Optik des Mikroskops

Größe: px
Ab Seite anzeigen:

Download "Optik des Mikroskops"

Transkript

1 Master MIW University of Lübeck Biomedizinische Optik II Optik des Mikroskops Einfluss der Beleuchtung auf Auflösung, Kontrast und Bildstrukturen Alfred Vogel / April 2012

2 Strahlengang im modernen Mikroskop & konjugierte Ebenen Abbildung Leuchtfeldblende Objekt Zwischenbild Retina Beleuchtung Objektiv Okular Lampenfilament Kollimator Aperturblende Kondensor Hintere Brennebene Objektiv Feldlinse Augenpupille Köhlersche Beleuchtung Bild der Lichtquelle in vorderer Brennebene des Kondensors von jedem Punkt der Lichtquelle ausgehend entsteht ein paralleles Strahlenbündel, welches das gesamte Objekt gleichmäßig beleuchtet Kondensor muß so positioniert sein, das er die Leuchtfeldblende scharf in die Objektebene abbildet gleichmäßige Beleuchtung des Objekts mit scharfer Berandung Abbildungsstrahlengang Zweistufige Abbildung mit Gesamtvergrößerung V ges = V Objektiv x V Okular

3 Optimale Stellung der Kondensorblende Das Auflösungsvermögen ist maximal bei voll geöffneter Blende: d min NA Obj NA Bel Der Kontrast verbessert sich bei Abblendung des Kondensors Bei Abblendung des Kondensors tauchen falsche Strukturen auf Kondensorblende offen Blende etwas geschlossen Blende weit geschlossen? Was ist die optimale Einstellung der Kondensorblende?? Woher rühren Kontrastveränderung und falsche Strukturen? Einfluss der Beleuchtung auf die mikroskopische Abbildung?

4 Auflösungsvermögen und Kondensorapertur Geöffnete Kondensorblende Weitgehend geschlossene Blende 10 µm Der Auflösungsverlust kann maximal einen Faktor 2 betragen. Er ist besonders deutlich sichtbar bei Strukturen an der Auflösungsgrenze!

5 Räumliche Kohärenz Erweiterung unserer Kohärenzdefinition auf zwei beliebige Wellen ergibt die den Begriff der räumliche Kohärenz (Kreuzkorrelationsfunktion) Bei fester Phasenbeziehung zwischen den Strahlern Q 1 und Q 2 (zeitl. Kohärenz) gibt es ein wohldefiniertes Interferenzmuster auf dem Schirm. Haben wir eine inkohärente Lichtquelle mit regellos schwankender Phase zwischen Q 1 und Q 2, dann überlagern sich die Felder so, dass man im Mittel nur die Summe ihrer Intensitäten misst. Die Interferenzterme, deren Werte sich ständig ändern, mitteln sich heraus. Wir müssen also die Intensitäten auf dem Schirm addieren. Interferenzstreifen sind dann sichtbar, wenn die beiden von Q 1 und Q 2 erzeugten Streifenmuster nicht zu weit gegeneinander verschoben sind, z.b. nicht die Maxima des einen Systems auf die Minima des anderen fallen. Dies ist der Fall, wenn

6 Formulierungen der räumlichen Kohärenzbedingung d = Gitterkonstante Räumliche Kohärenz, Mikroskopbeleuchtung falls Bei welcher Gitterkonstante im Objekt ist die räumliche Kohärenzbedingung erfüllt?: Für NA = 0,65 ist = 81 und d = 0,25 µm Für NA = 0,05 ist = 5,7 und d = 2,5 µm Partielle Kohärenz ist bereits bei NA > 0,05 bzw. Strukturen > 2,5 µm erreicht!

7 Kohärente und inkohärente Schatten: Fresnelsches Beugungsbild Beugung mit kohärentem Licht Raumfrequenz der Oszillation nimmt mit wachsendem Abstand von der Kante zu Nahfeld-Beugung mit inkohärentem Licht

8 Inkohärente Schatten von großen Objekten im Sonnenlicht

9 Fresnelsches und Fraunhofersches Beugungsbild im Mikroskop - weißes Licht, geschlossene Kondensorblende ( parallele Beleuchtung), kleine Objekte -

10 Fokussierte und defokussierte kohärente Abbildung von Kanten fokussiert: Gibbssches Phänomen (konstante Raumfrequenz, abh von cutoff Frequrenz) defokussiert: Fresnel-Beugung

11 Kohärente und inkohärente Kantenfunktion bei scharfer Abbildung Kohärente Abbildung Inkohärente Abbildung El. Feld Intensität Kantenbreite hängt ab von Punktbildbeite Ideale Kantenposition Intensität Optische Übertragungsfunktion Oszillationen sind im Schattenbereich kaum sichtbar Ideale Kantenposition

12 Gibbssches Phänomen Entwickelt man eine Fourierreihe aus einer unstetigen Funktion mit Sprungstellen, so ergeben sich an den Unstetigkeitsstellen typische Über- und Unterschwinger, die sich auch dann nicht verringern, wenn man versucht, die Funktion durch weitere Summenglieder anzunähern. Die relative Höhe des Überschwingers in einer Richtung, bezogen auf die halbe Sprunghöhe, lässt sich im Grenzwert unendlich vieler Fourier-Summenglieder bestimmen zu: womit sich ein prozentueller Fehler von etwa 18% der Sprunghöhe ergibt. n = 5 n = 25 n = 125 Für n strebt die Höhe der Über- und Unterschwinger strebt gegen einen konstanten Grenzwert aber die Breite gegen Null. Somit strebt die Abweichung von der Zielfunktion ebenfalls gegen Null. Bei Abbruch der Reihe (endliches n) werden die Überschwinger sichtbar.

13 Falsche Strukturen vor einer Stoßwelle bei kohärenter Abbildung 30 ps, 400 µj Raumfrequenz der Oszillationen ist annähernd konstant anders als bei Fresnelbeugung 100 µm Punktbildduchmesser 3,5 µm Optische Übertragungsfunktion Der scharfe Abfall der kohärenten Übertagungsfunktion erzeugt ein Überschwingen an Bildkanten (Gibbssches Phänomen; tritt bei inkohärenter Abbildung und Apodisation nicht auf)

14 Kohärente und inkohärente Übertragungsfunktion Übertragene Beugungsordnungen Ordnung 2. Ordnung 1 kohärente Beleuchtung 2 inkohärente Beleuchtung (große NA der Beleuchtung) Ordnung 1. Ordnung -1. Ordnung 0. Ordnung Beleuchtungs-NA = 0: Überragung von Raumfrequenzen bis f 0, gebeugtes Licht von feineren Gitterstrukturen mit höherer Raumfreuenz geht an der Abbildungslinse vorbei Große NA der Beleuchtung: Auch hohe Raumfrequenzen bis 2 f 0 werden noch übertragen, aber nur durch Beugung von den Großwinkel-Anteilen des Beleuchtungslichtes Kontrastabnahme

15 Fokussierte und defokussierte Abbildung Auflösungsplatte bei unterschiedlichen Stellungen der Kondensorblende (40x, NA = 0,6) Kleinste Öffnung 1/3 geschlossen offen Defokus Defokus 0 µm 0 µm 3 µm 3 µm 6 µm 6 µm 9 µm 9 µm

16 Umspringen von Hell-Dunkel bei Defokussierung! Fokussierte und defokussierte Abbildung Auflösungsplatte bei unterschiedlichen Stellungen der Kondensorblende (40x, NA = 0,6) Kleinste Öffnung 1/3 geschlossen offen 0 µm 0 µm 3 µm 3 µm 6 µm 6 µm 9 µm 9 µm

17 Defokussierung und Aberrationen im Formalismus der Fourieroptik Der Einfluss der Apertur der abbildenden Linse wird als Multiplikation des Raumfrequenzspektrums mit der Pupillenfunktion beschrieben. Der Einfluss von Aberrationen, speziell dann wenn sie Phasenfehler betreffen, kann durch Multiplikation mit einer generalisierten Pupillenfunktion beschrieben werden. Als einfaches Modell für Aberrationen kann man die Auswirkung von Defokussierung auf das Raumfrequenzspektrum betrachten. Die Defokussierung führt dazu, dass die Weglängen zwischen Objekt- und Bildpunkt nicht mehr für die gesamte Linsenapertur gleich groß sind, sondern eine Funktion des Abstandes von der optischen Achse werden. Die hierdurch bedingten Abweichungen von der phasenrichtigen Überlagerung in der Bildebene können durch eine Veränderung der Übertragungsfunktion (bzw. Der generalisierten Pupillenfunktion) ausgedrückt werden. Wenn man die generalisierte Pupillenfunktion kennt, kann man durch geeignete Filterung auf der optischen Bank oder im Rechner die Phasenverzerrung wieder rückgängig machen Zentrum Siemensstern,fokussiert (Raumfrequenz nimmt kontinuierlich nach innen zu) 20 mm defokussiert (f = 400 mm)

18 Optische Transferfunktion (OTF) für defokussierte Abbildung OTF entlang der Raumfrequenzachse f x für verschiedene Werte des Parameters W m / Dabei ist W m der maximale Fehler der optischen Weglänge durch Defokussierung. Die Berechnung wurde zur Vereinfachung für eine quadratische Apertur durchgeführt. Goodman: Introduction to Fourier Optics, 3 rd Ed, p. 150

19 Defokussierung und Aberrationen im Formalismus der Fourieroptik 40 mm defokussiert (f = 400 mm) 80 mm defokussiert (f = 400 mm) Durch die Phasenverzerrung bei Defokussierung nimmt die Übertragungsfunktion abwechselnd positive und negative Werte an. Das Vorzeichen wechselt um so häufiger, je stärker die Defokussierung ist. Der Vorzeichenwechsel der Übertragungsfunktion drückt sich als Umspringen der hellen und dunklen Keile in bestimmten Abständen von der optischen Achse aus. Nahe der Nullstellen der Übertragungsfunktion hat diese einen geringen Wert. Dies drückt sich darin aus, dass die Keile des Siemenssterns bei Raumfrequenzen Bereichen des Umspringens nur mit schlechtem, Kontrast zu sehen sind.

20 Fokussierte und defokussierte Abbildung Haut-Schnitt bei unterschiedlichen Stellungen der Kondensorblende (100x, NA = 1,3) Kleinste Öffnung 1/3 geschlossen offen -1 µm -1 µm 1 µm 1 µm 3 µm 3 µm 5 µm 5 µm 7 µm 7 µm

21 Speckles in kohärentem und partiell kohärentem Licht Mikroskop. Bild mit Weißlicht-Speckles Laser-Speckles Sonnenlicht-Speckles

22 Einfluss der Beleuchtung auf die mikroskopische Abbildung Das Auflösungsvermögen ist maximal bei voll geöffneter Kondensorblende: d min NA Obj NA Bel Schließen der Blende bewirkt einen Übergang von inkohärenter zu partiell kohärenter Beleuchtung und somit das Auftreten von Interferenzeffekten erhöhter Kontrast, aber auch falsche Strukturen Akzeptanzwinkel für Streulicht ist geringer bei Beleuchtung mit kleiner NA größere Extinktion durch Objekte die absorbierenden und streuen besserer Kontrast (Abbildungsfehler des Objektivs fallen bei voller Ausleuchtung des Objektives stärker ins Gewicht als wenn nur das vom Objekt gebeugte oder gestreute Licht durch den Randbereich des Objektivs fällt weniger Kontrast.) Kondensorblende offen Blende etwas geschlossen Blende weit geschlossen Die Säume im rechten Bild rühren von Nahfeldbeugung aus Ebenen leicht außerhalb der Schärfenebene her. Sie werden bei partiell kohärenter Beleuchtung (kleine NA) sichtbar.

23 Optimale Stellung der Kondensorblende + * Der Zilienbesatz * der Epithelzellen der Ductuli efferentes des Nebenhodens lässt sich bei teilweise geschlossener Kondensorblende deutlich besser erkennen. Details der Chromatinstuktur der Zellkerne gehen dann aber verloren. Fibroblasten + des Bindegewebes lassen sich bei offener Kondensorblende besser von den kollagenen Fasern abgrenzen. Die optimale Einstellung hängt vom Einzelfall ab. Faustregel: Kondensorblende etwa 1/3 zuziehen

24 Experimente Laser-Speckle Schatten von Bleistift im Sonnenlicht auf weißem Papier, Variation des Abstandes (Poissonscher Fleck bzw. Linie) Weißlichtspeckle auf Fingernagel im Sonnenlicht Weißlicht- und Regenbogenhologramme

25

Optische Systeme (5. Vorlesung)

Optische Systeme (5. Vorlesung) 5.1 Optische Systeme (5. Vorlesung) Yousef Nazirizadeh 20.11.2006 Universität Karlsruhe (TH) Inhalte der Vorlesung 5.2 1. Grundlagen der Wellenoptik 2. Abbildende optische Systeme 2.1 Lupe / Mikroskop

Mehr

www.leipzig-medizin.de

www.leipzig-medizin.de In welcher Entfernung s befindet sich ein Objekt bezüglich der gegenstandseitigen Brennweite f des Objektivs bei Arbeit mit einem Mikroskop? s < f s = f 2f > s > f s = 2f s > 2f In welcher Entfernung s

Mehr

Auswertung P2-10 Auflösungsvermögen

Auswertung P2-10 Auflösungsvermögen Auswertung P2-10 Auflösungsvermögen Michael Prim & Tobias Volkenandt 22 Mai 2006 Aufgabe 11 Bestimmung des Auflösungsvermögens des Auges In diesem Versuch sollten wir experimentell das Auflösungsvermögen

Mehr

Praktikum MI Mikroskop

Praktikum MI Mikroskop Praktikum MI Mikroskop Florian Jessen (Theorie) Hanno Rein (Auswertung) betreut durch Christoph von Cube 16. Januar 2004 1 Vorwort Da der Mensch mit seinen Augen nur Objekte bestimmter Größe wahrnehmen

Mehr

Optische Systeme. Physikalisches Grundpraktikum III

Optische Systeme. Physikalisches Grundpraktikum III Physikalisches Grundpraktikum III Universität Rostock :: Fachbereich Physik 11 Optische Systeme Name: Daniel Schick BetreuerIn: Dr. Enenkel Versuch ausgeführt: 01.12.04 Protokoll erstellt: 02.12.04 1 Ziel:

Mehr

Abb. 2 In der Physik ist der natürliche Sehwinkel der Winkel des Objektes in der "normalen Sehweite" s 0 = 25 cm.

Abb. 2 In der Physik ist der natürliche Sehwinkel der Winkel des Objektes in der normalen Sehweite s 0 = 25 cm. Mikroskop 1. ZIEL In diesem Versuch sollen Sie sich mit dem Strahlengang in einem Mikroskop vertraut machen und verstehen, wie es zu einer Vergrößerung kommt. Sie werden ein Messokular kalibrieren, um

Mehr

Beugung, Idealer Doppelspalt

Beugung, Idealer Doppelspalt Aufgaben 10 Beugung Beugung, Idealer Doppelspalt Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können. - einen bekannten oder neuen Sachverhalt

Mehr

Vorbereitung zur geometrischen Optik

Vorbereitung zur geometrischen Optik Vorbereitung zur geometrischen Optik Armin Burgmeier (347488) Gruppe 5 9. November 2007 Brennweitenbestimmungen. Kontrollieren der Brennweite Die angegebene Brennweite einer Sammellinse lässt sich überprüfen,

Mehr

Versuch C: Auflösungsvermögen Einleitung

Versuch C: Auflösungsvermögen Einleitung Versuch C: svermögen Einleitung Das AV wird üblicherweise in Linienpaaren pro mm (Lp/mm) angegeben und ist diejenige Anzahl von Linienpaaren, bei der ein normalsichtiges Auge keinen Kontrastunterschied

Mehr

Optisches Institut der TU Berlin Technische Optik. Optisches Praktikum, Aufgabe 15: Mikroprojektion

Optisches Institut der TU Berlin Technische Optik. Optisches Praktikum, Aufgabe 15: Mikroprojektion Optisches Institut der TU Berlin Technische Optik Optisches Praktikum, Aufgabe 15: Mikroprojektion 1. Ziel der Aufgabe Kennenlernen der Grundlagen von Abbildungs- und Beleuchtungsstrahlengängen und deren

Mehr

HTW Chur Photonics, Optik 1, T. Borer Aufgaben /19

HTW Chur Photonics, Optik 1, T. Borer Aufgaben /19 Aufgaben 13 Optische Instrumente Mikroskop, Teleskop Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können. - einen bekannten oder neuen Sachverhalt

Mehr

Auflösungsvermögen bei leuchtenden Objekten

Auflösungsvermögen bei leuchtenden Objekten Version: 27. Juli 2004 Auflösungsvermögen bei leuchtenden Objekten Stichworte Geometrische Optik, Wellennatur des Lichts, Interferenz, Kohärenz, Huygenssches Prinzip, Beugung, Auflösungsvermögen, Abbé-Theorie

Mehr

Inhalte. Prisma & Regenbogen. Beugung Fresnel-Huygens sches Prinzip Beugung an der Kante Fresnelsche Zonen Platte Poisson Fleck

Inhalte. Prisma & Regenbogen. Beugung Fresnel-Huygens sches Prinzip Beugung an der Kante Fresnelsche Zonen Platte Poisson Fleck Inhalte Prisma & Regenbogen Beugung Fresnel-Huygens sches Prinzip Beugung an der Kante Fresnelsche Zonen Platte Poisson Fleck Fresnel-Kirchhoff Theorie der Beugung Fresnel-Kirchhoff-Integral Fraunhofer

Mehr

Aufgaben 13.1 Studieren Sie im Lehrbuch Tipler/Mosca den folgenden Abschnitt: Optische Instrumente (Teil Das Mikroskop, Seiten 1072 und 1073)

Aufgaben 13.1 Studieren Sie im Lehrbuch Tipler/Mosca den folgenden Abschnitt: Optische Instrumente (Teil Das Mikroskop, Seiten 1072 und 1073) Aufgaben 13 Optische Instrumente Mikroskop, Teleskop Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können. - einen bekannten oder neuen Sachverhalt

Mehr

Versuch 413. Abbesche Theorie. 1. Aufgaben. 2. Grundlagen

Versuch 413. Abbesche Theorie. 1. Aufgaben. 2. Grundlagen Versuch 413 Abbesche Theorie 1. Aufgaben 1.1 Untersuchen Sie das Auflösungsvermögen des Mikroskops für drei verschiedene Objektive jeweils für rotes und blaues Licht. Vergleichen Sie die kleinsten experimentell

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #24 02/12/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Frage des Tages wie kann man CD von DVD unterscheiden? λ=532 nm (grüner Laser) 633 nm (roter Laser)

Mehr

Grundlagen der Lichtmikroskopie

Grundlagen der Lichtmikroskopie Lehrerfortbildung Nanobiotechnologie Grundlagen der Lichtmikroskopie Juliane Ißle 03.04.03 Universität des Saarlandes Fachrichtung Experimentalphysik Inhalt Prinzipieller Mikroskopaufbau Köhler sche Beleuchtung

Mehr

Auflösungsvermögen bei dunkelen Objekten

Auflösungsvermögen bei dunkelen Objekten Version: 27. Juli 2004 Auflösungsvermögen bei dunkelen Objekten Stichworte Geometrische Optik, Wellennatur des Lichts, Interferenz, Kohärenz, Huygenssches Prinzip, Beugung, Auflösungsvermögen, Abbé-Theorie

Mehr

Übungsblatt 11 Geometrische und Technische Optik WS 2012/2013

Übungsblatt 11 Geometrische und Technische Optik WS 2012/2013 Übungsblatt 11 Geometrische und Technische Optik WS 212/213 Diaprojektor und Köhler sche Beleuchtung In dieser Übung soll ein einfacher Diaprojektor designt und strahlenoptisch simuliert werden. Dabei

Mehr

Mikroskopie. Kleines betrachten

Mikroskopie. Kleines betrachten Mikroskopie griechisch μικροσ = mikros = klein σκοπειν = skopein = betrachten Kleines betrachten Carl Zeiss Center for Microscopy / Jörg Steinbach -1- Mikroskoptypen Durchlicht Aufrechte Mikroskope Stereomikroskope

Mehr

22. Vorlesung EP. IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik)

22. Vorlesung EP. IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik) 22. Vorlesung EP IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik Versuche

Mehr

Wo sind die Grenzen der geometrischen Optik??

Wo sind die Grenzen der geometrischen Optik?? In der Strahlen- oder geometrischen Optik wird die Lichtausbreitung in guter Näherung durch Lichtstrahlen beschrieben. Wo sind die Grenzen der geometrischen Optik?? Lichtbündel Lichtstrahl Lichtstrahl=

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #22 27/11/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Optische Instrumente Allgemeine Wirkungsweise der optischen Instrumente Erfahrung 1. Von weiter

Mehr

6.1.7 Abbildung im Auge

6.1.7 Abbildung im Auge 6.1.7 Abbildung im Auge Das menschliche Auge ist ein aussergewöhnlich hoch entwickeltes Sinnesorgan. Zur Abbildung wird ein optisches System bestehend aus Hornhaut, Kammerwasser, Linse sowie Glaskörper

Mehr

Mikroskopie: Theoretische Grundlagen

Mikroskopie: Theoretische Grundlagen Mikroskopie: Theoretische Grundlagen Ein Mikroskop ist ein Präzisionsinstrument, der richtige Umgang damit erfordert zuerst theoretisches Grundwissen, damit es richtig bedient werden kann. Für jeden Einstellknopf

Mehr

Inhalte. Beugung. Fresnel-Huygens sches Prinzip Beugung an der Kante Fresnelsche Zonen Platte Poisson Fleck

Inhalte. Beugung. Fresnel-Huygens sches Prinzip Beugung an der Kante Fresnelsche Zonen Platte Poisson Fleck Beugung Inhalte Fresnel-Huygens sches Prinzip Beugung an der Kante Fresnelsche Zonen Platte Poisson Fleck Fresnel-Kirchhoff Theorie der Beugung Fresnel-Kirchhoff-Integral Fraunhofer (Fernfeld) Näherung

Mehr

Physikalisches Praktikum 3. Abbésche Theorie

Physikalisches Praktikum 3. Abbésche Theorie Physikalisches Praktikum 3 Versuch: Betreuer: Abbésche Theorie Dr. Enenkel Aufgaben: 1. Bauen Sie auf einer optischen Bank ein Modellmikroskop mit optimaler Vergrößerung auf. 2. Untersuchen Sie bei verschiedenen

Mehr

Linsen und Linsenfehler

Linsen und Linsenfehler Linsen und Linsenfehler Abb. 1: Abbildung des Glühfadens einer Halogenlampe durch ein Pinhole Geräteliste: Pinhole (

Mehr

Versuch P1-31,40,41 Geometrische Optik. Vorbereitung. Von Jan Oertlin. 2. Dezember 2009

Versuch P1-31,40,41 Geometrische Optik. Vorbereitung. Von Jan Oertlin. 2. Dezember 2009 Versuch P1-31,40,41 Geometrische Optik Vorbereitung Von Jan Oertlin 2. Dezember 2009 Inhaltsverzeichnis 1. Brennweitenbestimmung...2 1.1. Kontrolle der Brennweite...2 1.2. Genaue Bestimmung der Brennweite

Mehr

Instrumenten- Optik. Mikroskop

Instrumenten- Optik. Mikroskop Instrumenten- Optik Mikroskop Gewerblich-Industrielle Berufsschule Bern Augenoptikerinnen und Augenoptiker Der mechanische Aufbau Die einzelnen mechanischen Bauteile eines Mikroskops bezeichnen und deren

Mehr

Monokular Mikroskop Biosup Best.- Nr. MD03366

Monokular Mikroskop Biosup Best.- Nr. MD03366 Monokular Mikroskop Biosup Best.- Nr. MD03366 1. Beschreibung 1. Okular 2. monokularer Beobachtungsaufsatz 3. Tubus 4. Objektrevolver mit 4 Objektiven 5. Objektive 6. Objekttisch 7. Rädchen für Längsbewegung

Mehr

Versuch Nr. 18 BEUGUNG

Versuch Nr. 18 BEUGUNG Grundpraktikum der Physik Versuch Nr. 18 BEUGUNG Versuchsziel: Justieren eines optischen Aufbaus. Bestimmung der Wellenlänge eines Lasers durch Ausmessen eines Beugungsmusters am Gitter. Ausmessen der

Mehr

Versuch 3: Beugung am Spalt und Kreisblende

Versuch 3: Beugung am Spalt und Kreisblende Versuch 3: Beugung am Spalt und Kreisblende Dieser Versuch soll der Einführung der allgemeinen Beugungstheorie dienen. Beugungsphänomene werden in verschiedenen Erscheinungsformen zunächst nur beobachtet.

Mehr

Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops

Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops 22-1 Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops 1. Vorbereitung : Wellennatur des Lichtes, Interferenz, Kohärenz, Huygenssches Prinzip, Beugung, Fresnelsche und Fraunhofersche Beobachtungsart,

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein abgegebener Übungszettel aus dem Modul physik3. Dieser Übungszettel wurde nicht korrigiert. Es handelt sich lediglich um meine Abgabe und keine Musterlösung. Alle Übungszettel

Mehr

Vorbereitung: Bestimmung von e/m des Elektrons

Vorbereitung: Bestimmung von e/m des Elektrons Vorbereitung: Bestimmung von e/m des Elektrons Carsten Röttele 21. November 2011 Inhaltsverzeichnis 1 Allgemeine Linsen 2 2 Bestimmung der Brennweite 3 2.1 Kontrolle einer Brennweite...........................

Mehr

Optisches Institut der TU Berlin Technische Optik. Optisches Praktikum, Aufgabe 2: Aufbau und Kalibrierung eines Kollimators zur Brennweitenbestimmung

Optisches Institut der TU Berlin Technische Optik. Optisches Praktikum, Aufgabe 2: Aufbau und Kalibrierung eines Kollimators zur Brennweitenbestimmung Optisches Institut der TU Berlin Technische Optik Optisches Praktikum, Augabe 2: Aubau und Kalibrierung eines Kollimators zur Brennweitenbestimmung 1. Ziel der Augabe Kennenlernen eines wesentlichen Verahrens

Mehr

Geschichte der Mikroskopie. Das zusammengesetzte Mikroskop. Hellfeld: Köhlersche Beleuchtung

Geschichte der Mikroskopie. Das zusammengesetzte Mikroskop. Hellfeld: Köhlersche Beleuchtung Gliederung Geschichte der Mikroskopie Die Lupe Das zusammengesetzte Mikroskop Hellfeld: Köhlersche Beleuchtung Mikroskopie µικροσ (mikros): klein σκοπειν (skopein): schauen Geschichte der Mikroskopie Naja:

Mehr

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011 Praktikum Physik Protokoll zum Versuch: Geometrische Optik Durchgeführt am 24.11.2011 Gruppe X Name1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das

Mehr

Wellenoptik/Laser. Praktikumsversuch Meßtechnik INHALT

Wellenoptik/Laser. Praktikumsversuch Meßtechnik INHALT Praktikumsversuch Meßtechnik Wellenoptik/Laser INHALT 1.0 Einführung 2.0 Versuchsaufbau/Beschreibung 3.0 Aufgaben 4.0 Zusammenfassung 5.0 Fehlerdiskussion 6.0 Quellennachweise 1.0 Einführung Die Beugung

Mehr

23. Vorlesung EP. IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik)

23. Vorlesung EP. IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik) 23. Vorlesung EP IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik Versuche

Mehr

Auflösung optischer Instrumente

Auflösung optischer Instrumente Aufgaben 12 Beugung Auflösung optischer Instrumente Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können. - einen bekannten oder neuen Sachverhalt

Mehr

Testaufgaben bitte zuhause lösen. Richtige Antworten werden im Internet demnächst bekannt gegeben. Bitte kontrollieren Sie Ihre Klausuranmeldung für

Testaufgaben bitte zuhause lösen. Richtige Antworten werden im Internet demnächst bekannt gegeben. Bitte kontrollieren Sie Ihre Klausuranmeldung für Testaufgaben bitte zuhause lösen. Richtige Antworten werden im Internet demnächst bekannt gegeben. Bitte kontrollieren Sie Ihre Klausuranmeldung für den 13.02.2003 unter www.physik.uni-giessen.de/ dueren/

Mehr

Laborversuche zur Physik 2 II - 6. Versuche zu den Abbe'schen Ideen der Bildentstehung beim Mikroskop

Laborversuche zur Physik 2 II - 6. Versuche zu den Abbe'schen Ideen der Bildentstehung beim Mikroskop FB Physik Laborversuche zur Physik 2 II - 6 Auflösung beim Mikroskop Reyher, 23.07.12 Ziele Versuche zu den Abbe'schen Ideen der Bildentstehung beim Mikroskop Experimentelle Überprüfung einiger Aussagen

Mehr

Praktikum Angewandte Optik Versuch: Aufbau eines Fernrohres

Praktikum Angewandte Optik Versuch: Aufbau eines Fernrohres Praktikum Angewandte Optik Versuch: Aufbau eines Fernrohres Historisches und Grundlagen: Generell wird zwischen zwei unterschiedlichen Typen von Fernrohren unterschieden. Auf der einen Seite gibt es das

Mehr

Protokoll zum Physikalischen Praktikum Versuch 10 - Abbésche Theorie

Protokoll zum Physikalischen Praktikum Versuch 10 - Abbésche Theorie Protokoll zum Physikalischen Praktikum Versuch 10 - Abbésche Theorie Experimentatoren: Thomas Kunze und Sebastian Knitter Betreuer: Dr Enenkel Rostock, den 19.10.04 Inhaltsverzeichnis 1 Ziel des Versuches

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 3. Matthias Golibrzuch,Daniel Jost Dienstag

Physik-Department. Ferienkurs zur Experimentalphysik 3. Matthias Golibrzuch,Daniel Jost Dienstag Physik-Department Ferienkurs zur Experimentalphysik 3 Matthias Golibrzuch,Daniel Jost Dienstag Inhaltsverzeichnis Technische Universität München Das Huygensche Prinzip 2 Optische Abbildungen 2 2. Virtuelle

Mehr

Die dunklen Ringe liegen bei den Nullstellen dieser Besselfunktion: ϕ/2 = 1, 22π;2, 233π;3, 238π

Die dunklen Ringe liegen bei den Nullstellen dieser Besselfunktion: ϕ/2 = 1, 22π;2, 233π;3, 238π 8 Statt I sin ϕ/ I 0 ϕ/, erhält man I I 0 J 1(ϕ/) ϕ/ Die dunklen Ringe liegen bei den Nullstellen dieser Besselfunktion: ϕ/ = 1, π;, 33π;3, 38π Die Größe der Beugungsfigur läßt sich abschätzen, indem man

Mehr

7.7 Auflösungsvermögen optischer Geräte und des Auges

7.7 Auflösungsvermögen optischer Geräte und des Auges 7.7 Auflösungsvermögen optischer Geräte und des Auges Beim morgendlichen Zeitung lesen kann ein gesundes menschliche Auge die Buchstaben des Textes einer Zeitung in 50cm Entfernung klar und deutlich wahrnehmen

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Physikalisches Praktikum MI2AB Prof. Ruckelshausen Versuch 3.6: Beugung am Gitter Inhaltsverzeichnis 1. Theorie Seite 1 2. Versuchsdurchführung Seite 2 2.1 Bestimmung des Gitters mit der kleinsten Gitterkonstanten

Mehr

Beugung am Gitter. Beugung tritt immer dann auf, wenn Hindernisse die Ausbreitung des Lichtes

Beugung am Gitter. Beugung tritt immer dann auf, wenn Hindernisse die Ausbreitung des Lichtes PeP Vom Kerzenlicht zum Laser Versuchsanleitung Versuch 2: Beugung am Gitter Beugung am Gitter Theoretische Grundlagen Beugung tritt immer dann auf, wenn Hindernisse die Ausbreitung des Lichtes beeinträchtigen.

Mehr

Mikrobiologisches Praktikum. Mikroskopie I. Tag 1. Mikroskopieren im Hellfeld. C. Linkenheld

Mikrobiologisches Praktikum. Mikroskopie I. Tag 1. Mikroskopieren im Hellfeld. C. Linkenheld Mikrobiologisches Praktikum Mikroskopie I Tag 1 Mikroskopieren im Hellfeld C. Linkenheld C. Linkenheld H. Petry-Hansen Lichtmikroskopie: Hellfeld Hellfeld-Mikroskopie: Für kontrastreiche Präparate Objekte

Mehr

413 Abbesche Theorie

413 Abbesche Theorie 413 Abbesche Theorie 1. Aufgaben 1.1 Untersuchen Sie das Auflösungsvermögen des Mikroskops für drei verschiedene Objektive jeweils für rotes und blaues Licht. Vergleichen Sie die kleinsten experimentell

Mehr

Physikalisches Praktikum 3. Semester

Physikalisches Praktikum 3. Semester Torsten Leddig 18.Januar 2005 Mathias Arbeiter Betreuer: Dr.Hoppe Physikalisches Praktikum 3. Semester - Optische Systeme - 1 Ziel Kennenlernen grundlegender optischer Baugruppen Aufgaben Einige einfache

Mehr

Protokoll. zum Physikpraktikum. Versuch Nr.: 8 Mikroskop. Gruppe Nr.: 1

Protokoll. zum Physikpraktikum. Versuch Nr.: 8 Mikroskop. Gruppe Nr.: 1 Protokoll zum Physikpraktikum Versuch Nr.: 8 Mikroskop Gruppe Nr.: 1 Andreas Bott (Protokollant) Marco Schäfer Theoretische Grundlagen Das menschliche Auge: Durch ein Linsensystem wird im menschlichen

Mehr

Interferenz von Schallwellen

Interferenz von Schallwellen Interferenz von Schallwellen Das Wort Interferenz verbindet man meist mit dem Doppelspaltversuch der Optik. Der zeigt, dass sich Licht wie eine Welle verhält. Trifft der Berg einer Welle aus dem einen

Mehr

Einführung in die Technik. Mikroskopie. Kleines betrachten

Einführung in die Technik. Mikroskopie. Kleines betrachten Einführung in die Technik Mikroskopie griechisch µικροσ = mikros = klein σκοπειν = skopein = betrachten Kleines betrachten Th. Beyer / Lungenklinik Ballenstedt Carl Zeiss Center for Microscopy / Jörg Steinbach

Mehr

Über das Auflösungsvermögen von Mikroskop und Fernrohr

Über das Auflösungsvermögen von Mikroskop und Fernrohr Über das Auflösungsvermögen von Mikroskop und Fernrohr Autor(en): Greinacher, H. Objekttyp: Article Zeitschrift: Helvetica Physica Acta Band (Jahr): 20 (1947) Heft I PDF erstellt am: 28.06.2016 Persistenter

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker

PN 2 Einführung in die Experimentalphysik für Chemiker PN 2 Einführung in die Experimentalphysik für Chemiker. Vorlesung 27.6.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

Inhaltsverzeichnis. http://d-nb.info/850796954

Inhaltsverzeichnis. http://d-nb.info/850796954 Einleitung Sehwinkel, Bezugssehweite und Auflösungsvermögen des menschlichen Auges 1 Hilfsmittel zur Vergrößerung des Sehwinkels 2 Vergrößerung durch Sammellinsen 7 l Das Mikroskop 10 Mikroskopstativ 10

Mehr

Geometrische Optik Die Linsen

Geometrische Optik Die Linsen 1/1 29.09.00,19:40Erstellt von Oliver Stamm Geometrische Optik Die Linsen 1. Einleitung 1.1. Die Ausgangslage zum Experiment 2. Theorie 2.1. Begriffe und Variablen 3. Experiment 3.1.

Mehr

Geometrische Optik Versuch P1-31,40,41

Geometrische Optik Versuch P1-31,40,41 Auswertung Geometrische Optik Versuch P1-31,40,41 Iris Conradi, Melanie Hauck Gruppe Mo-02 20. November 2010 Inhaltsverzeichnis Inhaltsverzeichnis 1 Brennweiten Bestimmung 3 1.1 Brennweiten Bestimmung

Mehr

Physikalisches Grundpraktikum

Physikalisches Grundpraktikum Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum Praktikum für Mediziner O2 Beugung des Lichtes Name: Versuchsgruppe: Datum: Mitarbeiter der Versuchsgruppe:

Mehr

Versuch P1-31,40,41 Geometrische Optik. Auswertung. Von Ingo Medebach und Jan Oertlin. 9. Dezember 2009

Versuch P1-31,40,41 Geometrische Optik. Auswertung. Von Ingo Medebach und Jan Oertlin. 9. Dezember 2009 Versuch P1-31,40,41 Geometrische Optik Auswertung Von Ingo Medebach und Jan Oertlin 9. Dezember 2009 Inhaltsverzeichnis 1. Brennweitenbestimmung...2 1.1. Kontrolle der Brennweite...2 1.2. Genaue Bestimmung

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #22 01/12/2010 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Sammellinse Hauptstrahlen durch einen Sammellinse: Achsenparallele Strahlen verlaufen nach der

Mehr

Lichtmikroskopie. 30. April 2015

Lichtmikroskopie. 30. April 2015 Lichtmikroskopie 30. April 2015 1 Gliederung Einführung in die klassische Lichtmikroskopie mechanischer und optischer Aufbau Anwendungsbereiche der Polarisationsmikroskopie Einführung in die Polarisationsmikroskopie

Mehr

zur geometrischen Optik des Auges und optische Instrumente: Lupe - Mikroskop - Fernrohr

zur geometrischen Optik des Auges und optische Instrumente: Lupe - Mikroskop - Fernrohr zur geometrischen Optik des Auges und optische Instrumente: Lupe - Mikroskop - Fernrohr 426 Das Auge n = 1.3 adaptive Linse: Brennweite der Linse durch Muskeln veränderbar hoher dynamischer Nachweisbereich

Mehr

Physikalisches Praktikum 3. Semester

Physikalisches Praktikum 3. Semester Torsten Leddig 11.Januar 2004 Mathias Arbeiter Betreuer: Dr.Hoppe Physikalisches Praktikum 3. Semester - Abbésche Theorie - 1 Ziel: Verständnis der Bildentstehung beim Mikroskop und dem Zusammenhang zwischen

Mehr

Aufgaben zur Einführung in die Physik 1 (Ergebnisse der Übungsaufgaben)

Aufgaben zur Einführung in die Physik 1 (Ergebnisse der Übungsaufgaben) Aufgaben zur Einführung in die Physik 1 (Ergebnisse der Übungsaufgaben) WS 2009/10 1 Die Lochkamera 2. (a) Durch maßstabsgetreue Zeichnung oder durch Rechnung mit Strahlensatz ergibt sich: Die Größe der

Mehr

Lloydscher Spiegelversuch

Lloydscher Spiegelversuch 1 Lloydscher Spiegelversuch 1.1 Fertige eine ausführliche gegliederte Versuchsbeschreibung an. 1.2. Erkläre das Zustandekommen von Interferenzen a) beim Doppelspalt, b) beim Fresnelschen Doppelspiegel,

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007 Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #45 am 18.07.2007 Vladimir Dyakonov Erzeugung von Interferenzen: 1) Durch Wellenfrontaufspaltung

Mehr

Othmar Marti Experimentelle Physik Universität Ulm

Othmar Marti Experimentelle Physik Universität Ulm Grundkurs IIIa für Physiker Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Tipler, Gerthsen, Hecht Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3a-2002

Mehr

Sehwinkel, Winkelvergrösserung, Lupe

Sehwinkel, Winkelvergrösserung, Lupe Aufgaben 2 Optische Instrumente Sehwinkel, Winkelvergrösserung, Lupe Lernziele - sich aus dem Studium eines schriftlichen Dokumentes neue Kenntnisse und Fähigkeiten erarbeiten können. - einen bekannten

Mehr

Fachartikel. Telezentrische Objektive für Kameras größer 1 Zoll

Fachartikel. Telezentrische Objektive für Kameras größer 1 Zoll Vision & Control GmbH Mittelbergstraße 16 98527 Suhl. Germany Telefon: +49 3681 / 79 74-0 Telefax: +49 36 81 / 79 74-33 www.vision-control.com Fachartikel Telezentrische Objektive für Kameras größer 1

Mehr

Mikroskopie I. (Thema 33.) SZILVIA BARKÓ 2016

Mikroskopie I. (Thema 33.) SZILVIA BARKÓ 2016 Mikroskopie I. (Thema 33.) SZILVIA BARKÓ 2016 Titel 33. I. Klassifizierung der mikroskopischen Methoden. II. Lichtmikroskop. Bildentstehung des Mikroskops. Haupterfordernisse der Bildentstehung. III. Auflösungsvermögen

Mehr

Bündelbegrenzung - Teil 2: Pupillenanpassung

Bündelbegrenzung - Teil 2: Pupillenanpassung Prof. Dr. Jürgen Nolting, Dipl.-Ing.(FH) Christoph Lempart Bündelbegrenzung - Teil 2: Pupillenanpassung Im ersten Artikel dieser Reihe sind die Grundbegriffe der Bündelbegrenzung vorgestellt worden. Wir

Mehr

Versuch Draht: Nehmen Sie von den vorhandenen Objekten die Beugungsbilder auf, und erklären Sie diese qualitativ.

Versuch Draht: Nehmen Sie von den vorhandenen Objekten die Beugungsbilder auf, und erklären Sie diese qualitativ. 1 Versuch 411 Beugung an Hindernissen 1. Aufgaben Untersuchen Sie mit Hilfe einer CCD - Zeile die Intensitätsverteilung des gebeugten Lichtes an Spalt, Doppelspalt, Kante und dünnem Draht. a) im Fernfeld

Mehr

PROTOKOLL ZUM VERSUCH ABBÉSCHE THEORIE. Inhaltsverzeichnis

PROTOKOLL ZUM VERSUCH ABBÉSCHE THEORIE. Inhaltsverzeichnis PROTOKOLL ZUM VERSUCH ABBÉSCHE THEORIE CHRIS BÜNGER Betreuer: Dr. Enenkel Inhaltsverzeichnis 1. Versuchsbeschreibung 1 1.1. Ziel 1 1.2. Aufgaben 2 1.3. Amplituden- und Phasenobjekte 2 1.3.1. Amplitudenobjekte

Mehr

Versuch 005 / Versuch 403

Versuch 005 / Versuch 403 38 Versuch 005 / Versuch 403 Dünne Linsen und Spiegel In diesem Versuch werden die Brennweiten von verschiedenen Sammel- und Zerstreuungslinsen sowie von einem Hohlspiegel bestimmt. Dies geschieht mit

Mehr

Der schwingende Dipol (Hertzscher Dipol): Experimentalphysik I/II für Studierende der Biologie und Zahnmedizin Caren Hagner V6 17.01.

Der schwingende Dipol (Hertzscher Dipol): Experimentalphysik I/II für Studierende der Biologie und Zahnmedizin Caren Hagner V6 17.01. Der schwingende Dipol (Hertzscher Dipol): 1 Dipolachse Ablösung der elektromagnetischen Wellen vom Dipol 2 Dipolachse KEINE Abstrahlung in Richtung der Dipolachse Maximale Abstrahlung senkrecht zur Dipolachse

Mehr

Bestimmung der Vergrößerung und der Brennweiten eines Mikroskops

Bestimmung der Vergrößerung und der Brennweiten eines Mikroskops Institut f. Experimentalphysik Technische Universität raz Petersgasse 16, A-8010 raz Laborübungen: Elektrizität und Optik 21. Mai 2010 Bestimmung der Vergrößerung und der Brennweiten eines Mikroskops Stichworte

Mehr

Gitter. Schriftliche VORbereitung:

Gitter. Schriftliche VORbereitung: D06a In diesem Versuch untersuchen Sie die physikalischen Eigenschaften eines optischen s. Zu diesen za hlen insbesondere die konstante und das Auflo sungsvermo gen. Schriftliche VORbereitung: Wie entsteht

Mehr

Praktikum GI Gitterspektren

Praktikum GI Gitterspektren Praktikum GI Gitterspektren Florian Jessen, Hanno Rein betreut durch Christoph von Cube 9. Januar 2004 Vorwort Oft lassen sich optische Effekte mit der geometrischen Optik beschreiben. Dringt man allerdings

Mehr

Lösung: a) b = 3, 08 m c) nein

Lösung: a) b = 3, 08 m c) nein Phy GK13 Physik, BGL Aufgabe 1, Gitter 1 Senkrecht auf ein optisches Strichgitter mit 100 äquidistanten Spalten je 1 cm Gitterbreite fällt grünes monochromatisches Licht der Wellenlänge λ = 544 nm. Unter

Mehr

Versuch P2-18: Laser und Wellenoptik Teil A

Versuch P2-18: Laser und Wellenoptik Teil A Versuch P2-18: Laser und Wellenoptik Teil A Sommersemester 2005 Gruppe Mi-25: Bastian Feigl Oliver Burghard Inhalt Vorbereitung 1 Physikalische Grundlagen... 2 1.1 Funktionsweise eines Lasers... 2 2 Versuchsbeschreibungen...

Mehr

Theoretische Grundlagen - Physikalisches Praktikum. Versuch 11: Mikroskopie

Theoretische Grundlagen - Physikalisches Praktikum. Versuch 11: Mikroskopie Theoretische Grundlagen - Physikalisches Praktikum Versuch 11: Mikroskopie Strahlengang das Lichtmikroskop besteht aus zwei Linsensystemen, iv und Okular, die der Vergrößerung aufgelöster strukturen dienen;

Mehr

Praktikum Physik. Protokoll zum Versuch: Beugung. Durchgeführt am Gruppe X. Name 1 und Name 2

Praktikum Physik. Protokoll zum Versuch: Beugung. Durchgeführt am Gruppe X. Name 1 und Name 2 Praktikum Physik Protokoll zum Versuch: Beugung Durchgeführt am 01.12.2011 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuer: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

Versuchsprotokoll. Mathematisch-Naturwissenschaftliche Fakultät I Institut für Physik. Versuch O8: Fraunhofersche Beugung Arbeitsplatz Nr.

Versuchsprotokoll. Mathematisch-Naturwissenschaftliche Fakultät I Institut für Physik. Versuch O8: Fraunhofersche Beugung Arbeitsplatz Nr. Mathematisch-Naturwissenschaftliche Fakultät I Institut für Physik Physikalisches Grundpraktikum I Versuchsprotokoll Versuch O8: Fraunhofersche Beugung Arbeitsplatz Nr. 1 0. Inhaltsverzeichnis 1. Einleitung.

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 200/20 8. Übungsblatt - 3.Dezember 200 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe ( ) (7 Punkte) Gegeben sei

Mehr

Übungen zur Optik (E3-E3p-EPIII) Blatt 8

Übungen zur Optik (E3-E3p-EPIII) Blatt 8 Übungen zur Optik (E3-E3p-EPIII) Blatt 8 Wintersemester 2016/2017 Vorlesung: Thomas Udem ausgegeben am 06.12.2016 Übung: Nils Haag (Nils.Haag@lmu.de) besprochen ab 12.12.2016 Die Aufgaben ohne Stern sind

Mehr

a 1 a = 1 f HAUPTEBENEN BEI OBJEKTIVEN (Versuch D) f = f 1 f 2 f 1 H 2 H 1 H =e f H = e f f 2 Grundlagen:

a 1 a = 1 f HAUPTEBENEN BEI OBJEKTIVEN (Versuch D) f = f 1 f 2 f 1 H 2 H 1 H =e f H = e f f 2 Grundlagen: HAUPTEBENEN BEI OBJEKTIVEN (Versuch D) Grundlagen: Stellt man aus einzelnen Linsen ein mehrstufiges System zusammen, so kann man seine Gesamtwirkung wieder durch seine Brennweite und die Lage der Hauptpunkte

Mehr

Übungsklausur. Optik und Wellenmechanik (Physik311) WS 2015/2016

Übungsklausur. Optik und Wellenmechanik (Physik311) WS 2015/2016 Übungsklausur Optik und Wellenmechanik (Physik311) WS 2015/2016 Diese Übungsklausur gibt Ihnen einen Vorgeschmack auf die Klausur am 12.02.2015. Folgende Hilfsmittel werden erlaubt sein: nicht programmierbarer

Mehr

Praktikum I BL Brennweite von Linsen

Praktikum I BL Brennweite von Linsen Praktikum I BL Brennweite von Linsen Hanno Rein, Florian Jessen Betreuer: Gunnar Ritt 5. Januar 2004 Motivation Linsen spielen in unserem alltäglichen Leben eine große Rolle. Ohne sie wäre es uns nicht

Mehr

Abbildungsgleichung der Konvexlinse. B/G = b/g

Abbildungsgleichung der Konvexlinse. B/G = b/g Abbildungsgleichung der Konvexlinse Die Entfernung des Gegenstandes vom Linsenmittelpunkt auf der vorderen Seite der Linse heißt 'Gegenstandsweite' g, seine Größe 'Gegenstandsgröße' G; die Entfernung des

Mehr

Versuche P1-31,40,41. Vorbereitung. Thomas Keck Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 8.11.

Versuche P1-31,40,41. Vorbereitung. Thomas Keck Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 8.11. Versuche P1-31,40,41 Vorbereitung Thomas Keck Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 8.11.2010 1 1 Vorwort Für den Versuch der geometrischen Optik gibt es eine Fülle

Mehr

Kapitel 1 Optik: Bildkonstruktion. Spiegel P` B P G. Ebener Spiegel: Konstruktion des Bildes von G.

Kapitel 1 Optik: Bildkonstruktion. Spiegel P` B P G. Ebener Spiegel: Konstruktion des Bildes von G. Optik: Bildkonstruktion Spiegel P G P` B X-Achse Ebener Spiegel: g = b g b G = B Konstruktion des Bildes von G. 1. Zeichne Strahl senkrecht von der Pfeilspitze zum Spiegel (Strahl wird in sich selbst reflektiert)

Mehr

Das perfekte Objektiv!?

Das perfekte Objektiv!? 1 Das perfekte Objektiv!? Bad Kreuznach, Nov. 2015 2 Ein perfektes Objektiv Was ist das? Eine mögliche Definition: Ein Objektiv ist dann perfekt, wenn es die Realität exakt auf den Sensor abbildet....

Mehr