Conjoint Measurement:

Größe: px
Ab Seite anzeigen:

Download "Conjoint Measurement:"

Transkript

1 Conjoint Measurement: Eine Erfolgsgeschichte Das Ganze ist mehr als die Summe seiner Teile Leonhard Kehl Paul Green & Vithala Rao (1971) De-Kompositionelle Messung von Präferenzstrukturen aus Gesamt-Urteilen: Regressions-Analyse Experimentelles Design Conjoint-Analyse 1

2 Card Sorting Ranking- / Rating - Scale Kompositionelle vs Dekompositionelle Präferenzmessung Untersuchung von Busching und Steffens (1978): Das weibliche Schönheitsideal aus der Sicht der Männer 2

3 Miss Conjoint vs Miss Single Miss Conjoint: Kopf ist wichtiger Conclusio: Das Ganze ist mehr als die Summe seiner Teile Miss Single: Busen ist wichtiger Rich Johnson / Sawtooth Software (1983) ACA Adaptive Conjoint Analysis Computer-Interviewing ( < 30 Attribute) Selektion des relevant set Einzelmerkmals-Bewertung Bewertung der Merkmals-Wichtigkeit Conjoint Paarvergleich ( Rating-Skala ) Kauf-Wahrscheinlichkeit / Kalibrierung 3

4 Dan McFadden (1974) Discrete Choice Modeling Nutzen (U) = gewichtete (b) Summe aller Eigenschaften (x) U = b x + b x +... b x k k + ε Entscheidung für Produkt (A) Share A = exp( U A exp( U A) ) + exp( U ) +...exp( U B N ) Logit-Funktion JA NEIN Nobel-Preis für Dan McFadden (2000) 4

5 Kenneth Train im Gespräch mit Nobel-Preis-Träger Dan McFadden Jordan Louviere and George Woodworth (1983): Choice-Based-Conjoint Discrete Choice + Experimental Design: Inferenzmöglichkeit zu neuen Merkmalen und Szenarien 5

6 Focus: Marketing A B Heterogenität? C D Chikago Academics Arnold Zellner Peter Lenk Robert McCulloch 6

7 Thomas Bayes ( ) Bayes Theorem P( A i B) = P( B Ai ) P( Ai ) P ( B A i ) P ( A i ) P(A B) : a-posteriori-wahrscheinlichkeit P(B A) : Wahrscheinlichkeit für ein Ereignis B unter der Bedingung dass A eingetreten ist P(A) : a-priori-wahrscheinlichkeit für ein Ereignis A P(B)= ΣP(B A)*P(A) : Gesetz der totalen Wahrscheinlichkeit Bayesian Statistic Frequentist: P(Ereignis Ursache) Erlaubt Umkehrung von Schlußfolgerungen Bayesian: P(Ursache Ereignis) Posterior Probabilities are proportional to Likelihoods times Prior 7

8 Markov Chain Monte Carlo Gibbs Sampler: Distribution Generator joint distribution: X,Y? Hierarchical Model for Conjoint Analysis Obere Hierarchie Individuelle Parameter Teil einer multivariaten Normalverteilung Beta=N(a,C) P=exp(U)/sum[exp(U_i)] U=sum(Beta_i) Untere Hierarchie Logit-Model 8

9 Markov Chain Monte Carlo - Konvergenz Average Respondent Part-Worths Iterations/20 Choice-Based-Conjoint / Hierarchical Bayes Pros: Individuelle id Parameterschätzung Bessere, genauere Prognosefähigkeit Komplexere Modelle Cons: o Höherer Aufwand für Modell-Erstellung o Längere Computer-Laufzeiten o mehr Kunst in der Wissenschaft notwendig 9

10 Volumetric - Conjoint Menu-Choice 10

11 Menu-Choice-Simulation Menu-Choice-Price-Response 1,90 3,90 5,90 7,90 3,9% 2,0% 0,7% 0,2% 11

12 Shelf-Display - Conjoint Shelf-Display - Conjoint 12

13 Build-Your-Own-Product - Analysis Build-Your-Own-Product - Analysis 13

14 BYOP: Item-Funneling/Selection 2nd Step BYOP: Item-Funneling/Selection 3rd Step... 14

15 Case: Customer Satisfaction Zielsetzung Hypothese: Die klassische Rating-Skala kann wertvolle Informationen liefern; wegen zugrundeliegender Inferioritäten sind solche Daten jedoch kritisch. Der alternative Weg im Conjoint-Approach ist stärker. 15

16 Case: Customer Satisfaction Case: Customer Satisfaction Mobilfunkanbieter ganz allgemein A1 Mobilkom T-Mobile One Telering 1 - sehr zufrieden 20.8% 34.3% 30.6% 28.6% % 51.4% 53.1% 47.1% 29.2% 14.3% 14.3% 15.7% 3.1%.0%.0% 7.1% 5 - völlig unzufrieden 2.1%.0% 2.0% 1.4% 16

17 Case: Customer Satisfaction Customer Satisfaction - Rating Scale 5 Völlig unzufrieden Average Rating sehr zufrieden A1 T-mobile One telering Probleme völlig unzufrieden 5 4 high end user Q2 3 2 middle-of-the-road-user sehr zufrieden fi low end user sehr zufrieden Q1 völlig unzufrieden 17

18 Bayesian Statistics and Marketing Rossi Allenby - McCulloch Case Study: Overcoming Scale Usage Heterogenity Computing: Open Source Software R, package bayesm Best- / Worst Conjoint MaxDiff-Scaling Task 1... n: Best Worst Item 1 Item 2 Item 3 Design-Wheel: min. 15i 1,5 18

19 Case: Customer Satisfaction MaxDiff-Scaling Case: Customer Satisfaction MCMC Burn-in Used for estimation 19

20 Case: Customer Satisfaction Upper Level Lower Level Case: Customer Satisfaction MaxDiff-Scaling A1 T-mobile One telering 0 20

21 Pros & Cons MaxDiff liefert ähnlichen Überblick wie Rating-Skala, hat aber wesentliche bessere Diskriminierungsfähigkeit MaxDiff-Daten sind metrisch und können für weitere Analysen einwandfrei verwendet werden Respondenten müssen für jedes Merkmal eine klare Für-/Gegen-Entscheidung treffen Respondenten werden stärker herausgefordert Anzahl der Merkmale aus befragungs-psychologischen Gründen nicht ohne Grenzen Conjoint - Future Data Fusion Agent Based Modeling Reason-why-Models... and much more knowledge 21

22 Bayes Rules Choice in Marketing! 22

Institut für angewandte Datenanalyse GmbH

Institut für angewandte Datenanalyse GmbH Institut für angewandte Datenanalyse GmbH 2 Conjoint-Verfahren im Vergleich Das erwartet Sie nachfolgend: 1. Motivation 2. Wichtigste Conjoint-Verfahren 3. Bisherige Vergleichs-Studien und Erkenntnisse

Mehr

Frailty Models in Survival Analysis

Frailty Models in Survival Analysis Aus dem Institut für Medizinische Epidemiologie, Biometrie und Informatik (Direktor: Prof. Dr. Johannes Haerting) Frailty Models in Survival Analysis Habilitation zur Erlangung des akademischen Grades

Mehr

Risikobasiertes statistisches Testen

Risikobasiertes statistisches Testen Fabian Zimmermann Robert Eschbach Johannes Kloos Thomas Bauer Ziele von Risikobasiertem Testen Testen von Safety-kritischen Produkten Garantieren, dass das Produktrisiko geringer ist als das tolerierbare

Mehr

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining.

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining. Motivation Themenblock: Klassifikation Praktikum: Data Warehousing und Data Mining Ziel Item hat mehrere Attribute Anhand von n Attributen wird (n+)-tes vorhergesagt. Zusätzliches Attribut erst später

Mehr

Modulhandbuch Diplom-Hauptstudium im Prüfungsfach Statistik

Modulhandbuch Diplom-Hauptstudium im Prüfungsfach Statistik Georg-August-Universität Göttingen Modulhandbuch Diplom-Hauptstudium im Prüfungsfach Statistik Inhaltsverzeichnis Module B.WIWI-QMW.0001: Lineare Modelle... 3 B.WIWI-VWL.0007: Einführung in die Ökonometrie...

Mehr

AUSFÜHRUNGEN ZUR CONJOINT ANALYSE

AUSFÜHRUNGEN ZUR CONJOINT ANALYSE AUSFÜHRUNGEN ZUR CONJOINT ANALYSE European Economic & Marketing Consultants - EE&MC GmbH Brüssel * Düsseldorf * Wien Opernring 10, A 1010 Wien Tel. + 43 (1) 7123310 www.ee-mc.com E-Mail: DHildebrand@ee-mc.com

Mehr

Social Business Erfolgsmessung

Social Business Erfolgsmessung Social Business Erfolgsmessung Praxisbericht aus dem Social Business Projekt bei der Robert Bosch GmbH 8.10.2013, Cordula Proefrock (Robert Bosch GmbH), Dr. Christoph Tempich (inovex GmbH) 1 The Bosch

Mehr

Motivation. Themenblock: Data Preprocessing. Einsatzgebiete für Data Mining I. Modell von Gianotti und Pedreschi

Motivation. Themenblock: Data Preprocessing. Einsatzgebiete für Data Mining I. Modell von Gianotti und Pedreschi Motivation Themenblock: Data Preprocessing We are drowning in information, but starving for knowledge! (John Naisbett) Was genau ist Datenanalyse? Praktikum: Data Warehousing und Data Mining Was ist Data

Mehr

Partial Credit Model und Tutz Model

Partial Credit Model und Tutz Model November 22, 2011 Item Response Theory - Partial Credit Model Einleitung IRT-Einteilung Datenstruktur PCM - Herleitung Parameterschätzung Goodness of Fit Beispiel Sequential Models for Ordered Responses

Mehr

Cross-Kanal-Werbewirkung die Welt ist keine Badewanne

Cross-Kanal-Werbewirkung die Welt ist keine Badewanne Cross-Kanal-Werbewirkung die Welt ist keine Badewanne Burkhardt Funk Hamburg, 20.02.2013 Eine kurze Geschichte der Werbewirkungsmodelle BAYESIAN FORECASTING ATTRIBUTION MODELS USER JOURNEY IMPACT- RESPONSE

Mehr

Fachgruppe Statistik, Risikoanalyse & Computing. STAT672 Data Mining. Sommersemester 2007. Prof. Dr. R. D. Reiß

Fachgruppe Statistik, Risikoanalyse & Computing. STAT672 Data Mining. Sommersemester 2007. Prof. Dr. R. D. Reiß Fachgruppe Statistik, Risikoanalyse & Computing STAT672 Data Mining Sommersemester 2007 Prof. Dr. R. D. Reiß Überblick Data Mining Begrifflichkeit Unter Data Mining versteht man die Computergestützte Suche

Mehr

Assessment of disgn-flows in water management, Classical methods, nonstationary and multidimensional extensions of Extreme Value Modeling (EVM)

Assessment of disgn-flows in water management, Classical methods, nonstationary and multidimensional extensions of Extreme Value Modeling (EVM) Assessment of disgn-flows in water management, Classical methods, nonstationary and multidimensional extensions of Extreme Value Modeling (EVM) Dr. Winfried Willems, IAWG Outline Classical Approach, short

Mehr

AS Path-Prepending in the Internet And Its Impact on Routing Decisions

AS Path-Prepending in the Internet And Its Impact on Routing Decisions (SEP) Its Impact on Routing Decisions Zhi Qi ytqz@mytum.de Advisor: Wolfgang Mühlbauer Lehrstuhl für Netzwerkarchitekturen Background Motivation BGP -> core routing protocol BGP relies on policy routing

Mehr

Accounting course program for master students. Institute of Accounting and Auditing http://www.wiwi.hu-berlin.de/rewe

Accounting course program for master students. Institute of Accounting and Auditing http://www.wiwi.hu-berlin.de/rewe Accounting course program for master students Institute of Accounting and Auditing http://www.wiwi.hu-berlin.de/rewe 2 Accounting requires institutional knowledge... 3...but it pays: Lehman Bros. Inc.,

Mehr

Naive Bayes. 5. Dezember 2014. Naive Bayes 5. Dezember 2014 1 / 18

Naive Bayes. 5. Dezember 2014. Naive Bayes 5. Dezember 2014 1 / 18 Naive Bayes 5. Dezember 2014 Naive Bayes 5. Dezember 2014 1 / 18 Inhaltsverzeichnis 1 Thomas Bayes 2 Anwendungsgebiete 3 Der Satz von Bayes 4 Ausführliche Form 5 Beispiel 6 Naive Bayes Einführung 7 Naive

Mehr

Adaptive Choice-Based-Conjoint: Neue Möglichkeiten in der Marktforschung

Adaptive Choice-Based-Conjoint: Neue Möglichkeiten in der Marktforschung Adaptive Choice-Based-Conjoint: Neue Möglichkeiten in der Marktforschung MAIX Market Research & Consulting GmbH Kackertstr. 20 52072 Aachen 0241 8879 0 www.maix.de Inhalt Einleitung Grundlagen zur Conjoint

Mehr

1. Interpretation der geschätzten Nutzenfunktion im Rahmen einer Conjoint-Analyse

1. Interpretation der geschätzten Nutzenfunktion im Rahmen einer Conjoint-Analyse Berechnung von Nutzenfunktionen und Marktsimulationen mit Hilfe der Conjoint-Analyse (Teil II) Prof. Dr. Bernd Skiera, Dipl.-Kffr. Sonja Gensler, Frankfurt am Main Die Conjoint-Analyse ist heute das am

Mehr

Log-lineare Analyse I

Log-lineare Analyse I 1 Log-lineare Analyse I Einleitung Die log-lineare Analysemethode wurde von L.A. Goodman in den 60er und 70er Jahren entwickelt. Sie dient zur Analyse von Zusammenhängen in mehrdimensionalen Kontingenztafeln

Mehr

Künstliche Intelligenz

Künstliche Intelligenz Künstliche Intelligenz Data Mining Approaches for Instrusion Detection Espen Jervidalo WS05/06 KI - WS05/06 - Espen Jervidalo 1 Overview Motivation Ziel IDS (Intrusion Detection System) HIDS NIDS Data

Mehr

Human Capital Management

Human Capital Management Human Capital Management Peter Simeonoff Nikolaus Schmidt Markt- und Technologiefaktoren, die Qualifikation der Mitarbeiter sowie regulatorische Auflagen erfordern die Veränderung von Unternehmen. Herausforderungen

Mehr

NIALM for Smart Buildings LoReMA Load Recognition Monitoring and Acting

NIALM for Smart Buildings LoReMA Load Recognition Monitoring and Acting NIALM for Smart Buildings LoReMA Load Recognition Monitoring and Acting 1st International Workshop on Non-Intrusive Load Monitoring Carnegie Mellon University, Pittsburgh, PA May 7th, 2012 Stephan Tomek

Mehr

Mit Daten Mehrwert schaffen. Graz - 15/05/2014 Sepp Puwein

Mit Daten Mehrwert schaffen. Graz - 15/05/2014 Sepp Puwein Mit Daten Mehrwert schaffen Graz - 15/05/2014 Agenda Daten, Daten, Daten Ablauf eines Credit Checks Scoring Produkt Neuheit: echeck 2 Daten, Daten, Daten Identifikation & Information Bonität Publikationen

Mehr

Markus BöhmB Account Technology Architect Microsoft Schweiz GmbH

Markus BöhmB Account Technology Architect Microsoft Schweiz GmbH Markus BöhmB Account Technology Architect Microsoft Schweiz GmbH What is a GEVER??? Office Strategy OXBA How we used SharePoint Geschäft Verwaltung Case Management Manage Dossiers Create and Manage Activities

Mehr

Data. Guido Oswald Solution Architect @SAS Switzerland. make connections share ideas be inspired

Data. Guido Oswald Solution Architect @SAS Switzerland. make connections share ideas be inspired make connections share ideas be inspired Data Guido Oswald Solution Architect @SAS Switzerland BIG Data.. Wer? BIG Data.. Wer? Wikipedia sagt: Als Big Data werden besonders große Datenmengen bezeichnet,

Mehr

Statistische Methoden der Datenanalyse

Statistische Methoden der Datenanalyse Aktuelle Probleme der experimentellen Teilchenphysik (Modul P23.1.2b) Statistische Methoden der Datenanalyse Ulrich Husemann Humboldt-Universität zu Berlin Wintersemester 2010/2011 Vorstellung Vorlesung:

Mehr

EXPLORING SERVICE DESIGN DIVE STRETCH JUMP AND WIN!! Freitag, 13. Dezember 13

EXPLORING SERVICE DESIGN DIVE STRETCH JUMP AND WIN!! Freitag, 13. Dezember 13 EXPLORING SERVICE DESIGN DIVE STRETCH JUMP AND WIN!! SERVICE DESIGN DEFINITION Use Design Thinking and Design Methods for creating services that are USEFUL, USEABLE, DESIRABLE & VALUABLE AND DIFFERENT.

Mehr

FDI Location choices: Evidence from French first-time movers

FDI Location choices: Evidence from French first-time movers FDI Location choices: Evidence from French first-time movers Vivien Procher, Ruhr Graduate School in Economics Außenwirtschaft in Zeiten der Globalisierung Möglichkeiten und Grenzen der statistischen Messung

Mehr

Visionen zur Bannerwerbung mit eigenen Kundendaten

Visionen zur Bannerwerbung mit eigenen Kundendaten Visionen zur Bannerwerbung mit eigenen Kundendaten Christian Färber Fundraising Kongress Berlin, April 2014 Agenda Collaborative Targeting Case Study Automotive Diskussion & Fragen 2 Collaborative Targeting

Mehr

Business Activity Monitoring Overall, Real Time Monitoring Daniel Jobst, TietoEnator Michael Herr, Deutsche Post SOPSOLUTIONS

Business Activity Monitoring Overall, Real Time Monitoring Daniel Jobst, TietoEnator Michael Herr, Deutsche Post SOPSOLUTIONS Business Activity Monitoring Overall, Real Time Monitoring Daniel Jobst, TietoEnator Michael Herr, Deutsche Post SOPSOLUTIONS CITT Expertengespräch TietoEnator 2006 Page 1 Data Freshness and Overall, Real

Mehr

Process-Oriented Measurement of Customer Satisfaction - POMS

Process-Oriented Measurement of Customer Satisfaction - POMS Process-Oriented Measurement of Customer Satisfaction - POMS Kundenzufriedenheit (KZF) wird weithin als eine wichtige Voraussetzung für andauernden Unternehmenserfolg genannt. Wissenschaftliche Studien,

Mehr

Power-Efficient Server Utilization in Compute Clouds

Power-Efficient Server Utilization in Compute Clouds Power-Efficient Server Utilization in Compute Clouds 1/14 Overview 1. Motivation 2. SPECpower benchmark 3. Load distribution strategies 4. Cloud configuration 5. Results 6. Conclusion 2/14 1. Motivation

Mehr

Next Generation SEO Author Markups und Schema Integrationen Marcus Tober Köln 16.10.2013

Next Generation SEO Author Markups und Schema Integrationen Marcus Tober Köln 16.10.2013 Next Generation SEO Author Markups und Schema Integrationen Marcus Tober Köln 16.10.2013 10/21/2013 Searchmetrics Inc. 2013 Page 1 Gründer von Searchmetrics Ich liebe SEO und Search seit 2001 Informatik-Studium

Mehr

Beschwerdemanagement / Complaint Management

Beschwerdemanagement / Complaint Management Beschwerdemanagement / Complaint Management Structure: 1. Basics 2. Requirements for the implementation 3. Strategic possibilities 4. Direct Complaint Management processes 5. Indirect Complaint Management

Mehr

Emotionen in der Mensch-Technik-Interaktion: Implikation für zukünftige Anwendungen

Emotionen in der Mensch-Technik-Interaktion: Implikation für zukünftige Anwendungen Emotionen in der Mensch-Technik-Interaktion: Implikation für zukünftige Anwendungen Sascha Mahlke Technische Universität Berlin Zentrum Mensch-Maschine-Systeme Perspektiven auf Emotionen in der MTI Nutzungserleben

Mehr

Mash-Up Personal Learning Environments. Dr. Hendrik Drachsler

Mash-Up Personal Learning Environments. Dr. Hendrik Drachsler Decision Support for Learners in Mash-Up Personal Learning Environments Dr. Hendrik Drachsler Personal Nowadays Environments Blog Reader More Information Providers Social Bookmarking Various Communities

Mehr

Bayerisches Landesamt für Statistik und Datenverarbeitung Rechenzentrum Süd. z/os Requirements 95. z/os Guide in Lahnstein 13.

Bayerisches Landesamt für Statistik und Datenverarbeitung Rechenzentrum Süd. z/os Requirements 95. z/os Guide in Lahnstein 13. z/os Requirements 95. z/os Guide in Lahnstein 13. März 2009 0 1) LOGROTATE in z/os USS 2) KERBEROS (KRB5) in DFS/SMB 3) GSE Requirements System 1 Requirement Details Description Benefit Time Limit Impact

Mehr

1. In 8 Abs. 1 wird die bisherige Modulbezeichnung Geobezugssysteme durch die Modulbezeichnung Parameterschätzung und Geobezugssysteme ersetzt.

1. In 8 Abs. 1 wird die bisherige Modulbezeichnung Geobezugssysteme durch die Modulbezeichnung Parameterschätzung und Geobezugssysteme ersetzt. Dritte Satzung zur Änderung der Studien und Prüfungsordnung für den Bachelorstudiengang Geotelematik und Navigation (Geotelematics and Navigation) an der Hochschule für angewandte Wissenschaften Fachhochschule

Mehr

3D geological information for professionals and the public

3D geological information for professionals and the public 3D geological information for professionals and the public Two examples for providing target group based data sets by the State Geological Survey of Baden-Württemberg (Germany) Isabel Rupf & the LGRB 3D-Modelling

Mehr

Config & Change Management of Models

Config & Change Management of Models Config & Change Management of Models HOOD GmbH Keltenring 7 82041 Oberhaching Germany Tel: 0049 89 4512 53 0 www.hood-group.com -1- onf 2007 -Config & Change Management of models Speaker HOOD Group Keltenring

Mehr

PKZ gestern - heute. Papa kann zahlen

PKZ gestern - heute. Papa kann zahlen PKZ Gruppe PKZ gestern - heute Papa kann zahlen PKZ Gruppe gestern 1881: Paul Kehl gründet in Winterthur die erste Kleiderfabrik 1984: Eintritt der 4. Generation in die Firma mit Ph. Olivier Burger 1995:

Mehr

Scrum @FH Biel. Scrum Einführung mit «Electronical Newsletter» FH Biel, 12. Januar 2012. Folie 1 12. Januar 2012. Frank Buchli

Scrum @FH Biel. Scrum Einführung mit «Electronical Newsletter» FH Biel, 12. Januar 2012. Folie 1 12. Januar 2012. Frank Buchli Scrum @FH Biel Scrum Einführung mit «Electronical Newsletter» FH Biel, 12. Januar 2012 Folie 1 12. Januar 2012 Frank Buchli Zu meiner Person Frank Buchli MS in Computer Science, Uni Bern 2003 3 Jahre IT

Mehr

THE NEW ERA. nugg.ad ist ein Unternehmen von Deutsche Post DHL

THE NEW ERA. nugg.ad ist ein Unternehmen von Deutsche Post DHL nugg.ad EUROPE S AUDIENCE EXPERTS. THE NEW ERA THE NEW ERA BIG DATA DEFINITION WHAT ABOUT MARKETING WHAT ABOUT MARKETING 91% of senior corporate marketers believe that successful brands use customer data

Mehr

Industrie 4.0 Predictive Maintenance. Kay Jeschke SAP Deutschland AG & Co. KG., Februar, 2014

Industrie 4.0 Predictive Maintenance. Kay Jeschke SAP Deutschland AG & Co. KG., Februar, 2014 Industrie 4.0 Predictive Maintenance Kay Jeschke SAP Deutschland AG & Co. KG., Februar, 2014 Anwendungsfälle Industrie 4.0 Digitales Objektgedächtnis Adaptive Logistik Responsive Manufacturing Intelligenter

Mehr

Exercise (Part XI) Anastasia Mochalova, Lehrstuhl für ABWL und Wirtschaftsinformatik, Kath. Universität Eichstätt-Ingolstadt 1

Exercise (Part XI) Anastasia Mochalova, Lehrstuhl für ABWL und Wirtschaftsinformatik, Kath. Universität Eichstätt-Ingolstadt 1 Exercise (Part XI) Notes: The exercise is based on Microsoft Dynamics CRM Online. For all screenshots: Copyright Microsoft Corporation. The sign ## is you personal number to be used in all exercises. All

Mehr

Online Werbung als Teil der klassischen Werbung in Österreich 2004 und 1-3/2005

Online Werbung als Teil der klassischen Werbung in Österreich 2004 und 1-3/2005 Online Werbung als Teil der klassischen Werbung in Österreich 2004 und 1-3/2005 Pressekonferenz Dr. Robert Nowak (GF FOCUS) Wien, 25.4.2005 Wer ist Focus? Gegründet 1994 Unter den top 5 österreichischen

Mehr

E-Business für Start-up Unternehmen

E-Business für Start-up Unternehmen E-Business für Start-up Unternehmen Reza Asghari University of Applied Sciences Braunschweig/Wolfenbüttel, Salzdahlumerstr. 46/48, 38302 Wolfenbuettel, Germany, Tel. +49-5331-9395250, Fax +49-5331- 9395002,

Mehr

Aufbau eines IT-Servicekataloges am Fallbeispiel einer Schweizer Bank

Aufbau eines IT-Servicekataloges am Fallbeispiel einer Schweizer Bank SwissICT 2011 am Fallbeispiel einer Schweizer Bank Fritz Kleiner, fritz.kleiner@futureways.ch future ways Agenda Begriffsklärung Funktionen und Aspekte eines IT-Servicekataloges Fallbeispiel eines IT-Servicekataloges

Mehr

Master of Science Business Administration

Master of Science Business Administration Master of Science Business Administration Marketing Abbildung der Studiengangstrukturen PO 2015 Bitte beachten Sie, dass es sich hierbei um vorläufige Übersichten der Studienstruktur handelt, die das WiSo-Studienberatungszentrum

Mehr

Simulation of Longitudinal Beam Dynamics

Simulation of Longitudinal Beam Dynamics Fachgebiet Theoretische Elektrotechnik und Numerische Feldberechnung PD Dr. Markus Clemens DESY Beam Dynamics Meeting Simulation of Longitudinal Beam Dynamics, Markus Clemens Chair for Theory in Electrical

Mehr

Kategoriale abhängige Variablen: Logit- und Probit -Modelle. Statistik II

Kategoriale abhängige Variablen: Logit- und Probit -Modelle. Statistik II Kategoriale abhängige Variablen: Logit- und Probit -Modelle Statistik II Wiederholung Literatur Annahmen und Annahmeverletzungen Funktionen Exponenten, Wurzeln usw. Das Problem Das binäre Logit-Modell

Mehr

Mental Model. Basis für eine nachhaltige Informationsarchitektur. NetFlow - Karen Lindemann

Mental Model. Basis für eine nachhaltige Informationsarchitektur. NetFlow - Karen Lindemann Mental Model Basis für eine nachhaltige Informationsarchitektur NetFlow - Karen Lindemann Wie meistens vorgegangen wird 6.10.2009 Seite 2 von 48 Top-down Jesse James Garrett 6.10.2009 Seite 3 von 48 Bottom-up

Mehr

Textmining Klassifikation von Texten Teil 1: Naive Bayes

Textmining Klassifikation von Texten Teil 1: Naive Bayes Textmining Klassifikation von Texten Teil 1: Naive Bayes Dept. Informatik 8 (Künstliche Intelligenz) Friedrich-Alexander-Universität Erlangen-Nürnberg (Informatik 8) Klassifikation von Texten 1: Naive

Mehr

Social Media als Bestandteil der Customer Journey

Social Media als Bestandteil der Customer Journey Social Media als Bestandteil der Customer Journey Gregor Wolf Geschäftsführer Experian Marketing Services Frankfurt, 19.6.2015 Experian and the marks used herein are service marks or registered trademarks

Mehr

Tivoli Monitoring for Databases (ITM) Resource Model Tivoli Enterprise Console (TEC) Zusammenfassung. IBM Tivoli. Marcel Brückner

Tivoli Monitoring for Databases (ITM) Resource Model Tivoli Enterprise Console (TEC) Zusammenfassung. IBM Tivoli. Marcel Brückner 1 Tivoli Monitoring for Databases (ITM) Grundidee Umsetzung 2 3 Aufbau Kombination mit ITM Rule Sets 4 Grundidee Umsetzung 1 Tivoli Monitoring for Databases (ITM) Grundidee Umsetzung 2 3 Aufbau Kombination

Mehr

Einführung in die Bayessche Bildanalyse

Einführung in die Bayessche Bildanalyse Seminar: Bayessche Ansätze in der Bildanalyse Fakultät für Mathematik und Wirtschaftswissenschaften Universität Ulm 8.Mai 2006 1 Motivation Beispielbilder 2 Computergrafiken Bildarten 3 Bayes sches Paradigma

Mehr

P(A B) = P(A) + P(B) P(A B) P(A B) = P(A) + P(B) P(A B) Geometrisch lassen sich diese Sätze einfach nachvollziehen (siehe Grafik rechts!

P(A B) = P(A) + P(B) P(A B) P(A B) = P(A) + P(B) P(A B) Geometrisch lassen sich diese Sätze einfach nachvollziehen (siehe Grafik rechts! Frequentistische und Bayes'sche Statistik Karsten Kirchgessner In den Naturwissenschaften herrscht ein wahrer Glaubenskrieg, ob die frequentistische oder Bayes sche Statistik als Grundlage zur Auswertung

Mehr

3D City Model Berlin Spatial Data Infrastructure Berlin: The 3D City Model ERDF Project Strategic Goal 3D City Model Berlin Strategic Goal Use of 3D City Model for: City and Urban Planning, Political Issues

Mehr

Softwareprozesse systematisch verbessern ISO15504(SPICE) und Automotive SPICE. Heinrich Dreier Elmshorn 17.04.2008

Softwareprozesse systematisch verbessern ISO15504(SPICE) und Automotive SPICE. Heinrich Dreier Elmshorn 17.04.2008 Softwareprozesse systematisch verbessern ISO15504(SPICE) und Automotive SPICE Heinrich Dreier Elmshorn 17.04.2008 Einleitung Softwareprozesse verbessern Einleitung Softwareprozesse verbessern SPI Software

Mehr

Das Bayes-Theorem. Christian Neukirchen Gleichwertige Leistungsfeststellung, Juni 2005

Das Bayes-Theorem. Christian Neukirchen Gleichwertige Leistungsfeststellung, Juni 2005 Das Bayes-Theorem Christian Neukirchen Gleichwertige Leistungsfeststellung, Juni 2005 Ein lahmer Witz Heute im Angebot: Ein praktisches Beispiel zur Einleitung Kurze Wiederholung der Überblick über Reverend

Mehr

>EasyMain Die Nutzung von Methoden, Prozessen und Standards im Rahmen eines Application Lifecycle Managements

>EasyMain Die Nutzung von Methoden, Prozessen und Standards im Rahmen eines Application Lifecycle Managements >EasyMain Die Nutzung von Methoden, Prozessen und Standards im Rahmen eines Application Lifecycle Managements 6. Januar 2014 >Agenda Motivation EasyMain Methoden, Standards und Prozesse bei EasyMain Folie

Mehr

ITIL V3. Service Mehrwert für den Kunden. Ing. Martin Pscheidl, MBA, MSc cert. ITIL Expert. SolveDirect Service Management

ITIL V3. Service Mehrwert für den Kunden. Ing. Martin Pscheidl, MBA, MSc cert. ITIL Expert. SolveDirect Service Management ITIL V3 Ing. Martin Pscheidl, MBA, MSc cert. ITIL Expert SolveDirect Service Management martin.pscheidl@solvedirect.com Service Mehrwert für den Kunden mit Unterstützung von 1 Wie Service für den Kunden

Mehr

Sprint Minus One Agiles RE zur Konzeption Mobiler Business Apps

Sprint Minus One Agiles RE zur Konzeption Mobiler Business Apps Sprint Minus One Agiles RE zur Konzeption Mobiler Business Apps Steffen Hess steffen.hess@iese.fraunhofer.de Mobile Business Apps Business Prozesse Services Backend 2 3 Potential von mobilen Business Apps

Mehr

Marketing Testbed im Inkubator für High Tech Start Up s

Marketing Testbed im Inkubator für High Tech Start Up s Marketing Testbed im Inkubator für High Tech Start Up s Markus Pietzka / Rainer Hasenauer 03.11.2011 TU Wien Inkubator und Marketing Testbed Marketing Testbeds sollen den Markteintritt von High tech Start

Mehr

Bachelor of Science. Business Administration

Bachelor of Science. Business Administration Bachelor of Science Business Administration Media and Technology Abbildung der Studiengangstrukturen PO 2015 Bitte beachten Sie, dass es sich hierbei um vorläufige Übersichten der Studienstruktur handelt,

Mehr

Load Strategy Datenmodell DQ-Check-Methoden DWH-Probleme? Datenqualität aus der Sicht des One-DWH s Franz Hopfenwieser AGENDA 26 PT AGENDA

Load Strategy Datenmodell DQ-Check-Methoden DWH-Probleme? Datenqualität aus der Sicht des One-DWH s Franz Hopfenwieser AGENDA 26 PT AGENDA Datenqualität aus der Sicht des One- s Franz Hopfenwieser 18. Juni 2007 ONE, Franz HOPFENWIESER, 18.6.2007 SEITE 1 AGENDA 26 PT AGENDA DQ wird konstruiert One /MIS Aufgabenteilung OA/ Load Strategy Datenmodell

Mehr

Fluid-Particle Multiphase Flow Simulations for the Study of Sand Infiltration into Immobile Gravel-Beds

Fluid-Particle Multiphase Flow Simulations for the Study of Sand Infiltration into Immobile Gravel-Beds 3rd JUQUEEN Porting and Tuning Workshop Jülich, 2-4 February 2015 Fluid-Particle Multiphase Flow Simulations for the Study of Sand Infiltration into Immobile Gravel-Beds Tobias Schruff, Roy M. Frings,

Mehr

Trainingsaufgaben zur Klausurvorbereitung in Statistik I und II Thema: Satz von Bayes

Trainingsaufgaben zur Klausurvorbereitung in Statistik I und II Thema: Satz von Bayes Trainingsaufgaben zur Klausurvorbereitung in Statistik I und II Thema: Satz von Bayes Aufgabe 1: Wetterbericht Im Mittel sagt der Wetterbericht für den kommenden Tag zu 60 % schönes und zu 40% schlechtes

Mehr

Next Generation Customer Journey Analysis

Next Generation Customer Journey Analysis Next Generation Customer Journey Analysis Tom Rother Internet World Kongress 19.03.2013 Telefónica Germany Index 01 02 03 04 05 Customer Journey Analyse bei Telefónica Ziele Umsetzung & Herausforderungen

Mehr

Moderne Methoden der Datenanalyse WS 2010/11

Moderne Methoden der Datenanalyse WS 2010/11 Moderne Methoden der Datenanalyse WS 2010/11 1 Übungen Moderne Methoden der Datenanalyse WS 2010/11 Dr. Anze Zupanc Tutoren: Bastian Kronenbitter, Markus Röhrken Donnerstags, 15.30 FE/6 http://www-ekp.physik.uni-karlsruhe.de/~zupanc/ws1011/

Mehr

Personalisierung. Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung. Data Mining.

Personalisierung. Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung. Data Mining. Personalisierung Personalisierung Thomas Mandl Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung Klassifikation Die Nutzer werden in vorab bestimmte Klassen/Nutzerprofilen

Mehr

Einsatz einer Dokumentenverwaltungslösung zur Optimierung der unternehmensübergreifenden Kommunikation

Einsatz einer Dokumentenverwaltungslösung zur Optimierung der unternehmensübergreifenden Kommunikation Einsatz einer Dokumentenverwaltungslösung zur Optimierung der unternehmensübergreifenden Kommunikation Eine Betrachtung im Kontext der Ausgliederung von Chrysler Daniel Rheinbay Abstract Betriebliche Informationssysteme

Mehr

Digitale Transformation - Ihre Innovationsroadmap

Digitale Transformation - Ihre Innovationsroadmap Digitale Transformation - Ihre Innovationsroadmap Anja Schneider Head of Big Data / HANA Enterprise Cloud Platform Solutions Group, Middle & Eastern Europe, SAP User Experience Design Thinking New Devices

Mehr

Theorien für die Darstellung von Unsicherheit Ein Vergleich der Wahrscheinlichkeits-, Möglichkeits- und Dempster-Shafer Theorie

Theorien für die Darstellung von Unsicherheit Ein Vergleich der Wahrscheinlichkeits-, Möglichkeits- und Dempster-Shafer Theorie Theorien für die Darstellung von Unsicherheit Ein Vergleich der Wahrscheinlichkeits-, Möglichkeits- und Dempster-Shafer Theorie Johannes Leitner Inhalt I Modellierung von Unschärfe Unscharfe Mengen Unscharfe

Mehr

Scriptbasierte Testautomatisierung. für Web-Anwendungen

Scriptbasierte Testautomatisierung. für Web-Anwendungen Scriptbasierte Testautomatisierung für Web-Anwendungen Scriptbasierte Testautomatisierung + Web-Anwendung: Erstes Einsatzgebiet, Ergebnisse aber allgemein übertragbar + Test aus Benutzersicht - Nicht Unit-Test,

Mehr

Vorteile von Java und Konvergenz Service Creation mit JAIN Network Management mit JMX Fazit

Vorteile von Java und Konvergenz Service Creation mit JAIN Network Management mit JMX Fazit Hochschule für Technik und Architektur Chur Dr. Bruno Studer Studienleiter NDS Telecom, FH-Dozent bruno.studer@fh-htachur.ch 1 GSM: 079/610 51 75 Agenda Vorteile von Java und Konvergenz Service Creation

Mehr

Attribution in AdWords: Mythos oder Realität? @finch_ppc

Attribution in AdWords: Mythos oder Realität? @finch_ppc Attribution in AdWords: Mythos oder Realität? Agenda #1 Grundlagen #1 Grundlagen #2 The Data #2 Daten #3 Zusammenfassung Timo Wöhrle Country Manager, Germany timo@finch.com über FINCH: erfahrenes ecommerce

Mehr

Numerical analysis of the influence of turbulence on the exchange processes between porous-medium and free flow

Numerical analysis of the influence of turbulence on the exchange processes between porous-medium and free flow Numerical analysis of the influence of turbulence on the exchange processes between porous-medium and free flow T. Fetzer Institut für Wasser- und Umweltsystemmodellierung Universität Stuttgart January

Mehr

Support Technologies based on Bi-Modal Network Analysis. H. Ulrich Hoppe. Virtuelles Arbeiten und Lernen in projektartigen Netzwerken

Support Technologies based on Bi-Modal Network Analysis. H. Ulrich Hoppe. Virtuelles Arbeiten und Lernen in projektartigen Netzwerken Support Technologies based on Bi-Modal Network Analysis H. Agenda 1. Network analysis short introduction 2. Supporting the development of virtual organizations 3. Supporting the development of compentences

Mehr

Implementing a SaaS Solution

Implementing a SaaS Solution Sep 2013 Implementing a SaaS Solution and how we see the future of SaaS B. Burger Automic.. All rights reserved. Warum eine SaaS Lösung implementieren Erfahrungen, Probleme, Empfehlungen Die Zukunft: aus

Mehr

Hard- und Software Entwicklung von Videogames zur Entertainment-Plattform

Hard- und Software Entwicklung von Videogames zur Entertainment-Plattform Hard- und Software Entwicklung von Videogames zur Entertainment-Plattform Manfred Gerdes Senior Vice President Sony Computer Entertainment Europe Biografie Manfred Gerdes kam am 1. Januar 1996 als Verkaufsdirektor

Mehr

Assetwise. Asset Lifecycle Information Management. Ulrich Siegelin. 2010 Bentley Systems, Incorporated

Assetwise. Asset Lifecycle Information Management. Ulrich Siegelin. 2010 Bentley Systems, Incorporated Assetwise Asset Lifecycle Information Ulrich Siegelin Agenda Was bedeutet Asset Lifecycle Information? AssetWise Technischer Überblick Positionierung von Bentley s AssetWise Einsatz und Arbeitsweise von

Mehr

Extended Ordered Paired Comparison Models An Application to the Data from Bundesliga Season 2013/14

Extended Ordered Paired Comparison Models An Application to the Data from Bundesliga Season 2013/14 Etended Ordered Paired Comparison Models An Application to the Data from Bundesliga Season 2013/14 Gerhard Tutz & Gunther Schauberger Ludwig-Maimilians-Universität München Akademiestraße 1, 80799 München

Mehr

Real Time Decisions (RTD) macht Business Intelligence operativ.

Real Time Decisions (RTD) macht Business Intelligence operativ. Real Time Decisions (RTD) macht Business Intelligence operativ. Nikolaj Letkemann Juli 2010 Inhalt 1. Regeln oder Statistik, on- oder offline?... 3 2. Selflearning: Prozessperspektive... 4 3. RTD verwaltet

Mehr

Challenges and solutions for field device integration in design and maintenance tools

Challenges and solutions for field device integration in design and maintenance tools Integrated Engineering Workshop 1 Challenges and solutions for field device integration in design and maintenance tools Christian Kleindienst, Productmanager Processinstrumentation, Siemens Karlsruhe Wartungstools

Mehr

target presentation targetgroup Forschung, Consulting und Systementwicklung Conjoint Analysis: Ansatz und Erfahrungen

target presentation targetgroup Forschung, Consulting und Systementwicklung Conjoint Analysis: Ansatz und Erfahrungen target presentation Conjoint Analysis: Ansatz und Erfahrungen anläßlich der Tagung am 16.03.2000 in Zürich Gliederung 1. Einführung in die Methode 2. Unterschiedliche Ansätze 2.1 Die Full-Profile-Methode

Mehr

Kurs 9.3: Forschungsmethoden II

Kurs 9.3: Forschungsmethoden II MSc Banking & Finance Kurs 9.3: Forschungsmethoden II Zeitreihenanalyse Lernsequenz 01: Einführung EViews Oktober 2014 Prof. Dr. Jürg Schwarz Folie 2 Inhalt Anmerkung 4 Das Hilfesystem von EViews 5 Workshop

Mehr

Aktuelle Beteiligung an EU-Projekten

Aktuelle Beteiligung an EU-Projekten Aktuelle Beteiligung an EU-Projekten Dietmar Georg und Thomas Schreiner AUSTRON Generalversammlung 25. Juni 2009 Dietmar Georg (Thomas Schreiner) Aktuelle Beteiligung an EU-Projekten 25. Juni 2009 1 /

Mehr

Exkursion zu Capgemini Application Services Custom Solution Development. Ankündigung für Februar 2013 Niederlassung Stuttgart

Exkursion zu Capgemini Application Services Custom Solution Development. Ankündigung für Februar 2013 Niederlassung Stuttgart Exkursion zu Capgemini Application Services Custom Solution Development Ankündigung für Februar 2013 Niederlassung Stuttgart Ein Nachmittag bei Capgemini in Stuttgart Fachvorträge und Diskussionen rund

Mehr

Vortrag zum Paper Results of the Active Learning Challenge von Guyon, et. al. Sören Schmidt Fachgebiet Knowledge Engineering

Vortrag zum Paper Results of the Active Learning Challenge von Guyon, et. al. Sören Schmidt Fachgebiet Knowledge Engineering Vortrag zum Paper Results of the Active Learning Challenge von Guyon, et. al. Sören Schmidt Fachgebiet Knowledge Engineering 11.12.2012 Vortrag zum Paper Results of the Active Learning Challenge von Isabelle

Mehr

The impact of patient age on carotid atherosclerosis results from the Munich carotid biobank

The impact of patient age on carotid atherosclerosis results from the Munich carotid biobank Klinik und Poliklinik für Vaskuläre und Endovaskuläre Chirurgie Interdisziplinäres Gefäßzentrum Klinikum rechts der Isar (MRI) der TU München (TUM) Headline bearbeiten The impact of patient age on carotid

Mehr

ibpm - intelligent Business Process Management: WWW.AXONIVY.COM

ibpm - intelligent Business Process Management: WWW.AXONIVY.COM ibpm - intelligent Business Process Management: ein neues Zeitalter bricht an. Peter Wiedmann 14.11.2014 WWW.AXONIVY.COM AGENDA 2 Vorstellung und Einführung Produktvorstellung ibpm die neue Dimension Anwendungsszenario

Mehr

Mathematische Methoden der Wirtschaftswissenschaften

Mathematische Methoden der Wirtschaftswissenschaften Wolfgang Gaul Martin Schader Herausgeber Mathematische Methoden der Wirtschaftswissenschaften Festschrift für OTTO OPITZ Physica-Verlag Ein Unternehmen des Springer-Verlags Inhalt Teil 1: Data Mining Data

Mehr

Matthias Schorer 14 Mai 2013

Matthias Schorer 14 Mai 2013 Die Cloud ist hier was nun? Matthias Schorer 14 Mai 2013 EuroCloud Deutschland Conference 2013 Matthias Schorer Accelerate Advisory Services Leader, CEMEA 29.05.13 2 29.05.13 3 The 1960s Source: http://www.kaeferblog.com/vw-bus-t2-flower-power-hippie-in-esprit-werbung

Mehr

update software AG Monika Fiala, CFO

update software AG Monika Fiala, CFO update software AG Monika Fiala, CFO update software AG Business führender europäischer CRM- Software Hersteller Notierung Deutsche Börse Frankfurt/XETRA (ISIN: AT0000747555/Kürzel: up2) Gründung 1988

Mehr

An analysis of the success factors in implementing an ITIL-based IT Change and Release Management Application

An analysis of the success factors in implementing an ITIL-based IT Change and Release Management Application Jane Jurkscheit An analysis of the success factors in implementing an ITIL-based IT Change and Release Management Application Based on the IBM Change and Configuration Management Database (CCMDB) Anchor

Mehr

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002)

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002) 6. Bayes-Klassifikation (Schukat-Talamazzini 2002) (Böhm 2003) (Klawonn 2004) Der Satz von Bayes: Beweis: Klassifikation mittels des Satzes von Bayes (Klawonn 2004) Allgemeine Definition: Davon zu unterscheiden

Mehr

Outline. 5. A Chance for Entrepreneurs? Porter s focus strategy and the long tail concept. 6. Discussion. Prof. Dr. Anne König, Germany, 27. 08.

Outline. 5. A Chance for Entrepreneurs? Porter s focus strategy and the long tail concept. 6. Discussion. Prof. Dr. Anne König, Germany, 27. 08. Mass Customized Printed Products A Chance for Designers and Entrepreneurs? Burgdorf, 27. 08. Beuth Hochschule für Technik Berlin Prof. Dr. Anne König Outline 1. Definitions 2. E-Commerce: The Revolution

Mehr

Mai 2012. Gaming. @VZ-Netzwerke

Mai 2012. Gaming. @VZ-Netzwerke Network for Germany Mai 2012 Gaming @VZ-Netzwerke Gaming @VZ-Netzwerke 1. Media information VZ-Netzwerke 2. Games & apps @VZ-Netzwerke 1. Media information VZ-Netzwerke 4 VZ-Netzwerke Reach Germany s youth

Mehr

1G05 Zufriedene End-User durch professionelles IT Management mit HP OpenView

1G05 Zufriedene End-User durch professionelles IT Management mit HP OpenView 1G05 Zufriedene End-User durch professionelles IT Management mit HP OpenView Alexander Meisel Solution Architect IT Service Management HP OpenView 2004 Hewlett-Packard Development Company, L.P. The information

Mehr

ALM mit Visual Studio Online. Philip Gossweiler Noser Engineering AG

ALM mit Visual Studio Online. Philip Gossweiler Noser Engineering AG ALM mit Visual Studio Online Philip Gossweiler Noser Engineering AG Was ist Visual Studio Online? Visual Studio Online hiess bis November 2013 Team Foundation Service Kernstück von Visual Studio Online

Mehr