Grundlagen der Elektrotechnik 1 Übungsaufgaben zur Wechselstromtechnik mit Lösung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Grundlagen der Elektrotechnik 1 Übungsaufgaben zur Wechselstromtechnik mit Lösung"

Transkript

1 Grundlagen der Elektrotechnik Aufgabe Die gezeichnete Schaltung enthält folgende Schaltelemente:.0kΩ, ω.0kω, ω 0.75kΩ, /ωc.0k Ω, /ωc.3kω. Die gesamte Schaltung nimmt eine Wirkleistung P mw auf. C 3 C 3 5. Ermitteln Sie 3 und (ösungshinweis: Nur kann Wirkleistung aufnehmen). ösung: Da nur Wirkleistung aufnehmen kann, lassen sich 3 eff und eff berechnen. Die Scheitelwerte der Spannungen und damit die Beträge der komplexen Amplituden 3 und sind dann jeweils das -fache. m folgenden wird jedoch auf diese Multiplikation der einfacheren echnung wegen verzichtet. Die Zeigerdiagramme und die Zahlenwerte sind daher alle um diesen Faktor zu klein! Damit gilt: P 3 / 3 Da und 3 die ersten Größen sind, die ermittelt werden, kann der Nullphasenwinkel einer der beiden Größen frei gewählt werden. Wegen des ohmschen Widerstandes hat dann die jeweils andere Größe denselben Nullphasenwinkel. Ausgangspunkt sei der Strom 3 3, dessen Nullphasenwinkel zu Null gesetzt wird, so daß 3 ein rein reeller Zeiger und in der Folge auch ein Zeiger auf der reellen Achse des Zeigerdiagramms liegt. Berechnung: 3 V P 0 V A.0 A.0V 3.0mA 3 V.0 0 A.0V. Entwicklung des Zeigerdiagramms für alle Spannungen und Ströme.3 Berechnung aller Spannungen und Ströme.. Zeigerdiagramm. Schritt: Ausgehend von 3 erfolgt mit dem Ohmschen Gesetz für nduktivitäten die Berechnung von 5 Damit kann zeichnerisch oder rechnerisch mit Hilfe der Kirchhoffschen Maschenregel die Spannung an der Serienschaltung von und ermittelt werden. Diese Spannung liegt auch an C an. 5 _ 3 Übungsblatt_B5_z.doc Fachhochschule München : hr

2 Grundlagen der Elektrotechnik Berechnung mit Hilfe des Zeigerdiagramms kΩ.0mA.0V Wegen des ohmschen Widerstands haben 3 und gleiche Phasenlage ω 0.75kΩ.0mA 3.0V Da bei der nduktivität die Spannung um 90 vorauseilt, steht dieser Zeiger nach oben. Die Maschenregel liefert: 5 + Die änge des Zeigers, also der Betrag ergibt sich mit Hilfe des Satzes von Pythagoras zu V 5.0V Berechnung mit Hilfe der komplexen Darstellung: Da als Ausgangspunkt der gesamten Darstellung der Nullphasenwinkel des Stroms 3 zu Null gewählt wurde, ist der komplexe Zeiger 3.0mA rein reell ohne maginärteil. Damit lassen sich die komplexen Spannungen 5, und mit der Kirchhoffschen Maschenregel berechnen: 3.0mA.0kΩ 5 3 jω.0ma j0.75kω + 5.0V + j3.0v.0v j3.0v Auch hier ergibt sich der Betrag der Spannung an der Kapazität C mit Hilfe von Pythagoras: [ e( )] + [ m( )] V 5.0V.. Zeigerdiagramm. Schritt: Mit Hilfe der Spannung läßt sich der Strom durch die Kapazität C ermitteln. Der Strom durch eine Kapazität kommt ja um eine Viertelperiode früher, als die Spannung. Deswegen muß der Stromzeiger senkrecht zu nach oben zeigen. Die änge des Zeigers muß mit Hilfe des Betrags der Spannung an der Kapazität berechnet werden. _ 5 _ 3 Übungsblatt_B5_z.doc Fachhochschule München : hr

3 Grundlagen der Elektrotechnik 3 Berechnung mit Hilfe des Zeigerdiagramms Die änge des Stromzeigers ergibt sich aus der änge des Spannungszeigers und des Betrags des kapazitiven Widerstandes ω C : ωc 5.0V.3kΩ.05mA Berechnung mit Hilfe der komplexen Darstellung: Der Stromzeiger ergibt sich aus der Division des Spannungszeigers j ωc.0v + j 3.0V und des kapazitiven Widerstandes von C mit.3kω j j.3kω.0v + j 3.0V.3mA + j 3.mA j ωc j.3kω Dies ist die Koordinate der Spitze des -Zeigers im obigen Zeigerdiagramm. Die änge des Stromzeigers ( Betrag des Stroms ) ergibt sich mit Pythagoras zu ma.05ma und liefert dasselbe Ergebnis, wie die Berechnung mit Hilfe der Zeigerdarstellung...3 Zeigerdiagramm 3. Schritt: Aus den bekannten Strömen und 3 3 _ läßt sich mit der Kirchhoffschen Knotenpunktregel der Eingangsstrom in die Gesamtschaltung ermitteln. Dazu müssen lediglich die beiden Zeiger addiert werden. 5 _ 3 Berechnung mit Hilfe des Zeigerdiagramms Der resultierende Stromzeiger kann zwar leicht gezeichnet werden. Da aber hier keine rechten Winkel mehr auftauchen, ist die Berechnung des Betrags unmittelbar nicht möglich. Bestenfalls läßt sich die änge direkt aus der Zeichnung ablesen. Hier ist daher für die weiteren Berechnungen der Weg über die komplexe echnung erforderlich. Übungsblatt_B5_z.doc Fachhochschule München : hr

4 Grundlagen der Elektrotechnik Berechnung mit Hilfe der komplexen Darstellung: Die komplexe Darstellung der Ströme und ist von oben her bekannt. Damit läßt sich die Koordinate der Spitze des -Zeigers berechnen: + 3.3mA + j 3.mA +.0mA.57mA + j 3.mA Der Betrag ergibt sich mit Pythagoras zu ma Der Nullphasenwinkel { } { } 3.0mA ϕ von folgt aus eal- und maginärteil mit der Tangensfunktion: m 3. ϕ arctg arctg. 5 e.57.. Zeigerdiagramm. Schritt: Nachdem nun der Eingangsstrom nach Betrag und Phase bekannt ist, lassen sich auch mit Hilfe des Zeigerdiagramms die Spannungen an der nduktivität und der Kapazität C ermitteln. Gegenüber dem eben ermittelten Stromzeiger eilt die Spannung an der nduktivität um 90 vor, die Spannung an der Kapazität um 90 nach. Mit dem Ergebnis für 3.0mA und den Widerstandswerten für und C lassen sich auch die ängen der beiden Spannungszeiger berechnen und in das Zeigerdiagramm eintragen. Berechnung mit Hilfe des Zeigerdiagramms Die änge des Spannungszeigers an der nduktivität wird berechnet aus dem Betrag des Eingangsstroms und dem induktiven Widerstand ω : ω 3.0mA.0kΩ 7.0V Analog ergibt sich der Spannungsabfall 3 längs der Kapazität C : mA.0kΩ 3.0V ωc 3 3 _ 5 _ 3 Übungsblatt_B5_z.doc Fachhochschule München : hr

5 Grundlagen der Elektrotechnik 5 Berechnung mit Hilfe der komplexen Darstellung: Die Koordinaten der Zeigerspitzen von und 3 ergeben sich aus der Multiplikation des komplexen Eingangsstroms mit den Blindwiderständen j ω und j ωc : j ω.57ma + j 3.mA j.0kω.8v + j 3. ( ) V j ωc j (.57mA + j 3.mA).0kΩ + 3.V j.57v 3..5 Zeigerdiagramm 5. Schritt: Die Eingangsspannung folgt aus der Kirchhoffschen Maschengleichung _ 3 _ 3 _ 5 3 _ 3 Berechnung mit Hilfe des Zeigerdiagramms: Die Eingangsspannung läßt sich nur im ahmen der Zeichengenauigkeit graphisch ermitteln. Dazu werden die Zeiger, 3 und aneinandergehängt. Die änge des Zeigers muß gemessen und mit dem Zeichnungsmaßstab in den Betrag der Eingangsspannung umgerechnet werden. Ebenso kann die Phasenlage ϕ der Eingangsspannung als Winkel zwischen dem Zeiger und der Abszisse ( reelle Achse) ermittelt werden. Genauer und einfacher ist hier aber die Berechnung mit Hilfe der obigen Ergebnisse. Berechnung mit Hilfe der komplexen Darstellung: V + j 3.V + 3.V j.57v +.0V + 0.7V + j.57v j 3.0V Übungsblatt_B5_z.doc Fachhochschule München : hr

6 Grundlagen der Elektrotechnik Für den mit dem Voltmeter meßbaren Betrag der Eingangsspannung gilt:.3v Der Nullphasenwinkel ϕ u der Spannung beträgt m{ }.57 ϕu arctg arctg e 0.7 { } Mit dem Nullphasenwinkel ϕ des Stroms aus..3 folgt für die Phasenverschiebung ϕ zwischen Eingangsspanung und Eingangsstrom : ϕ ϕ ϕ Gesamtimpedanz der Schaltung ösung mit Hilfe des Zeigerdiagramms Aus dem Zeigerdiagramm sind die Spannung, der Strom und die Phasenverschiebung ϕ bekannt. Damit ergibt sich die mpedanz Z und der komplexe Wider- stand Z j. e ( cos. + j sin. ) ösung mit Hilfe der komplexen echnung: Hier ist es zunächst zweckmäßiger, den komplexen Widerstand Z zu berechnen. Der m Z Betrag des komplexen Widerstandes Z ergibt dann die mpedanz, der Winkel ϕ arctg e des komplexen Widerstandes liefert die Phasenverschiebung zwischen Spannung und Strom. Berechnung mit Hilfe des Zeigerdiagramms { } { Z} Z Z.3V.8kΩ 3.0mA.8 e j. kω.8kω ( j 0.83).3kΩ + j 0.3kΩ Berechnung mit Hilfe der komplexen echnung Z 0.7V +.57mA + j.57v j 3.mA ( j.57) (.57 j 3.) (.57 + j 3.) (.57 j 3.) j.3 (.3 + j 0.3) kω.8kω e Die geringfügigen nterschiede beim der mpedanz und der Phasenverschiebung ergeben sich aus den undungsfehlern Übungsblatt_B5_z.doc Fachhochschule München : hr

7 Grundlagen der Elektrotechnik 7 Aufgabe Eine euchtstoffröhre mit Vorschaltdrossel (nduktivität u.a. zur Strombegrenzung) wird dargestellt als Serienschaltung eines ohmschen Widerstandes und einer idealen Spule (nduktivität ) ohne Verluste. Der ohmsche Widerstand nimmt eine Wirkleistung P 0W auf. Durch die euchtstoffröhre fließe ein Strom eff 0.0A. Die Gesamtschaltung liegt am Wechselstromnetz ( f 50Hz ) mit eff 30V.. Scheinleistung S S eff eff 30V 0.0A 9VA. eistungsdreieck Komplexe eistung aus der Wirkleistung P des ohmschen Verbrauchers und der Blindleistung Q der nduktivität: S P + jq P 0W S S P + Q, cos ϕ 0. 3 S 9VA S Q.3 Größe des ohmschen Widerstands und des Blindwiderstands ω ösungsweg: P : Strom und Wirkleistung sind bekannt. Daraus ergibt sich ω : Die Blindleistung ergibt sich aus dem eistungsdreieck. Mit dem Strom ergibt sich daraus der Blindwiderstand ω. Berechnung: P 0W : P 50Ω 0.0 A Q ω : Q ω ω 83.8 V A Q S P 9 0 var 8.8var ω 58Ω 0.0 A.3 Kompensation der induktiven Blindleistung ösungsweg: Zur Kompensation der induktiven Blindleistung gibt es folgende Möglichkeiten: - Serienschaltung einer Kapazität C - Parallelstellung einer Kapazität C C Bei der Serienschaltung einer Kapazität ändert sich der Strom durch die euchtstoffröhre. Daher ist diese Möglichkeit der Kompensation nicht möglich, da sich dann die eistung der euchtstoffröhre ändern würde. Somit bleibt die übliche Art der Kompensation parallel zum Verbraucher, bei der die Kapazität zur Kompensation an derselben Spannung liegt, wie der Verbraucher. Zur Kompensation muß die induktive Blindleistung des Verbrauchers Q gleich der kapazitiven Blindleistung Q C sein. C Übungsblatt_B5_z.doc Fachhochschule München : hr

8 Grundlagen der Elektrotechnik 8 Berechnung Variante An der Kapazität C liegt die Netzspannung 30V. Die kapazitive Blindleistung muß Q 8.8var sein. 30 V Q eff ω C eff C Ω eff ω C Q 8.8 V A 39 ω C Achtung! Der kapazitive Widerstand ω C ist nicht gleich dem induktiven Widerstand ω, obwohl die Blindleistungen beider Schaltelemente gleich groß sind! rsache hierfür ist, daß an C die volle Netzspannung liegt, während an nur ein Teil davon abfällt. Diese Zusammenhänge werden in der zweiten, etwas komplizierteren Berechnungsart deutlich. 38.9Ω ω C A s C µ F V π V s A 0 P S Q Berechnung Variante Die Serienschaltung der euchtstoffröhre mit Widerstand und der Drossel mit der nduktivität wird im folgenden dargestellt als komplexer Widerstand Z und als eitwert Y Z Q C Z + j ω 50Ω + j 58Ω Y Z ( 50 + j 58) ( 0.75 j.5) P + A j ω p V 0 3 Die Serienschaltung aus euchtstoffröhre und Drossel läßt sich also völlig äquivalent darstellen als Parallelschaltung eines anderen ohmschen Widerstandes P.33kΩ und einer anderen nduktivität mit dem Blindwiderstand ω 39Ω. A V ( 50 j 58) ( 50 + j 58) ( 50 j 58).33kΩ + A V j 39Ω p p Der Zahlenwert des induktiven Parallelwiderstandes ω p ist gleich dem oben berechneten Wert Übungsblatt_B5_z.doc Fachhochschule München : hr

9 Grundlagen der Elektrotechnik 9 des kapazitiven Kompensationswiderstandes. Daraus folgt, daß die Parallelschaltung ω C der Kapazität zur nduktivität P und zum ohmschen Widerstand P auf einen rein ohmschen Gesamtleitwert Y Y Y und damit natürlich auch ohmschen Gesamtwiderstand p.33kω führt, der an 30 V die / p jt p Y Y /p jt p jtc gleiche Wirkleistung aufnimmt, wie die euchtstoffröhre mit 50Ω an der niedrigeren Spannung 0.A 50Ω 00V. Die nebenstehenden Zeigerdiagramme zeigen die eitwerte vor- und nach der Kompensation. Vor der Kompensation Nach der Kompensation Übungsblatt_B5_z.doc Fachhochschule München : hr

10 Grundlagen der Elektrotechnik 0 Übungsblatt_B5_z.doc Fachhochschule München : hr

Wechselspannung. Zeigerdiagramme

Wechselspannung. Zeigerdiagramme niversity of Applied Sciences ologne ampus Gummersbach Dipl.-ng. (FH Dipl.-Wirt. ng. (FH D-0 Stand: 9.03.006; 0 Wie bereits im Kapitel an,, beschrieben, ist die Darstellung von Wechselgrößen in reellen

Mehr

Seite 2 E 1. sin t, 2 T. Abb. 1 U R U L. 1 C P Idt 1C # I 0 cos t X C I 0 cos t (1) cos t X L

Seite 2 E 1. sin t, 2 T. Abb. 1 U R U L. 1 C P Idt 1C # I 0 cos t X C I 0 cos t (1) cos t X L Versuch E 1: PHASENVERSCHIEBUNG IM WECHSELSTROMKREIS Stichworte: Elektronenstrahloszillograph Komplexer Widerstand einer Spule und eines Kondensators Kirchhoffsche Gesetze Gleichungen für induktiven und

Mehr

6 Wechselstrom-Schaltungen

6 Wechselstrom-Schaltungen für Maschinenbau und Mechatronik Carl Hanser Verlag München 6 Wechselstrom-Schaltungen Aufgabe 6.1 Durch ein Grundeintor C = 0,47 µf an der Sinusspannung U = 42 V fließt ein Sinusstrom mit dem Effektivwert

Mehr

Leseprobe. Grundlagen Wechselstrom. Kuckertz ELEKTROTECHNIK / ELEKTRONIK. Studienbrief 2-050-1002 HDL HOCHSCHULVERBUND DISTANCE LEARNING

Leseprobe. Grundlagen Wechselstrom. Kuckertz ELEKTROTECHNIK / ELEKTRONIK. Studienbrief 2-050-1002 HDL HOCHSCHULVERBUND DISTANCE LEARNING eseprobe Kuckertz Grundlagen Wechselstrom EEKTOTEHNK / EEKTONK Studienbrief -050-100. Auflage 007 HD HOHSHVEBND DSTANE EANNG Verfasser: Prof. Dipl.-ng. Heinz Kuckertz Professor für Elektrotechnik und egelungstechnik

Mehr

FH Jena FB Elektrotechnik/Informationstechnik Prof. Giesecke Prüfungsaufgaben Elektrotechnik IIa SS 2011

FH Jena FB Elektrotechnik/Informationstechnik Prof. Giesecke Prüfungsaufgaben Elektrotechnik IIa SS 2011 Aufgabe 1: Berechnen Sie die Resonanzfrequenz des gegebenen Parallelschwingkreises! Lösen Sie die Aufgabe über den komplexen Leitwert! 5 2,5 10 100 Reihenschaltungszweig Parallelschaltung sämtlicher Bauteile

Mehr

!!!! 2. Wechselstrom. 1. Einführende Grundlagen. 2. Widerstand, Kapazität und Induktivität in Wechselstromschaltkreisen

!!!! 2. Wechselstrom. 1. Einführende Grundlagen. 2. Widerstand, Kapazität und Induktivität in Wechselstromschaltkreisen 2. Wechselstrom 1. Einführende Grundlagen. 2. Widerstand, Kapazität und Induktivität in Wechselstromschaltkreisen 3. Theorie des sinusförmigen Wechselstroms. 4. Komplexe Schaltungsberechnung. 59 1.1 Einführende

Mehr

Lössungen Serie 3 (Komplexe Zahlen in der Elektrotechnik)

Lössungen Serie 3 (Komplexe Zahlen in der Elektrotechnik) Fachhochschule Nordwestschweiz FHNW) Hochschule für Technik Institut für Geistes- und Naturwissenschaft Lössungen Serie 3 Komplexe Zahlen in der Elektrotechnik) Dozent: Roger Burkhardt Klasse: Studiengang

Mehr

Anhang A3. Darstellung von Wechselströmen und -spannungen im Zeigerdiagramm

Anhang A3. Darstellung von Wechselströmen und -spannungen im Zeigerdiagramm Anhang A3 Darstellung von Wechselströmen und -spannungen im Zeigerdiagramm Für die Darstellung und Berechnung von Wechselstromkreisen sind sogenannte Zeigerdiagramme sehr von Nutzen. Dies sind instruktive

Mehr

Weitere Beispiele zur Anwendung komplexer Zahlen

Weitere Beispiele zur Anwendung komplexer Zahlen Weitere Beispiele zur Anwendung komplexer Zahlen Harmonische Schwingungen............................... 27 Anwendung: Zeigerdiagramm bei der Wechselstromrechnung............. 28 Additionstheoreme für

Mehr

Praktikum Grundlagen der Elektrotechnik

Praktikum Grundlagen der Elektrotechnik raktikum Grundlagen der Elektrotechnik Kondensatoren und Spulen m Wechselstromkreis (ersuch 10) Fachhochschule Fulda Fachbereich Elektrotechnik durchgeführt von (rotokollführer) zusammen mit Matrikel-Nr.

Mehr

3.5. Aufgaben zur Wechselstromtechnik

3.5. Aufgaben zur Wechselstromtechnik 3.5. Aufgaben zur Wechselstromtechnik Aufgabe : eigerdiagramme Formuliere die Gleichungen für die alteile von (t) sowie (t) und zeichne ein gemeinsames eigerdiagramm für Spannung sowie Stromstärke, wenn

Mehr

Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik. Praktikum Elektrotechnik und Antriebstechnik

Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik. Praktikum Elektrotechnik und Antriebstechnik FH D FB 4 Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik Elektro- und elektrische Antriebstechnik Prof. Dr.-Ing. Jürgen Kiel Praktikum Elektrotechnik und Antriebstechnik Versuch

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Ausarbeitung zum Versuch Wechselstromwiderstände Versuch 9 des physikalischen Grundpraktikums Kurs I, Teil II an der Universität Würzburg Sommersemester 005 (Blockkurs) Autor: Moritz Lenz Praktikumspartner:

Mehr

Liegt an einem Widerstand R die Spannung U, so fließt durch den Widerstand R ein Strom I.

Liegt an einem Widerstand R die Spannung U, so fließt durch den Widerstand R ein Strom I. Einige elektrische Grössen Quelle : http://www.elektronik-kompendium.de Formeln des Ohmschen Gesetzes U = R x I Das Ohmsche Gesetz kennt drei Formeln zur Berechnung von Strom, Widerstand und Spannung.

Mehr

Versuch 15. Wechselstromwiderstände

Versuch 15. Wechselstromwiderstände Physikalisches Praktikum Versuch 5 Wechselstromwiderstände Name: Christian Köhler Datum der Durchführung: 26.09.2006 Gruppe Mitarbeiter: Henning Hansen Assistent: Thomas Rademacher testiert: 3 Einleitung

Mehr

Hochschule Bremerhaven

Hochschule Bremerhaven Hochschule Bremerhaven NSTTUT FÜ AUTOMATSEUNGS- UND EEKTOTEHNK Name: Matr Nr: ProfDr-ngKaiMüller Übungsklausur ETT2 / PT/VAT/SBT SS04 Bearbeitungszeit 20 Minuten --- Unterlagen gestattet --- Note: 2 3

Mehr

Laborversuch II Messungen zur Blindleistungskompensation

Laborversuch II Messungen zur Blindleistungskompensation MESSTECHNIK 33 Laborversuch II Messungen zur Blindleistungskompensation Leitender Dozent Studenten Prof. Dr. Metzger, Klaus Schwarick, Sebastian; Möhl, Andre ; Grimberg, Mirko Durchführung am 1. April

Mehr

WB Wechselstrombrücke

WB Wechselstrombrücke WB Wechselstrombrücke Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Wechselstromwiderstand................. 2 2.2 Wechselstromwiderstand

Mehr

Wir betrachten wieder die Leiterschleife im homogenen Magnetfeld von <29.2.>: Im rechten Schenkel der Leiterschleife herrscht ein E r '-Feld 1

Wir betrachten wieder die Leiterschleife im homogenen Magnetfeld von <29.2.>: Im rechten Schenkel der Leiterschleife herrscht ein E r '-Feld 1 3. Wechselstrom I 3.. Erzeugung von Wechselströmen Wir betrachten wieder die eiterschleife im homogenen Magnetfeld von : Wie wir dort bereits festgestellt hatten führt ein Strom in der eiterschleife

Mehr

Wechselstromwiderstände und Reihenresonanz

Wechselstromwiderstände und Reihenresonanz Versuch C8/9: Wechselstromwiderstände und Reihenresonanz. Literatur: Demtröder, Experimentalphysik : Elektrizität und Optik Pohl, Einführung in die Physik, Bd. Gerthsen, Kneser, Vogel; Physik Bergmann-Schaefer,

Mehr

2.1 Ele kt rom agnetis c he. Sc hwingunge n und We lle n. Sc hwingunge n

2.1 Ele kt rom agnetis c he. Sc hwingunge n und We lle n. Sc hwingunge n 2 Ele kt rom agnetis c he Sc hwingunge n und We lle n 2.1 Ele kt rom agnetis c he Sc hwingunge n 2.1.1 Kapazit ive r und indukt ive r Wide rs t and In einem Gleichstromkreis hängt die Stromstärke, sieht

Mehr

Versuch V03: Passive Netzwerke

Versuch V03: Passive Netzwerke Versuch V3: Passive Netzwerke Henri Menke und Jan Trautwein Gruppe 1 11 Platz k (Betreuer: Torsten endler) (Datum: 4. November 13) Im Versuch soll in erster Linie der Frequenzgang eines Tiefpasses aufgenommen

Mehr

Grundschaltungen im Wechselstromkreis

Grundschaltungen im Wechselstromkreis 0.03.009 Grundschaltunen im Wechselstromkreis 1. eihenschaltun von Wirkwiderstand und idealer nduktivität. eihenschaltun von Wirkwiderstand und idealer Kapazität 3. Parallelschaltun von Wirkwiderstand

Mehr

Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 3

Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 3 Werner-v.-Siemens-abor für elektrische ntriebssysteme Prof. Dr.-ng. Dr. h.c. H. iechl Prof. Dr.-ng. E.-P. Meyer Praktikum Grundlagen der Elektrotechnik 2 (GET2) ersuch 3 ntersuchung von Wechselstromschaltungen

Mehr

Wechselstromkreis mit verschiedenen Bauteilen

Wechselstromkreis mit verschiedenen Bauteilen Wechselstromkreis mit verschiedenen Bauteilen Im Folgenden werden nun die Auswirkungen eines ohmschen Widerstands, eines induktiven Widerstands (Spule) und eines kapazitiven Widerstands (Kondensator) auf

Mehr

Übungsaufgaben Elektrotechnik (ab WS2011)

Übungsaufgaben Elektrotechnik (ab WS2011) Flugzeug- Elektrik und Elektronik Prof. Dr. Ing. Günter Schmitz Aufgabe 1 Übungsaufgaben Elektrotechnik (ab WS2011) Gegeben sei eine Zusammenschaltung einiger Widerstände gemäß Bild. Bestimmen Sie den

Mehr

Versuchsprotokoll zum Versuch Nr.9 Messungen mit dem Elektronenstrahl-Oszilloskop vom 05.05.1997

Versuchsprotokoll zum Versuch Nr.9 Messungen mit dem Elektronenstrahl-Oszilloskop vom 05.05.1997 In diesem Versuch geht es darum, mit einem modernen Elektronenstrahloszilloskop verschiedene Messungen durch zuführen. Dazu kommen folgende Geräte zum Einsatz: Gerät Bezeichnung/Hersteller Inventarnummer

Mehr

LW7. Wechselstrom Version vom 16. November 2015

LW7. Wechselstrom Version vom 16. November 2015 Wechselstrom Version vom 16. November 2015 Inhaltsverzeichnis 2 1.1 Grundlagen................................... 2 1.1.1 Begriffe................................. 2 1.1.2 Wechselspannung und Wechselstrom.................

Mehr

Das Frequenzverhalten von RC-Gliedern (E17)

Das Frequenzverhalten von RC-Gliedern (E17) Das Frequenzverhalten von RC-Gliedern (E17) Ziel des Versuches Die Hintereinanderschaltung von ohmschem Widerstand und Kondensator wirkt als Filter für Signale unterschiedlicher Frequenz. In diesem Versuch

Mehr

Klausur 23.02.2010, Grundlagen der Elektrotechnik I (BSc. MB, SB, VT, EUT, BVT, LUM) Seite 1 von 6. Antwort (ankreuzen) (nur eine Antwort richtig)

Klausur 23.02.2010, Grundlagen der Elektrotechnik I (BSc. MB, SB, VT, EUT, BVT, LUM) Seite 1 von 6. Antwort (ankreuzen) (nur eine Antwort richtig) Klausur 23.02.2010, Grundlagen der Elektrotechnik I (BSc. MB, SB, VT, EUT, BVT, LUM) Seite 1 von 6 1 2 3 4 5 6 Summe Matr.-Nr.: Nachname: 1 (5 Punkte) Drei identische Glühlampen sind wie im Schaltbild

Mehr

Der direkteste Weg zur richtigen Formel

Der direkteste Weg zur richtigen Formel Der direkteste Weg zur richtigen Formel Die Formelsammlung für Elektro-Fachpersonen Der direkteste Weg für alle Elektrofachpersonen Gebäudetechnik ist die gute Wahl, wenn Sie Gebäude gestalten und funktionsfähig

Mehr

Aufgabenstellung für den 1. Laborbeleg im Fach Messtechnik: Oszilloskopmesstechnik

Aufgabenstellung für den 1. Laborbeleg im Fach Messtechnik: Oszilloskopmesstechnik Aufgabenstellung für den 1. Laborbeleg im Fach Messtechnik: Oszilloskopmesstechnik Untersuchen Sie das Übertragungsverhalten eines RC-Tiefpasses mit Hilfe der Oszilloskopmesstechnik 1.Es ist das Wechselstromverhalten

Mehr

Komplexe Zahlen und Wechselstromwiderstände

Komplexe Zahlen und Wechselstromwiderstände Komplexe Zahlen und Wechselstromwiderstände Axel Tobias 22.2.2000 Ein besonderer Dank geht an Ingo Treunowski, der die Übertragung meines Manuskriptes in L A TEX durchgeführt hat tob skript komplex.tex.

Mehr

E-Labor im WS / SS. Versuch Nr. 11 Netze an Sinusspannung konstanter Frequenz. Fakultät II Abteilung Maschinenbau. Gruppe:

E-Labor im WS / SS. Versuch Nr. 11 Netze an Sinusspannung konstanter Frequenz. Fakultät II Abteilung Maschinenbau. Gruppe: Abteilung Maschinenbau im WS / SS Versuch Nr. 11 Netze an Sinusspannung konstanter Frequenz Gruppe: Name Vorname Matr.-Nr. Semester Verfasser(in) Teilnehmer(in) Teilnehmer(in) Professor(in) / Lehrbeauftragte(r):

Mehr

P = U eff I eff. I eff = = 1 kw 120 V = 1000 W

P = U eff I eff. I eff = = 1 kw 120 V = 1000 W Sie haben für diesen 50 Minuten Zeit. Die zu vergebenen Punkte sind an den Aufgaben angemerkt. Die Gesamtzahl beträgt 20 P + 1 Formpunkt. Bei einer Rechnung wird auf die korrekte Verwendung der Einheiten

Mehr

TG TECHNOLOGISCHE GRUNDLAGEN 30 LABORÜBUNGEN. Inhaltsverzeichnis

TG TECHNOLOGISCHE GRUNDLAGEN 30 LABORÜBUNGEN. Inhaltsverzeichnis TG TECHNOLOGISCHE GRUNDLAGEN Inhaltsverzeichnis 9 Einphasenwechselspannung 9.1 Induktivität einer Drosselspule (Fluoreszenzleuchte) 9.2 Induktivität ohne Eisenkern an Wechselspannung 9.3 Induktivität mit

Mehr

Physik III - Anfängerpraktikum- Versuch 302

Physik III - Anfängerpraktikum- Versuch 302 Physik III - Anfängerpraktikum- Versuch 302 Sebastian Rollke (103095) und Daniel Brenner (105292) 15. November 2004 Inhaltsverzeichnis 1 Theorie 2 1.1 Beschreibung spezieller Widerstandsmessbrücken...........

Mehr

Aufgabe 1 Berechne den Gesamtwiderstand dieses einfachen Netzwerkes. Lösung Innerhalb dieser Schaltung sind alle Widerstände in Reihe geschaltet.

Aufgabe 1 Berechne den Gesamtwiderstand dieses einfachen Netzwerkes. Lösung Innerhalb dieser Schaltung sind alle Widerstände in Reihe geschaltet. Widerstandsnetzwerke - Grundlagen Diese Aufgaben dienen zur Übung und Wiederholung. Versucht die Aufgaben selbständig zu lösen und verwendet die Lösungen nur zur Überprüfung eurer Ergebnisse oder wenn

Mehr

Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen. LD Handblätter Physik P3.6.3.

Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen. LD Handblätter Physik P3.6.3. Elektrizitätslehre Gleich- und Wechselstromkreise Wechselstromwiderstände LD Handblätter Physik P3.6.3. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen Versuchsziele

Mehr

U N I V E R S I T Ä T R E G E N S B U R G

U N I V E R S I T Ä T R E G E N S B U R G U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch ww : Wechselstromwiderstand Dr. Tobias Korn Manuel März Inhaltsverzeichnis

Mehr

Wechselspannungskreis Definition Teil C: Wechselstromkreis Beschreibungsgrößen Wechselspannung:

Wechselspannungskreis Definition Teil C: Wechselstromkreis Beschreibungsgrößen Wechselspannung: Teil C: Wechselstromkreis Beschreibungsgrößen Ohmscher, kapazitiver, induktiver Widerstand Knoten- und Maschenregeln Passiver / Bandpass Dezibel Bode-Diagramm 6.2.3 Beschreibungsgrößen Wechselspannung:

Mehr

4.5 Wechselstromkreise

4.5 Wechselstromkreise 4.5 Wechselstromkreise Wechselstrom in vielen Punkten praktischer: ransformatoren Elektromotoren Frequenz als Referenz... Prinzip der Erzeugung einer sinusförmigen Wechselspannung: V: Wechselstromgenerator

Mehr

Oszillographenmessungen im Wechselstromkreis

Oszillographenmessungen im Wechselstromkreis Praktikum Grundlagen der Elektrotechnik Versuch: Oszillographenmessungen im Wechselstromkreis Versuchsanleitung. Allgemeines Eine sinnvolle Teilnahme am Praktikum ist nur durch eine gute Vorbereitung auf

Mehr

Frank Nussbächer U1 = U2 = U3 = U. Mit dem 1. Kirchhoffschen Satz, sowie dem Ohmschen Gesetz für alle Komponeten gilt für den obigen Knotenpunkt:

Frank Nussbächer U1 = U2 = U3 = U. Mit dem 1. Kirchhoffschen Satz, sowie dem Ohmschen Gesetz für alle Komponeten gilt für den obigen Knotenpunkt: Parallelschaltung Mit Hilfe des 1. Kirchhoffschen Satzes kann die Parallelschaltung von Widerständen abgeleitet werden. Werden einer idealen Spannungsquelle zwei Widerstände R1 und R2 parallel geschaltet,

Mehr

Messung elektrischer Größen Bestimmung von ohmschen Widerständen

Messung elektrischer Größen Bestimmung von ohmschen Widerständen Messtechnik-Praktikum 22.04.08 Messung elektrischer Größen Bestimmung von ohmschen Widerständen Silvio Fuchs & Simon Stützer 1 Augabenstellung 1. Bestimmen Sie die Größen von zwei ohmschen Widerständen

Mehr

4 Kondensatoren und Widerstände

4 Kondensatoren und Widerstände 4 Kondensatoren und Widerstände 4. Ziel des Versuchs In diesem Praktikumsteil sollen die Wirkungsweise und die Frequenzabhängigkeit von Kondensatoren im Wechselstromkreis untersucht und verstanden werden.

Mehr

Musterloesung. Name:... Vorname:... Matr.-Nr.:...

Musterloesung. Name:... Vorname:... Matr.-Nr.:... 2. Klausur Grundlagen der Elektrotechnik I-A 22. Februar 2005 Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 35 Minuten Trennen Sie den Aufgabensatz nicht auf. Benutzen Sie für die Lösung der Aufgaben

Mehr

6 Verfahren zur Messung von Widerständen/ Impedanzen in elektrischen Anlagen und an Geräten

6 Verfahren zur Messung von Widerständen/ Impedanzen in elektrischen Anlagen und an Geräten Mehr Informationen zum Titel 6 Verfahren zur Messung von Widerständen/ Impedanzen in elektrischen Anlagen und an Geräten Bearbeitet von Manfred Grapentin 6.1 Arten und Eigenschaften von elektrischen Widerständen

Mehr

Brückenschaltungen (BRUE)

Brückenschaltungen (BRUE) Seite 1 Themengebiet: Elektrodynamik und Magnetismus 1 Literatur W. Walcher, Praktikum der Physik, 3. Aufl., Teubner, Stuttgart F. Kohlrausch, Praktische Physik, Band 2, Teubner, 1985 W. D. Cooper, Elektrische

Mehr

Aufgabe 1 2 3 4 5 6 Summe Note Mögliche Punkte 13 20 16 23 31 15 118 Erreichte Punkte

Aufgabe 1 2 3 4 5 6 Summe Note Mögliche Punkte 13 20 16 23 31 15 118 Erreichte Punkte Universität Siegen Grundlagen der Elektrotechnik für Maschinenbauer Fachbereich 1 Prüfer : Dr.-Ing. Klaus Teichmann Datum : 11. Oktober 005 Klausurdauer : Stunden Hilfsmittel : 5 Blätter Formelsammlung

Mehr

E09. Brückenschaltungen. 1. Theoretische Grundlagen 1.1 Ohmsches Gesetz und Widerstand

E09. Brückenschaltungen. 1. Theoretische Grundlagen 1.1 Ohmsches Gesetz und Widerstand E9 Brückenschaltungen Die Verwendung von Brückenschaltungen ist von praktischer Bedeutung, da hierbei im Gegensat u anderen Messmethoden die Messgröße selbst durch die Messung unbeeinflusst bleibt. Mit

Mehr

Kapitel 4. Elektrizitätslehre. 4.1 Grundlagen, Definitionen. 4.2 Vorversuche zu Wechselstromwiderständen

Kapitel 4. Elektrizitätslehre. 4.1 Grundlagen, Definitionen. 4.2 Vorversuche zu Wechselstromwiderständen Kapitel 4 Elektrizitätslehre 4.1 Grundlagen, Definitionen 4.2 Vorversuche zu Wechselstromwiderständen 4.2.1 Ohmscher Widerstand 4.2.2 Kapazitiver Widerstand 4.2.3 nduktiver Widerstand 4.3 Wechselstromschwingkreise

Mehr

Der direkteste Weg zur richtigen Formel. Die Formelsammlung für Elektro-Fachpersonen

Der direkteste Weg zur richtigen Formel. Die Formelsammlung für Elektro-Fachpersonen Der direkteste Weg zur richtigen Formel Die Formelsammlung für Elektro-Fachpersonen Der direkteste Weg für alle Elektrofachpersonen Gebäudetechnik ist die gute Wahl, wenn Sie Gebäude gestalten und funktionsfähig

Mehr

Aufg. P max 1 10 Klausur "Elektrotechnik" 2 14 3 8 4 10 am 14.03.1997

Aufg. P max 1 10 Klausur Elektrotechnik 2 14 3 8 4 10 am 14.03.1997 Name, Vorname: Matr.Nr.: Hinweise zur Klausur: Aufg. P max 1 10 Klausur "Elektrotechnik" 2 14 3 8 6141 4 10 am 14.03.1997 5 18 6 11 Σ 71 N P Die zur Verfügung stehende Zeit beträgt 1,5 h. Zugelassene Hilfsmittel

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Physikalisches Praktikum für das Hauptfach Physik Versuch 15 Wechselstromwiderstände Wintersemester 2005 / 2006 Name: Mitarbeiter: EMail: Gruppe: Daniel Scholz Hauke Rohmeyer physik@mehr-davon.de B9 Assistent:

Mehr

Elektrotechnisches Praktikum II

Elektrotechnisches Praktikum II Elektrotechnisches Praktikum II Versuch 2: Versuchsinhalt 2 2 Versuchsvorbereitung 2 2. Zeitfunktionen................................ 2 2.. Phasenverschiebung......................... 2 2..2 Parameterdarstellung........................

Mehr

Elektrische Messverfahren Versuchsvorbereitung

Elektrische Messverfahren Versuchsvorbereitung Versuche P-70,7,8 Elektrische Messverfahren Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 6.2.200 Spannung, Strom und Widerstand Die Basiseinheit

Mehr

Strom - Spannungscharakteristiken

Strom - Spannungscharakteristiken Strom - Spannungscharakteristiken 1. Einführung Legt man an ein elektrisches Bauelement eine Spannung an, so fließt ein Strom. Den Zusammenhang zwischen beiden Größen beschreibt die Strom Spannungscharakteristik.

Mehr

U C = U o -U R = U o (1 - e - t

U C = U o -U R = U o (1 - e - t 43 VERSUCH 6: KONDENSATOR UND INDUKTIVITÄT - WECHSELSTROM 6A Ein- und Ausschaltvorgänge Wird ein Kondensator der Kapazität C ü- ber einen Widerstand R mit einer konstanten Spannung U o verbunden, so lädt

Mehr

I = I 0 exp. t + U R

I = I 0 exp. t + U R Betrachten wir einen Stromkreis bestehend aus einer Spannungsquelle, einer Spule und einem ohmschen Widerstand, so können wir auf diesen Stromkreis die Maschenregel anwenden: U L di dt = IR 141 Dies ist

Mehr

1 Wechselstromwiderstände

1 Wechselstromwiderstände 1 Wechselstromwiderstände Wirkwiderstand Ein Wirkwiderstand ist ein ohmscher Widerstand an einem Wechselstromkreis. Er lässt keine zeitliche Verzögerung zwischen Strom und Spannung entstehen, daher liegt

Mehr

Grundlagen der Elektrotechnik 2: Lösungen zur Klausur am 17. Juli 2012

Grundlagen der Elektrotechnik 2: Lösungen zur Klausur am 17. Juli 2012 Fachhochschule Südwestfalen - Meschede Prof. Dr. Henrik Schulze Grundlagen der Elektrotechnik 2: Lösungen zur Klausur am 17. Juli 2012 Aufgabe 1 Die folgende Schaltung wird gespeist durch die beiden Quellen

Mehr

Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München. 8 Schaltvorgänge

Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München. 8 Schaltvorgänge Carl Hanser Verlag München 8 Schaltvorgänge Aufgabe 8.6 Wie lauten für R = 1 kω bei der Aufgabe 8.1 die Differenzialgleichungen und ihre Lösungen für die Spannungen u 1 und u 2 sowie für den Strom i? Aufgabe

Mehr

Vers. 3: Elektrizität 1 (Strom, Spannung, Leistung, Widerstände)

Vers. 3: Elektrizität 1 (Strom, Spannung, Leistung, Widerstände) Praktikum Technische Grundlagen ersuch 3 ers. 3: Elektrizität (Strom, Spannung, Leistung, Widerstände) orbereitung Literatur zu den Stichworten Ohmsches Gesetz, Strom, Spannung, Leistung, Widerstandsschaltungen,

Mehr

1 Allgemeine Grundlagen

1 Allgemeine Grundlagen 1 Allgemeine Grundlagen 1.1 Gleichstromkreis 1.1.1 Stromdichte Die Stromdichte in einem stromdurchflossenen Leiter mit der Querschnittsfläche A ist definiert als: j = di da di da Stromelement 1.1.2 Die

Mehr

Stromsysteme, Drehstrom. 1. Stromsysteme in der elektrischen Energietechnik

Stromsysteme, Drehstrom. 1. Stromsysteme in der elektrischen Energietechnik Universität Stuttgart ÜBUNGEN ZU ELEKTRISCHE ENERGIETECHNIK II Umdruck I: Institut für Leistungselektronik und Elektrische Antriebe Prof. Dr.-Ing. J. Roth-Stielow Stromsysteme, Drehstrom. Stromsysteme

Mehr

Übungsaufgaben zur Vorlesung Elektrotechnik 1

Übungsaufgaben zur Vorlesung Elektrotechnik 1 Fachhochschule Esslingen - Hochschule für Technik Fachbereich Informationstechnik Übungsaufgaben zur Vorlesung Elektrotechnik 1 Fachhochschule Esslingen - Hochschule für Technik Fachbereich Informationstechnik

Mehr

Versuch 14 Wechselstromwiderstände

Versuch 14 Wechselstromwiderstände Grundpraktikum der Fakultät für Physik Georg August Universität Göttingen Versuch 4 Wechselstromwiderstände Praktikant: Joscha Knolle Ole Schumann E-Mail: joscha@htilde.de Durchgeführt am: 3.09.202 Abgabe:

Mehr

16 Übungen gemischte Schaltungen

16 Übungen gemischte Schaltungen 6 Übungen gemischte Schaltungen 6. Aufgabe Gemischt (Labor) a) Berechne alle Ströme und Spannungen und messe diese nach! 3 = Rges = + 3 = 4,39kΩ 3 =,939kΩ Iges= Rges =2,46mA=I U = * I = 5,32V = U3 = U

Mehr

Aufgaben Wechselstromwiderstände

Aufgaben Wechselstromwiderstände Aufgaben Wechselstromwiderstände 69. Eine aus Übersee mitgebrachte Glühlampe (0 V/ 50 ma) soll mithilfe einer geeignet zu wählenden Spule mit vernachlässigbarem ohmschen Widerstand an der Netzsteckdose

Mehr

Elektrotechnik 2. Semester

Elektrotechnik 2. Semester Elektrotechnik 2. Semester Wechselstrom- und Drehstromsysteme Wechselstromtechnik 1) Definition: Wechselstrom ist jene Stromart, bei der die Stromstärke sich periodisch nach Größe und Richtung ändert.

Mehr

Wechselstromwiderstände

Wechselstromwiderstände Physikalisches Grundpraktikum Versuch 14 Wechselstromwiderstände Praktikant: Tobias Wegener Alexander Osterkorn E-Mail: tobias.wegener@stud.uni-goettingen.de a.osterkorn@stud.uni-goettingen.de Tutor: Gruppe:

Mehr

Praktikum Grundlagen der Elektrotechnik

Praktikum Grundlagen der Elektrotechnik Praktikum Grundlagen der Elektrotechnik SHWINGKREISE (Versuch ) Fachhochschule Fulda Fachbereich Elektrotechnik durchgeführt von Nr. (Protokollführer) zusammen mit Nr. Matrikel- Matrikel- Datum Gruppe

Mehr

1. Kenngrößen und Darstellung einer Wechselspannung 2. Passive Bauelemente im Wechselstromkreis

1. Kenngrößen und Darstellung einer Wechselspannung 2. Passive Bauelemente im Wechselstromkreis Seite: 1 / 37 Inhaltsübersicht Wichtiger Hinweis: Dieses Skript wird sowohl im einjährigen Berufskolleg (1BKFH) als auch im Technischen Gymnasium (TGJ1, 2. Hj. und TGJ2, 1. Hj.) verwendet. Für das TG gilt:

Mehr

ELEKTRONIK - Beispiele - Dioden

ELEKTRONIK - Beispiele - Dioden ELEKTRONIK - Beispiele - Dioden DI Werner Damböck (D.1) (D.2) geg: U 1 = 20V Bestimme den Vorwiderstand R um einen maximalen Strom von 150mA in der Diode nicht zu überschreiten. Zeichne den Arbeitspunkt

Mehr

INHALTSVERZEICHNIS. 10.1. Reihenschaltungen... 66

INHALTSVERZEICHNIS. 10.1. Reihenschaltungen... 66 INHALTSVERZEICHNIS 8. Einfiig in die Wecbselspainnungstechnik... 13 8.1. Beziehungen zur Gleichspannungstechnik... 13 8.2. Definition der Wechselspannung... 14 8.3. Arten der Wechselspannung... 15 8.3.1.

Mehr

Komplexpraktikum Elektrotechnik II Versuch EE2: Ein- und dreiphasige Strom- und Spannungswandler 9/2012

Komplexpraktikum Elektrotechnik II Versuch EE2: Ein- und dreiphasige Strom- und Spannungswandler 9/2012 Praktikum Schutzrechnik Komplexpraktikum Elektrotechnik II Versuch EE2: Ein- und dreiphasige Strom- und Spannungswandler 9/2012 Versuchsteilnehmer: Praktikumsgr.: Abgabetermin: Protokollant: Eingangsdat.:

Mehr

Wechselstromkreise. Christopher Bronner, Frank Essenberger Freie Universität Berlin. 29. September 2006. 1 Physikalische Grundlagen 1.

Wechselstromkreise. Christopher Bronner, Frank Essenberger Freie Universität Berlin. 29. September 2006. 1 Physikalische Grundlagen 1. Wechselstromkreise Christopher Bronner, Frank Essenberger Freie Universität Berlin 29. September 2006 Inhaltsverzeichnis 1 Physikalische Grundlagen 1 2 Aufgaben 5 3 Messprotokoll 5 3.1 Geräte.................................

Mehr

2-1. 2. Der einfache Gleichstromkreis. 2.1 Einführung. 2.2 Elektrische Spannung und Leistung

2-1. 2. Der einfache Gleichstromkreis. 2.1 Einführung. 2.2 Elektrische Spannung und Leistung 2.1 Einführung Strom kann nur in einem geschlossenen Kreis fließen. Eine Spannungsquelle trennt positive und negative Ladungen. Es kann ein Stromfluss vom Pluspol zum Minuspol der Spannungsquelle stattfinden,

Mehr

INSTITUT FÜR MIKROELEKTRONIK JOHANNES KEPLER UNIVERSITÄT LINZ. Praktikum Elektrotechnik SS 2006. Protokoll. Übung 1 : Oszilloskop

INSTITUT FÜR MIKROELEKTRONIK JOHANNES KEPLER UNIVERSITÄT LINZ. Praktikum Elektrotechnik SS 2006. Protokoll. Übung 1 : Oszilloskop INSTITUT FÜR MIKROELEKTRONIK JOHANNES KEPLER UNIVERSITÄT LINZ Praktikum Elektrotechnik SS 2006 Protokoll Übung 1 : Oszilloskop Gruppe: Protokollführer / Protokollführerin: Unterschrift: Mitarbeiter / Mitarbeiterin:

Mehr

Lehramtspraktikum Teil 1 E1: Messmethoden der Elektrik

Lehramtspraktikum Teil 1 E1: Messmethoden der Elektrik Lehramtspraktikum Teil 1 E1: Messmethoden der Elektrik Verständnisfragen a) Erklären sie die prinzipielle Funktion eines Drehspulinstruments. Misst es Strom oder Spannung? b) Wie wird der Messbereich bei

Mehr

Gleichstrom/Wechselstrom

Gleichstrom/Wechselstrom Gleichstrom/Wechselstrom 1 PHYSIKALISCHE GRUNDLAGEN durchgeführt am 31.05.2010 von Matthias Dräger, Alexander Narweleit und Fabian Pirzer 1 Physikalische Grundlagen 1.1 Definition des Widerstandes Der

Mehr

1 Wiederholung einiger Grundlagen

1 Wiederholung einiger Grundlagen TUTORIAL MODELLEIGENSCHAFTEN Im vorliegenden Tutorial werden einige der bisher eingeführten Begriffe mit dem in der Elektrotechnik üblichen Modell für elektrische Netzwerke formalisiert. Außerdem soll

Mehr

Messtechnik. Gedächnisprotokoll Klausur 2012 24. März 2012. Es wurde die Kapazität von 10 Kondensatoren gleicher Bauart gemessen:

Messtechnik. Gedächnisprotokoll Klausur 2012 24. März 2012. Es wurde die Kapazität von 10 Kondensatoren gleicher Bauart gemessen: Messtechnik Gedächnisprotokoll Klausur 2012 24. März 2012 Dokument erstellt von: mailto:snooozer@gmx.de Aufgaben Es wurde die Kapazität von 10 Kondensatoren gleicher Bauart gemessen: Index k 1 2 3 4 5

Mehr

Grundregeln für das Arbeiten im IAE-Labor

Grundregeln für das Arbeiten im IAE-Labor Labor EPM / MAR 1 Hochschule Bremerhaven Unterlagen zum Labor I Grundregeln für das Arbeiten im IAE-Labor Revision: Elektrotechnik II [ET2] Teil 1: Teil 2: Teil 3: Teil 4: Teil 5: Teil 6: V1.0d Datum:

Mehr

6.5 Transformator (Versuch 54)

6.5 Transformator (Versuch 54) 3 6.5 Transformator (Versuch 54) (Fassung 03/0) Physikalische Grundlagen Der ideale Transformator: Ein Transformator besteht aus zwei (oder mehr) Spulen meist unterschiedlicher Windungszahl und. An der

Mehr

Lehrplan. Elektrotechnik. Höhere Berufsfachschule für Automatisierungstechnik. Ministerium für Bildung

Lehrplan. Elektrotechnik. Höhere Berufsfachschule für Automatisierungstechnik. Ministerium für Bildung Lehrplan Elektrotechnik Höhere Berufsfachschule für Automatisierungstechnik Ministerium für Bildung Hohenzollernstraße 60, 66117 Saarbrücken Postfach 10 24 52, 66024 Saarbrücken Saarbrücken 2010 Hinweis:

Mehr

Amateurfunkkurs. Erstellt: 2010-2011. Landesverband Wien im ÖVSV. Passive Bauelemente. R. Schwarz OE1RSA. Übersicht. Widerstand R.

Amateurfunkkurs. Erstellt: 2010-2011. Landesverband Wien im ÖVSV. Passive Bauelemente. R. Schwarz OE1RSA. Übersicht. Widerstand R. Amateurfunkkurs Landesverband Wien im ÖVSV Erstellt: 2010-2011 Letzte Bearbeitung: 11. Mai 2012 Themen 1 2 3 4 5 6 Zusammenhang zw. Strom und Spannung am Widerstand Ohmsches Gesetz sformen Ein Widerstand......

Mehr

Transformator. U 1 U 2 n 2. Abbildung 1: Umspanner, Transformator. dφ dt. U L = n 1 U 1 +U L = 0 (3) dφ dt. U 0 sinωt = n 1.

Transformator. U 1 U 2 n 2. Abbildung 1: Umspanner, Transformator. dφ dt. U L = n 1 U 1 +U L = 0 (3) dφ dt. U 0 sinωt = n 1. Institut f. Experimentalphysik Technische Universität Graz Petersgasse 16, -8010 Graz Laborübungen: Elektrizität und Optik 23. September 2014 Transformator 1 Grundlagen Ist eine Wechselspannung U 1 vorhanden,

Mehr

1. Frequenzverhalten einfacher RC- und RL-Schaltungen

1. Frequenzverhalten einfacher RC- und RL-Schaltungen Prof. Dr. H. Klein Hochschule Landshut Fakultät Elektrotechnik und Wirtschaftsingenieurwesen Praktikum "Grundlagen der Elektrotechnik" Versuch 4 Wechselspannungsnetzwerke Themen zur Vorbereitung: - Darstellung

Mehr

Einführung in das Carl-Engler-Schule Datum: Drehstromsystem Karlsruhe Seite: 1 / 12

Einführung in das Carl-Engler-Schule Datum: Drehstromsystem Karlsruhe Seite: 1 / 12 Drehstromsystem Karlsruhe Seite: / Das Drehstromsystem Inhaltsübersicht:. Versuche und Grundbegriffe.... Versuche zum Drehstromsystem.... Die Spannungen im Drehstromsystem..... Erzeugerschaltungen - Verkettung....

Mehr

Enseignement secondaire technique

Enseignement secondaire technique Enseignement secondaire technique Régime technique Division technique générale Cycle supérieur Section technique générale Électrotechnique Classe de 13GE Nombre de leçons: 3.0 Nombre minimal de devoirs:

Mehr

Kon o d n e d ns n ator Klasse A Klasse A (Ergänzung) Norbert - DK6NF

Kon o d n e d ns n ator Klasse A Klasse A (Ergänzung) Norbert - DK6NF Kondensator Klasse (Ergänzung) Norbert - K6NF usgewählte Prüfungsfragen T202 Welchen zeitlichen Verlauf hat die Spannung an einem entladenen Kondensator, wenn dieser über einen Widerstand an eine Gleichspannungsquelle

Mehr

1 Grundlagen der Impedanzmessung

1 Grundlagen der Impedanzmessung 1 Grundlagen der Impedanzmessung Die Impedanz ist ein wichtiger Parameter, die der Charakterisierung von elektronischen Komponenten, Schaltkreisen und Materialien die zur Herstellung von Komponenten verwendet

Mehr

Messung von Spannung und Strömen

Messung von Spannung und Strömen Basismodul-Versuch 2 BM-2-1 Messung von Spannung und Strömen 1 Vorbereitung llgemeine Vorbereitung für die Versuche zur Elektrizitätslehre, insbesondere Punkt 7 ufbau eines Drehspulmesswerks Lit.: WLCHER

Mehr

Elektrotechnik 2. Klasse

Elektrotechnik 2. Klasse Elektrotechnik. Klasse ng. Volker egenfelder ehrmittel: Fachkundebuch Europaverlag 6 Auflage 009 Fachrechenbuch Europaverlag Diverses Anschauungsmaterial Bilder: Verlag Europa ehrmittel Bilder: ng. Volker

Mehr

E-Technik 2C Das ohmsche Gesetz Seite 1 von 11

E-Technik 2C Das ohmsche Gesetz Seite 1 von 11 E-Technik 2C Das ohmsche Gesetz Seite 1 von 11 i = u R Strom (i) = Spannung (u) Widerstand (R) Das oben stehende ohmsche Gesetz beschreibt den Zusammenhang zwischen dem elektrischen Strom i, der elektrischen

Mehr

Lösungen zu Kapazitäten / Kondensatoren

Lösungen zu Kapazitäten / Kondensatoren Ein- und Ausschaltvorgänge mit Kapazitäten A47: (869, 870) Ein Kondensator von µf wird über einen Widerstand von 3 MΩ auf eine Spannung von 50 V geladen. Welche Werte hat der Ladestrom a) 0,3 s, b), s,

Mehr

Musterlösungen zu den Übungsaufgaben aus Grundlagen der Elektrotechnik

Musterlösungen zu den Übungsaufgaben aus Grundlagen der Elektrotechnik Musterlösungen zu den Übungsaufgaben aus Grundlagen der Elektrotechnik W. Kippels 24. November 2013 Inhaltsverzeichnis 1 Allgemeines 2 2 Übungsfragen mit Antworten 2 2.1 Übungsfragen zum Stromkreis........................

Mehr

Physik-Praktikum. für Studierende des Studiengangs Fach-Bachelor Chemie Teil 1. Versuch 6: Magnetfeld, Induktion, Wechselstromgrößen

Physik-Praktikum. für Studierende des Studiengangs Fach-Bachelor Chemie Teil 1. Versuch 6: Magnetfeld, Induktion, Wechselstromgrößen Physik-Praktikum für Studierende des Studiengangs Fach-Bachelor Chemie Teil Versuch 6: Magnetfeld, Induktion, Wechselstromgrößen Wintersemester 5/6 Carl von Ossietzky niversität Oldenburg Institut für

Mehr