Differentialgeometrie I (Kurventheorie) SS 2013

Größe: px
Ab Seite anzeigen:

Download "Differentialgeometrie I (Kurventheorie) SS 2013"

Transkript

1 Differentialgeometrie I (Kurventheorie) SS 2013 Lektion Juni 2013 c Daria Apushkinskaya 2013 () Kurventheorie: Lektion Juni / 18

2 10. Umlaufsatz 10. Umlaufsatz c Daria Apushkinskaya 2013 () Kurventheorie: Lektion Juni / 18

3 10. Umlaufsatz Umlaufsatz Als Anwendung der Begriffsbildung (Rotationsindex) beweisen wir den berühmten Theorem 10.1 ( Umlaufsatz ) Sei α : [0, L] R 2 eine nach der Länge parametrisierte, einfach geschlossene Kurve (d.h. α [0,L) ist injektiv). Dann gilt: Rotationsindex I α {+1, 1}. c Daria Apushkinskaya 2013 () Kurventheorie: Lektion Juni / 18

4 Anschaulich ist klar, dass es einen Punkt p Spur α gibt, so dass Spur α ganz auf einer Seite der Tangente in p liegt. Dazu nehme man eine Gerade, die Spur α nicht trifft (existiert, das Spur α kompakt ) und verschiebe diese solange parallel bis sie zu einer Tangente wird. O.E. kann man annehmen, dass p = α(0) = α(l) ist, sonst parametrisiere man um, was den Index nicht ändert. c Daria Apushkinskaya 2013 () Kurventheorie: Lektion Juni / 18

5 Auf dem Dreieck L := { } (s, u) R 2 : 0 s u L betrachtet man die Sehnenabbildung α(u) α(s) α(u) α(s), s < u, u s < L σ(s, u) := α (s), s = u α (0), s = 0, u = L Da α einfach geschlossen ist, ist σ(s, u) wohldefiniert, denn in der ersten Definitionszeile ist s = 0, u = L ( α(u) = α(s)) verboten, nur für diese Wahl ist α(u) = α(s). c Daria Apushkinskaya 2013 () Kurventheorie: Lektion Juni / 18

6 Außerdem ist σ stetig: Dazu ist zu prüfen: 1. Ist 0 s 0 L, so gilt und lim (s,u) (s 0,s 0 ),u>s α(u) α(s) α(u) α(s) = α (s 0 ) 2. lim (s,u) (0,L),u>s α(u) α(s) α(u) α(s) = α (0) c Daria Apushkinskaya 2013 () Kurventheorie: Lektion Juni / 18

7 ad 1. Für s < u, u s < L ist α(u) α(s) α(u) α(s) = α(u) α(s) u s α(u) α(s) u s α(u) α(s) u s 1 = 1 1 α(s + ρ(u s))dρ u s ρ 0 = 1 falls (s, u) (s 0, s 0 ), s 0 0, u > s. 0 α (s + ρ(u s))dρ α (s 0 ),, c Daria Apushkinskaya 2013 () Kurventheorie: Lektion Juni / 18

8 Also: lim (s,u) (s 0,s 0 ),u>s wegen α (s 0 ) = 1. α(u) α(s) α(u) α(s) = α (s 0 ) α (s 0 ) = α (s 0 ) c Daria Apushkinskaya 2013 () Kurventheorie: Lektion Juni / 18

9 ad 2. Seien s < u, u s < L. Es gilt α(s) = α(s + L) (α L-periodisch fortgesetzt), also α(u) α(s) α(u) α(s) = α(u) α(s + L) u (s + L) u (s + L) α(u) α(s + L) mit α(u) α(s + L) u (s + L) α (L) bei u L, s 0, u > s. (s.o.). Gemäß u (s + L) < 0 gilt dann bei diesem Grenzübergang u (s + L) α(u) α(s + L) 1 α (L), was wegen α = 1 und α (0) = α (L) die Aussage 2.) ergibt. c Daria Apushkinskaya 2013 () Kurventheorie: Lektion Juni / 18

10 Die weitere Vorgehensweise zur Berechnung von I α sieht so aus: I α wird vom Tangentenfeld t α bestimmt und wie nach der Definition des Rotationsindex vermerkt, können wir für ede stetige Kurve T : [0, L] S 1 eine Zahl I T Z definieren sofern T (0) = T (L) ist. (Man mache einfach die Konstruktion nach!) Speziell ist I α = I tα. Ist T ρ : [0, L] S 1, 0 ρ 1, eine Familie geschlossener Kurven, die stetig von ρ abhängt, so ist ρ I Tρ stetig, also const, da Z-wertig. Man suche eine Schar T ρ, so dass T 0 = t(= t α ) ist, und gleichzeitig T 1 eine so einfache Gestalt hat, dass man I T1 ausrechnen kann. c Daria Apushkinskaya 2013 () Kurventheorie: Lektion Juni / 18

11 Um diese Schritte auszuführen, sei { L ((1 u)s, (1 + u)s), 0 s 1/2, ϕ u (s) := L ((1 + u)s u, (1 u)s + u), 1/2 s 1, wobei 0 u 1 als fixierter Parameter gedacht wird. Es gilt: ϕ u hat Werte in L für jedes u [0, 1], ϕ u passt bei 1/2 stetig zusammen, auch (s, u) ϕ u (s) ist eine stetige Abbildung [0, 1] [0, 1] L, speziell ist ϕ 0 (s) = L(s, s). c Daria Apushkinskaya 2013 () Kurventheorie: Lektion Juni / 18

12 Alle Spuren starten in (0, 0) und laufen wie angedeutet nach (L, L), die Spur von ϕ 0 ist die Diagonale. Es sei schließlich T u := σ ϕ u : [0, 1] S 1, 0 u 1. Man hat Stetigkeit von σ, also Stetigkeit von jeder einzelnen Kurve T u, aber offensichtlich ist auch (s, u) T u (s) = σ(ϕ u (s)) stetig wegen der Stetigkeit von (s, u) ϕ u (s). c Daria Apushkinskaya 2013 () Kurventheorie: Lektion Juni / 18

13 Daher und mit den Vorbemerkungen ist Rotationsindex I Tu der Kurve T u konst Z. (beachte: T u (0) = T u (1) = α (0), T u erfüllt also die Erfordernisse zur Definition des Index!) Außerdem: T 0 (s) = σ(ϕ 0 (s)) = σ(l(s, s)) = α (Ls), m.a. W.: I T0 = T α, so dass obige Zahl konst Z gerade I α ist. Insbesondere folgt: I α = I T1, und den Index von T 1 können wir in einem letzten Schritt ausrechnen: c Daria Apushkinskaya 2013 () Kurventheorie: Lektion Juni / 18

14 Es ist T 1 = σ ϕ 1 : [0, 1] S 1. Durchläuft s das Intervall [0, 1/2], so durchläuft σ(ϕ 1 (s)) = σ(0, 2Ls) = α(2ls) α(0) α(2ls) α(0) die normierten Sehnen vom Punkt α(0) aus, wobei σ(ϕ 1 (0)) = α (0), σ (ϕ 1 (1/2)) = α (0), wobei σ(ϕ 1 (s)) stets auf derselben Hälfte von S 1 bleibt, da Spur α ja auf einer Seite der Tangente in α in α(0) bleibt. Die Änderung des Winkels ist also π oder π. c Daria Apushkinskaya 2013 () Kurventheorie: Lektion Juni / 18

15 Für s zwischen 1/2 und 1 variiert σ(ϕ 1 (s)) = σ(2ls L, L) = α(l) α(2ls L) α(0) α(2ls L) = α(l) α(2ls L) α(0) α(2ls L) offensichtlich genau in der anderen Hälfte von S 1. Die Winkeländerung (von α (0) = σ(ϕ 1 (1/2)) auf α (0) = σ(ϕ 1 (1))) ist wieder +π oder π (in beiden Fällen gleiches Vorzeichen). Insgesamt folgt 2π oder 2π also Winkeländerung, so dass I α = ±1. c Daria Apushkinskaya 2013 () Kurventheorie: Lektion Juni / 18

16 10. Umlaufsatz Korollar Korollar Es sei α : [0, L] R 2 eine einfach geschlossene, nach der Länge parametrisierte Kurve. κ α bezeichne die orientrierte Krümmung. Dann gilt: a) L L κ α ds = ±2π. (Die Größe κ α ds wird auch Tatlkrümmung von α 0 0 genannt. Für einfach geschlossene Kurven ist diese also ±2π.) b) Ist κ α 1/r für ein r > 0, so ist L = L(α)(= Länge von α) 2πr. c) Aus κ α 1/r folgt L(α) 2πr. d) Es ist max κ α 2π/L. c Daria Apushkinskaya 2013 () Kurventheorie: Lektion Juni / 18

17 10. Umlaufsatz Beweis von Korollar Beweis von Korollar a) Für geschlossene, nach der Länge parametrisierte Kurven wurde gezeigt 2πI α = L 0 κ α (s)ds, so dass die Behauptung für einfach geschlossene Kurven aus I α = ±1 folgt. c) Es ist mit a) also L 2πr. 2π = L 0 κ α ds L 0 κ α ds L r c Daria Apushkinskaya 2013 () Kurventheorie: Lektion Juni / 18

18 10. Umlaufsatz Beweis von Korollar Beweis von Korollar b) Die Voraussetzung κ α 1/r liefert speziell, dass κ α keinen Vorzeichenwechsel hat. Also gilt wieder mit a): d.h. L 2πr. 2π = L 0 κ α ds = L 0 κ α ds L r, d) Wäre max κ α (1 ε)2π/l für ein ε > 0, so ergubt c): was unmöglich ist. 1 L 2π (1 ε)2π L > L, c Daria Apushkinskaya 2013 () Kurventheorie: Lektion Juni / 18

Differentialgeometrie I (Kurventheorie) SS 2013

Differentialgeometrie I (Kurventheorie) SS 2013 Differentialgeometrie I (Kurventheorie) SS 2013 Lektion 7 19. Juni 2013 c Daria Apushkinskaya 2013 () Kurventheorie: Lektion 7 19. Juni 2013 1 / 17 9. Globale Eigenschaften ebener Kurven (Fortsetzung)

Mehr

Differentialgeometrie I (Kurventheorie) SS 2013

Differentialgeometrie I (Kurventheorie) SS 2013 Differentialgeometrie I (Kurventheorie) SS 2013 Lektion 6 5. Juni 2013 c Daria Apushkinskaya 2013 () Kurventheorie: Lektion 6 5. Juni 2013 1 / 23 8. Fundamentalsatz der lokalen Kurventheorie (Fortsetzung)

Mehr

Differentialgeometrie I (Kurventheorie) SS 2013

Differentialgeometrie I (Kurventheorie) SS 2013 Differentialgeometrie I (Kurventheorie) SS 2013 Lektion 4 15. Mai 2013 c Daria Apushkinskaya 2013 () Kurventheorie: Lektion 4 15. Mai 2013 1 / 21 5. Ebene Kurven und orientierte Krümmung 5. Ebene Kurven

Mehr

Differentialgeometrie I (Kurventheorie) SS 2013

Differentialgeometrie I (Kurventheorie) SS 2013 Differentialgeometrie I (Kurventheorie) SS 2013 Lektion 3 8. Mai 2013 c Daria Apushkinskaya 2013 () Kurventheorie: Lektion 3 8. Mai 2013 1 / 17 4. Lokale Kurventheorie im R 3 4. Lokale Kurventheorie im

Mehr

Differentialgeometrie SS M. Fuchs

Differentialgeometrie SS M. Fuchs Differentialgeometrie SS 2008 M. Fuchs Literatur Manfredo P. Do Carmo Differential Geometry of Curves and Surfaces, Prentice- Hall sowie die deutschsprachige Übersetzung (gekürzt!) Differentialgeometrie

Mehr

Differentialgeometrie II (Flächentheorie) WS

Differentialgeometrie II (Flächentheorie) WS Differentialgeometrie II (Flächentheorie) WS 2013-2014 Lektion 9 18. Dezember 2013 c Daria Apushkinskaya 2013 () Flächentheorie: Lektion 9 18. Dezember 2013 1 / 17 9. Einführung in der innere Geometrie

Mehr

Maximalität und Globalität von Lösungen

Maximalität und Globalität von Lösungen Gewöhnliche Differentialgleichungen Florian Wörz SoSe 205 Maximalität und Globalität von Lösungen Maximale Lösungen Sei Ω : T U R R n ein Gebiet, f : Ω R n stetig und (t 0, u 0 ) Ω. Im Folgenden betrachten

Mehr

Wir wollen längs der Kurve in jedem Punkt sinnvoll eine Basis anheften.

Wir wollen längs der Kurve in jedem Punkt sinnvoll eine Basis anheften. 3.8 Begleitendes Dreibein Wir wollen längs der Kurve in jedem Punkt sinnvoll eine Basis anheften. 3.8.1 W-Punkte Geg.: regul. C 2 -Kurve c : x(s), s I x(s) heißt W-Punkt von c : x (s) = o. 3.8.2 Begleitendes

Mehr

MAA = MAB + B AA = B CA + CAA BA A Nun sehen wir mit Proposition 10.7 aus dem Skript, dass A M AB gelten muss.

MAA = MAB + B AA = B CA + CAA BA A Nun sehen wir mit Proposition 10.7 aus dem Skript, dass A M AB gelten muss. 1. Konvexität in der absoluten Ebene In einem Dreieck in der Euklidischen Ebene hat die Strecke zwischen zwei Seitenmittelpunkten die halbe Länge der dritten Seite. In der absoluten Ebene hat man eine

Mehr

Differentialgeometrie I (Kurventheorie) SS 2013

Differentialgeometrie I (Kurventheorie) SS 2013 Differentialgeometrie I (Kurventheorie) SS 2013 Lektion 1 18. April 2013 c Daria Apushkinskaya 2013 () Kurventheorie: Lektion 1 18. April 2013 1 / 23 Organisatorisches Allgemeines Dozentin: Dr. Darya Apushkinskaya

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b.

f(x nk ) = lim y nk ) = lim Bemerkung 2.14 Der Satz stimmt nicht mehr, wenn D nicht abgeschlossen oder nicht beschränkt ist, wie man z.b. Proposition.13 Sei f : D R stetig und D = [a, b] R. Dann ist f(d) beschränkt. Außerdem nimmt f sein Maximum und Minimum auf D an, d.h. es gibt x max D und ein x min D, so dass f(x max ) = sup f(d) und

Mehr

Die komplexe Halbebene faktorisiert nach einer Fuchsschen Gruppe

Die komplexe Halbebene faktorisiert nach einer Fuchsschen Gruppe Die komplexe Halbebene faktorisiert nach einer Fuchsschen Gruppe Matthias Nagel Riemannsche Flächen Stets sei X eine 2-dimensionale Mannigfaltigkeit (Fläche). Definition. ) Eine komplexe Karte auf X ist

Mehr

Hilbertpolynom von I, i.z. a HP I.

Hilbertpolynom von I, i.z. a HP I. 9.4.4 Korollar/Def. Sei (1) I k[x 1,..., X n ] ein Ideal. Dann ist die affine Hilbertfunktion a HF I (s) für s 0 ein Polynom in s mit Koeffizienten in Q; es heißt das affine Hilbertpolynom von I, i.z.

Mehr

Nun zeigen wir: wie kann man durch eine Liftung eine neue Unterlösung konstruieren.

Nun zeigen wir: wie kann man durch eine Liftung eine neue Unterlösung konstruieren. 56 SS2016 Definition 6.17 (Unterlösung,Oberlösung). Ω R n seieingebietleinelliptischeroperator wie in Bedingung 6.1. Seien a i j, b i c stetig mit c 0 in Ω. Sei f stetig in Ω. Eine Funktion u C(Ω) heißt

Mehr

Messbare Vektorräume

Messbare Vektorräume Messbare Vektorräume Hans-Jörg Starkloff TU Bergakademie Freiberg Westsächsische Hochschule Zwickau Dezember 2010 / Januar 2011 Hans-Jörg Starkloff Messbare Vektorräume 1 1. Definition Geg. X linearer

Mehr

Flächen und ihre Krümmungen

Flächen und ihre Krümmungen Flächen und ihre Krümmungen Teilnehmer: Levi Borodenko Anna Heinrich Jochen Jacobs Robert Jendersie Tanja Lappe Manuel Radatz Maximilian Rogge Käthe-Kollwitz-Oberschule, Berlin Käthe-Kollwitz-Oberschule,

Mehr

10. Isolierte Singularitäten

10. Isolierte Singularitäten 0. Isolierte Singularitäten 57 0. Isolierte Singularitäten Der wichtigste Spezialfall von Laurent-Reihen (und in der Tat auch der, den wir ab jetzt nur noch betrachten werden) ist der, bei dem der innere

Mehr

Funktionentheorie auf Riemannschen Flächen

Funktionentheorie auf Riemannschen Flächen Funktionentheorie auf Riemannschen Flächen Universität Regensburg Sommersemester 2014 Daniel Heiß: 5: Maximale analytische Fortsetzung 20.05.2014 Abstract Zunächst werden Garben und weitere benötigte Begriffe

Mehr

Gewöhnliche Differentialgleichungen Woche 6. Existenz nach Picard-Lindelöf

Gewöhnliche Differentialgleichungen Woche 6. Existenz nach Picard-Lindelöf d Gewöhnliche Differentialgleichungen Woche 6 Existenz nach Picard-Lindelöf 6.1 Vorbereitung für den Existenzsatz 6.1.1 Stetigkeit und Lipschitz-Stetigkeit Definition 6.1 Seien (V 1, 1 und (V 2, 2 zwei

Mehr

Differentialgeometrie II (Flächentheorie) WS

Differentialgeometrie II (Flächentheorie) WS Differentialgeometrie II (Flächentheorie) WS 2013-2014 Lektion 1 16. Oktober 2013 c Daria Apushkinskaya 2013 () Flächentheorie: Lektion 1 16. Oktober 2013 1 / 20 Organisatorisches Allgemeines Dozentin:

Mehr

Differentialgeometrie II (Flächentheorie) WS

Differentialgeometrie II (Flächentheorie) WS Differentialgeometrie II (Flächentheorie) WS 2013-2014 Lektion 10 8. Januar 2014 c Daria Apushkinskaya 2014 () Flächentheorie: Lektion 10 8. Januar 2014 1 / 21 10. Konforme Abbildungen 10. Konforme Abbildungen

Mehr

2. Übungsblatt zur Differentialgeometrie

2. Übungsblatt zur Differentialgeometrie Institut für Mathematik Prof. Dr. Helge Glöckner Dipl. Math. Rafael Dahmen SoSe 11 15.04.2011 2. Übungsblatt zur Differentialgeometrie (Aufgaben und Lösungen) Gruppenübung Aufgabe G3 (Atlanten) (a) In

Mehr

12.1 Kurven und Parametertransformationen. Wir untersuchen in diesem Abschnitt so genannte Kurven, die in der nachstehenden Definition

12.1 Kurven und Parametertransformationen. Wir untersuchen in diesem Abschnitt so genannte Kurven, die in der nachstehenden Definition Kapitel 1 Kurven im R n 1.1 Kurven und Parametertransformationen 1. Funktionen von beschränkter Schwankung 1.3 Die Bogenlänge von Kurven 1.4 Parametrisierung nach der Bogenlänge 1.1 Kurven und Parametertransformationen

Mehr

3 Der Cauchysche Integralsatz

3 Der Cauchysche Integralsatz 3 Der Cauchysche Integralsatz Die in der Funktionentheorie meist vorkommenden Integrale (insbesondere im Cauchyschen Integralsatz) sind Kurvenintegrale und wie folgt definiert: Definition Sei U C, f :

Mehr

Analysis II. Vorlesung 44. Partielle Ableitungen

Analysis II. Vorlesung 44. Partielle Ableitungen Prof. Dr. H. Brenner Osnabrück SS 2015 Analysis II Vorlesung 44 Sei f: K n K eine durch Partielle Ableitungen (x 1,...,x n ) f(x 1,...,x n ) gegebene Abbildung. Betrachtet man für einen fixierten Index

Mehr

Differentialgeometrie II (Flächentheorie) WS

Differentialgeometrie II (Flächentheorie) WS Differentialgeometrie II (Flächentheorie) WS 2013-2014 Lektion 3 30. Oktober 2013 c Daria Apushkinskaya 2013 () Flächentheorie: Lektion 3 30. Oktober 2013 1 / 23 3. Erste Fundamentalform parametrisierten

Mehr

Fouriertransformation und Unschärfeprinzip

Fouriertransformation und Unschärfeprinzip Information, Codierung, Komplexität 2 SS 2007 24. April 2007 Das berühmte von Heisenberg in der Quantentheorie beruht, rein mathematisch betrachtet, auf einer grundlegenden Eigenschaft der der Dichtefunktionen

Mehr

Seminar Gewöhnliche Differentialgleichungen

Seminar Gewöhnliche Differentialgleichungen Seminar Gewöhnliche Differentialgleichungen Dynamische Systeme I 1 Einleitung 1.1 Nichtlineare Systeme In den vorigen Vorträgen haben wir uns mit linearen Differentialgleichungen beschäftigt. Nun werden

Mehr

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 4

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 4 TUM, Zentrum Mathematik Lehrstuhl für Mathematische Physik WS 3/4 Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weidner Tutoraufgaben: Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge

Mehr

Nach Bogenlänge parametrisierte Kurven

Nach Bogenlänge parametrisierte Kurven Nach Bogenlänge parametrisierte Kurven Eine orientierte Kurve ist eine Äquivalenzklasse von regulären parametrisierten Kurven bzgl. der orientierungserhaltenden Umparametrisierung als Äquivalenzrelation.

Mehr

Die Lösungen der Gleichung b x = log b (x)

Die Lösungen der Gleichung b x = log b (x) Die Lösungen der Gleichung b = log b () wgnedin@math.uni-koeln.de 17. Januar 2014 In der ersten Vorlesung des Wintersemesters wurde folgende Frage gestellt: Wieviele Lösungen hat die Gleichung ( ) 1 =

Mehr

Technische Universität München. Aufgaben Mittwoch SS 2012

Technische Universität München. Aufgaben Mittwoch SS 2012 Technische Universität München Andreas Wörfel Ferienkurs Analysis 2 für Physiker Aufgaben Mittwoch SS 2012 Aufgabe 1 Äquivalente Aussagen für Stetigkeit( ) Beweisen Sie folgenden Satz: Seien X und Y metrische

Mehr

Cauchys Integralsatz und Cauchys Integralformel

Cauchys Integralsatz und Cauchys Integralformel Kapitel 23 Cauchys Integralsatz und Cauchys Integralformel 23. Der Cauchysche Integralsatz (einfach zusammenhängend; einfache geschlossene Kurven; Fresnelsche Integrale) Wird die Voraussetzung f habe eine

Mehr

Lösung zu Kapitel 5 und 6

Lösung zu Kapitel 5 und 6 Lösung zu Kapitel 5 und 6 (1) Sei f eine total differenzierbare Funktion. Welche Aussagen sind richtig? f ist partiell differenzierbar f kann stetig partiell differenzierbar sein f ist dann immer stetig

Mehr

Punktweise Konvergenz stückweise glatter Funktionen. 1 Vorbereitungen

Punktweise Konvergenz stückweise glatter Funktionen. 1 Vorbereitungen Vortrag zum Seminar zur Fourieranalysis, 3.10.007 Margarete Tenhaak Im letzten Vortrag wurde die Fourier-Reihe einer -periodischen Funktion definiert. Fourier behauptete, dass die Fourier-Reihe einer periodischen

Mehr

Prof. D. Salamon Funktionentheorie ETH Zürich MATH, PHYS 27. Oktober Musterlösung 5

Prof. D. Salamon Funktionentheorie ETH Zürich MATH, PHYS 27. Oktober Musterlösung 5 Prof. D. Salamon Funktionentheorie ETH Zürich MATH, PHYS 27. Oktober 2009 Musterlösung 5 1. Sei f : C C eine holomorphe Funktion, so dass f(z) < z n für ein n N und alle hinreichend grossen z. Dann ist

Mehr

(k +2)(k +3) x 2 (k +3)!

(k +2)(k +3) x 2 (k +3)! 5.3. SINUS UND KOSINUS 9 5.35. Lemma. Es gilt (i) (ii) (iii) cos() < 0, sin(x) > 0 für alle x (0, ], x cos(x) ist streng monoton fallend in [0, ]. Beweis. (i) Es ist cos() = 1! + 4 6 4! 6! 8 10 8! 10!

Mehr

Differentialgeometrie II (Flächentheorie) WS

Differentialgeometrie II (Flächentheorie) WS Differentialgeometrie II (Flächentheorie) WS 2013-2014 Lektion 4 6. November 2013 c Daria Apushkinskaya 2013 () Flächentheorie: Lektion 4 6. November 2013 1 / 17 4. Zweite Fundamentalform parametrisierten

Mehr

6.1 Holomorphe Funktionen und Potenzreihen. n=0 α n (z z 0 ) n mit Konvergenzradius größer oder gleich r existiert und

6.1 Holomorphe Funktionen und Potenzreihen. n=0 α n (z z 0 ) n mit Konvergenzradius größer oder gleich r existiert und Funktionentheorie, Woche 6 Analytische Funktionen 6. Holomorphe Funktionen und Potenzreihen Definition 6. Eine Funktion f : U C C nennt man analytisch in z 0 U, wenn es r > 0 gibt mit B r (z 0 ) U derart,

Mehr

4.2 Grenzwerte und Stetigkeit reeller Funktionen

4.2 Grenzwerte und Stetigkeit reeller Funktionen 4. Grenzwerte und Stetigkeit reeller Funktionen 73 4. Grenzwerte und Stetigkeit reeller Funktionen Definition 4.. Gegeben sei eine Funktion y = mit D(f). (i) Sei D(f). heißt stetig in, falls es für alle

Mehr

13 Die trigonometrischen Funktionen

13 Die trigonometrischen Funktionen 13 Die trigonometrischen Funktionen Wir schreiben die Werte der komplexen Exponentialfunktion im Folgenden auch als e z = exp(z) (z C). Geometrisch definiert man üblicherweise die Werte der Winkelfunktion

Mehr

Blatt 4. Übungen zur Topologie, G. Favi 20. März Abgabe: 27. März 2008, 12:00 Uhr

Blatt 4. Übungen zur Topologie, G. Favi 20. März Abgabe: 27. März 2008, 12:00 Uhr Übungen zur Topologie, G. Favi 20. März 2009 Blatt 4 Abgabe: 27. März 2008, 12:00 Uhr Aufgabe 1. (a) Auf der 2-Sphäre S 2 := {(x, y, z) R 3 x 2 + y 2 + z 2 = 1} R 3 betrachten wir folgende Äquivalenzrelation:

Mehr

( ) ( ) < b k, 1 k n} (2) < x k

( ) ( ) < b k, 1 k n} (2) < x k Technische Universität Dortmund Fakultät für Mathematik Proseminar Analysis Prof. Dr. Röger Benjamin Czyszczon Satz von Heine Borel Gliederung 1. Zellen und offene Überdeckungen 2. Satz von Heine Borel

Mehr

15 Hauptsätze über stetige Funktionen

15 Hauptsätze über stetige Funktionen 15 Hauptsätze über stetige Funktionen 15.1 Extremalsatz von Weierstraß 15.2 Zwischenwertsatz für stetige Funktionen 15.3 Nullstellensatz von Bolzano 15.5 Stetige Funktionen sind intervalltreu 15.6 Umkehrfunktionen

Mehr

6 Komplexe Integration

6 Komplexe Integration 6 Komplexe Integration Ziel: Berechne für komplexe Funktion f : D W C Integral der Form f(z)dz =? wobei D C ein Weg im Definitionsbereich von f. Fragen: Wie ist ein solches komplexes Integral sinnvollerweise

Mehr

11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen

11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen 11 Untermannigfaltigkeiten des R n und lokale Extrema mit Nebenbedingungen Ziel: Wir wollen lokale Extrema von Funktionen f : M R untersuchen, wobei M R n eine k-dimensionale Untermannigfaltigkeit des

Mehr

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE Wiederholungsblatt Elementargeometrie im SS 01 bei Prof. Dr. S. Goette LÖSUNGSSKIZZE Die Lösungen unten enthalten teilweise keine vollständigen Rechnungen. Es sind aber alle wichtigen Zwischenergebnisse

Mehr

sign: R R, sign(x) := 0 falls x = 0 1 falls x < 0 Diese ist im Punkt x 0 = 0 nicht stetig, denn etwa zu ε = 1 finden wir kein δ > 0

sign: R R, sign(x) := 0 falls x = 0 1 falls x < 0 Diese ist im Punkt x 0 = 0 nicht stetig, denn etwa zu ε = 1 finden wir kein δ > 0 ANALYSIS FÜR PHYSIK UND VERWANDTE FÄCHER I 81 3. Stetigkeit 3.1. Stetigkeit. Im Folgenden sei D R eine beliebige nichtleere Teilmenge. Typischerweise wird D ein allgemeines Intervall sein, siehe Abschnitt

Mehr

Algebraische Topologie

Algebraische Topologie Algebraische Topologie W. Ebeling und K. Hulek Einleitung Grundzüge der algebraischen Topologie sieht man bereits in den Vorlesungen Analysis und Funktionentheorie. Dort stellt sich beispielsweise die

Mehr

Flüsse und Vektorfelder

Flüsse und Vektorfelder Flüsse und Vektorfelder Def. Ein Vektorfeld auf U R n ist eine glatte (vektorwertige) Abbildung V : U R n. Bemerkung. Wir werden später die Transformationsgesetze für den Koordinatenwechsel bei Vektorfeldern

Mehr

Plan für diese Woche: 1. Geschlossene Flächen 2. Satz von (Gauß-)Bonnet.

Plan für diese Woche: 1. Geschlossene Flächen 2. Satz von (Gauß-)Bonnet. Plan für diese Woche: 1. Geschlossene Flächen 2. Satz von (Gauß-)Bonnet. Eine globale eingebettete Fläche nicht-standarde Definition: Def. Eine (globale eingebettete) Fläche ist eine Teilmenge M von R

Mehr

Seminarvortrag über die Euler-Charakteristik einer Fläche

Seminarvortrag über die Euler-Charakteristik einer Fläche Dies ist eine Ausarbeitung für einen Seminarvortrag, den ich im Sommersemester 2013/14 an der Humboldt-Universität im Proseminar Differentialgeometrie von Kurven und Flächen bei Christoph Stadtmüller gehalten

Mehr

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom Prof. Dr. M. Kaßmann Fakultät für Mathematik Wintersemester 2011/2012 Universität Bielefeld Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom 27.10.2011 Aufgabe III.1 (4 Punkte) Sei Ω R

Mehr

Elemente der mengentheoretischen Topologie

Elemente der mengentheoretischen Topologie Elemente der mengentheoretischen Topologie Es hat sich herausgestellt, dass das Konzept des topologischen Raumes die geeignete Struktur darstellt für die in der Analysis fundamentalen Begriffe wie konvergente

Mehr

6.2 Geometrische Eigenschaften von Kurven. Eine Eigenschaft (eine Größe) einer Kurve heißt geometrisch, wenn sie unabhängig ist von der PD und vom KS.

6.2 Geometrische Eigenschaften von Kurven. Eine Eigenschaft (eine Größe) einer Kurve heißt geometrisch, wenn sie unabhängig ist von der PD und vom KS. 6.2 Geometrische Eigenschaften von Kurven Eine Eigenschaft (eine Größe) einer Kurve heißt geometrisch, wenn sie unabhängig ist von der PD und vom KS. Um zu zeigen, dass eine Eigenschaft geometrisch ist,

Mehr

2 Der Cauchysche Integralsatz

2 Der Cauchysche Integralsatz $Id: cauchy.tex,v 1.7 2013/04/25 15:52:59 hk Exp hk $ 2 Der Cauchysche Integralsatz 2.2 Der Integralsatz von Cauchy Wir sind weiterhin mit der Untersuchung komplexer Kurvenintegrale beschäftigt und kennen

Mehr

Kurven in R 3 : Frenet-Kurven

Kurven in R 3 : Frenet-Kurven Kurven in R 3 : Frenet-Kurven Wir betrachten mind. C 2 -reguläre Raumkurven (in Sätzen sind die Kurven meistens noch glatter ), also den Fall c C 2 (I;R 3 ). Def. Eine Frenet-Kurve ist eine parametrisierte

Mehr

Konstruktion reeller Zahlen aus rationalen Zahlen

Konstruktion reeller Zahlen aus rationalen Zahlen Konstruktion reeller Zahlen aus rationalen Zahlen Wir nehmen an, daß der Körper der rationalen Zahlen bekannt ist. Genauer wollen wir annehmen: Gegeben ist eine Menge Q zusammen mit zwei Verknüpfungen

Mehr

Homöomorphismen und Überlagerungen

Homöomorphismen und Überlagerungen Technische Universität Dortmund Fachbereich Mathematik Institut für Differentialgeometrie Homöomorphismen und Überlagerungen Schriftliche Ausarbeitung im Differentialgeometrie-Seminar von Sebastian Bühren

Mehr

Permutationsgruppen. 1 Zykelzerlegung und Signum. Jesko Hüttenhain. Winter 2013

Permutationsgruppen. 1 Zykelzerlegung und Signum. Jesko Hüttenhain. Winter 2013 Permutationsgruppen Jesko Hüttenhain Winter 2013 Sei N eine endliche Menge. Dann bezeichnen wir mit S N := {σ : N N σ bijektiv} die symmetrische Gruppe auf N. Für n N sei [n] := {1,..., n}. Wir schreiben

Mehr

Lösungskizze zu Übungsblatt 2 (Funktionentheorie und gewöhnliche Differentialgleichungen für Lehramt Gymnasium)

Lösungskizze zu Übungsblatt 2 (Funktionentheorie und gewöhnliche Differentialgleichungen für Lehramt Gymnasium) Mathematisches Institut der Universität München skizze zu Übungsblatt 2 (Funktionentheorie und gewöhnliche Differentialgleichungen für Lehramt Gymnasium) Aufgabe 166 (1 Punkte) Berechnen Sie in den folgenden

Mehr

Analysis 2, Woche 9. Mehrdimensionale Differentialrechnung I. 9.1 Differenzierbarkeit

Analysis 2, Woche 9. Mehrdimensionale Differentialrechnung I. 9.1 Differenzierbarkeit A Analysis, Woche 9 Mehrdimensionale Differentialrechnung I A 9. Differenzierbarkeit A3 =. (9.) Definition 9. Sei U R m offen, f : U R n eine Funktion und a R m. Die Funktion f heißt differenzierbar in

Mehr

Wir betrachten nun das Deformieren einer Abbildung in eine andere.

Wir betrachten nun das Deformieren einer Abbildung in eine andere. Abschnitt 1 Quotienten Homotopie, erste Definitionen Wir betrachten nun das Deformieren einer Abbildung in eine andere. 1.1 Definition. Seien X, Y topologische Räume und f 0, f 1 : X Y stetige Abbildungen.

Mehr

Anhang G - Bemerkungen zur Weylgruppe

Anhang G - Bemerkungen zur Weylgruppe 32 Anhang G - Bemerkungen zur Weylgruppe Anhang G - Bemerkungen zur Weylgruppe Sei G eine kompakte zusammenhängende (halbeinfache) Liegruppe, T G ein maximaler Torus, W = W T (G) = N G (T )/T die zugehörige

Mehr

8. Die Nullstellen der Zeta-Funktion

8. Die Nullstellen der Zeta-Funktion 8.. Wie vorher sei ( s ξ(s = π s/ Γ ζ(s. ξ ist meromorph in ganz C, hat Pole (erster Ordnung nur bei s = und s = und genügt der Funktionalgleichung ξ(s = ξ( s. Daraus folgt: Für Re s < hat die Zeta-Funktion

Mehr

(u, v) z(u, v) u Φ(u, v) (v = const.) Parameterlinie v = const. v Φ(u, v) (u = const.) Parameterlinie u = const.

(u, v) z(u, v) u Φ(u, v) (v = const.) Parameterlinie v = const. v Φ(u, v) (u = const.) Parameterlinie u = const. 13 Flächenintegrale 64 13 Flächenintegrale Im letzten Abschnitt haben wir Integrale über Kurven betrachtet. Wir wollen uns nun mit Integralen über Flächen beschäftigen. Wir haben bisher zwei verschiedene

Mehr

8 KAPITEL 1. GRUNDLAGEN

8 KAPITEL 1. GRUNDLAGEN 8 KAPITEL 1. GRUNDLAGEN Beweis. 1. Sei A X abgeschlossen, dann ist X \ A offen und jede offene Überdeckung von A lässt sich durch Hinzunahme von X \ A auf ganz X fortsetzen. Die Kompaktheit von X erlaubt

Mehr

Fraktale Geometrie. 9: Metrische äußere Maße II. Universität Regensburg Sommersemester Daniel Heiß:

Fraktale Geometrie. 9: Metrische äußere Maße II. Universität Regensburg Sommersemester Daniel Heiß: Universität Regensburg Sommersemester 013 Daniel Heiß: 9: Metrische äußere Maße II I Das mehrdimensionale Lebesguemaß 1.1 Definition (i) Für reelle Zahlen a b, c d ist ein Rechteck im R die Menge R = a,

Mehr

4 Kurven im R n. Sei I R ein beliebiges Intervall (offen, halboffen, abgeschlossen, beschränkt oder unbeschränkt), das mindestens einen Punkt enthält.

4 Kurven im R n. Sei I R ein beliebiges Intervall (offen, halboffen, abgeschlossen, beschränkt oder unbeschränkt), das mindestens einen Punkt enthält. 4 Kurven im R n Sei I R ein beliebiges Intervall (offen, halboffen, abgeschlossen, beschränkt oder unbeschränkt), das mindestens einen Punkt enthält. Definition 4.1. (a) Unter einer Kurve im R n versteht

Mehr

Kapitel 1. Holomorphe Funktionen

Kapitel 1. Holomorphe Funktionen Kapitel 1 Holomorphe Funktionen Zur Erinnerung: I IR sei ein offenes Intervall, und sei z 0 I. Eine Funktion f : I IR heißt differenzierbar in z 0, falls der Limes fz fz 0 lim =: f z 0 z z 0 z z 0 existiert.

Mehr

1.6 Implizite Funktionen

1.6 Implizite Funktionen 1 1.6 Implizite Funktionen Wir werden uns jetzt mit nichtlinearen Gleichungen beschäftigen, f(x) = 0, wobei f = (f 1,..., f m ) stetig differenzierbar auf einem Gebiet G R n und m < n ist. Dann hat man

Mehr

10 Untermannigfaltigkeiten

10 Untermannigfaltigkeiten 10. Untermannigfaltigkeiten 1 10 Untermannigfaltigkeiten Definition. Eine Menge M R n heißt k-dimensionale Untermannigfaltigkeit des R n, 1 k n, falls es zu jedem a M eine offene Umgebung U R n von a und

Mehr

Spektraltheorie. 8. Übungsblatt - Lösungsvorschläge

Spektraltheorie. 8. Übungsblatt - Lösungsvorschläge 0606208 PD Dr Peer Kunstmann MSc Michael Ullmann Sektraltheorie 8 Übungsblatt - Lösungsvorschläge Aufgabe Nachtrag zur letzten Übung) In dieser Aufgabe wollen wir die Otimalität der Hölder-Ungleichung

Mehr

Fallstudien der mathematischen Modellbildung Teil 3: Quanten-Operationen. 0 i = i 0

Fallstudien der mathematischen Modellbildung Teil 3: Quanten-Operationen. 0 i = i 0 Übungsblatt 1 Aufgabe 1: Pauli-Matrizen Die folgenden Matrizen sind die Pauli-Matrizen, gegeben in der Basis 0, 1. [ [ [ 0 1 0 i 1 0 σ 1 = σ 1 0 = σ i 0 3 = 0 1 1. Zeigen Sie, dass die Pauli-Matrizen hermitesch

Mehr

Homotopie von Abbildungen und Anwendungen

Homotopie von Abbildungen und Anwendungen Homotopie von Abbildungen und Anwendungen Proseminar Fundamentalgruppen und ihre Anwendungen Bearbeitung: Daniel Schliebner Herausgabe: 04. Juli 2007 Daniel Schliebner Homotopie von Abbildungen und Anwendungen

Mehr

Funktionentheorie, Woche 11. Funktionen mit Singularitäten Meromorphe Funktionen

Funktionentheorie, Woche 11. Funktionen mit Singularitäten Meromorphe Funktionen Funktionentheorie, Woche Funktionen mit Singularitäten. Meromorphe Funktionen Definition. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P = f ( hat keine

Mehr

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i

Definition 3.1. Sei A X. Unter einer offenen Überdeckung von A versteht man eine Familie (U i ) i I offener Mengen U i X mit U i 3 Kompaktheit In der Analysis I zeigt man, dass stetige Funktionen f : [a, b] R auf abgeschlossenen, beschränkten Intervallen [a, b] gleichmäßig stetig und beschränkt sind und dass sie ihr Supremum und

Mehr

Konvexe Optimierungsprobleme

Konvexe Optimierungsprobleme von: Veronika Kühl 1 Konvexe Optimierungsprobleme Betrachtet werden Probleme der Form (P) min x C f(x) wobei f : C R eine auf C konvexe, aber nicht notwendigerweise differenzierbare Funktion ist. Ziel

Mehr

Mathematische Probleme, SS 2013 Donnerstag $Id: quadratisch.tex,v /08/12 09:49:46 hk Exp $ c a b = 1 3. tan(2φ) =

Mathematische Probleme, SS 2013 Donnerstag $Id: quadratisch.tex,v /08/12 09:49:46 hk Exp $ c a b = 1 3. tan(2φ) = Mathematische Probleme SS 13 Donnerstag 136 $Id: quadratischtexv 18 13/08/1 09:49:46 hk Exp $ 4 Kegelschnitte 41 Quadratische Gleichungen Nachdem wir in der letzten Sitzung die Hauptachsentransformation

Mehr

39 Rektifizierbarkeit, Weglänge und Länge von Kurven

39 Rektifizierbarkeit, Weglänge und Länge von Kurven 39 Rektifizierbarkeit, Weglänge und Länge von Kurven 39.1 Länge eines Weges 39.4 Stetige Differenzierbarkeit auf Intervallen, glatte Wege 39.5 Rektifizierbarkeit stetig differenzierbarer Wege 39.8 Additivität

Mehr

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $ $Id: dreieck.tex,v 1.7 013/04/ 0:37:01 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck In der letzten Sitzung hatten wir den sogenannten Inkreis eines Dreiecks eingeführt, dies ist der Kreis

Mehr

Kapitel 4. Der globale Cauchysche Integralsatz

Kapitel 4. Der globale Cauchysche Integralsatz Kapitel 4 Der globale Cauchysche Integralsatz Die Ergebnisse, die wir im vorigen Kapitel gewonnen haben, leben in der Regel davon, dass über einfach geschlossene Kurven integriert wird. Wie sich die Aussagen

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.43 2018/05/15 16:07:13 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.5 Abstände und Winkel Am Ende der letzten Sitzung hatten wir begonnen zwei weitere Aussagen über Winkel zu beweisen,

Mehr

Lösung 2: Relationen, Abbildungen, Mächtigkeit, Gruppen

Lösung 2: Relationen, Abbildungen, Mächtigkeit, Gruppen D-MATH Lineare Algebra I HS 2016 Dr. Meike Akveld Lösung 2: Relationen, Abbildungen, Mächtigkeit, Gruppen 1. Gegeben n, m Z schreiben wir m n k Z : n = km Wir sagen m teilt n. Eine Zahl n Z ist gerade,

Mehr

Mathematik für Sicherheitsingenieure I B (BScS 2011)

Mathematik für Sicherheitsingenieure I B (BScS 2011) Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 5.9.7 Mathematik für Sicherheitsingenieure I B (BScS Aufgabe. (5+8+7 Punkte a eben Sie für jede der folgenden Aussagen an, ob sie WAHR oder FALSCH ist. Eine Begründung

Mehr

AUFGABEN ZUR FUNKTIONENTHEORIE. von. Prof. Dr. H.-W. Burmann

AUFGABEN ZUR FUNKTIONENTHEORIE. von. Prof. Dr. H.-W. Burmann AUFGABEN ZUR FUNKTIONENTHEORIE von Prof. Dr. H.-W. Burmann Bei den folgenden Aufgaben handelt es sich um Reste, die bei der Erstellung der Aufgabenblätter übriggeblieben sind. Der Schwierigkeitsgrad der

Mehr

Analysis 3. Weihnachtsblatt Prof. Dr. H. Koch Dr. F. Gmeineder Besprechung: TBC, Januar Aufgabe 1: (Besonders prüfungsrelevant)

Analysis 3. Weihnachtsblatt Prof. Dr. H. Koch Dr. F. Gmeineder Besprechung: TBC, Januar Aufgabe 1: (Besonders prüfungsrelevant) Analysis 3 04.12.2018 Prof. Dr. H. och Dr. F. Gmeineder Besprechung: TBC, Januar 2019 Weihnachtsblatt Aufgabe 1: (Besonders prüfungsrelevant) Aufgabe 2: Sei Ω eine Menge und Σ eine σ-algebra auf Ω. Seien

Mehr

a) Sei [G : B] = n und [B : A] = m. Seien weiter X G,B = {g 1,..., g n } vollständiges Repräsentantensystem der Linksnebenklassen von A in G.

a) Sei [G : B] = n und [B : A] = m. Seien weiter X G,B = {g 1,..., g n } vollständiges Repräsentantensystem der Linksnebenklassen von A in G. 5. Übungszettel zur Vorlesung Geometrische Gruppentheorie Musterlösung WiSe 2015/16 WWU Münster Prof. Dr. Linus Kramer Nils Leder Cora Welsch Aufgabe 5.1 Sei G eine Gruppe und seien A, B G Untergruppen

Mehr

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve.

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve. 1 Ableitungen Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen γ 1 (t) γ(t) = γ n (t) Bild(γ) = {γ(t) t I} heißt auch die Spur der Kurve Beispiel:1)

Mehr

21 Bogenlängen, Sinus und Kosinus

21 Bogenlängen, Sinus und Kosinus 1 Bogenlängen, Sinus und Kosinus 19 Bogenlängen, Sinus und Kosinus 99 Lernziele: Konzepte: Bogenlängen, Sinus und Kosinus Resultat: Eine C 1 -Funktion hat die Bogenlänge L a (f) = a 1+f (x) dx. In diesem

Mehr

5 Die Picardschen Sätze

5 Die Picardschen Sätze 03 5 Die Picardschen Sätze Für eine zweimal stetig differenzierbare reell- oder komplexwertige Funktion f auf einem Gebiet G C ist der Laplace-Operator definiert durch Behauptung: = 4 Beweis: Daraus folgt:

Mehr

Geometrie Herbstsemester 2013

Geometrie Herbstsemester 2013 Geometrie Herbstsemester 203 D-MATH Prof. Felder Lösungen 3 ) (a) Wir verwenden die Zykelschreibweise für die Elemente von S n, so dass S 3 = {(), (2), (3), (23), (23), (32)} Die Gruppe besteht also aus

Mehr

Gewöhnliche Differentialgleichungen Woche 7. Globale Existenz einer Lösung

Gewöhnliche Differentialgleichungen Woche 7. Globale Existenz einer Lösung Gewöhnliche Differentialgleichungen Woche 7 Globale Existenz einer Lösung 7.1 Von lokal zu global Wir betrachten wiederum das Anfangswertproblem { y (x = f (x, y(x, y( = y 0. (7.1 Eine erste Erweiterung

Mehr

Intervallaustauschtransformationen, Flüsse und das Lemma von Masur

Intervallaustauschtransformationen, Flüsse und das Lemma von Masur Intervallaustauschtransformationen, Flüsse und das Lemma von Masur Gregor Bethlen 1 Intervallaustauschtransformationen Stets sei in diesem Abschnitt I := [a, b] ein Intervall und a = a 0 < a 1

Mehr

Beispiele zur Konvergenzuntersuchung bei Reihen.

Beispiele zur Konvergenzuntersuchung bei Reihen. Beispiele zur Konvergenzuntersuchung bei Reihen Beispiel: Wir untersuchen die Konvergenz der Exponentialreihe z k k! für z C Anwendung des Quotientenkriteriums ergibt z k+1 (k + 1! z k = z k+1 k! z k (k

Mehr

Lösungen zur Serie 5

Lösungen zur Serie 5 Dr. P. Thurnheer Grundlagen der Mathematik I ETH Zürich D-CHAB, D-BIOL (Analysis B) FS 10 Lösungen zur Serie 5 1. a) Die erste Kurve ist eine Kardioide (Herzkurve). i) Wenn man t durch t erstezt, kriegt

Mehr

Mathematik I. k=0 c k(x a) k bilden die Teilpolynome n k=0 c k(x a) k polynomiale Approximationen für die Funktion f

Mathematik I. k=0 c k(x a) k bilden die Teilpolynome n k=0 c k(x a) k polynomiale Approximationen für die Funktion f Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 30 Zu einer konvergenten Potenzreihe f(x) = c k(x a) k bilden die Teilpolynome n c k(x a) k polynomiale Approximationen für die Funktion

Mehr

f(x 0 ) = lim f(b k ) 0 0 ) = 0

f(x 0 ) = lim f(b k ) 0 0 ) = 0 5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.

Mehr