Übungen zur Vorlesung Mathematik I für Studierende der Chemie (WS 2015/2016) Institut für Chemie und Biochemie, FU Berlin Blatt

Größe: px
Ab Seite anzeigen:

Download "Übungen zur Vorlesung Mathematik I für Studierende der Chemie (WS 2015/2016) Institut für Chemie und Biochemie, FU Berlin Blatt"

Transkript

1 Übungen zur Vorlesung Mathematik I für Studierende der Chemie (WS 05/06) Institut für Chemie und Biochemie, FU Berlin PD Dr. Dirk Andrae Blatt Bestimmen Sie die Partialbruchzerlegung von (a) x(x 3), x R; (b) z 3 z (z ) (z +), z C. Schreiben Sie die folgenden Funktionen jeweils in eine Summe aus einem Polynom und einer echt gebrochen-rationalen Funktion um: (a) f(x) = x3 6x +x 6 x x ; (b) 5x+ x 7x +6x 3. Untersuchen Sie das asymptotische Verhalten (Pole, Verhalten für x ) folgender Funktionen (mit Skizze!): (a) y = (x 5x+6)/(x 5x+); (b) y = (x )/(x 3 +x 6x). Beweisen Sie die folgenden Eigenschaften der Hyperbelfunktionen: (a) s (x) s (x) = ; (b) s (x+y) = s (x) s (y)+ s (x) s (y). 5. Zeigen Sie, dass für alle z = x+ y C gilt: s(z)+ s(z ) = s(x) s (y). 6. Ermitteln Sie logarithmische Ausdrücke für die Funktionen rs (x) und r s (x), die Umkehrfunktionen der Hyperbelfunktionen s (x) und s (x). Abgabe der Übungsaufgaben in KW 0 (vor Beginn Ihres Tutoriums). Lösungen:. (a) (/9)/x (/9)/(x 3)+(/3)/(x 3) ; (b) (/)(+ )/(z+ )+(/)( )/(z )+ (/)/(z ) /(z ). (a) x +/(x ); (b) +(7x+)/(x 3 +x 6x) 3. (a) Einfache Polstellen: x =, x =, Asymptote: y = ; (b) Einfache Polstellen: x = 3, x = 0, x =, Asymptote: y = x. (a) ; (b) rs (x) = (x+ x +); r s (x) = (x+ x ) (x )

2 Ausführliche Lösungen:. Es handelt sich in beiden Teilaufgaben um echt gebrochen-rationale Funktionen, die in Teilbrüche (Partialbrüche) von wiederum echt gebrochen-rationalen Funktionen umzuschreiben sind. Der Ansatz für die Partialbruchzerlegung (mit zunächst unbestimmten Koeffizienten) enthält jeweils einen Summanden für den Kehrwert jeder Potenz eines linearen oder quadratischen Faktors des Nenners. Falls die Partialbruchzerlegung in C erfolgt, kann der Nenner vollständig in lineare Faktoren zerlegt werden. (a) Ansatz für die Partialbruchzerlegung aufstellen, mit Nennerpolynom multiplizieren und nach Potenzen von x ordnen: x(x 3) = A x + B x 3 + B (x 3) = A(x 3) +B x(x 3)+B x = A(x 6x+9)+B (x 3x)+B x = (A+B )x +( 6A 3B +B )x+9a Koeffizientenvergleich (Vergleich der Koeffizienten vonx k auf linker und rechter Seite der Gleichung) liefert einen (meist einfach lösbaren) Satz linearer Gleichungen zur Bestimmung der Konstanten im Ansatz der Partialbruchzerlegung): x 0 : 9A = A = 9 x : A+B = 0 B = A = 9 Damit gilt also: x : 6A 3B +B = 0 B = 6A+3B = 3 x(x 3) = 9x 9x 3 + 3(x 3) (b) Ansatz für die Partialbruchzerlegung, Multiplikation mit Nennerpolynom, Ordnen nach Potenzen von z: z 3 z (z ) (z +) = A+Bz z + + C z + C (z ) z 3 z = (A+Bz)(z ) +C (z )(z +)+C (z +) = (A+Bz)(z z+)+c (z 3 z +z )+C (z +) = (B+C )z 3 +(A B C +C )z +( A+B+C )z+(a C +C ) Bestimmung der Konstanten durch Koeffizientenvergleich: z 3 : B+C = C = B z : A+B+C = A+ = 0 A = z 0 : A C +C = A +B+C = C = B z : A B C +C = B +B B = B = B = C =, C = Damit gilt zunächst: z 3 z (z ) (z +) = z+ z + + z (z ) Für x R (statt z C) wäre die Partialbruchzerlegung damit abgeschlossen. Wegen z + = (z )(z+ ) gilt jedoch:

3 Koeffizientenvergleich: z+ z + = A + B z z+ z+ = A(z+ )+B(z ) = (A+B)z+(A B) z : A+B = B = A z 0 : A B = A = = Damit gilt schliesslich: z 3 z (z ) (z +) = z A = ( ), B = (+ ) z+ z (z ). Polynomdivision ist möglich, geschicktes Umformen führt aber oft rascher ans Ziel! (a) Umformung des Zählerpolynoms (so dass das Nennerpolynom entsteht): P(x) = x 3 6x +x 6 = x(x 5x+) x +7x 6 = x(x 5x+) (x 5x+)+x = (x )(x 5x+)+(x ) Umformung des Nennerpolynoms (Anwendung des Satzes von Vieta): Damit ergibt sich: Q(x) = x 5x+ = (x )(x ) P(x) Q(x) = x3 6x +x 6 x = (x )(x 5x+)+(x ) = x + 5x+ (x )(x ) x (b) Umformung des Zählerpolynoms (vgl. Summe der endlichen geometrischen Reihe): P(x) = x = (x )(x 3 +x +x+) Umformung des Nennerpolynoms (Koeffizientensumme 7+6 ist Null): Q(x) = x 7x +6x = x(x 3 7x+6) = x(x )(x +x 6) Daraus ergibt sich (nach Kürzen des gemeinsamen Faktors x ): P(x) Q(x) = x3 +x +x+ x 3 +x 6x = x3 +x 6x+7x+ 7x+ x 3 +x = + 6x x 3 +x 6x 3. Bei einer gebrochen-rationalen Funktion f(x) = P(x)/Q(x) = g(x) + q(x)/q(x) bestimmt der ganzrationale Teil g(x) das Verhalten für x ±. Nullstellen des Nennerpolynoms (x i mit Q(x i ) = 0), die nicht zugleich Nullstellen des Zählerpolynoms sind (P(x i ) 0), führen zu Polstellen. Die Vielfachheit der Nullstelle bestimmt, ob Vorzeichenwechsel (VZW) auftritt oder nicht. (a) Umformung der Funktion (statt Polynomdivision): y = x 5x+6 x 5x+ = x 5x++ x = + 5x+ x 5x+ P(x) = x 5x+6 = (x )(x 3) einfache Nullstellen bei x = und x = 3. Q(x) = x 5x+ = (x )(x ) einfache Nullstellen bei x = und x =. Wichtige Informationen für die Skizze: Nullstellen bei x = und x = 3; Polstellen (mit VZW) bei x = und x = ; Asymptote g(x) = ; y > g(x) = für x (das Schaubild ist spiegelsymmetrisch zur Parallelen zur y-achse bei x = 5 ).

4 (b) Umformung der Funktion: x y = x 3 +x 6x = (x )(x3 +x +x+) x 3 +x = (x )(x3 +x 6x+7x+) 6x x 3 +x 6x = x + (x )(7x+) x 3 +x 6x = x + 7x 6x x 3 +x 6x P(x) = x = (x )(x +) = (x )(x+)(x +) einfache Nullstellen bei x = und x =. Q(x) = x 3 +x 6x = x(x +x 6) = x(x )(x+3) 3 einfache Nullstellen bei x = 0, x = und x = 3. Wichtige Informationen für die Skizze: Nullstellen beix = undx = ; Polstellen (mit VZW) bei x = 0, x = und x = 3; Asymptote g(x) = x ; y > g(x) = x für x +.. Die Hyperbelfunktionen entstehen durch Zerlegen der Exponentialfunktion in ihre geraden und ungeraden Anteile, = s (x)+s (x), mit s (x) = ( + x) = s ( x), s (x) = ( x) = s ( x). (a) Diese Formel ist das Analogon zu s (x)+ s (x) =, und einfach beweisbar: s (x) s (x) = ( + x) ( x x) ( x ++ x x) + = = (b) Dies ist das Additionstheorem der Hyperbelsinus-Funktion, und ebenfalls nicht schwer beweisbar: s (x+y) = ( x+y x y) = ( x y x y) = ( s (x)+s (x))( s (y)+s (y)) ( s (x) s (x))( s (y) s (y)) = s (x) s (y)+s (x) s (y)+ s (x) s (y)+s (x) s (y) s (x) s (y)+s (x) s (y)+ s (x) s (y) s (x) s (y) = s (x) s (y)+ s (x) s (y) 5. Verallgemeinerung von s(ϕ) = ( ϕ + ϕ) für beliebiges komplexes Argument liefert s(z) = ( z + z). Damit ergibt sich s(z)+ s(z ) = z + z + z + z = x y + x+y + x+y + x y = x( y + y) + x( y + y) = ( + x) ( y + y) = s(x) s (y)

5 6. Umkehrfunktion zu y = f(x) = s (x) (x R): y = s (x) = (x x ) x für x x y = ( x ) t yt = 0 (t = x > 0) t, = ( x ), = y± y + (Ausschluss einer Lösung, weil stets t = x > 0) x = f (y) = rs (y) = (y+ y +) y = f (x) = rs (x) = (x+ x +) Umkehrfunktion zu y = f(x) = s (x) (x 0): y = s (x) = (x + x ) x für x x y = ( x ) + t yt+ = 0 (t = x > 0) t, = ( x ), = y± y (Ausschluss einer Lösung, weil y x für x ) x = f (y) = r s (y) = (y+ y ) y = f (x) = r s (x) = (x+ x ) (x ) Anmerkung: Zu y = f(x) = s (x) (x < 0) gehört dann y = f (x) = r s (x) = (x+ x ) = (x x ) (x ).

Algebra. Roger Burkhardt Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft

Algebra. Roger Burkhardt Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft Algebra Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft FS 2010 Roger Burkhardt roger.burkhardt@fhnw.ch Algebra

Mehr

Gebrochen-rationale Funktionen

Gebrochen-rationale Funktionen Definition Eine gebrochen-rationale Funktion ist eine Funktion, bei der sich im Zähler und Nenner eine ganzrationale Funktion (Polynom) befindet: Eigenschaften f(x) = g(x) h(x) Echt gebrochen-rationale

Mehr

Partialbruchzerlegung für Biologen

Partialbruchzerlegung für Biologen Partialbruchzerlegung für Biologen Rationale Funktionen sind Quotienten zweier Polynome, und sie tauchen auch in der Biologie auf. Die Partialbruchzerlegung bedeutet, einen einfacheren Ausdruck für eine

Mehr

Sätze über ganzrationale Funktionen

Sätze über ganzrationale Funktionen Sätze über ganzrationale Funktionen 1. Sind alle Koeffizienten a i ganzzahlig und ist x 0 eine ganzzahlige Nullstelle, so ist x 0 ein Teiler von a 0. 2. Haben alle Koeffizienten dasselbe Vorzeichen, so

Mehr

Die gebrochenrationale Funktion

Die gebrochenrationale Funktion Die gebrochenrationale Funktion Definition: Unter einer gebrochenrationalen Funktion versteht man den Quotienten zweier ganzrationaler Funktionen, d.h. Funktionen der Form f :x! a n xn + a n 1 x n 1 +...+

Mehr

Kapitel 19 Partialbruchzerlegung

Kapitel 19 Partialbruchzerlegung Kapitel 19 Partialbruchzerlegung Mathematischer Vorkurs TU Dortmund Seite 1 / 15 Zur Erinnerung wiederholen wir Definition 4.5 [part] Es sei n N 0 und a 0, a 1,..., a n R mit a n 0. Dann heißt die Funktion

Mehr

Übungen zur Vorlesung Mathematik für Chemiker 1

Übungen zur Vorlesung Mathematik für Chemiker 1 Prof. Dr. D. Egorova Prof. Dr. B. Hartke Lösungen Aufgabe Übungen zur Vorlesung Mathematik für Chemiker WiSe 204/5 Blatt 2 0.-2..204 f( x) = f(x) = gerade f( x) = f(x) = ungerade 8 6 4 2. f ( x) = ( x

Mehr

Partialbruchzerlegung

Partialbruchzerlegung Partialbruchzerlegung Eine rationale Funktion r mit n verschiedenen Polstellen z j der Ordnung m j, r = p q, lässt sich in der Form r(z) = f (z) + n j=1 q(z) = c(z z 1) m1 (z z n ) mn r j (z), r j (z)

Mehr

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz.

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz. FH Gießen-Friedberg, Sommersemester 010 Skript 9 Diskrete Mathematik (Informatik) 30. April 010 Prof. Dr. Hans-Rudolf Metz Funktionen Einige elementare Funktionen und ihre Eigenschaften Eine Funktion f

Mehr

Partialbruchzerlegung

Partialbruchzerlegung Partialbruchzerlegung W. Kippels 26. Oktober 2018 Inhaltsverzeichnis 1 Vorwort 2 2 Prinzip der Zerlegung 3 2.1 Nenner mit einfachen Nullstellen...................... 3 2.2 Nenner mit mehrfachen Nullstellen.....................

Mehr

Brückenkurs Mathematik für Studierende der Chemie

Brückenkurs Mathematik für Studierende der Chemie Brückenkurs Mathematik für Studierende der Chemie PD Dr Dirk Andrae (nach Vorlagen von Dr Werner Gans vom WS 2015/2016) Institut für Chemie und Biochemie Freie Universität Berlin 20 September 2016 1 Teil:

Mehr

Ist a > b, dann ist b < a. Ist a < b, dann ist b > a. Ist a > b und b > c, dann ist a > c. Ist a < b und b < c, dann ist a < c.

Ist a > b, dann ist b < a. Ist a < b, dann ist b > a. Ist a > b und b > c, dann ist a > c. Ist a < b und b < c, dann ist a < c. Teil Allgemeines zu Ungleichungen Die gebräuchlichsten Symbole für Ungleichungen sind > (ist grösser als), < (ist kleiner als), (ist grösser als oder gleich), (ist kleiner als oder gleich), (ist ungleich)

Mehr

Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 5 Version 1.0 (11.

Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 5 Version 1.0 (11. Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 5 Version.0. September 05) E. Cramer, U. Kamps, M. Kateri, M. Burkschat 05 Cramer, Kamps, Kateri, Burkschat

Mehr

Brückenkurs Mathematik für Studierende der Chemie

Brückenkurs Mathematik für Studierende der Chemie Brückenkurs Mathematik für Studierende der Chemie PD Dr Dirk Andrae (nach Vorlagen von Dr Werner Gans vom WS 015/016) Institut für Chemie und Biochemie Freie Universität Berlin 14 Februar 019 1 Teil: Zahlenmengen,

Mehr

Polynomiale Gleichungen

Polynomiale Gleichungen Vorlesung 5 Polynomiale Gleichungen Definition 5.0.3. Ein polynomiale Funktion p(x) in der Variablen x R ist eine endliche Summe von Potenzen von x, die Exponenten sind hierbei natürliche Zahlen. Wir haben

Mehr

1 elementare Integration mit Vereinfachung

1 elementare Integration mit Vereinfachung Um einen Ausdruck integrieren zu können, bedarf es ein wenig Scharfblick, um die richtige Methode wählen zu können. Diese werden (in der Schule) grob in die vier unten beschriebenen Methoden unterteilt.

Mehr

14 Partialbruchzerlegung

14 Partialbruchzerlegung 14 Partialbruchzerlegung Jörn Loviscach Versionsstand: 21. September 2013, 15:59 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.j3l7h.de/videos.html This

Mehr

Klausur Mathematik I

Klausur Mathematik I Technische Universität Dresden 10. Februar 2016 Institut für Numerische Mathematik Prof. Dr. G. Matthies, Dr. G. Scheithauer Klausur Mathematik I für Studierende der Fakultät Maschinenwesen Name: Matrikelnummer:

Mehr

Mathematik. FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli Kontakt und weitere Infos:

Mathematik. FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli Kontakt und weitere Infos: FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli 2004 Kontakt und weitere Infos: www.schule.barmetler.de Inhaltsverzeichnis 1 Wiederholung 5 1.1 Bruchrechnen.............................

Mehr

4.1 Stammfunktionen: das unbestimmte Integral

4.1 Stammfunktionen: das unbestimmte Integral Kapitel 4 Integration 4. Stammfunktionen: das unbestimmte Integral Die Integration ist die Umkehrung der Differentiation: zu einer gegebenen Funktion f(x) sucht man eine Funktion F (x), deren Ableitung

Mehr

Brüche, Polynome, Terme

Brüche, Polynome, Terme KAPITEL 1 Brüche, Polynome, Terme 1.1 Zahlen............................. 1 1. Lineare Gleichung....................... 3 1.3 Quadratische Gleichung................... 6 1.4 Polynomdivision........................

Mehr

Übungen zur Vorlesung Mathematik I für Studierende der Chemie (WS 2016/2017) Institut für Chemie und Biochemie, FU Berlin Blatt

Übungen zur Vorlesung Mathematik I für Studierende der Chemie (WS 2016/2017) Institut für Chemie und Biochemie, FU Berlin Blatt Übungen zur Vorlesung Mathematik I für Studierende der Chemie (WS 2016/2017) Institut für Chemie und Biochemie, FU Berlin PD Dr. Dirk Andrae Blatt 1 2016-10-19 1. Geben Sie an, ob die im folgenden genannten

Mehr

2 Rechentechniken. 2.1 Potenzen und Wurzeln. Übersicht

2 Rechentechniken. 2.1 Potenzen und Wurzeln. Übersicht 2 Rechentechniken Übersicht 2.1 Potenzen und Wurzeln.............................................. 7 2.2 Lösen linearer Gleichungssysteme..................................... 8 2.3 Polynome.........................................................

Mehr

2 Polynome und rationale Funktionen

2 Polynome und rationale Funktionen Gleichungen spielen auch in der Ingenieurmathematik eine große Rolle. Sie beschreiben zum Beispiel Bedingungen, unter denen Vorgänge ablaufen, Gleichgewichtszustände, Punktmengen. Gleichungen für eine

Mehr

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk,

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk, Musterlo sungen zu Blatt Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS2/ Dipl.-Math. T. Pawlaschyk, 29.0.2 Thema: Wiederholung Aufgabe Zeigen Sie, dass

Mehr

Mathematik-Aufgabenpool > Kurvendiskussion gebrochen rationaler Funktionen I

Mathematik-Aufgabenpool > Kurvendiskussion gebrochen rationaler Funktionen I Michael Buhlmann Mathematik-Aufgabenpool > Kurvendiskussion gebrochen rationaler Funktionen I Einleitung: Eine gebrochen rationale Funktion (Polynom) f: D f -> R (mit maximaler Definitionsbereich D f)

Mehr

Mathematik Semester 3 / Arbeitsblatt f (x) = x x 3 4 x. 5 x 3 20 x. x 2 1

Mathematik Semester 3 / Arbeitsblatt f (x) = x x 3 4 x. 5 x 3 20 x. x 2 1 9.2 Aufgaben Aufgabe 16.39 aus dem Buch. 1. f (x) = x4 + 1 x 3 + x 4. f (x) = x4 1 2 x 3 8 x 2. f (x) = x3 + 1 x 3 4 x 5. f (x) = x5 + 1 5 x 3 20 x 3. f (x) = 4 x2 x 2 + 1 6. f (x) = x2 2 x 2 7. f (x)

Mehr

1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente:

1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente: Lösung 1. Übung Elemente der Algebra WS017/18 1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente: (e) {(x,y) IR 3x+4y 1}.

Mehr

Aufgaben zu den ganzrationalen Funktionen

Aufgaben zu den ganzrationalen Funktionen Aufgaben zu den ganzrationalen Funktionen 1. Bestimmen Sie die Nullstellen folgender ganzrationaler Funktionen. a) y = x + x 6 b) y = x 3 3x + x c) y = (x + 4)(x + x ) d) y = x 4 5x + 4 e) y = x 3 + x

Mehr

Funktionen. Mathematik-Repetitorium

Funktionen. Mathematik-Repetitorium Funktionen 4.1 Funktionen einer reellen Veränderlichen 4.2 Eigenschaften von Funktionen 4.3 Die elementaren Funktionen 4.4 Grenzwerte von Funktionen, Stetigkeit Funktionen 1 4. Funktionen Funktionen 2

Mehr

$Id: integral.tex,v /05/05 14:57:29 hk Exp hk $ ln(1 + t) 2 = ln 2 ln 3 + ln 2 = ln

$Id: integral.tex,v /05/05 14:57:29 hk Exp hk $ ln(1 + t) 2 = ln 2 ln 3 + ln 2 = ln $Id: integral.tex,v.5 2009/05/05 4:57:29 hk Exp hk $ 2 Integralrechnung 2.3 Die Integrationsregeln Wir wollen noch eine letzte kleine Anmerkung zur Substitutionsregel machen. Der letzte Schritt bei der

Mehr

Mathematik macht Freu(n)de im Wintersemester 2018/19

Mathematik macht Freu(n)de im Wintersemester 2018/19 Mathematik macht Freu(n)de im Wintersemester 08/9 Markus Fulmek 08 06 9 Im folgenden wird zunächst ein kombinatorischer Gedankengang entwickelt, der mit wenigen einfachen Definitionen (samt erläuternden

Mehr

Blatt 12. Tutorium HM Juli Polynomdivision

Blatt 12. Tutorium HM Juli Polynomdivision Blatt 2 Tutorium HM 2 8. Juli 2009 Diese Zusammenstellung erhebt keinen Anspruch auf Vollständigkeit und Korrektheit. Sie dient lediglich als Hilfestellung zur Bearbeitung der Übungsaufgaben. Auf diesem

Mehr

5 Gebrochen rationale Funktionen

5 Gebrochen rationale Funktionen c 003, Thomas Barmetler FOS, 11 Jahrgangsstufe (technisch) 5 Gebrochen rationale Funktionen Unter einer gebrochen rationalen Funktion versteht man den Quotienten zweier ganzrationaler Funktionen Dabei

Mehr

, a n 2. p(x) = a n x n + a n 1. x n a 2 x 2 + a 1 x + a 0. reelles Polynom in der Variablen x vom Grad n. Man schreibt deg p(x) = n

, a n 2. p(x) = a n x n + a n 1. x n a 2 x 2 + a 1 x + a 0. reelles Polynom in der Variablen x vom Grad n. Man schreibt deg p(x) = n . Graphen gebrochen rationaler Funktionen ==================================================================. Verhalten in der Umgebung der Definitionslücken ------------------------------------------------------------------------------------------------------------------

Mehr

Gib die Faktorenzerlegung an und bestimme Art und Ort der Nullstellen der folgenden ganzrationalen Funktionen!

Gib die Faktorenzerlegung an und bestimme Art und Ort der Nullstellen der folgenden ganzrationalen Funktionen! Gib die Faktorenzerlegung an und bestimme und Ort der Nullstellen der folgenden ganzrationalen Funktionen! + x + x + x - 0 x c) + x + x (x+) eine einfache NSt bei 0 mit VzW und eine doppelte bei ohne VzW

Mehr

Polynome und rationale Funktionen

Polynome und rationale Funktionen Polynome und rationale Funktionen Definition. 1) Eine Funktion P : R R (bzw. P : C C) der Form P (x) = n a k x k = a 0 + a 1 x + a 2 x 2 +... + a n x n mit a k R (bzw. C) und a n 0 heißt Polynom vom Grad

Mehr

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 2. 1 Translationen 2. 2 Skalierungen 4. 3 Die Wurzelfunktion 6

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 2. 1 Translationen 2. 2 Skalierungen 4. 3 Die Wurzelfunktion 6 Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 2 Inhaltsverzeichnis 1 Translationen 2 2 Skalierungen 4 3 Die

Mehr

osungen zu Blatt 12 Thema: Rationale und trigonometrische Funktionen

osungen zu Blatt 12 Thema: Rationale und trigonometrische Funktionen Musterl osungen zu Blatt Kleingruppen zur Service-Veranstaltung Mathematik I f ur Ingenieure bei Prof. Dr. G. Herbort im WS/3 Dipl.-Math. T. Pawlaschyk, 5.. Thema: Rationale und trigonometrische Funktionen

Mehr

die kanonische Faktorisierung von p. Dann besitzt q/p eine Summendarstellung

die kanonische Faktorisierung von p. Dann besitzt q/p eine Summendarstellung Partialbruchzerlegung rationaler Funktionen Satz 4 (komplexe Partialbruchzerlegung) Es sei q/p eine echt gebrochen rationale Funktion, dh deg q < deg p und es sei p(z) = c (z z 1 ) α 1 (z z k ) α k die

Mehr

Hörsaalübung zu Blatt 5 Analysis I für Studierende der Ingenieurwissenschaften

Hörsaalübung zu Blatt 5 Analysis I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 2017/2018 Dr. Hanna Peywand Kiani Hörsaalübung zu Blatt 5 Analysis I für Studierende der Ingenieurwissenschaften Polynome, Folgen, Reihen 1. Teil 11/12.12.2017

Mehr

Kapitel VI. Elementare Funktionen

Kapitel VI. Elementare Funktionen Kapitel VI Elementare Funktionen Inhalt V.1 Rationale Funktionen Ganzrationale Funktionen Horner-Schema Gebrochenrationale Funktionen VI.2 Potenz- und Wurzelfunktionen Definition und Eigenschaften VI.3

Mehr

6. Übungsblatt zur Vorlesung Mathematik I für Informatik

6. Übungsblatt zur Vorlesung Mathematik I für Informatik Fachbereich Mathematik Prof Dr Thomas Streicher Dr Sven Herrmann Dipl-Math Susanne Pape 6 Übungsblatt zur Vorlesung Mathematik I für Informatik Wintersemester 009/00 7/8 November 009 Gruppenübung Aufgabe

Mehr

4.5. Ganzrationale Funktionen

4.5. Ganzrationale Funktionen .5. Ganzrationale Funktionen Definition Eine Funktion der Gestalt f(x) = a n x n a n 1 x n 1... a 2 x 2 a 1 x a 0 mit reellen Koeffizienten a n, a n 1,... und a n 0 heißt ganzrationale Funktion n-ten Grades

Mehr

Beispiele für eine vollständige Kurvendiskussion

Beispiele für eine vollständige Kurvendiskussion Seite von Ganzrationale Funktionen Nur mit Ausklammern Beispiel. Diskutiere die Funktion f 8. Es handelt sich um eine ganzrationale Funktion dritten Grades.. Definitionsmenge: D.. Verhalten gegen : Da

Mehr

Zusammenfassung der Kurvendiskussion

Zusammenfassung der Kurvendiskussion Zusammenfassung der Kurvendiskussion Diskussionspunkte 1 Größtmögliche Definitionsmenge D f 2 Symmetrieeigenschaften des Graphen G f 3 Nullstellen, Polstellen, Schnittpunkte mit der y-achse, Vielfachheit

Mehr

Lösungsblatt zu: Gebrochen rationale, Exponential- und Logarithmus Funktionen

Lösungsblatt zu: Gebrochen rationale, Exponential- und Logarithmus Funktionen Lösungsblatt zu: Gebrochen rationale, Exponential- und Logarithmus Funktionen Das hast du schon gelernt: Aufgabe : a) Definitionsbereich TIPP: Definitionsbereich Nenner darf nicht Null werden x 0 x

Mehr

Vorkurs Mathematik (Allgemein) Übungsaufgaben

Vorkurs Mathematik (Allgemein) Übungsaufgaben Justus-Liebig-Universität Gießen Fachbereich 07 Mathematisches Institut Vorkurs Mathematik (Allgemein) Übungsaufgaben PD Dr. Elena Berdysheva Aufgabe. a) Schreiben Sie die folgenden periodischen Dezimalzahlen

Mehr

Der Begriff der Funktion oder Abbildung ist von zentraler Bedeutung für die gesamte Mathematik. Wir führen ihn in der nachstehenden Definition ein.

Der Begriff der Funktion oder Abbildung ist von zentraler Bedeutung für die gesamte Mathematik. Wir führen ihn in der nachstehenden Definition ein. Kapitel 2 Funktionen 2.1 Funktionen 2.2 Monotone Funktionen 2.3 Polynome 2.4 Rationale Funktionen 2.5 Abzählbarkeit von Mengen 2.1 Funktionen Der Begriff der Funktion oder Abbildung ist von zentraler Bedeutung

Mehr

Lineare Gleichungen Exkurs: Binomische Formeln Quadratische Gleichungen Exkurs: Polynomdivision Polynomgleichungen

Lineare Gleichungen Exkurs: Binomische Formeln Quadratische Gleichungen Exkurs: Polynomdivision Polynomgleichungen Gleichungen Lineare Gleichungen Exkurs: Binomische Formeln Quadratische Gleichungen Exkurs: Polynomdivision Polynomgleichungen Lineare Gleichungen Lineare Gleichungen ax + b = 0 Lineare Gleichungen ax

Mehr

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Systemtheorie

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Systemtheorie Institut für Elektrotechnik und Informationstechnik Aufgabensammlung zur Systemtheorie Prof. Dr. techn. F. Gausch Dipl.-Ing. C. Balewski Dipl.-Ing. R. Besrat 05.04.2013 Übungsaufgaben zur Systemtheorie

Mehr

Mathematik für Informatik 3

Mathematik für Informatik 3 Mathematik für Informatik 3 - ANALYSIS - Folgen, Reihen und Funktionen - Funktionen mehrerer Veränderlicher - Extremwertaufgaben - Normen und Approximationen - STATISTIK - WAHRSCHEINLICHKEITSRECHNUNG Literaturempfehlungen:

Mehr

Mathe- Multiple-Choice-Test für Wirtschaftsinformatiker

Mathe- Multiple-Choice-Test für Wirtschaftsinformatiker REELLE FUNKTIONEN 1 Was muss aufgeführt werden, wenn man eine reelle Funktion angibt? a) Ihre Funktionsvorschrift und ihren Wertebereich. Ihre Funktionsvorschrift und ihren Definitionsbereich. c) Den Wertebereich

Mehr

7 Integralrechnung für Funktionen einer Variablen

7 Integralrechnung für Funktionen einer Variablen 7 Integralrechnung für Funktionen einer Variablen In diesem Kapitel sei stets D R, und I R ein Intervall. 7. Das unbestimmte Integral (Stammfunktion) Es sei f : I R eine Funktion. Eine differenzierbare

Mehr

HTWD, FB Informatik/Mathematik. Mathematik für Bauingenieure. Wiederholungsaufgaben: Mathematik I

HTWD, FB Informatik/Mathematik. Mathematik für Bauingenieure. Wiederholungsaufgaben: Mathematik I HTWD, FB Informatik/Mathematik Prof. Dr. M. Voigt Mathematik I Wiederholung Mathematik für Bauingenieure Wiederholungsaufgaben: Mathematik I Aufgabe : Für die Aussagenverbindung T = (A B) ( A) gebe man

Mehr

1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente:

1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente: Lösung 1. Übung Elemente der Algebra WS018/19 1. Beschreiben Sie folgende Zahlenmengen durch Markierung auf der Zahlengeraden, der Zahlenebene bzw. durch Aufzählen der Elemente: (e) {(x,y) IR 7x+3y 6}.

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 2. Juli 2018 1/1 Wir geben einige wesentliche Sätze über bestimmte Integrale an, deren Beweise man in den Standardlehrbüchern der Analysis findet.

Mehr

18 Elementare Funktionen

18 Elementare Funktionen 18 Elementare Funktionen 18.1 Polynome und rationale Funktionen Polynome und rationale Funktionen haben die angenehme Eigenschaft, dass man ihre Funktionswerte leicht, nämlich nur unter Verwendung der

Mehr

Grundkurs Höhere Mathematik I (für naturwissenschaftliche. Studiengänge) Beispiele

Grundkurs Höhere Mathematik I (für naturwissenschaftliche. Studiengänge) Beispiele Grundkurs Höhere Mathematik I (für naturwissenschaftliche Studiengänge) Beispiele Prof. Dr. Udo Hebisch Diese Beispielsammlung ergänzt das Vorlesungsskript und wird ständig erweitert. 1 DETERMINANTEN 1

Mehr

Mathematik für Studierende der Biologie Wintersemester 2017/18. Grundlagentutorium 4 Lösungen

Mathematik für Studierende der Biologie Wintersemester 2017/18. Grundlagentutorium 4 Lösungen Mathematik für Studierende der Biologie Wintersemester 207/8 Grundlagentutorium 4 Lösungen Sebastian Groß Termin Mittwochs 5:45 7:45 Großer Hörsaal Biozentrum (B00.09) E-Mail gross@bio.lmu.de Sprechzeiten

Mehr

MATHEMATIK I für Bauingenieure (Fernstudium)

MATHEMATIK I für Bauingenieure (Fernstudium) TU DRESDEN Dresden, 2. Februar 2004 Fachrichtung Mathematik / Institut für Analysis Doz.Dr.rer.nat.habil. N. Koksch Prüfungs-Klausur MATHEMATIK I für Bauingenieure (Fernstudium) Name: Vorname: Matrikel-Nr.:

Mehr

Gebrochen rationale Funktionen

Gebrochen rationale Funktionen Gebrochen rationale Funktionen Anmerkung: Auf dieser Seite wurden LaTeX Formeln mit MathJa eingebaut die nötigen Formatierungen werden über einen eternen Server (cdn.mathja.org) bezogen. Keine Garantie,

Mehr

Berechnungen mit dem Horner-Schema

Berechnungen mit dem Horner-Schema Berechnungen mit dem Horner-Schema Das Hornerschema kann als Rechenhilfsmittel zur Berechnung von Funktionswerten von Polynomfunktionen, zur Faktorisieriung von Polynomen alternativ zur Polynomdivision

Mehr

Übungsblatt 2: Lösungen

Übungsblatt 2: Lösungen Übungsblatt 2: Lösungen 3..208 ) Bei Teilaufgabe (c) liegt eine unecht gebrochen rationale Funktionen vor, daher ist hier eine einleitende Polynomdivision zur ufspaltung in einen polynomialen nteil (symptote)

Mehr

VERTIEFUNGSKURS MATHEMATIK. Es gibt drei ganz einfache Techniken zum Integrieren von etwas komplizierteren

VERTIEFUNGSKURS MATHEMATIK. Es gibt drei ganz einfache Techniken zum Integrieren von etwas komplizierteren VERTIEFUNGSKURS MATHEMATIK ÜBUNGEN Es gibt drei ganz einfache Techniken zum Integrieren von etwas komplizierteren Funktionen: () Mit der Partialbruchzerlegung lässt sich jede gebrochen-rationale Funktion

Mehr

15 Integration (gebrochen) rationaler Funktionen

15 Integration (gebrochen) rationaler Funktionen 5 Integration (gebrochen) rationaler Funktionen Wir werden im folgenden sehen, daß sich die Integration gebrochen rationaler Funktionen auf die folgenden drei einfachen Fälle zurückführen läßt (für komplexe

Mehr

Rationale Funktionen

Rationale Funktionen Rationale Funktionen ANALYSIS Kapitel 6 Mittelstufe KSOe Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 26. Juni 2012 Überblick über die bisherigen ANALYSIS - Themen: 1 Funktionen

Mehr

Übungsblatt 2: Lösungen

Übungsblatt 2: Lösungen Übungsblatt 2: Lösungen 3..206 ) Bei Teilaufgabe (c) liegt eine unecht gebrochen rationale Funktionen vor, daher ist hier eine einleitende Polynomdivision zur ufspaltung in einen polynomialen nteil (symptote)

Mehr

Mathematik IT 3 (Analysis) Probeklausur

Mathematik IT 3 (Analysis) Probeklausur Mathematik IT (Analysis) Probeklausur Datum: 08..0, Zeit: :5 5:5 Name: Matrikelnummer: Vorname: Geburtsdatum: Studiengang: Aufgabe Nr. 5 Σ Punkte Soll 5 9 7 Punkte Ist Lösungen ohne begründeten Lösungsweg

Mehr

Hörsaalübung 3, Analysis II

Hörsaalübung 3, Analysis II Fachbereich Mathematik der Universität Hamburg Dr. H. P. Kiani Hörsaalübung 3, Analysis II SoSe 2016, 02/03. Mai Integration II: Partielle Integration Partialbruchzerlegung (PBZ) Die ins Netz gestellten

Mehr

F u n k t i o n e n Rationale Funktionen

F u n k t i o n e n Rationale Funktionen F u n k t i o n e n Rationale Funktionen Die erste urkundlich erwähnte Rechenmaschine wurde 163 von Wilhelm Schickard in einem Brief an Johannes Kepler knapp beschrieben. Die Maschine besteht aus einem

Mehr

$Id: integral.tex,v /05/05 13:36:42 hk Exp $

$Id: integral.tex,v /05/05 13:36:42 hk Exp $ $Id: integral.tex,v.5 07/05/05 3:36:4 hk Exp $ Integralrechnung.4 Integration rationaler Funktionen In diesem Abschnitt wollen wir die Integration rationaler Funktionen diskutieren. Es wird sich herausstellen

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen 19. April 2013 *Aufgabe 1. Bestimmen Sie eine Lösung von mit Hilfe eines speziellen Ansatzes. y (4) + 4 + 6 + 4y + y = (x 2 + x)e x Lösung: Zunächst geben wir noch einmal

Mehr

Mathematischer Vorbereitungskurs für das MINT-Studium

Mathematischer Vorbereitungskurs für das MINT-Studium Mathematischer Vorbereitungskurs für das MINT-Studium Dr. B. Hallouet b.hallouet@mx.uni-saarland.de WS 2016/2017 Vorlesung 11 MINT Mathkurs WS 2016/2017 1 / 21 Partialbruchzerlegung (Partial fraction decomposition)

Mehr

Vorlesung. Mathematik 1. Prof. Dr. M Herty (IGPM) MATHEMATIK 1 8. SEPTEMBER / 30

Vorlesung. Mathematik 1. Prof. Dr. M Herty (IGPM) MATHEMATIK 1 8. SEPTEMBER / 30 Vorlesung Mathematik 1 Prof. Dr. M Herty (IGPM) MATHEMATIK 1 8. SEPTEMBER 2016 1 / 30 Vorlesung Mathematik 1 Prof. Dr. M Herty Diese Vorlesung: Mengen Reelle Zahlen Elementare Funktionen Anwendungsbeispiel:

Mehr

Höhere Mathematik I für BWIW, BNC, BAI, BGIP, GTB, Ma Hausaufgaben zum Übungsblatt 3 - Lösung

Höhere Mathematik I für BWIW, BNC, BAI, BGIP, GTB, Ma Hausaufgaben zum Übungsblatt 3 - Lösung TU Bergakademie Freiberg Wintersemester 009/10 Dr. Gunter Semmler Dr. Anja Kohl Höhere Mathematik I für BWIW, BNC, BAI, BGIP, GTB, Ma Hausaufgaben zum Übungsblatt - Lösung Lösung von Gleichungen im Komplexen

Mehr

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007

Analysis1-Klausuren in den ET-Studiengängen (Ba) ab 2007 Analysis-Klausuren in den ET-Studiengängen (Ba) ab 7 Im Folgenden finden Sie die Aufgabenstellungen der bisherigen Klausuren Analysis im Bachelorstudium der ET-Studiengänge sowie knapp gehaltene Ergebnisangaben.

Mehr

Integrationsmethoden

Integrationsmethoden Integrationsmethoden W. Kippels 4. Mai 017 Inhaltsverzeichnis 1 Einleitung 3 Die Partielle Integration 3.1 Mathematischer Hintergrund......................... 3. Beispiel 1...................................

Mehr

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind Vorbereitungsaufgaben Mathematik. Bruchrechnung.. Grundlagen: gebrochene Zahl gemeiner Bruch Zähler Nenner Dezimalbruch Ganze, Zehntel Hundertstel Tausendstel Kürzen: Zähler und Nenner durch dieselbe Zahl

Mehr

2015, MNZ. Jürgen Schmidt. 2.Tag. Vorkurs. Mathematik WS 2015/16

2015, MNZ. Jürgen Schmidt. 2.Tag. Vorkurs. Mathematik WS 2015/16 Vorkurs Mathematik WS 2015/16 2.Tag Arten von Gleichungen Lineare Gleichungen (und Funktionen) 0 = ax + b (oft als Funktion: y = mx + n) a,b R Parameter m Anstieg, n Achsenabschnitt Quadratische Gleichungen

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme. Kapitel 3 Gleichungen und Ungleichungen linke Seite = rechte Seite Grundmenge: Menge aller Zahlen, die wir als Lösung der Gleichung

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Kapitel 3 Gleichungen und Ungleichungen Josef Leydold Auffrischungskurs Mathematik WS 2017/18 3 Gleichungen und Ungleichungen 1 / 58 Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme.

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Kapitel 3 Gleichungen und Ungleichungen Josef Leydold Auffrischungskurs Mathematik WS 2017/18 3 Gleichungen und Ungleichungen 1 / 58 Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme.

Mehr

Partialbruchzerlegung

Partialbruchzerlegung Partialbruchzerlegung Lucas Kunz 27. Januar 207 Inhaltsverzeichnis Theorie 2. Definition.................................... 2.2 Nullstellen höheren Grades........................... 2.3 Residuen-Formel................................

Mehr

Vorkurs Mathematik WiSe 2017/18

Vorkurs Mathematik WiSe 2017/18 Vorkurs Mathematik WiSe 2017/18 S. Bernstein, S. Dempe, M. Helm Fakultät für Mathematik und Informatik Die Vorlesungen und Tutorien des Vorkurses wurden als Teil des Brückenkurses I teilweise durch das

Mehr

1. Fall: 2. Fall: Lösungsblatt zu: Differentialquotient. Tipp: Nullstellen. Tipp: Es reicht, wenn einer der Faktoren Null wird.

1. Fall: 2. Fall: Lösungsblatt zu: Differentialquotient. Tipp: Nullstellen. Tipp: Es reicht, wenn einer der Faktoren Null wird. Lösungsblatt zu: Differentialquotient Aufgabe 1: Gegeben: f(x) = 0,5x 3 1,5x² a) Bestimmen Sie die Nullstellen: Nullstellen f(x) = 0 0,5x 3 1,5x 2 = 0 ( 0,5x 2 ausklammern) 0,5x 2 (x + 3) = 0 Es reicht,

Mehr

Rationale Funktionen

Rationale Funktionen Rationale Funktionen ANALYSIS Kapitel 6 WRProfil - Mittelstufe KZN Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 15. August 2016 Überblick über die bisherigen ANALYSIS - Themen:

Mehr

Gebrochen Rationale Funktionen

Gebrochen Rationale Funktionen Gebrochen Rationale Funktionen W. Kippels. September 2017 Inhaltsverzeichnis 1 Vorwort 3 2 Einführung 3 Polstellen und Lücken Asymptote 10 5 Übungsaufgaben 11 5.1 Aufgabe 1...................................

Mehr

Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 1

Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure 1 Studiengang: Matrikelnummer: 3 4 5 6 Z Bonus Punkte Note Prüfungsklausur zum Modul Höhere Mathematik für Ingenieure.. 7, 3. - 6. Uhr Zugelassene Hilfsmittel: A4-Blätter eigene, handschriftliche Ausarbeitungen

Mehr

Vortragsübung am 25. April 2014

Vortragsübung am 25. April 2014 Seite von 6 Termin: 5. April 04 Vortragsübung am 5. April 04.. Berechnen Sie den Grenzwert lim n ( n + + n + + + ), n indem Sie ihn als Riemann-Summe eines Integrals auffassen... Bestimmen Sie folgende

Mehr

ÜBUNG 2: Z-TRANSFORMATION, SYSTEMSTRUKTUREN

ÜBUNG 2: Z-TRANSFORMATION, SYSTEMSTRUKTUREN ÜBUNG : Z-TRANSFORMATION, SYSTEMSTRUKTUREN 8. AUFGABE Bestimmen Sie die Systemfunktion H(z) aus den folgenden linearen Differenzengleichungen: a) b) y(n) = 3x(n) x(n ) + x(n 3) y(n ) + y(n 3) 3y(n ) y(n)

Mehr

Aufgabe 2 Tippkarte. Aufgabe 1 Tippkarte. Aufgabe 4 Tippkarte. Aufgabe 3 Tippkarte

Aufgabe 2 Tippkarte. Aufgabe 1 Tippkarte. Aufgabe 4 Tippkarte. Aufgabe 3 Tippkarte Aufgabe 1 Aufgabe 2 Die Funktion f ist eine ganzrationale Funktion dritten Grades. Die Summanden sind nicht in der richtigen Reihenfolge und müssen deshalb nach absteigenden x- Potenzen geordnet werden.

Mehr