahlung eines bestimmten Gutes zu einem späteren

Mehr

Financial Engineering....eine Einführung

Financial Engineering....eine Einführung Financial Engineering...eine Einführung Aufgabe 1: Lösung Überlegen Sie sich, wie man eine Floating Rate Note, die EURIBOR + 37 bp zahlt in einen Bond und einen Standard-Swap (der EURIBOR zahlt) zerlegen

Mehr

Grundlagen & Usancen Mag. Andreas Gelbmann

Grundlagen & Usancen Mag. Andreas Gelbmann > VK Advanced Topics in Financial Engineering Grundlagen & Usancen Mag. Andreas Gelbmann > ATiFE Grundlagen & Usancen Agenda 1. Zinsberechnung 2. Anleihen 3. Swaps 2 > ATiFE 1. Zinsberechnung Stellen Sie

Mehr

Bewertung von Finanzinstrumenten

Bewertung von Finanzinstrumenten Prof. Dr. Arnd Wiedemann Bewertung von Finanzinstrumenten Wintersemester 2013/2014 Financial Engineering Bewertung von Finanzinstrumenten Financial Engineering ist die Kunst der zielgerichteten Konstruktion

Mehr

Sicherheit und Mehr. Strukturierte Anleihen

Sicherheit und Mehr. Strukturierte Anleihen Sicherheit und Mehr Strukturierte Anleihen Frankfurt am Main, 11. Mai 2005 Suche nach Sicherheit Kapitalgarantie und Performance-Kick gesucht Umfeld ist bestimmt durch niedriges Zinsniveau und Reservation

Mehr

Einfache Derivate. von Christian Laubichler im Rahmen des Proseminars Bakkalaureat TM (Datensicherheit und Versicherungsmathematik) WS 2008/09

Einfache Derivate. von Christian Laubichler im Rahmen des Proseminars Bakkalaureat TM (Datensicherheit und Versicherungsmathematik) WS 2008/09 Einfache Derivate von Christian Laubichler im Rahmen des Proseminars Bakkalaureat TM (Datensicherheit und Versicherungsmathematik) WS 2008/09 14 Jänner 2009 1 Inhaltsverzeichnis 1 Einleitung 2 2 Begriffsbestimmung

Mehr

Finanzierungsmöglichkeiten für Gemeinden

Finanzierungsmöglichkeiten für Gemeinden Herzlich Willkommen Klagenfurt Schloss Krastowitz, 8.Feb.2005 Mag. Johannes Fries Finanzierungsmöglichkeiten für Gemeinden 1 Kommunalkredit Austria AG (KA) Bilanzsumme (31.12.2004): EUR 14.186 Mio. MitarbeiterInnen:

Mehr

Susanne Kruse. Formelsammlung. Aktien-, Zins- und. Währungsderivate. Springer Gabler

Susanne Kruse. Formelsammlung. Aktien-, Zins- und. Währungsderivate. Springer Gabler Susanne Kruse Formelsammlung Aktien-, Zins- und Währungsderivate Springer Gabler Inhaltsverzeichnis Notations- und Abkürzungsverzeichnis XI Teil I Finanzmathematische Grundlagen 1 Grundprinzipien der Finanzmathematik

Mehr

Zinssätze. Georg Wehowar. 4. Dezember 2007

Zinssätze. Georg Wehowar. 4. Dezember 2007 4. Dezember 2007 Grundlagen der Zinsrechnung Verschiedene Anleihen Forward Rate Agreement Forward Zinsen Allgemeines Allgemeine Grundlagen K 0... Anfangskapital K t... Kapital nach einer Zeitspanne t Z

Mehr

Internationale Finanzierung 8. Forwards, Futures und Swaps

Internationale Finanzierung 8. Forwards, Futures und Swaps Übersicht Kapitel 8: 8.1. Einführung 8.2. Preisbildung für Forwards und Futures 8.3. Ein Preismodell für Forwards und Futures 8.4. Hedging mit Financial Futures und Forwards 8.5. Der optimale Hedge-Ratio

Mehr

Kurzzusammenfassung zu Derivate

Kurzzusammenfassung zu Derivate Kurzzusammenfassung zu Derivate In dieser Zusammenfassung wird der Einsatz und die Funktion von : - Devisentermingeschäften - Call- und Put-Optionen (american styled) erläutert. 1. Devisentermingeschäft

Mehr

ACI Diploma (009) Musterfragen

ACI Diploma (009) Musterfragen ACI Diploma (009) Musterfragen Setting the benchmark in certifying the financial industry globally 8 Rue du Mail, 75002 Paris - France T: +33 1 42975115 - F: +33 1 42975116 - www.aciforex.org The ACI Diploma

Mehr

Hochschule Rhein-Main. Sommersemester 2015

Hochschule Rhein-Main. Sommersemester 2015 Vorlesung Hochschule Rhein-Main Sommersemester 2015 Dr. Roland Stamm 29. Juni 2015 Erinnerung Bewertung eines Bonds mit Kupon k, Nominal N, Laufzeit t n: n Π(t) = N k δ(t i 1, t i ) P (t, t i ) + N P (t,

Mehr

Derivate und Bewertung

Derivate und Bewertung . Dr. Daniel Sommer Marie-Curie-Str. 0 6049 Frankfurt am Main Klausur Derivate und Bewertung.......... Wintersemester 006/07 Klausur Derivate und Bewertung Wintersemester 006/07 Aufgabe 1: Statische Optionsstrategien

Mehr

Futures und Optionen. Einführung

Futures und Optionen. Einführung Futures und Optionen Einführung Plan Märkte Kassamarkt Terminmarkt Unterscheidung Funktionsweise Die statische Sichtweise Futures und Forwards Verpflichtungen Optionen Rechte und Verpflichtungen Grundpositionen

Mehr

Vertical-Spreads Iron Condor Erfolgsaussichten

Vertical-Spreads Iron Condor Erfolgsaussichten www.mumorex.ch 08.03.2015 1 Eigenschaften Erwartung Preis Long Calls Long Puts Kombination mit Aktien Vertical-Spreads Iron Condor Erfolgsaussichten www.mumorex.ch 08.03.2015 2 www.mumorex.ch 08.03.2015

Mehr

Beginn der Verzinsung. Vorlaufzeit (meist maximal 6 Monate) Gesamtlaufzeit (selten über 24 Monate) Vergleich von Referenzzinssatz und Forward Rate

Beginn der Verzinsung. Vorlaufzeit (meist maximal 6 Monate) Gesamtlaufzeit (selten über 24 Monate) Vergleich von Referenzzinssatz und Forward Rate 2.6.2.1 Forward Rate Agreement (FRA) EinForward-Kontrakt istdie Vereinbarung zwischen zwei Kontraktparteien über die Lieferung und Zahlung eines bestimmten Gutes zu einem späteren Zeitpunkt (Termingeschäft).

Mehr

Anlagestrategien mit Hebelprodukten. Optionsscheine und Turbos bzw. Knock-out Produkte. Investitionsstrategie bei stark schwankenden Märkten

Anlagestrategien mit Hebelprodukten. Optionsscheine und Turbos bzw. Knock-out Produkte. Investitionsstrategie bei stark schwankenden Märkten Anlagestrategien mit Hebelprodukten Hebelprodukte sind Derivate, die wie der Name schon beinhaltet gehebelt, also überproportional auf Veränderungen des zugrunde liegenden Wertes reagieren. Mit Hebelprodukten

Mehr

Hochschule Rhein-Main. Sommersemester 2015

Hochschule Rhein-Main. Sommersemester 2015 Vorlesung Hochschule Rhein-Main Sommersemester 2015 Dr. Roland Stamm 22. Juni 2015 Erinnerung Eine Option ist das Recht (aber nicht die Verpflichtung) ein Produkt S in der Zukunft zu einem heute festgelegten

Mehr

Wichtige Begriffe in der Finanzmathematik

Wichtige Begriffe in der Finanzmathematik Wichtige Begriffe in der Finanzmathematik Forward: Kontrakt, ein Finanzgut zu einem fest vereinbarten Zeitpunkt bzw. innerhalb eines Zeitraums zu einem vereinbarten Erfüllungspreis zu kaufen bzw. verkaufen.

Mehr

Investition und Finanzierung

Investition und Finanzierung Tutorium Investition und Finanzierung Sommersemester 2014 Investition und Finanzierung Tutorium Folie 1 Inhaltliche Gliederung des 3. Tutorium Investition und Finanzierung Tutorium Folie 2 Aufgabe 1: Zwischenform

Mehr

34 5. FINANZMATHEMATIK

34 5. FINANZMATHEMATIK 34 5. FINANZMATHEMATIK 5. Finanzmathematik 5.1. Ein einführendes Beispiel Betrachten wir eine ganz einfache Situation. Wir haben einen Markt, wo es nur erlaubt ist, heute und in einem Monat zu handeln.

Mehr

Notationen. Burkhard Weiss Futures & Optionen Folie 2

Notationen. Burkhard Weiss Futures & Optionen Folie 2 Optionspreismodelle Notationen S t : X: T: t: S T : r: C: P: c: p: s: aktueller Aktienkurs Ausübungspreis (Rest-)laufzeit der Option Bewertungszeitpunkt Aktienkurs bei Verfall risikofreier Zinssatz Preis

Mehr

Optionsstrategien. Die wichtigsten marktorientierte Strategien 12.05.2014. Jennifer Wießner

Optionsstrategien. Die wichtigsten marktorientierte Strategien 12.05.2014. Jennifer Wießner Optionsstrategien Die wichtigsten marktorientierte Strategien Jennifer Wießner Yetkin Uslu 12.05.2014 Gliederung Grundlagen Definition einer Option Begriffsbestimmungen Optionen Put Option Call Option

Mehr

Finanzierung. Prof. Dr. Rolf Nagel

Finanzierung. Prof. Dr. Rolf Nagel BWL I - Teil B Finanzierung Kapitel 5 -Instrumente der Risikoabsicherung - Prof. Dr. Rolf Nagel Fachhochschule Düsseldorf Fachbereich Wirtschaft 5.1 Absicherung des Zinsänderungsrisikos 5 5.1.1 Zinsbegrenzungsverträge

Mehr

Vorbemerkungen zur Optionsscheinbewertung

Vorbemerkungen zur Optionsscheinbewertung Vorbeerkungen zur Optionsscheinbewertung Matthias Groncki 24. Septeber 2009 Einleitung Wir wollen uns it den Grundlagen der Optionsscheinbewertung beschäftigen. Dazu stellen wir als erstes einige Vorraussetzungen

Mehr

Finanzmarkt. Einführung in die Makroökonomie SS 2012. Einführung in die Makroökonomie (SS 2012) Finanzmarkt 1 / 22

Finanzmarkt. Einführung in die Makroökonomie SS 2012. Einführung in die Makroökonomie (SS 2012) Finanzmarkt 1 / 22 Finanzmarkt Einführung in die Makroökonomie SS 2012 Einführung in die Makroökonomie (SS 2012) Finanzmarkt 1 / 22 Was bisher geschah In der letzten Einheit haben wir das Gleichgewicht auf dem Gütermarkt

Mehr

Aa(t i ) t i. Ab(t i ) Abbildung 2.3: Zahlungsströme des Zinsswaps

Aa(t i ) t i. Ab(t i ) Abbildung 2.3: Zahlungsströme des Zinsswaps 16 KAPITEL 2. LINEARE FINANZPRODUKTE Aa(t 1 )... t 0 Ab(t t 1 t 2 1 )... t i Aa(t i ) Ab(t i ) t n Aa(t n ) Ab(t n ) Abbildung 2.3: Zahlungsströme des Zinsswaps 2.2 Swaps Zins-Swaps Zins-Swaps sind ein

Mehr

Short-Term Interest-Rate Futures EURO Money Market Future

Short-Term Interest-Rate Futures EURO Money Market Future Short-Term Interest-Rate Futures EURO Money Market Future Der EURIBOR-Future : Allgemeines Der 3-Monats-EURIBOR Future kann als standardisierter FRA betrachtet werden. Dabei ist die Laufzeitspezifikation

Mehr

Veranlagen Wertpapiere und Kapitalmarkt

Veranlagen Wertpapiere und Kapitalmarkt Ansparen Veranlagen Wertpapiere und und veranlagen Kapitalmarkt 2 2 In jeder Lebensphase, ob in der Jugend oder im Alter, haben Menschen Wünsche, die Geld kosten. Wenn Sie Schritt für Schritt ein kleines

Mehr

Value at Risk Einführung

Value at Risk Einführung Value at Risk Einführung Veranstaltung Risk Management & Computational Finance Dipl.-Ök. Hans-Jörg von Mettenheim mettenheim@iwi.uni-hannover.de Institut für Wirtschaftsinformatik Leibniz Universität Hannover

Mehr

Zinssätze. Elisabeth Köhl. 14. Jänner 2009. Technische Universität Graz

Zinssätze. Elisabeth Köhl. 14. Jänner 2009. Technische Universität Graz Technische Universität Graz 14. Jänner 2009 Inhalt der Präsentation: 1 Allgemeines 1 Zinsen und Zinsesrechnung 2 Zinssatz 1 Effektiver Zinssatz 2 Nomineller Zinssatz 2 Verschiedene 1 Schatzzins 2 LIBOR/EURIBOR

Mehr

E2.6.2.1-1 Auf dem Markt wird ein Jahreszinssatz von 7,00% p.a. und ein Halbjahreszinssatz (183 Tage) von 6,50% p.a.quotiert.

E2.6.2.1-1 Auf dem Markt wird ein Jahreszinssatz von 7,00% p.a. und ein Halbjahreszinssatz (183 Tage) von 6,50% p.a.quotiert. 2.6.2.1 Forward Rate Agreement (FRA) E2.6.2.1-1 Auf dem Markt wird ein Jahreszinssatz von 7,00% p.a. und ein Halbjahreszinssatz (183 Tage) von 6,50% p.a.quotiert. Ermitteln Sie hieraus den impliziten Forwardsatz

Mehr

Klausur zur Vorlesung Financial Engineering und Structured Finance

Klausur zur Vorlesung Financial Engineering und Structured Finance Universität Augsburg Wirtschaftswissenschaftliche Fakultät Lehrstuhl für Finanz und Bankwirtschaft Klausur zur Vorlesung Financial Engineering und Structured Finance Prof. Dr. Marco Wilkens 6. Februar

Mehr

Errata. Grundlagen der Finanzierung. verstehen berechnen entscheiden. Geyer/Hanke/Littich/Nettekoven 1. Auflage, Linde Verlag, Wien, 2003

Errata. Grundlagen der Finanzierung. verstehen berechnen entscheiden. Geyer/Hanke/Littich/Nettekoven 1. Auflage, Linde Verlag, Wien, 2003 Errata in Grundlagen der Finanzierung verstehen berechnen entscheiden Geyer/Hanke/Littich/Nettekoven 1. Auflage, Linde Verlag, Wien, 2003 Stand 10. April 2006 Änderungen sind jeweils fett hervorgehoben.

Mehr

TI-83/92 (G0010a) DERIVE (G0010b nur Teile) Anwendung von geeigneten Funktionen numerische und iterative Methoden anwenden

TI-83/92 (G0010a) DERIVE (G0010b nur Teile) Anwendung von geeigneten Funktionen numerische und iterative Methoden anwenden BspNr: G0010 Themenbereich Finanzmathematik - Rentenrechnung Ziele vorhandene Ausarbeitungen Arbeiten mit geom. Reihen TI-83/92 (G0010a) DERIVE (G0010b nur Teile) Anwendung von geeigneten Funktionen numerische

Mehr

Es handelt sich i.d.r. um eigenständig handelbare Verträge, die dem Käufer das Recht zur Forderung von Ausgleichzahlungen einräumen, wenn

Es handelt sich i.d.r. um eigenständig handelbare Verträge, die dem Käufer das Recht zur Forderung von Ausgleichzahlungen einräumen, wenn Bei Zinsbegrenzungsverträgen werdenzinsoptionen angewandt. Es handelt sich i.d.r. um eigenständig handelbare Verträge, die dem Käufer das Recht zur Forderung von Ausgleichzahlungen einräumen, wenn ein

Mehr

Aktienanleihe. Konstruktion, Kursverhalten und Produktvarianten. 18.02.2015 Christopher Pawlik

Aktienanleihe. Konstruktion, Kursverhalten und Produktvarianten. 18.02.2015 Christopher Pawlik Aktienanleihe Konstruktion, Kursverhalten und Produktvarianten 18.02.2015 Christopher Pawlik 2 Agenda 1. Strukturierung der Aktienanleihe 04 2. Ausstattungsmerkmale der Aktienanleihen 08 3. Verhalten im

Mehr

Senatsverwaltung für Finanzen

Senatsverwaltung für Finanzen Senatsverwaltung für Finanzen 1 Senatsverwaltung für Finanzen, Klosterstraße 59, D-10179 Berlin (Postanschrift) An die Vorsitzende des Hauptausschusses des Abgeordnetenhauses von Berlin über den Präsidenten

Mehr

Interventionszins-Strategie

Interventionszins-Strategie Interventionszins-Strategie Ausgangssituation...1 Fazit...2 Zahlenbeispiel-Erläuterungen...2 Beispiel A: Portfolio ohne Sicherung...3 Beispiel B: Portfolio mit sofortiger Zinssicherung...4 Beispiel C:

Mehr

Immobilienfinanzierung Heimo Koch

Immobilienfinanzierung Heimo Koch Repetitorium Masterstudium Seite 1 Nach Frage der Nutzung, welche kommerziellen Immobilien sind bekannt? Seite 2 Bei den Finanzierungsarten wird unterschieden nach Befristung Stellung des Kapitalgebers

Mehr

Übung zu Forwards, Futures & Optionen

Übung zu Forwards, Futures & Optionen Übung zu Forwards, Futures & Optionen Vertiefungsstudium Finanzwirtschaft Dr. Eric Nowak SS 2001 Finanzwirtschaft Wahrenburg 15.05.01 1 Aufgabe 1: Forward auf Zerobond Wesentliche Eckpunkte des Forwardgeschäfts:

Mehr

Optionen, Futures und andere Derivate Das Übungsbuch. John C. Hull

Optionen, Futures und andere Derivate Das Übungsbuch. John C. Hull Optionen, Futures und andere Derivate Das Übungsbuch 9., aktualisierte Aulage John C. Hull Fachliche Betreuung der deutschen Übersetzung durch Dr. Wolfgang Mader und Dr. Marc Wagner Praktische Fragestellungen

Mehr

Klausur zur Vorlesung Financial Engineering und Structured Finance

Klausur zur Vorlesung Financial Engineering und Structured Finance Universität Augsburg Wirtschaftswissenschaftliche Fakultät Lehrstuhl für Finanz- und Bankwirtschaft Klausur zur Vorlesung Financial Engineering und Structured Finance Prof. Dr. Marco Wilkens 7. Februar

Mehr

Prof. Dr. Arnd Wiedemann Finanz- und Bankmanagement Universität Siegen www.uni-siegen.de/~banken www.zinsrisiko.de

Prof. Dr. Arnd Wiedemann Finanz- und Bankmanagement Universität Siegen www.uni-siegen.de/~banken www.zinsrisiko.de Aufgabenteil a) Der Cash Flow kann entweder mit den gerundeten Forward Rates aus der Aufgabe oder mit den exakten Forward Rates aus dem ZB-Master 1.0 berechnet werden. Abb. 1 zeigt den durch den ZB-Master

Mehr

Gegeben sind folgende Kassazinssätze für 3 bzw. 4 Jahre: i3 = 3% und i4 = 4%. Wie hoch ist der Terminzinssatz zum Zeitpunkt 3 für ein Jahr

Gegeben sind folgende Kassazinssätze für 3 bzw. 4 Jahre: i3 = 3% und i4 = 4%. Wie hoch ist der Terminzinssatz zum Zeitpunkt 3 für ein Jahr Übung 1 (Terminzins) Gegeben sind folgende Kassazinssätze für 3 bzw. 4 Jahre: i3 = 3% und i4 = 4%. Wie hoch ist der Terminzinssatz zum Zeitpunkt 3 für ein Jahr a. 7,0%; b. 6,02%; c. 3,5%; d. 2,01% Übung

Mehr

Variabel verzinsliche Anleihen und Swaps

Variabel verzinsliche Anleihen und Swaps Variabel verzinsliche Anleihen und Swaps Vertiefungsstudium Finanzwirtschaft Prof. Dr. Mark Wahrenburg Überblick Variabel verzinste Anleihen (Floating Rate Notes FRN ) Formen Bewertung Zinsrisiko Reverse

Mehr

Zinsoptionen. Skriptum für ACI Dealing und Operations Certificate und ACI Diploma

Zinsoptionen. Skriptum für ACI Dealing und Operations Certificate und ACI Diploma Zinsoptionen Skriptum für ACI Dealing und Operations Certificate und ACI Diploma In Zusammenarbeit mit den ACI-Organisationen Deutschland, Luxembourg, Österreich und Schweiz Stand: 02. April 2010 Für den

Mehr

Prof. Dr. Arnd Wiedemann Methodische Grundlagen des Controlling und Risikomanagements

Prof. Dr. Arnd Wiedemann Methodische Grundlagen des Controlling und Risikomanagements Prof. Dr. Arnd Wiedemann Methodische Grundlagen des Controlling und Risikomanagements Prof. Dr. Arnd Wiedemann Methoden CRM / WS 12-13 1 Agenda Teil A: Teil B: Teil C: Finanzmathematisches Basiswissen

Mehr

Flonia Lengu. Termingeschäfte: Futures und Optionen/Forwards/Futures: Terminkauf und -verkauf

Flonia Lengu. Termingeschäfte: Futures und Optionen/Forwards/Futures: Terminkauf und -verkauf Flonia Lengu Termingeschäfte: Futures und Optionen/Forwards/Futures: Terminkauf und -verkauf Gliederung 1. Einführung in derivative Finanzinstrumente 2. Futures und Optionen 3. Terminkauf und verkauf von

Mehr

Barwertbestimmung und Effektivzins bei Anleihen. von Fanny Dieckmann

Barwertbestimmung und Effektivzins bei Anleihen. von Fanny Dieckmann Barwertbestimmung und Effektivzins bei Anleihen von Fanny Dieckmann Inhalt Definitionen Anleihenstruktur Anleihenbewertung Barwertbestimmung Renditebestimmung Bewertung von Sonderformen Literaturverzeichnis

Mehr

Finanzwirtschaft. Teil II: Bewertung. Zinssätze und Renten

Finanzwirtschaft. Teil II: Bewertung. Zinssätze und Renten Zinssätze und Renten 1 Finanzwirtschaft Teil II: Bewertung Zinssätze und Renten Agenda Zinssätze und Renten 2 Effektivzinsen Spot-Zinsen Forward-Zinsen Bewertung Kennziffern Zusammenfassung Zinssätze und

Mehr

Kassa- und Terminmarkt. Am Beispiel des Devisenmarkts

Kassa- und Terminmarkt. Am Beispiel des Devisenmarkts Kassa- und Terminmarkt Am Beispiel des Devisenmarkts Unterschied zwischen Kassa- und Terminmarkt Kassageschäft Geschäftsabschluß Lieferung und Bezahlung Zeitpunkt Zeitpunkt "heute" Laufzeit "morgen" Zeit

Mehr

Wertpapiere in den Augen der Vorarlberger. Eine Studie von IMAS International im Auftrag von Erste Bank & Sparkassen

Wertpapiere in den Augen der Vorarlberger. Eine Studie von IMAS International im Auftrag von Erste Bank & Sparkassen Wertpapiere in den Augen der Vorarlberger Eine Studie von IMAS International im Auftrag von Erste Bank & Sparkassen Studiendesign Auftraggeber: Erste Bank der oesterreichischen Sparkassen Durchführungszeitraum:

Mehr

Eine Offene Volkswirtschaft

Eine Offene Volkswirtschaft Eine Offene Volkswirtschaft Einführung in die Makroökonomie SS 2012 14. Juni 2012 Einführung in die Makroökonomie (SS 2012) Eine Offene Volkswirtschaft 14. Juni 2012 1 / 25 Motivation Bis jetzt haben wir

Mehr

Tutorium zur Mathematik (WS 2004/2005) - Finanzmathematik Seite 1

Tutorium zur Mathematik (WS 2004/2005) - Finanzmathematik Seite 1 Tutorium zur Mathematik WS 2004/2005) - Finanzmathematik Seite 1 Finanzmathematik 1.1 Prozentrechnung K Grundwert Basis, Bezugsgröße) p Prozentfuß i Prozentsatz i = p 100 ) Z Prozentwert Z = K i bzw. Z

Mehr

Derivative Finanzierungsinstrumente

Derivative Finanzierungsinstrumente Projektarbeit von Marianne Fleischhauer Marianne Fleischhauer Seite 1 von 12 Inhaltsverzeichnis 1. Definition 3 2. Nutzen 3 3. Hintergrund / Herleitung 4 4. Arten der Derivate 4 Option 5 Swap 6 Future

Mehr

Private Banking. Region Ost. Risikomanagement und Ertragsverbesserung durch Termingeschäfte

Private Banking. Region Ost. Risikomanagement und Ertragsverbesserung durch Termingeschäfte Private Banking Region Ost Risikomanagement und Ertragsverbesserung durch Termingeschäfte Ihre Ansprechpartner Deutsche Bank AG Betreuungscenter Derivate Region Ost Vermögensverwaltung Unter den Linden

Mehr

A n a l y s i s Finanzmathematik

A n a l y s i s Finanzmathematik A n a l y s i s Finanzmathematik Die Finanzmathematik ist eine Disziplin der angewandten Mathematik, die sich mit Themen aus dem Bereich von Finanzdienstleistern, wie etwa Banken oder Versicherungen, beschäftigt.

Mehr

Kommunale Verschuldung Ein- und Ausblick

Kommunale Verschuldung Ein- und Ausblick Kommunale Verschuldung Ein- und Ausblick 18.07.2013 Thomas Schaufler Markus Kaller Erste Group Bank AG Seite 1 Ein Rechenbeispiel zum aufwärmen Kreditsumme: 100.000,-- tilgend auf Null Laufzeit: 20 Jahre

Mehr

Die ZB-Abzinsfaktoren lassen sich aus der Nullkuponzinsstrukturkurve berechnen: Abb. 1: Barwert der Festzinsseite. Seite 1 von 10

Die ZB-Abzinsfaktoren lassen sich aus der Nullkuponzinsstrukturkurve berechnen: Abb. 1: Barwert der Festzinsseite. Seite 1 von 10 Aufgabenteil a) Die ZB-Abzinsfaktoren lassen sich aus der Nullkuponzinsstrukturkurve berechnen: ZB-AF (0,1) = 0,9434 ZB-AF (0,) = 0,8987 ZB-AF (0,3) = 0,8647 ZB-AF (0,4) = 0,8404 Abb. 1: Barwert der Festzinsseite

Mehr

Optionspreistheorie Seminar Stochastische Unternehmensmodelle

Optionspreistheorie Seminar Stochastische Unternehmensmodelle Seminar Stochastische Unternehmensmodelle Lukasz Galecki Mathematisches Institut Universität zu Köln 1. Juni 2015 1 / 30 Inhaltsverzeichnis 1 Was ist eine Option? Definition einer Option Übersicht über

Mehr

Manager. von Peter Pfeifer, Waltraud Pfeifer, Burkhard Münchhagen. Spielanleitung

Manager. von Peter Pfeifer, Waltraud Pfeifer, Burkhard Münchhagen. Spielanleitung Manager von Peter Pfeifer, Waltraud Pfeifer, Burkhard Münchhagen Spielanleitung Manager Ein rasantes Wirtschaftsspiel für 3 bis 6 Spieler. Das Glück Ihrer Firma liegt in Ihren Händen! Bestehen Sie gegen

Mehr

Zins- und Währungsrisikomanagement mit OTC-Basisderivaten

Zins- und Währungsrisikomanagement mit OTC-Basisderivaten Zins- und Währungsrisikomanagement mit OTC-Basisderivaten Mag. (FH) 1 2 1 3 4 2 5 6 3 Zins- und Währungsmanagement mit OTC-Basis Derivaten Grundlagen Derivative Instrumente des Zinsmanagements Forward

Mehr

Weitere Details siehe ff:

Weitere Details siehe ff: Abgeltungssteuerung bei Kreditderivaten Die Besteuerung bzw. der Steuerabzug erfolgt auf der Basis einer sog. cashflow-besteuerung. Diese knüpft an die während der Laufzeit des Kontrakts zu leistenden

Mehr

Aktives Zinsmanagement

Aktives Zinsmanagement Aktives Zinsmanagement durch den Einsatz von Zinsderivaten Inhalt Zinsstrukturkurve Cap, Floor, Collar Zinsswaps (Grundformen) Payer-Swap Receiver-Swap Doppelswap Zinswährungsswap (Cross-Currency-Swap)

Mehr

B.A. Seminar Derivate: Märkte & Produkte

B.A. Seminar Derivate: Märkte & Produkte B.A. Seminar Derivate: Märkte & Produkte B. Nyarko S. Opitz Lehrstuhl für Derivate Sommersemester 2014 B. Nyarko S. Opitz (UHH) B.A. Seminar Derivate: Märkte & Produkte Sommersemester 2014 1 / 23 Organisatorisches

Mehr

RAHMENVERTRAG FÜR FINANZGESCHÄFTE ZUSATZ ZUM DERIVATEANHANG. ZINSDERIVATE Ausgabe 2004

RAHMENVERTRAG FÜR FINANZGESCHÄFTE ZUSATZ ZUM DERIVATEANHANG. ZINSDERIVATE Ausgabe 2004 F E D E R A T I O N B A N C A I R E D E L ' U N I O N E U R O P E E N N E BANKING FEDERATION OF THE EUROPEAN UNION BANKENVEREINIGUNG DER EUROPÄISCHEN UNION in Zusammenarbeit mit E U R O P E A N S A V I

Mehr

Kapitalversicherungen

Kapitalversicherungen Kapitalversicherungen Birgit Scharwitzl 10. Dezember 2008 Inhaltsverzeichnis 1 Begriffe und wichtige Definitionen 2 1.1 Prämie................................................... 2 1.2 Gewinnbeteiligung............................................

Mehr

~~ Swing Trading Strategie ~~

~~ Swing Trading Strategie ~~ ~~ Swing Trading Strategie ~~ Ebook Copyright by Thomas Kedziora www.forextrade.de Die Rechte des Buches Swing Trading Strategie liegen beim Autor und Herausgeber! -- Seite 1 -- Haftungsausschluss Der

Mehr

UBS PERLES/PERLES Plus Investment mit reduziertem Risiko.

UBS PERLES/PERLES Plus Investment mit reduziertem Risiko. UBS PERLES/PERLES Plus Investment mit reduziertem Risiko. Performance PERLES ermöglichen Ihnen, einfach und effizient die Wertentwicklung eines Basiswertes nachzubilden. PERLES Plus bieten zudem eine bedingte

Mehr

Betrachten wir die folgende Klausuraufgabe aus dem Wintersemester 2010/2011:

Betrachten wir die folgende Klausuraufgabe aus dem Wintersemester 2010/2011: Eine makroökonomische Theorie der offenen Volkswirtschaft Betrachten wir die folgende Klausuraufgabe aus dem Wintersemester 2010/2011: Die Euro-Schuldenkrise hat dazu geführt, dass Anleihen in Euro für

Mehr

Beck-Wirtschaftsberater: Alles über Finanzinnovationen. Geld verdienen mit kalkuliertem Risiko. Von Roland Eller. Deutscher Taschenbuch Verlag.

Beck-Wirtschaftsberater: Alles über Finanzinnovationen. Geld verdienen mit kalkuliertem Risiko. Von Roland Eller. Deutscher Taschenbuch Verlag. Beck-Wirtschaftsberater: Alles über Finanzinnovationen Geld verdienen mit kalkuliertem Risiko Von Roland Eller Deutscher Taschenbuch Verlag Hffl Inhaltsverzeichnis I. Finanzinnovationen: Vom Straight Bond

Mehr

IFRS 9: Neue Regelungen für Finanzinstrumente

IFRS 9: Neue Regelungen für Finanzinstrumente IFRS 9: Neue Regelungen für Finanzinstrumente Rechnungslegung Versicherungen UpDate 2010 23. November 2010 / Thomas Smrekar Änderung des IAS 39 in Folge der Finanzmarktkrise - Vermeidung prozyklischer

Mehr

LÖSUNG ZUR VORLESUNG MAKROÖKONOMIK I (SoSe 14) Aufgabenblatt 3

LÖSUNG ZUR VORLESUNG MAKROÖKONOMIK I (SoSe 14) Aufgabenblatt 3 Fakultät Wirtschafts- und Sozialwissenschaften Jun.-Prof. Dr. Philipp Engler, Michael Paetz LÖSUNG ZUR VORLESUNG MAKROÖKONOMIK I (SoSe 14) Aufgabenblatt 3 Aufgabe 1: Geldnachfrage I Die gesamtwirtschaftliche

Mehr

institut für banken und finanzplanung institute for banking and financial planning www.ibf-chur.ch / max.luescher@ibf-chur.ch

institut für banken und finanzplanung institute for banking and financial planning www.ibf-chur.ch / max.luescher@ibf-chur.ch institute for banking and financial planning www.ibf-chur.ch / max.luescher@ibf-chur.ch Weiterbildungsseminar vom Freitag, 27. März 2009 in Nuolen im Auftrag von Volkswirtschaftsdepartement, Kanton Schwyz

Mehr

Zertifikate - eine Alternative zur Aktie

Zertifikate - eine Alternative zur Aktie Zertifikate - eine Alternative zur Aktie 04.11.2014 Christopher Pawlik Börse Frankfurt Zertifikate AG, November 2014 2 Inhaltsverzeichnis 1. Börse Frankfurt Zertifikate AG - Unternehmensprofil 2. Was sind

Mehr

EU Financial Transaction Tax

EU Financial Transaction Tax EU Financial Transaction Tax Zürich, 7. November 2013 Urs Kapalle, Leiter Finanzpolitik und Steuern, Mitglied der Direktion der Schweizerischen Bankiervereinigung Inhaltsverzeichnis 1. Hintergrund 2. Steuerbare

Mehr

Internationale Finanzierung 6. Bewertung von Aktien

Internationale Finanzierung 6. Bewertung von Aktien Übersicht Kapitel 6: 6.1. Einführung 6.2. Aktienbewertung mittels Kennzahlen aus Rechnungswesen 6.3. Aktienbewertung unter Berücksichtigung der Wachstumschancen 6.4. Aktienbewertung mittels Dividenden

Mehr

Derivate und Bewertung

Derivate und Bewertung . Dr. Daniel Sommer Marie-Curie-Str. 30 60439 Franfurt am Main Klausur Derivate und Bewertung.......... Wintersemester 2008/09 Klausur Derivate und Bewertung Wintersemester 2008/09 Aufgabe 1: Zinsurven,

Mehr

3.6Derivate Finanzinstrumente

3.6Derivate Finanzinstrumente 3.6Derivate Finanzinstrumente S.1 Quelle: http://www.eurexchange.com/resources/web_based_training/futures_optionen/index.html S.2 Der Inhaber eines Optionsscheins(Warrant)hat das Recht, während einer bestimmten

Mehr

SS 2014 Torsten Schreiber

SS 2014 Torsten Schreiber SS 2014 Torsten Schreiber 204 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Bei der Rentenrechnung geht es um aus einem angesparten Kapital bzw. um um das Kapital aufzubauen, die innerhalb

Mehr

HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN

HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN HIER GEHT ES UM IHR GUTES GELD ZINSRECHNUNG IM UNTERNEHMEN Zinsen haben im täglichen Geschäftsleben große Bedeutung und somit auch die eigentliche Zinsrechnung, z.b: - Wenn Sie Ihre Rechnungen zu spät

Mehr

SigmaDeWe Risikomanagement

SigmaDeWe Risikomanagement Sie haben für Ihren liquiden Vermögensteil Ihren persönlichen risikoreichen Anteil bestimmt und sind aufgrund der Marktsignale derzeit im Markt. Dennoch haben Sie Zweifel, dass mittelfristig der Markt

Mehr

Bonus Zertifikate Geldanlage für Skeptiker

Bonus Zertifikate Geldanlage für Skeptiker Bonus Zertifikate Geldanlage für Skeptiker 4.12.2014 Martin Szymkowiak Eigenschaften von Bonus Zertifikaten Bonus Zertifikate 2 Für seitwärts tendierende, moderat steigende oder fallende Märkte Besitzen

Mehr

Derivatebewertung im Binomialmodell

Derivatebewertung im Binomialmodell Derivatebewertung im Binomialmodell Roland Stamm 27. Juni 2013 Roland Stamm 1 / 24 Agenda 1 Einleitung 2 Binomialmodell mit einer Periode 3 Binomialmodell mit mehreren Perioden 4 Kritische Würdigung und

Mehr

RZB EUR Zinscap. ..Absicherung gegen steigende Zinsen.

RZB EUR Zinscap. ..Absicherung gegen steigende Zinsen. RZB EUR Zinscap..Absicherung gegen steigende Zinsen. Das Produkt ist geeignet für Kunden, die eine variable Finanzierung in EUR gewählt haben und sich gegen das Risiko steigender Zinsen absichern wollen.

Mehr

Option Analysis of Plattform Decisions. Raeed Mayrhofer

Option Analysis of Plattform Decisions. Raeed Mayrhofer Option Analysis of Plattform Decisions Raeed Mayrhofer Softwareplattform ist ein Bündel von Funktionen, das das Ausführen von Applikationen ermöglicht bildet gemeinsam mit Hardware und Know-how die IT-Infrastruktur

Mehr

Futures. Vontobel Mini Futures. Vontobel Investment Banking. Minimaler Einsatz, maximale Chance

Futures. Vontobel Mini Futures. Vontobel Investment Banking. Minimaler Einsatz, maximale Chance Vontobel Mini Futures Futures Minimaler Einsatz, maximale Chance Vontobel Investment Banking Vontobel Mini Futures mit minimalem Einsatz Maximales erreichen Anlegern, die das Auf und Ab der Märkte in attraktive

Mehr

Derivate in Fonds über- oder unterschätzt? Bündnis für Fonds, Mai / Juni 2013

Derivate in Fonds über- oder unterschätzt? Bündnis für Fonds, Mai / Juni 2013 Derivate in Fonds über- oder unterschätzt? Bündnis für Fonds, Mai / Juni 2013 Agenda 1. Definition Derivate und regulatorische Rahmenbedingungen 2. Überblick über die wichtigsten Derivate für Fonds 3.

Mehr

SS 2014 Torsten Schreiber

SS 2014 Torsten Schreiber SS 2014 Torsten Schreiber 221 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Wird im Bereich der Rentenrechnung die zugehörige zu Beginn eines Jahres / einer Zeitperiode eingezahlt, so spricht

Mehr

Professionell handeln mit. CFDs. Instrumente und Strategien für das Trading

Professionell handeln mit. CFDs. Instrumente und Strategien für das Trading Professionell handeln mit CFDs Instrumente und Strategien für das Trading Grundlagen und Allgemeines zu CFDs Der CFD-Handel im Überblick CFDs (Contracts for Difference) sind mittlerweile aus der Börsenwelt

Mehr