Vorlesung - Medizinische Biometrie

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Vorlesung - Medizinische Biometrie"

Transkript

1 Vorlesung - Medizinische Biometrie Stefan Wagenpfeil Institut für Medizinische Biometrie, Epidemiologie und Medizinische Informatik Universität des Saarlandes, Homburg / Saar

2 Vorlesung - Medizinische Biometrie Vorlesung 2: Wahrscheinlichkeitsrechnung Interpretation bei klinischen Studien Anwendung bei diagnostischen Tests

3 Wahrscheinlichkeit ist ein Maß für die relative Häufigkeit des Auftretens eines Ereignisses bei Auswahl mehrerer Möglichkeiten ein Maß für die Unsicherheit zukünftiger Ereignisse In der Medizin kommt der Begriff der Wahrscheinlichkeit in verschiedenen Situationen vor: Erkrankungswahrscheinlichkeit (Inzidenz, Prävalenz) Heilungswahrscheinlichkeit bzw. Risiko für das Auftreten eines Ereignisses, z. B. Sepsis nach OP Bei diagnostischen Tests: Wahrscheinlichkeit für einen positiven Test bei Vorliegen einer Krankheit Wahrscheinlichkeit für das Vorliegen einer Krankheit bei positivem Test. Wahrscheinlichkeitsrechnung 3

4 Definition der Wahrscheinlichkeit für das Auftreten von Ereignis A: P (A) : = Anzahl der tatsächlichen Fälle Anzahl der möglichen Fälle wobei 0 P(A) 1 P(A) = 0 => A heißt unmögliches Ereignis P(A) = 1 => A heißt sicheres Ereignis Komplementärsatz: P( A) = 1 - P(A) Wahrscheinlichkeitsrechnung 4

5 Wissenschaftler beschäftigen sich seit langem mit dem Begriff der Wahrscheinlichkeit. Ausgangspunkt war das Glücksspiel z. B.: a) Roulette, 18 rote Zahlen, 18 schwarze Zahlen, 0 Sie setzen auf Rot P (Gewinn) = < Wahrscheinlichkeitsrechnung 5

6 b) Lotto P (6 Richtige) = Mio = c) Würfeln P (6) = 1/6 P (2 6) = 1/36 Wahrscheinlichkeitsrechnung 6

7 2 Ereignisse A und B: z. B.: A = Alter 75 J. B = Krankheit K Vereinigung von A und B: A B entweder A oder B tritt auf P(A B) = P(A) + P(B) - P(A B) Durchschnitt von A und B: A B A und B treten gleichzeitig bzw. gemeinsam auf A B P( A B) =? Wahrscheinlichkeitsrechnung 7

8 Bedingte Wahrscheinlichkeiten a) für Alter 75 J.(=A) bei Personen mit der Krankheit K = P (A K) b) für die Krankheit K bei Personen mit einem Alter 75 J. = P (K A) A A A A K A B K A = Alter 75 J. K = Krankheit P (A K) = P (A K) P (K) = P (K A) P (A) Wahrscheinlichkeitsrechnung 8

9 Diagnose Wie wahrscheinlich ist es, dass der Patient an einer Krankheit K leidet? z. B. Therapieentscheidung; Entscheidung über weitere diagnostische Maßnahmen Wahrscheinlichkeitsrechnung 9

10 Konsequenzen bei Therapieentscheidungen Mortalität nach Herzinfarkt 235 Todesfälle von 2613 Pat. Mortalitätsrate nach 5 Jahren = 11% LVEF 30% 52 / 146 Pat. Mortalitätsrate nach 5 Jahren = 42 % Mortalitätsrate LVEF > 30% 183 / 2467 Pat. Mortalitätsrate nach 5 Jahren = 9 % Zeit nach Infarkt ( Jahre) Wahrscheinlichkeitsrechnung 10

11 Diagnostischer Test Validität und Reliabilität Die Validität ist eine qualitative Eigenschaft für den Grad der Genauigkeit, mit dem ein Test das erkennt, was er erkennen soll. Krankheit liegt vor Test positiv a = T + richtig positiv negativ c = T falsch negativ a+c Kranke ja (= K + ) nein (= K - ) b falsch positiv d richtig negativ b+d Gesunde a+b Testpositive c+d Testnegative a+b+c+d = n Wahrscheinlichkeitsrechnung 11

12 Sensitivität: P (T+/K+) = Spezifität: P (T /K ) = Richtig positive a = Kranke a + c Richtig negative d = Gesunde b + d Prädiktiver Wert: P (K+/T+) = (des positiven Testergebnisses) Prädiktiver Wert: P (K /T ) = (des negativen Testergebnisses) Richtig positive a = Test positive a + b Richtig negative d = Test negative c + d Wahrscheinlichkeitsrechnung 12

13 Übereinstimmung Vergleich von 2 Tests oder Wiederholung eines Tests Reliabilität Wahrscheinlichkeitsrechnung 13

14 Beispiel: Mortalität nach Herzinfarkt Mortalität LVEF positiv ( < 30%) = T + 52 richtig positiv negativ ( 30%) = T 183 falsch negativ ja (= K + ) nein (= K - ) 94 falsch positiv richtig negativ 146 Testpositive Testnegative Wahrscheinlichkeitsrechnung 14

15 Häufig werden Kranke und gesunde Kontrollen untersucht. Damit können die Sensitivität und die Spezifität berechnet werden. Die prädiktiven Werte hängen von der Prävalenz ab. Satz von Bayes In der ärztlichen Diagnostik interessiert, wie wahrscheinlich liegt eine Krankheit K+ vor, wenn ein bestimmter Test positiv ausfällt, d.h. P(K+/T+) =? Mit dem Multiplikationssatz für abhängige Ereignisse gilt: P(T+ K+) = P(K+) P(T+ K+) = P(T+) P(K+ T+) Satz von Bayes: P (K+ T+) = P(K ) P(T K ) + P(T ) Wahrscheinlichkeitsrechnung 15

16 Sensitivität und Spezifität sind testimmanent, die prädiktiven Werte hängen von der Prävalenz ab. Beispiel: Sensitivität = Spezifität = 90% a) Prävalenz = 10% b) Prävalenz = 20% T+ K+ 9 K- 9 Σ 18 T Σ T+ K+ 18 K- 8 Σ 26 T Σ P(K+ T+) = 9/18 = 50% P(K+ T+) = 18/26 = 69.2% Wahrscheinlichkeitsrechnung 16

17 P(K+)... Prävalenz (ggf. Inzidenz) von K P(T+/K+)... Sensitivität des diagnostischen Tests P(T+) =? P(T+) = P(T+ K+) + P(T+ K ) = = P(K+) P(T+ K+) + P(K ) P(T+ K ) = = P(K+) Sensitivität+ (1 - P(K+)) (1 - Spezifität) P (K+ T+) = + P(K ) Sensitivität + P(K ) Sensitivität + (1 - P(K+)) (1-Spezifität) (Berechnung mittels Prävalenz, Sensitivität und Spezifität) P(K+)... a-priori- bzw. Vortest-Wahrscheinlichkeit P(K+ T+)... a-posteriori- bzw. Nachtest-Wahrscheinlichkeit Wahrscheinlichkeitsrechnung 17

18 Beispiel: PSA- Test und Prostatakarzinom Inz. pro Prostata-Karzinom Alter Wahrscheinlichkeitsrechnung 18

19 Beispiel: PSA-Test und Prostatakarzinom Wahrscheinlichkeitsrechnung 19

20 Frage: Wann wird ein Test als positiv bzw. negativ eingestuft? PSA n cancer non cancer Sensitivität Spezifität ,00 0, ,82 0, ,54 0, ,37 0, ,25 0,92 > ,05 0,98 Test ist negativ Test ist positiv 0,00 1,00 Summe Wahrscheinlichkeitsrechnung 20

21 K + K - Σ T + (PSA 4) T - (PSA < 4) Σ Sensitivität (%) 24,7 Spezifität (%) 92,3 prädiktiver Wert von T+: P (K+ T +) = 299/631 = 47.4% Prävalenz: P (K+) = 1211/5519 = 21.9% Wahrscheinlichkeitsrechnung 21

22 1 0,9 0,8 0,7 PSA und Prostatakarzinom Darstellung der Sensitivität im Vergleich zur Spezifität durch die ROC-Kurve Sensitivität 0,6 0,5 0,4 0,3 0,2 0,1 0 x x Unterteilung bei PSA 3 = T+ Sensitivität = 37.3%; Spezifität = 84.0% Unterteilung bei PSA 4 = T+ Sensitivität = 24.7%; Spezifität = 92.3% 0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1 1-Spezifität ROC = Receiver Operating Characteristic Wahrscheinlichkeitsrechnung 22

23 Nachtest-Wahrscheinlichkeit dafür, dass eine männliche Person Prostatakarzinom hat, ist... wenn der PSA-Test positiv ist (PSA 4) (Sensitivität = 24.7%; Spezifität = 92.3%) mit Vortest-Wahrscheinlichkeit ( = Prävalenz): P(K+) = 1.5% = 0.015: P (K+ T +) = + P(K ) Sensitivität + + P(K ) Sensitivität +(1 P(K )) (1 Spezifität) ( ) ( ) = = 4.7% Fällt der Test positiv aus, so wird eine weitere Untersuchung durchgeführt. Wahrscheinlichkeitsrechnung 23

24 Nachtest-Wahrscheinlichkeit dafür, dass eine männliche Person Prostatakarzinom hat, ist... wenn der PSA-Test negativ ist (PSA < 4) P (K+/T -) = + P(K ) (1 Sensitivität) + + P(K ) (1 Sensitivität) +(1 P(K )) Spezifität ( ) ( ) +( ) = = 1.2% D.h. bei einem negativem PSA-Test (PSA < 4) beträgt die Wahrscheinlichkeit, dass der Patient ein Prostatakarzinom hat, noch 1.2%. Damit sinkt die Wahrscheinlichkeit von 1.5% auf 1.2% Wahrscheinlichkeitsrechnung 24

25 Wahrscheinlichkeitsrechnung 25

26 RR= 0.79 (95% CI: ); p = RR = 1.09 (95% CI : ); p >

27 27

28 Wahrscheinlichkeitsrechnung 28

29 X Wahrscheinlichkeitsrechnung 29

30 Beispiel für bedingte Wahrscheinlichkeiten Das klassische Ziegenproblem Situation: Spielshow mit 3 Türen, dahinter 2 Ziegen bzw. 1 Auto Wahrscheinlichkeitsrechnung 30

31 Ablauf: (1) Kandidat (K) wählt eine Tür. (2) Moderator (M) öffnet eine der beiden anderen Türen mit einer Ziege dahinter. (Hinter einer der beiden muss eine Ziege stehen.) (3) K darf jetzt nochmals wählen, d.h. bei seiner Wahl in (1) bleiben oder zu der in (2) nicht geöffneten Tür wechseln. (4) M öffnet die von K in (3) gewählte Tür, K gewinnt den Inhalt. Frage: Was ist die bessere Strategie für K: In Schritt (3) wechseln (W) oder nicht (NW)? Wahrscheinlichkeitsrechnung 31

32 Multiple Choice Aufgabe: Welche Aussage zu einem diagnostischen Test ist richtig? a) Die Sensitivität ist stets größer oder gleich der Spezifität. b) Die Spezifität ist stets größer oder gleich der Sensitivität. c) Die Spezifität und Sensitivität sind stets gleich groß. d) Die Nachtestwahrscheinlichkeit kann aus der Sensitivität, der Spezifität und der Prävalenz berechnet werden. e) Die Nachtestwahrscheinlichkeit kann nicht aus der Sensitivität, der Spezifität und der Prävalenz berechnet werden. Wahrscheinlichkeitsrechnung 32

Sobald bei einem Zufallsexperiment zusätzliche Bedingungen zutreffen ändern sich i.a. die Wahrscheinlichkeiten.

Sobald bei einem Zufallsexperiment zusätzliche Bedingungen zutreffen ändern sich i.a. die Wahrscheinlichkeiten. 26 6. Bedingte Wahrscheinlichkeit Sobald bei einem Zufallsexperiment zusätzliche Bedingungen zutreffen ändern sich i.a. die Wahrscheinlichkeiten. Alarmanlage Tritt bei einer Sicherungsanlage ein Alarm

Mehr

Medizinische Biometrie (L5)

Medizinische Biometrie (L5) Medizinische Biometrie (L5) Vorlesung V Der diagnostische Test Prof. Dr. Ulrich Mansmann Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie mansmann@ibe.med.uni-muenchen.de

Mehr

Satz von der totalen Wahrscheinlichkeit

Satz von der totalen Wahrscheinlichkeit htw saar 1 Satz von der totalen Wahrscheinlichkeit Sei (Ω, P) ein Wahrscheinlichkeitsraum, und B 1,, B n seien paarweise disjunkte Ereignisse mit B i = Ω. Für jedes Ereignis A gilt dann: P(A) = P(A B 1

Mehr

Evidenzbasierte Diagnostik

Evidenzbasierte Diagnostik Seminar Allgemeinmedizin 2011 Evidenzbasierte Diagnostik A. Sönnichsen Beurteilung eines diagnostischen Tests: Sensitivität Prozentsatz der Test-positiven von allen Erkrankten Spezifität Prozentsatz der

Mehr

2. Übung Diagnostik. Ein erfundenes Beispiel (H.P.Beck-Bornholt und H.-H.Dubben)

2. Übung Diagnostik. Ein erfundenes Beispiel (H.P.Beck-Bornholt und H.-H.Dubben) Querschnittsbereich 1: Epidemiologie, Medizinische Biometrie und Medizinische Informatik - Übungsmaterial - Erstellt von Mitarbeitern des IMISE und des ZKS Leipzig 2. Übung Diagnostik Universität Leipzig

Mehr

Lösungsskizzen Mathematik für Informatiker 5. Aufl. Kapitel 19 Peter Hartmann

Lösungsskizzen Mathematik für Informatiker 5. Aufl. Kapitel 19 Peter Hartmann Verständnisfragen 1. Welches sind die charakteristischen Eigenschaften eines Laplace-Raums? Der Raum ist endlich, die Wahrscheinlichkeit für alle Elementarereignisse ist gleich. 2. Unter welchen Bedingungen

Mehr

K4 Bedingte Wahrscheinlichkeiten. 4.1 Definition Die bedingte Wahrscheinlichkeit von A bei gegebenem B:

K4 Bedingte Wahrscheinlichkeiten. 4.1 Definition Die bedingte Wahrscheinlichkeit von A bei gegebenem B: K4 Bedingte Wahrscheinlichkeiten 4.1 Definition Die bedingte Wahrscheinlichkeit von A bei gegebenem B: P(A B) = P(A B)/P(B) (4.1.1) Meistens benutzen wir diese Form: P(A B) = P(A B)*P(B) weil P(A B) schwer

Mehr

Seminar Diagnostik L5

Seminar Diagnostik L5 Seminar Diagnostik L5 Regenwahrscheinlichkeit Bezugsgröße festlegen! Beipackzettel Bezugsgröße festlegen! Brustkrebs-Screening Entscheidungsmöglichkeiten bei diagnostischen Tests Wahrer Zustand des Patienten

Mehr

2.2 Ereignisse und deren Wahrscheinlichkeit

2.2 Ereignisse und deren Wahrscheinlichkeit 2.2 Ereignisse und deren Wahrscheinlichkeit Literatur: [Papula Bd., Kap. II.2 und II.], [Benning, Kap. ], [Bronstein et al., Kap. 1.2.1] Def 1 [Benning] Ein Zufallsexperiment ist ein beliebig oft wiederholbarer,

Mehr

Trainingsaufgaben zur Klausurvorbereitung in Statistik I und II Thema: Satz von Bayes

Trainingsaufgaben zur Klausurvorbereitung in Statistik I und II Thema: Satz von Bayes Trainingsaufgaben zur Klausurvorbereitung in Statistik I und II Thema: Satz von Bayes Aufgabe 1: Wetterbericht Im Mittel sagt der Wetterbericht für den kommenden Tag zu 60 % schönes und zu 40% schlechtes

Mehr

Zwei Ziegen und ein Auto

Zwei Ziegen und ein Auto Prof. Dr. Ludwig Paditz 29.10.2002 Zwei Ziegen und ein Auto In der amerikanischen Spielshow "Let`s make a deal" ist als Hauptpreis ein Auto ausgesetzt. Hierzu sind auf der Bühne drei verschlossene Türen

Mehr

Medizinische Statistik Epidemiologie und χ 2 Vierfeldertest

Medizinische Statistik Epidemiologie und χ 2 Vierfeldertest Universität Wien Institut für Mathematik Wintersemester 2009/2010 Medizinische Statistik Epidemiologie und χ 2 Vierfeldertest Seminar Angewandte Mathematik Ao. Univ. Prof. Dr. Peter Schmitt von Nadja Reiterer

Mehr

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente Mehrstufige Zufallsexperimente Inhalt 6.1 6.1 Mehrstufige Experimente 6.2 6.2 Bedingte Wahrscheinlichkeiten Seite 2 6.1 Mehrstufige Experimente Grundvorstellung: Viele Viele Experimente werden der der

Mehr

htw saar 1 KAPITEL 4 BEDINGTE WAHRSCHEINLICHKEIT UND STOCHASTISCHE UNABHÄNGIGKEIT Hans-Peter Hafner WS 2016/2017

htw saar 1 KAPITEL 4 BEDINGTE WAHRSCHEINLICHKEIT UND STOCHASTISCHE UNABHÄNGIGKEIT Hans-Peter Hafner WS 2016/2017 htw saar 1 KAPITEL 4 BEDINGTE WAHRSCHEINLICHKEIT UND STOCHASTISCHE UNABHÄNGIGKEIT htw saar 2 Gliederung 25.01. Bedingte Wahrscheinlichkeit: Motivation und Definition Multiplikationssatz Stochastische Unabhängigkeit:

Mehr

Das Zweikinderproblem

Das Zweikinderproblem Das Zweikinderproblem Definition Zweikinderproblem Eine Familie besitzt zwei Kinder. Wie groß ist die Wahrscheinlichkeit Pr[ Beide Kinder sind Mädchen. Eines der Kinder ist ein Mädchen ]? Lösung: Sei A

Mehr

Kuriositäten aus der Wahrscheinlichkeitsrechnung

Kuriositäten aus der Wahrscheinlichkeitsrechnung aus der Wahrscheinlichkeitsrechnung Franziska Flegel Girls Day am 28. April 2016 1 Simpson-Paradox: Leben Raucherinnen gesünder? gfghdfg 100 gfghdfg Raucher? Gestorben Überlebt Ges. ja 139 (23,9%) 443

Mehr

STATISTISCHE KRANKHEITSTESTS. Simon Schimpf und Nico Schmitt

STATISTISCHE KRANKHEITSTESTS. Simon Schimpf und Nico Schmitt 1 STATISTISCHE KRANKHEITSTESTS 18.11.2008 Simon Schimpf und Nico Schmitt Gliederung 2 Hintergrund des Themas (worum geht es Voraussetzungen Lernziele Die intuitive Herangehensweise ohne Satz von Bayes

Mehr

Musterlösungen zu den Aufgaben aus. Statistische Methoden in den Wirtschafts- und Sozialwissenschaften

Musterlösungen zu den Aufgaben aus. Statistische Methoden in den Wirtschafts- und Sozialwissenschaften Musterlösungen zu den Aufgaben aus Statistische Methoden in den Wirtschafts- und Sozialwissenschaften von Prof. Dr. Hans Peter Litz Oldenbourg-Verlag München,.Auflage 1998 Teil II. Wahrscheinlichkeitstheoretische

Mehr

Epidemiologie und HIV-Tests

Epidemiologie und HIV-Tests 26. November 2009 Cornelias HIV-Test Das ist Cornelia. Cornelia möchte Plasmaspenderin werden. Dafür braucht sie einen negativen Befund eines HIV-Tests. Deshalb geht sie ins Krankenhaus. Cornelias HIV-Test

Mehr

Themenblock. Diagnose und Prognose. Querschnittsbereich Epidemiologie, Med. Biometrie und Med. Informatik. Themen im Block Diagnose und Prognose

Themenblock. Diagnose und Prognose. Querschnittsbereich Epidemiologie, Med. Biometrie und Med. Informatik. Themen im Block Diagnose und Prognose Themenblock Diagnose und Prognose Querschnittsbereich Epidemiologie, Med. Biometrie und Med. Informatik Themen im Block Diagnose und Prognose Diagnose Prävalenz und prädiktive Werte Güte von diagnostischen

Mehr

2. Statistische Methoden in der Diagnostik. Elemente des Studiendesigns

2. Statistische Methoden in der Diagnostik. Elemente des Studiendesigns 2. Statistische Methoden in der Diagnostik Elemente des Studiendesigns Diagnosestudien in der Medizin Klassifikation in krank - nicht krank basierend auf diagnostischem Test Beispiel: Diagnose von Brustkrebs

Mehr

1 Axiomatische Definition von Wahrscheinlichkeit

1 Axiomatische Definition von Wahrscheinlichkeit Schülerbuchseite 174 176 Lösungen vorläufig und Unabhängigkeit 1 Axiomatische Definition von Wahrscheinlichkeit S. 174 1 Ein Schätzwert für die Wahrscheinlichkeit von Sau kann nur mithilfe der relativen

Mehr

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit 3 Bedingte Wahrscheinlichkeit, Unabhängigkeit Bisher : (Ω, A, P) zur Beschreibung eines Zufallsexperiments Jetzt : Zusatzinformation über den Ausgang des Experiments, etwa (das Ereignis) B ist eingetreten.

Mehr

Bewertung diagnostischer Tests

Bewertung diagnostischer Tests n g c gesund krank n k c Segreganz negativ positiv negativ positiv Relevanz Beertung diagnostischer Tests gesund krank c Annahme: Überlappende Populationen eine messbare Grösse (z.b Konzentration) vergrössert

Mehr

Einführung in die Wahrscheinlichkeitsrechnung

Einführung in die Wahrscheinlichkeitsrechnung Einführung in die Wahrscheinlichkeitsrechnung Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) Wahrscheinlichkeitsrechnung

Mehr

6 Mehrstufige zufällige Vorgänge Lösungshinweise

6 Mehrstufige zufällige Vorgänge Lösungshinweise 6 Mehrstufige zufällige Vorgänge Lösungshinweise Aufgabe 6.: Begründen Sie, warum die stochastische Unabhängigkeit zweier Ereignisse bzw. zufälliger Vorgänge nur ein Modell der Realität darstellen kann.

Mehr

Südtiroler Akademie für Allgemeinmedizin. Seminar

Südtiroler Akademie für Allgemeinmedizin. Seminar Südtiroler Akademie für Allgemeinmedizin Seminar 16.10.2015 Diagnostische Entscheidungsfindung in der Allgemeinmedizin Andreas Sönnichsen Institut für Allgemeinmedizin und Familienmedizin Universität Witten/Herdecke

Mehr

Diagnostische Verfahren

Diagnostische Verfahren 6. Diagnostische s Jede Registrierung oder Auswertung einer Information mit dem Ziel der Erkennung einer Erung oder eines speziellen Zustandes wird diagnostischer genannt. Beispiele Reaktion auf Ansprechen

Mehr

Bewertung diagnostischer Tests

Bewertung diagnostischer Tests n g c gesund krank n k c Segreganz negativ positiv negativ positiv Relevanz Beertung diagnostischer Tests gesund krank c Annahme: Überlappende Populationen eine messbare Grösse (z.b Konzentration) vergrössert

Mehr

Paradoxien bei bedingten Wahrscheinlichkeiten - Das Ziegenproblem

Paradoxien bei bedingten Wahrscheinlichkeiten - Das Ziegenproblem Paradoxien bei bedingten Wahrscheinlichkeiten - Das Ziegenproblem Ein Referat von Maren Hornischer & Anna Spitz Wuppertal, den 28. Mai 2014 Inhalt 1 Das Ziegenproblem oder auch das "3-Türen-Problem"...

Mehr

Mathematische Grundlagen der Computerlinguistik Wahrscheinlichkeit

Mathematische Grundlagen der Computerlinguistik Wahrscheinlichkeit Mathematische Grundlagen der Computerlinguistik Wahrscheinlichkeit Dozentin: Wiebke Petersen 8. Foliensatz Wiebke Petersen math. Grundlagen 1 Motivation Bsp.: In vielen Bereichen der CL kommt Wahrscheinlichkeitstheorie

Mehr

Einführung. Wahrscheinlichkeit. 1 Wahrscheinlichkeit: Definition und Interpretation. 2 Elementare Wahrscheinlichkeitsrechnung, bedingte

Einführung. Wahrscheinlichkeit. 1 Wahrscheinlichkeit: Definition und Interpretation. 2 Elementare Wahrscheinlichkeitsrechnung, bedingte Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2 Elementare Wahrscheinlichkeitsrechnung, bedingte Wahrscheinlichkeit Axiome nach Kolmogorov Gegeben sei ein Zufallsexperiment mit Ergebnisraum

Mehr

Statistical Coaching. Thomas Forstner

Statistical Coaching. Thomas Forstner Statistical Coaching Thomas Forstner Diagnoseverfahren Allgemein Vergleich: wahrer Befund mit Test (Diagnose) wahrer Befund muss bekannt sein (Goldstandard) 3 Analogie zur Testtheorie 4 Beurteilung von

Mehr

BSc Bioinformatik Wintersemester 2013/2014 Nachklausur zur Statistik I Freie Universität Berlin

BSc Bioinformatik Wintersemester 2013/2014 Nachklausur zur Statistik I Freie Universität Berlin Sc ioinformatik Wintersemester 013/014 Nachklausur zur Statistik I Freie Universität erlin 4. pril 014 Matrikelnummer Nachname Vorname Unterschrift ufgabe 1 (4 Punkte): Zu einem Wahrscheinlichkeitsraum

Mehr

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen?

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen? 1 Kombinatorik Aus einer Grundgesamtheit mit n Elementen wird eine Stichprobe k Elementen entnommen. Dabei kann die Stichprobe geordnet oder ungeordnet sein. "Geordnet" bedeutet, dass die Reihenfolge der

Mehr

Diagnostikstudien. Dr. Dirk Hasenclever IMISE, Leipzig.

Diagnostikstudien. Dr. Dirk Hasenclever IMISE, Leipzig. Diagnostikstudien Dr. Dirk Hasenclever IMISE, Leipzig Hasenclever@IMISE.uni-Leipzig.de Diagnostische Tests Krankheit ja Krankheit nein Test positiv TrueP FP Test negativ FN TrueN Test- Positive Test- Negative

Mehr

Anhang 9: 3. Szenario

Anhang 9: 3. Szenario Anhang 9: 3. Szenario Monty Hall s Problem (Ziegenproblem) 268 3. Szenario Monty Hall s Problem oder das Ziegenproblem 269 Ziegenproblem nach Wikipedia, der freien Enzyklopädie Das Ziegenproblem (auch

Mehr

3.7 Wahrscheinlichkeitsrechnung II

3.7 Wahrscheinlichkeitsrechnung II 3.7 Wahrscheinlichkeitsrechnung II Inhaltsverzeichnis 1 bedingte Wahrscheinlichkeiten 2 2 unabhängige Ereignisse 5 3 mehrstufige Zufallsversuche 7 1 Wahrscheinlichkeitsrechnung II 28.02.2010 Theorie und

Mehr

Das Ziegenproblem. Nils Schwinning und Christian Schöler Juni 2010

Das Ziegenproblem. Nils Schwinning und Christian Schöler  Juni 2010 Das Ziegenproblem Nils Schwinning und Christian Schöler http://www.esaga.uni-due.de/ Juni 2010 Die Formulierung Obwohl das sogenannte Ziegenproblem in der Mathematik allgegenwärtig erscheint, wurde es

Mehr

Südtiroler Akademie für Allgemeinmedizin. Brustschmerzen: ein häufiges Symptom in der Allgemeinpraxis

Südtiroler Akademie für Allgemeinmedizin. Brustschmerzen: ein häufiges Symptom in der Allgemeinpraxis Südtiroler Akademie für Allgemeinmedizin Brustschmerzen: ein häufiges Symptom in der Allgemeinpraxis A. Sönnichsen Diagnostisches Ziel in der Allgemeinmedizin: Überdiagnostik vermeiden keinen übersehen

Mehr

3.2. Prüfungsaufgaben zur bedingten Wahrscheinlichkeit

3.2. Prüfungsaufgaben zur bedingten Wahrscheinlichkeit 3.2. Prüfungsaufgaben zur bedingten Wahrscheinlichkeit Aufgabe : Summenregel und bedingte Wahrscheinlichkeit Eine Statistik hat folgende Ergebnisse zutage gebracht: 52 % der Bevölkerung sind weiblich.

Mehr

Effektgrößen. Evidenz-basierte Medizin und Biostatistik, Prof. Andrea Berghold

Effektgrößen. Evidenz-basierte Medizin und Biostatistik, Prof. Andrea Berghold Effektgrößen 2x2Tafel Therapie Medikament 1 Medikament 2 Summe Misserfolg 450 = a 300 = c 750 = (a+c) Endpunkt Erfolg 550 = b 700 = d 1250 = (b+d) Vergleich von 2 Therapien; Endpunkt binär Summe 1000 =

Mehr

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück STOCHASTISCHE UNABHÄNGIGKEIT Annika Pohlmann Philipp Oel Wilhelm Dück 1 GLIEDERUNG 1) Bedingte Wahrscheinlichkeiten 2) Unabhängigkeit für mehr als zwei Ereignisse 3) Unabhängigkeit für Zufallsvariable

Mehr

Ziegenproblem, Monty-Hall-Problem, Wahrscheinlichkeitsrechnung. Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem

Ziegenproblem, Monty-Hall-Problem, Wahrscheinlichkeitsrechnung. Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Wahrscheinlichkeitsrechnung Theorie Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Ziegenproblem, Monty-Hall-Problem, Drei-Türen-Problem Ziegenproblem,

Mehr

Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff

Zufallsgrößen. Vorlesung Statistik für KW 29.04.2008 Helmut Küchenhoff Zufallsgrößen 2.5 Zufallsgrößen 2.5.1 Verteilungsfunktion einer Zufallsgröße 2.5.2 Wahrscheinlichkeits- und Dichtefunktion Wahrscheinlichkeitsfunktion einer diskreten Zufallsgröße Dichtefunktion einer

Mehr

a) (A B) tritt ein = A tritt ein oder B tritt ein. = Mindestens eines der Ereignisse A, B tritt ein.

a) (A B) tritt ein = A tritt ein oder B tritt ein. = Mindestens eines der Ereignisse A, B tritt ein. Lösungsvorschläge zu den Aufgaben von Blatt 6: 43) 7 Telefonzellen ( 7 Kugeln in der Urne); 3 davon sind von je einem Benutzer besetzt ( 3 Kugeln in die Stichprobe). Die Telefonzellen werden nicht mehrfach

Mehr

8. Wahrscheinlichkeitsrechnung

8. Wahrscheinlichkeitsrechnung Didaktik der Geometrie und Stochastik WS 09/10 Bürker 27. 1. 11 8. Wahrscheinlichkeitsrechnung 8.1 Begriffe 8.1.1 Zufallsexperiment Was ist ein Zufallsexperiment? a) Mehrere Ergebnisse möglich b) Ergebnis

Mehr

Vorlesung Statistik WING ASW Melanie Kaspar, Prof. Dr. B. Grabowski 1

Vorlesung Statistik WING ASW Melanie Kaspar, Prof. Dr. B. Grabowski 1 Melanie Kaspar, Prof. Dr. B. Grabowski 1 Aus diesen Eigenschaften lassen sich alle weiteren Eigenschaften ableiten: Beweis zu 1) Melanie Kaspar, Prof. Dr. B. Grabowski 2 Aufgabe Die Wahrscheinlichkeit

Mehr

Ma 13 - Stochastik Schroedel Neue Wege (CON)

Ma 13 - Stochastik Schroedel Neue Wege (CON) Bedingte Wahrscheinlichkeiten S. 70, Nr. 5 Richtiges Anwenden der Multiplikationsregel A: Abonnement liest Werbeanzeige B: Produkt wird gekauft S. 70, Nr. 6 Übersetzung von Daten in ein Baumdiagramm A

Mehr

Prinzipien der klinischen Epidemiologie

Prinzipien der klinischen Epidemiologie Prinzipien der klinischen Epidemiologie Der diagnostische Test Prof. Dr. Ulrich Mansmann Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie mansmann@ibe.med.uni-muenchen.de

Mehr

Medizinische Entscheidungstheorie

Medizinische Entscheidungstheorie WW Z, Stiftungsprofessur Health Economics Prof. Dr. Stefan Felder Medizinische Entscheidungstheorie Lösung der Übungen Aufgabe 1.1 Mithilfe des diagnostischen s für Prostatakrebs wird die Konzentration

Mehr

5. Übung Zusammenhänge zweier Merkmale

5. Übung Zusammenhänge zweier Merkmale Querschnittsbereich 1: Epidemiologie, Medizinische Biometrie und Medizinische Informatik - Übungsmaterial - Erstellt von Mitarbeitern des IMISE und des ZKS Leipzig. Übung Zusammenhänge zweier Merkmale

Mehr

Nutzen einer diagnostischen Tests in der Praxis: prädiktive Werte

Nutzen einer diagnostischen Tests in der Praxis: prädiktive Werte EbM-Splitter 11 Nutzen einer diagnostischen Tests in der Praxis: prädiktive Werte In den beiden letzten EbM-Splittern [6, 7] wurden die Maßzahlen Sensitivität (Wahrscheinlichkeit, eine kranke Person als

Mehr

Statistik I für Humanund Sozialwissenschaften

Statistik I für Humanund Sozialwissenschaften Statistik I für Humanund Sozialwissenschaften 3. Übung Lösungsvorschlag Gruppenübung G 8 a) Ein Professor möchte herausfinden, welche 5 seiner insgesamt 8 Mitarbeiter zusammen das kreativste Team darstellen.

Mehr

Cusanus-Gymnasium Wittlich Statistik Das Ziegenproblem DIE ZEIT Nr.48. W.Zimmer. Tür 1 Tür 2 Tür 3

Cusanus-Gymnasium Wittlich Statistik Das Ziegenproblem DIE ZEIT Nr.48. W.Zimmer. Tür 1 Tür 2 Tür 3 Das Ziegenproblem DIE ZEIT 18.11.2004 Nr.48 Tür 1 Tür 2 Tür 3 Cusanus-Gymnasium Wittlich Statistik Das Ziegenproblem DIE ZEIT 18.11.2004 Nr.48 Du bist Kandidat einer Fernsehshow. Als Sieger darfst du eine

Mehr

P (A B) P (B) = P ({3}) P ({1, 3, 5}) = 1 3.

P (A B) P (B) = P ({3}) P ({1, 3, 5}) = 1 3. 2 Wahrscheinlichkeitstheorie Beispiel. Wie wahrscheinlich ist es, eine Zwei oder eine Drei gewürfelt zu haben, wenn wir schon wissen, dass wir eine ungerade Zahl gewürfelt haben? Dann ist Ereignis A das

Mehr

Bedingte Wahrscheinlichkeit

Bedingte Wahrscheinlichkeit Bedingte Wahrscheinlichkeit In einem Laden ist eine Alarmanlage eingebaut. Bei Einbruch gibt sie mit 99%-iger Wahrscheinlichkeit Alarm. Wenn in einer bestimmten Nacht kein Einbruch stattfindet, gibt sie

Mehr

Diagnostisches Testen. Coniecturalem artem esse medicinam

Diagnostisches Testen. Coniecturalem artem esse medicinam Diagnostisches Testen Coniecturalem artem esse medicinam Würfelspiel A: ein fairer Würfel zeigt eine gerade Augenzahl B: ein fairer Würfel zeigt mindestens 4 Punkte A: B: A B: P(A=1/2 P(B=1/2 P(A B=2/6

Mehr

Medizinische Psychologie. Bewertung wissenschaftlicher Ergebnisse, Evidenzbasierte Medizin, Anwendung statistischer Information

Medizinische Psychologie. Bewertung wissenschaftlicher Ergebnisse, Evidenzbasierte Medizin, Anwendung statistischer Information Medizinische Psychologie Bewertung wissenschaftlicher Ergebnisse, Evidenzbasierte Medizin, Anwendung statistischer Information Bewertung wissenschaftlicher Ergebnisse Replizierbarkeit (Wiederholbarkeit)

Mehr

Biomathematik für Mediziner

Biomathematik für Mediziner Institut für Medizinische Biometrie, Informatik und Epidemiologie der Universität Bonn (Direktor: Prof. Dr. Max P. Baur) Biomathematik für Mediziner Klausur WS 2002/2003 Aufgabe 1: Man gehe davon aus,

Mehr

WIE SICHER IST DIE DIAGNOSE?

WIE SICHER IST DIE DIAGNOSE? WIE SICHER IST DIE DIAGNOSE? ÜBER DEN UMGANG MIT UNSICHERHEIT IN DER MEDIZIN Mag. Andrea Fried Bundesgeschäftsführerin ARGE Selbsthilfe Österreich 2.10.2014 1 2.10.2014 2 Der Fluch der Statistik Medizinische

Mehr

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1 Übungen zur Stochastik - Lösungen 1. Ein Glücksrad ist in 3 kongruente Segmente aufgeteilt. Jedes Segment wird mit genau einer Zahl beschriftet, zwei Segmente mit der Zahl 0 und ein Segment mit der Zahl

Mehr

Vorsorge im Alter Was ist möglich? Oder Vorsorge für wen und wie?

Vorsorge im Alter Was ist möglich? Oder Vorsorge für wen und wie? Vorsorge im Alter Was ist möglich? Oder Vorsorge für wen und wie? Dr. med. Simone Maier Landesvorsitzende des Berufsverbands der deutschen Urologen, Württemberg Urologische Gemeinschaftspraxis Dres.. Maier/Löffler

Mehr

Bedingte Wahrscheinlichkeiten & Unabhängigkeit

Bedingte Wahrscheinlichkeiten & Unabhängigkeit Statistik 1 für SoziologInnen Bedingte Wahrscheinlichkeiten & Univ.Prof. Dr. Marcus Hudec Bedingte Wahrscheinlichkeit Das Konzept bedingter Wahrscheinlichkeit erlaubt zu untersuchen, inwieweit sich die

Mehr

Donau-Symposium der Österreichischen Gesellschaft für Allgemeinmedizin

Donau-Symposium der Österreichischen Gesellschaft für Allgemeinmedizin Donau-Symposium der Österreichischen Gesellschaft für Allgemeinmedizin EBM, DMP und Leitlinien: Verlust der Therapiefreiheit oder Chance für die Allgemeinmedizin? A. C. Sönnichsen Institut für Allgemein-,

Mehr

Einführung in die Computerlinguistik Statistische Grundlagen

Einführung in die Computerlinguistik Statistische Grundlagen Statistik 1 Sommer 2015 Einführung in die Computerlinguistik Statistische Grundlagen Laura Heinrich-Heine-Universität Düsseldorf Sommersemester 2015 Statistik 2 Sommer 2015 Überblick 1. Diskrete Wahrscheinlichkeitsräume

Mehr

Elementare statistische Methoden

Elementare statistische Methoden Elementare statistische Methoden Vorlesung Computerlinguistische Techniken Alexander Koller 28. November 2014 CL-Techniken: Ziele Ziel 1: Wie kann man die Struktur sprachlicher Ausdrücke berechnen? Ziel

Mehr

Pr[A] = Pr[C (A B)] = Pr[C] + Pr[A B]. Wegen A B = C B folgt daraus. Pr[A B] = Pr[C B] = Pr[C] + Pr[B] = Pr[A] Pr[A B] + Pr[B]

Pr[A] = Pr[C (A B)] = Pr[C] + Pr[A B]. Wegen A B = C B folgt daraus. Pr[A B] = Pr[C B] = Pr[C] + Pr[B] = Pr[A] Pr[A B] + Pr[B] Beweis: Wir betrachten zunächst den Fall n = 2. Dazu setzen wir C := A \ B = A \ (A B). Gemäß dieser Definition gilt, dass C und A B sowie C und B disjunkt sind. Deshalb können wir Eigenschaft 5 von Lemma

Mehr

Aufgabe 43. a) ohne Mängel an Motor und Karosserie ist, b) auch einen Mangel am Motor besitzt, wenn bekannt ist, dass die Karosserie schadhaft ist?

Aufgabe 43. a) ohne Mängel an Motor und Karosserie ist, b) auch einen Mangel am Motor besitzt, wenn bekannt ist, dass die Karosserie schadhaft ist? Aufgabe 43 Ein Kraftfahrzeughändler weiß aus langjähriger Erfahrung, dass bei den in Zahlung genommenen Wagen 50% Mängel am Motor, 70% an der Karosserie und 30% an Motor und Karosserie aufweisen. Wie groß

Mehr

Vorlesung Statistik, WING, ASW Wahrscheinlichkeit in Laplace Versuchen. Kombinatorische Formeln. Bedingte Wahrscheinlichkeit

Vorlesung Statistik, WING, ASW Wahrscheinlichkeit in Laplace Versuchen. Kombinatorische Formeln. Bedingte Wahrscheinlichkeit Wahrscheinlichkeit in Laplace Versuchen Kombinatorische Formeln Bedingte Wahrscheinlichkeit Multiplikationssatz Unabhängigkeit Melanie Kaspar 1 Formel der totalen Wahrscheinlichkeit Satz von Bayes Melanie

Mehr

Was ist normal? ao.univ.prof.dr. Michael Krebs

Was ist normal? ao.univ.prof.dr. Michael Krebs Was ist normal? ao.univ.prof.dr. Michael Krebs Klin. Abteilung für Endokrinologie und Stoffwechsel, Univ. Klinik für Innere Medizin III, Med. Univ. Wien Was ist normal? Statistik TSH Individuelle Variation

Mehr

Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1

Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Aufgabe 1: Wieviele der folgenden Variablen sind quantitativ stetig? Schulnoten, Familienstand, Religion, Steuerklasse, Alter, Reaktionszeit, Fahrzeit,

Mehr

Was können Schüler anhand von Primzahltests über Mathematik lernen?

Was können Schüler anhand von Primzahltests über Mathematik lernen? Was können Schüler anhand von Primzahltests über Mathematik lernen? Innermathematisches Vernetzen von Zahlentheorie und Wahrscheinlichkeitsrechnung Katharina Klembalski Humboldt-Universität Berlin 20.

Mehr

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0.

1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem P( ) = 0. 1.5 Folgerungen aus dem Kolmogoroff- Axiomensystem Folg. 2 Sei (Ω, E, P) W.-raum. Seien A, B,A 1,...,A n Ereignisse. Es gelten die folgenden Aussagen: 1. P(A) = 1 P(A). 2. Für das unmögliche Ereignis gilt:

Mehr

Wahrscheinlichkeitstheorie. Zapper und

Wahrscheinlichkeitstheorie. Zapper und Diskrete Wahrscheinlichkeitsräume Slide 1 Wahrscheinlichkeitstheorie die Wissenschaft der Zapper und Zocker Diskrete Wahrscheinlichkeitsräume Slide 2 Münzwürfe, Zufallsbits Elementarereignisse mit Wahrscheinlichkeiten

Mehr

Orientierungshilfe zum 8. Hausaufgabenblatt. 25. Januar 2013

Orientierungshilfe zum 8. Hausaufgabenblatt. 25. Januar 2013 Orientierungshilfe zum 8. Hausaufgabenblatt 25. Januar 203 Abbildung : Skizze eines Baumdiagramms zur Veranschaulichung Aufgabe 44 Zunächst ist es von Vorteil sich die Problemstellung anhand eines Baumdiagramms

Mehr

Grundlagen der Labormedizin. Die analytische Phase

Grundlagen der Labormedizin. Die analytische Phase Grundlagen der Labormedizin Die analytische Phase Die analytische Phase im diagnostischen Prozess Begriffe analytischer Qualität - Richtigkeit - Präzision - Genauigkeit Definition der Richtigkeit Die Richtigkeit

Mehr

Präventionspotenzial endoskopischer Vorsorgeuntersuchungen für kolorektale Karzinome

Präventionspotenzial endoskopischer Vorsorgeuntersuchungen für kolorektale Karzinome Präventionspotenzial endoskopischer Vorsorgeuntersuchungen für kolorektale Karzinome Symposium Das Früherkennungsprogramm kolorektaler Karzinome in Deutschland eine Zwischenbilanz Oldenburg, 30.10.2004

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Absolute und relative en Wenn man mit Reißzwecken würfelt, dann können sie auf den Kopf oder auf die Spitze fallen. Was ist wahrscheinlicher? Ein Versuch schafft Klarheit. Um nicht immer wieder mit einer

Mehr

Assoziationsstudien. Prof. DI Dr. Andrea Berghold Institut für Med. Informatik, Statistik und Dokumentation

Assoziationsstudien. Prof. DI Dr. Andrea Berghold Institut für Med. Informatik, Statistik und Dokumentation Assoziationsstudien Prof. DI Dr. Andrea Berghold Institut für Med. Informatik, Statistik und Dokumentation Inhalt Ziele von Assoziationsstudien Design von Assoziationsstudien Statistische Analysemethoden

Mehr

Biomathematik für Mediziner, Klausur SS 2001 Seite 1

Biomathematik für Mediziner, Klausur SS 2001 Seite 1 Biomathematik für Mediziner, Klausur SS 2001 Seite 1 Aufgabe 1: Von den Patienten einer Klinik geben 70% an, Masern gehabt zu haben, und 60% erinnerten sich an eine Windpockeninfektion. An mindestens einer

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Absolute und relative Häufigkeiten Wenn man mit Reißzwecken würfelt, dann können sie auf den Kopf oder auf die Spitze fallen. Was ist wahrscheinlicher? Ein Versuch schafft Klarheit. Um nicht immer wieder

Mehr

Mathematik LK M1, 4. Kursarbeit Stochastik I - Lösung

Mathematik LK M1, 4. Kursarbeit Stochastik I - Lösung Aufgabe : Wahrscheinlichkeitsrechnung Löse die Aufgabe auf diesem Aufgabenblatt. Trage die Lösung in die Tabelle ein. Ein Rechenweg ist hier nicht erforderlich. Hinweis: Das Casinospiel besteht aus dem

Mehr

Praktisches zur Medikamentenallergie- Abklärung Hautteste und Neues zur in vitro Diagnostik

Praktisches zur Medikamentenallergie- Abklärung Hautteste und Neues zur in vitro Diagnostik Praktisches zur Medikamentenallergie- Abklärung Hautteste und Neues zur in vitro Diagnostik Benno Schnyder Universitätsklinik für Rheumatologie, klinische Immunologie und Allergologie Inselspital Bern

Mehr

Kapitel 3: Etwas Informationstheorie

Kapitel 3: Etwas Informationstheorie Stefan Lucks 3: Informationstheorie 28 orlesung Kryptographie (SS06) Kapitel 3: Etwas Informationstheorie Komplexitätstheoretische Sicherheit: Der schnellste Algorithmus, K zu knacken erfordert mindestens

Mehr

Bedingte Wahrscheinlichkeiten

Bedingte Wahrscheinlichkeiten Bedingte Wahrscheinlichkeiten Bei der Betrachtung der Ereignisse A und B eines Zufallsexperiments muss man die beiden im folgendem beschrieben zwei Situationen unterscheiden. 1. Das Ereignis A und B tritt

Mehr

Naive Bayes. 5. Dezember 2014. Naive Bayes 5. Dezember 2014 1 / 18

Naive Bayes. 5. Dezember 2014. Naive Bayes 5. Dezember 2014 1 / 18 Naive Bayes 5. Dezember 2014 Naive Bayes 5. Dezember 2014 1 / 18 Inhaltsverzeichnis 1 Thomas Bayes 2 Anwendungsgebiete 3 Der Satz von Bayes 4 Ausführliche Form 5 Beispiel 6 Naive Bayes Einführung 7 Naive

Mehr

Übungsrunde 4, Gruppe 2 LVA , Übungsrunde 4, Gruppe 2, Markus Nemetz, TU Wien, 10/2006

Übungsrunde 4, Gruppe 2 LVA , Übungsrunde 4, Gruppe 2, Markus Nemetz, TU Wien, 10/2006 Übungsrunde 4, Gruppe 2 LVA 107.369, Übungsrunde 4, Gruppe 2, 07.11. Markus Nemetz, markus.nemetz@tuwien.ac.at, TU Wien, 10/2006 1 17 1.1 Angabe Ein Parallelsystem funktioniert, wenn wenigstens eine seiner

Mehr

Der Hund, der Eier legt

Der Hund, der Eier legt Leseprobe aus: Hans-Hermann Dubben, Hans-Peter Beck-Bornholdt Der Hund, der Eier legt Mehr Informationen zum Buch finden Sie hier. (c) 1997/ 2006 by Rowohlt Verlag GmbH, Reinbek Ohne Panik positiv Aussagekraft

Mehr

1. Grundlagen der Wahrscheinlichkeitsrechnung

1. Grundlagen der Wahrscheinlichkeitsrechnung 1. Grundlagen der Wahrscheinlichkeitsrechnung Ereignisse und Wahrscheinlichkeiten Zufälliger Versuch: Vorgang, der (zumindest gedanklich) beliebig oft wiederholbar ist und dessen Ausgang innerhalb einer

Mehr

Ü b u n g s b l a t t 4

Ü b u n g s b l a t t 4 Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel 30. 4. 2007 Ü b u n g s b l a t t 4 Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten verwendet werden. Lösungen von -Aufgaben

Mehr

3.3.1 Referenzwerte für Fruchtwasser-Schätzvolumina ( SSW)

3.3.1 Referenzwerte für Fruchtwasser-Schätzvolumina ( SSW) 50 3.3 Das Fruchtwasser-Schätzvolumen in der 21.-24.SSW und seine Bedeutung für das fetale Schätzgewicht in der 21.-24.SSW und für das Geburtsgewicht bei Geburt in der 36.-43.SSW 3.3.1 Referenzwerte für

Mehr

Dr. Heidemarie Keller

Dr. Heidemarie Keller Reliabilität und Validität der deutschen Version der OPTION Scale Dr. Heidemarie Keller Abteilung für Allgemeinmedizin, Präventive und Rehabilitative Medizin Philipps-Universität Marburg EbM & Individualisierte

Mehr

bedingte Wahrscheinlichkeit

bedingte Wahrscheinlichkeit bedingte Wahrscheinlichkeit 1. Neun von zehn Ungeborenen bevorzugen im Mutterleib den rechten Daumen zum Lutschen. Forscher fanden heraus, dass alle Kinder, die rechts genuckelt hatten, im Alter von 10

Mehr

Vier-Felder-Tafel. Medizinische Tests sind grundsätzlich mit zwei Fehlern behaftet: 1. Erkrankte werden als gesund, 2. Gesunde als krank eingestuft.

Vier-Felder-Tafel. Medizinische Tests sind grundsätzlich mit zwei Fehlern behaftet: 1. Erkrankte werden als gesund, 2. Gesunde als krank eingestuft. Vier-Felder-Tafel Mediziniche Tet ind grundätzlich mit zwei Fehlern behaftet:. Erkrankte werden al geund, 2. Geunde al krank eingetuft. Der. Fehler wird üblicherweie (nicht nur von Tet-Entwicklern) in

Mehr

Lösungsvorschläge zur Gruppenaufgabe "Das eigene Auto"

Lösungsvorschläge zur Gruppenaufgabe Das eigene Auto Lösungsvorschläge zur Gruppenaufgabe "Das eigene Auto" Aufgabe a) Kandidatenwahl Max überlegt sich, wenn er mit seiner Mutter im Publikum sitzt, einer von beiden mit Wahrscheinlichkeit von 0,87% als Kandidat

Mehr

Gene, Umwelt und Aktivität

Gene, Umwelt und Aktivität Neuigkeiten aus der Huntington-Forschung. In einfacher Sprache. Von Wissenschaftlern geschrieben Für die Huntington-Gemeinschaft weltweit. Ein aktiver Lebensstil beeinflusst vielleicht die Krankheitssymptome

Mehr

Ex-Ante-Evaluierung von Finanzinstrumenten in Thüringen 2014-2020. Thüringen Invest und Thüringen Dynamik

Ex-Ante-Evaluierung von Finanzinstrumenten in Thüringen 2014-2020. Thüringen Invest und Thüringen Dynamik GEFRA Ex-Ante-Evaluierung von Finanzinstrumenten in Thüringen 2014-2020 Thüringen Invest und Thüringen Dynamik Kurzfassung Kovalis Dr. Stefan Meyer, Bremen GEFRA Gesellschaft für Finanz- und Regionalanalysen,

Mehr