Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 7-9. Was ist Wahrscheinlichkeit

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Mathematik: Mag. Schmid Wolfgang & LehrerInnenteam Arbeitsblatt 7-9 7. Semester ARBEITSBLATT 7-9. Was ist Wahrscheinlichkeit"

Transkript

1 ARBEITSBLATT 7-9 Was ist Wahrscheinlichkeit "Ein guter Mathematiker kann berechnen, welche Zahl beim Roulette als nächstes kommt", ist eine Aussage, die einfach falsch ist. Zwar befassen sich Mathematiker bereits seit dem 7. Jahrhundert damit, ein gewisses Geschehen abzuschätzen, ob ein gewisses Ereignis eintritt oder nicht, lässt sich jedoch nicht vorhersagen. Man kann lediglich beurteilen, ob es vielleicht eintritt. Mit diesem "vielleicht" beschäftigt sich die Wahrscheinlichkeitsrechnung. Um dies durch eine Zahl greifbar zu machen, benötigen wir zunächst einige Definitionen: Beispiel(): Als Beispiel einer Modellbildung verwenden wir den Münzenwurf mit unterscheidbaren aber gleichwertigen Münzen. Den Fall, dass eine Münze beim Wurf auf ihrem Rand stehen bleibt, schließen wir aus. Mögliche Ergebnisse: ω { Kopf, Kopf } ω { Kopf, Adler} ω { Adler, Kopf } ω { Adler, Adler} Ergebnismenge: Ω { ω, ω, ω ω }, Die Gesamtheit aller möglichen Ergebnisse eines Experimentes bildet die Ergebnismenge Ω dieses Experimentes. Jede Teilmenge der Ergebnismenge nennt man Ereignis E. E : Eswird min dermünzengeworfen :Ω Mögliche Ereignisse: :{ ω, ω } destenseinmalkopf geworfen :{ ω, ω, ω} :{ ω, ω} Adlergeworfen :{ ω } nochadlergeworfen :{ } E : BeideMünzenzeigengleicheSeiten E : Eswird genaueinmal Adlergeworfen E : Eswird genauzweimal E : Eswird wederkopf 5 E : EswerdenentwedergleicheoderungleicheSeiten 6 Um die Wahrscheinlichkeit für das Eintreten der einzelnen Ereignisse zu berechnen, müssen wir zunächst gewisse Grundannahmen treffen. Ω besteht aus vier Elementen, wobei jedes Ergebnis gleich wahrscheinlich eintreten kann. Also ist die Wahrscheinlichkeit für das Eintreten eines Ergebnisses immer /. Man schreibt: ( ω ) ( ω ) ( ω ) ( ω ) Daraus folgt:

2 ( E ) ( ω ) + ( ω ) ( E ) ( ω ) + ( ω ) + ( ω ) ( E ) ( ω ) + ( ω ) ( E ) ( ω ) ( E5 ) 0 ( E ) 6 Wahrscheinlichkeiten sind stets Zahlenwerte zwischen 0 und. Ist für ein Ereignis gleich, so spricht man von einem sicheren Ereignis, ist gleich 0 von einem unmöglichen Ereignis. Übung: Übungsblatt 7-9; Aufgaben Sind alle Ergebnisse eines Zufallsexperimentes gleich wahrscheinlich, dann lässt sich die Wahrscheinlichkeit (A) eines Ereignisses A wie folgt berechnen: ( A) Anzahl der günstigen Fälle Anzahl der möglichen Fälle Was bedeutet es aber nun, dass die Wahrscheinlichkeit einen er zu würfeln /6 beträgt? Bei einer großen Anzahl von Versuchen stabilisiert sich die relative Häufigkeit des Ereignisses um einen festen Wert. Dieser Wert lautet /6. Gesetz der großen Zahlen: Je größer die Anzahl von Versuchen ist, desto deutlicher stabilisiert sich die relative Häufigkeit eines Ereignisses um einen festen Wert - seine Wahrscheinlichkeit. Beispiel(): In einer Urne befinden sich Zetteln, die von 0 bis 99 beschriftet sind. Wie groß ist die Wahrscheinlichkeit, dass ich keinen Zettel ziehe, bei dem beide Ziffern gleich sind? E... Es wird kein Zettel gezogen, bei dem beide Zettel gleich sind E... Ein Zettel mit zwei gleichen Ziffern wird gezogen (E) - ( E) (E)-9/90-/09/0 Für die Gegenwahrscheinlichkeit zum Ereignis E gilt: ( E) ( E) (Somit gilt auch: (E) ( E)

3 Übung: Übungsblatt 7-9; Aufgaben Lösen einfacher Wahrscheinlichkeitsbeispiele mithilfe eines Baumdiagramms Beispiel(): Im Zuge einer Werbeaktion wird in einem Kaufhaus folgendes Gewinnspiel angeboten; In einer Urne sind Kugeln, die sich nur in der Beschriftung unterscheiden: O und M. Man zieht eine Kugel, notiert den gezogenen Buchstaben und legt die Kugel wieder in die Urne zurück. Dies wiederholt man dreimal. Entsteht dabei das Wort "OMO", so erhält man eine ackung des Waschmittels gratis. Wie groß ist die Gewinnchance für den Kunden? Wir zeichnen uns zu diesem roblem ein sogenanntes Baumdiagramm. Ganz oben zeichnen wir uns die Ausgangssituation (Ein O und ein M befinden sich in der Urne). Von dieser Ausgangssituation zeichnen wir alle möglichen Wege ein, die sich bei der Ziehung der ersten Kugel ergeben können. Von dort ausgehend zeichnen wir abhängig von der. Ziehung alle möglichen Wege ein, die sich bei der. Ziehung ergeben können, usw... Ziehung. Ziehung. Ziehung Es gibt also 8 verschiedene, gleichberechtigte Spielverläufe, wobei jedoch nur einer günstig ist. E... Das Wort OMO entsteht. Es folgt: (OMO)/8. Genauso hätten wir aber die Wahrscheinlichkeit zu diesem Ereignis ermitteln können, indem wir uns zunächst den günstigen Fall einzeichnen und die Wahrscheinlichkeiten für jede einzelne Ziehung dieses Weges eintragen.

4 Überlegen Sie dazu: Die Wahrscheinlichkeit, dass ich bei der. Ziehung ein O ziehe beträgt ½, da ja Kugel günstig ist (Mit O beschriftet) und Kugeln möglich sind. Da wir nach der ersten Ziehung die Kugel wieder in die Urne zurücklegen, sind die Wahrscheinlichkeiten auch bei der. Ziehung ident. Nun brauchen wir also die Wahrscheinlichkeit, dass wir OMO ziehen. Die Wahrscheinlichkeiten eines einzelnen Astes des Baumdiagramms werden stets multipliziert. ( OMO) 8 Genauso hätten wir aber sagen können, die Wahrscheinlichkeit, dass ich OMO ziehe, besteht aus der Wahrscheinlichkeit, dass ich O ziehe und dann M ziehe und dann O ziehe. Das logische Wort UND bedeutet mathematisch eine Multiplikation. Unser Ansatz lautet also nun: ( OMO) ( O) ( M ) ( O) Da die Wahrscheinlichkeit ein O oder ein M zu ziehen stets ½ ist, erhalten wir: ( OMO) 8 Beispiel(): In einer Urne befinden sich drei Kugeln: "U","D" und "O". Man zieht der Reihe nach je eine Kugel, ohne die gezogene Kugel zurückzulegen. Wer das Wort "UDO" zieht, gewinnt einen reis. Wie groß ist die Gewinnchance?

5 Es gibt 6 verschiedene Spielverläufe, nur einer ist günstig. E... Das Wort UDO wird gezogen. Es folgt: (UDO)/6. Denken Sie sich auch die anderen Lösungswege durch!! Beispiel(5): aul Faul hat sich wieder einmal nicht für die Mathematikwiederholung vorbereitet. Er weiß, dass der Lehrer dafür jede Stunde Schüler zufällig auswählt. Wie groß ist für ihn die Chance, zur Wiederholung dranzukommen, wenn noch andere Schüler anwesend sind? Wir Schreiben "N" für nicht drankommen, "J" für drankommen. Vorsicht: Es fällt auf, dass nun die einzelnen Spielverläufe nicht mehr gleichwahrscheinlich sind. Erfolgreich sind allerdings nur die beiden Wege, in denen ein "J" vorkommt. Nun haben wir also zwei Wege, die günstig sind. Hier gilt nun: Die Wahrscheinlichkeiten eines Astes werden multipliziert. Die Wahrscheinlichkeiten mehrerer Äste werden addiert. 5

6 Wir rechnen uns also jeweils die Wahrscheinlichkeiten für jeden Ast aus (Stehen unter der Zeichnung) und addieren dann diese Wahrscheinlichkeiten. 0,07 + 0,07 0, Ein anderer Weg, die beiden Äste zu verbinden, wäre von der Aussagenlogik: Die Wahrscheinlichkeit, einmal J bei zwei Ziehungen zu haben, ist entweder ich ziehe J und dann N, oder ich ziehe N und dann J. Hier gilt: Wahrscheinlichkeiten, die mit ODER verbunden sind, werden addiert. Es folgt daraus: ( JN) + ( NJ ) Die Einzelwahrscheinlichkeiten haben wir bereits berechnet: ( JN) + ( NJ ) 0,07 Wir setzen ein und erhalten: 0,07 + 0,07 0, Beispiel(6): In einer Urne befinden sich 5 Kugeln. Kugeln sind rot, weiß. Dreimal wird je eine Kugel gezogen, die Farbe notiert und wieder in die Urne zurückgelegt. Wie groß ist die Wahrscheinlichkeit genau rote Kugeln zu ziehen? Es gibt also drei günstige Wege, wobei wir die Wahrscheinlichkeit für jeden Weg bereits ausgerechnet haben. E... genau rote Kugeln ziehen (E) *0,050,06 Beachte: Hier hätte man auch so vorgehen können. Die Wahrscheinlichkeit ROT zu ziehen ist immer /5. Die Wahrscheinlichkeit WEISZ zu ziehen ist immer /5. Bei maliger Ziehung gibt es drei Möglichkeiten mal rot und mal weiß zu ziehen 5 5 0,06 (Möglichkeiten)*((rot) Hochzahl: mal)*((weiß) Hochzahl: mal) 6

7 Wichtige Regeln: MULTILIKATIONSSATZ: Sind die Ereignisse E und E voneinander unabhängig, dann gilt für die Wahrscheinlichkeit, dass E und E eintritt: Wahrscheinlichkeit von E mal Wahrscheinlichkeit von E (Ein Ereignis E bezeichnet man als unabhängig von einem Ereignis E, wenn die Wahrscheinlichkeit für das Eintreffen von E unabhängig davon ist, ob das Ereignis E eingetroffen ist oder nicht. Multiplikationssatz gilt auch für mehrere voneinander unabhängige Ereignisse) Das bedeutet für das Baumdiagramm: Entlang eines Astes werden die Wahrscheinlichkeiten multipliziert. SUMMENSATZ: Sind die Ereignisse E und E zwei einander ausschließende Ereignisse, so gilt für die Wahrscheinlichkeit, dass E oder E eintritt: Wahrscheinlichkeit von E plus Wahrscheinlichkeit von E (Gilt auch für mehrere unvereinbare Ereignisse) Das bedeutet für das Baumdiagramm Wahrscheinlichkeiten mehrerer Äste werden addiert. Übung: Übungsblatt 7-9; Aufgaben 8-9 7

WAHRSCHEINLICHKEIT. Erinnere dich

WAHRSCHEINLICHKEIT. Erinnere dich Thema Nr.9 WAHRSCHEINLICHKEIT Erinnere dich Zufallsexperiment Ein Experiment, bei dem verschiedene Ergebnisse möglich sind und bei dem das Ergebnis nur vom Zufall abhängt heißt Zufallsexperiment. Beispiele

Mehr

2. Rechnen mit Wahrscheinlichkeiten

2. Rechnen mit Wahrscheinlichkeiten 2. Rechnen mit Wahrscheinlichkeiten 2.1 Axiome der Wahrscheinlichkeitsrechnung Die Wahrscheinlichkeitsrechnung ist ein Teilgebiet der Mathematik. Es ist üblich, an den Anfang einer mathematischen Theorie

Mehr

4b. Wahrscheinlichkeit und Binomialverteilung

4b. Wahrscheinlichkeit und Binomialverteilung b. Wahrscheinlichkeit und Binomialverteilung Um was geht es? Häufigkeit in der die Fehlerzahl auftritt 9 6 5 3 2 2 3 5 6 Fehlerzahl in der Stichprobe Wozu dient die Wahrscheinlichkeit? Häfigkeit der Fehlerzahl

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Wahrscheinlichkeitsverteilungen 1. Binomialverteilung 1.1 Abzählverfahren 1.2 Urnenmodell Ziehen mit Zurücklegen, Formel von Bernoulli 1.3 Berechnung von Werten 1.4 Erwartungswert und Standardabweichung

Mehr

Die Kugeln tragen zwei Merkmale mit jeweils zwei Ausprägungen. Merkmal I Ausprägung Merkmal II Ausprägung. A: Holz B: rot A: Kunststoff B: grün

Die Kugeln tragen zwei Merkmale mit jeweils zwei Ausprägungen. Merkmal I Ausprägung Merkmal II Ausprägung. A: Holz B: rot A: Kunststoff B: grün R. rinkmann http://brinkmann-du.de Seite 6..00 edingte Wahrscheinlichkeit ei mehrmaligem Würfeln hängt die Wahrscheinlichkeit eine bestimmte Zahl zwischen und 6 zu werfen nicht von dem vorherigen Ergebnis

Mehr

Elemente der Stochastik (SoSe 2016) 9. Übungsblatt

Elemente der Stochastik (SoSe 2016) 9. Übungsblatt Dr. M. Weimar 06.06.2016 Elemente der Stochastik (SoSe 2016) 9. Übungsblatt Aufgabe 1 (2+2+2+2+1=9 Punkte) In einer Urne befinden sich sieben Lose, darunter genau ein Gewinnlos. Diese Lose werden nacheinander

Mehr

Wahrscheinlichkeitsrechnung 1. Was verstehen Sie unter einem Zufallsexperiment? Nennen Sie die wichtigsten Eigenschaften.

Wahrscheinlichkeitsrechnung 1. Was verstehen Sie unter einem Zufallsexperiment? Nennen Sie die wichtigsten Eigenschaften. Wahrscheinlichkeitsrechnung 1. Was verstehen Sie unter einem Zufallsexperiment? Nennen Sie die wichtigsten Eigenschaften. 2. Geben Sie vier Zufallsexperimente mit ihrer jeweiligen an. 3. In einer Obstkiste

Mehr

Beispielaufgaben Binomialverteilung Lösungen

Beispielaufgaben Binomialverteilung Lösungen L. Schmeink 05a_beispielaufgaben_binomialverteilung_lösungen.doc 1 Beispielaufgaben Binomialverteilung Lösungen Übung 1 Der Würfel mit zwei roten (A) und vier weißen Seitenflächen (B) soll fünfmal geworfen

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 0.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Anzahl möglicher Anordnungen bei 3 Elementen

Anzahl möglicher Anordnungen bei 3 Elementen Anzahl möglicher Anordnungen bei 3 Elementen Man kann die Anzahl möglicher Anordnungen der drei Buchstaben A, B und C mit einem Baumdiagramm bestimmen. 3 2 6 verschiedene Anordnungen Permutationen Die

Mehr

Bestimmen der Wahrscheinlichkeiten mithilfe von Zählstrategien

Bestimmen der Wahrscheinlichkeiten mithilfe von Zählstrategien R. Brinmann http://brinmann-du.de Seite 4.0.2007 Bestimmen der Wahrscheinlicheiten mithilfe von Zählstrategien Die bisherigen Aufgaben zur Wahrscheinlicheitsrechnung onnten im Wesentlichen mit übersichtlichen

Mehr

Biometrieübung 5 Spezielle Verteilungen. 1. Anzahl von weiblichen Mäusen in Würfen von jeweils 4 Mäusen

Biometrieübung 5 Spezielle Verteilungen. 1. Anzahl von weiblichen Mäusen in Würfen von jeweils 4 Mäusen Biometrieübung 5 (Spezielle Verteilungen) - Aufgabe Biometrieübung 5 Spezielle Verteilungen Aufgabe 1. Anzahl von weiblichen Mäusen in Würfen von jeweils 4 Mäusen Anzahl weiblicher Mäuse (k) Anzahl Würfe

Mehr

Terme, Rechengesetze, Gleichungen

Terme, Rechengesetze, Gleichungen Terme, Rechengesetze, Gleichungen Ein Junge kauft sich eine CD zu 15 und eine DVD zu 23. Er bezahlt mit einem 50 - Schein. Wie viel erhält er zurück? Schüler notieren mögliche Rechenwege: (1) 15 + 23 =

Mehr

Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein Element aus,

Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein Element aus, V. Stochastik ================================================================== 5.1 Zählprinzip Wählt man aus n Mengen mit z 1 bzw. z 2,..., bzw. z n Elementen nacheinander aus jeder Menge jeweils ein

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Teil V Wahrscheinlichkeitsrechnung Inhaltsangabe 6 Einführung in die Wahrscheinlichkeitsrechnung 125 6.1 Kombinatorik......................... 125 6.2 Grundbegri e......................... 129 6.3 Wahrscheinlichkeiten.....................

Mehr

Abitur - Übung 1 Glege 9/11

Abitur - Übung 1 Glege 9/11 Abitur - Übung 1 Glege 9/11 Aufgabe 1.1) ganz-rationale Funktion 1.1.a) Bestimmen Sie eine ganz-rationale Funktion 3.Grades, deren Graph bei =4 die -Achse berührt und an deren Punkt (2/f(2)) die Tangente

Mehr

Wahrscheinlichkeitsrechnung für die Mittelstufe

Wahrscheinlichkeitsrechnung für die Mittelstufe Wahrscheinlichkeitsrechnung für die Mittelstufe Wir beginnen mit einem Beispiel, dem Münzwurf. Es wird eine faire Münze geworfen mit den Seiten K (für Kopf) und Z (für Zahl). Fair heißt, dass jede Seite

Mehr

Allgemeine Definition von statistischer Abhängigkeit (1)

Allgemeine Definition von statistischer Abhängigkeit (1) Allgemeine Definition von statistischer Abhängigkeit (1) Bisher haben wir die statistische Abhängigkeit zwischen Ereignissen nicht besonders beachtet, auch wenn wir sie wie im Fall zweier disjunkter Mengen

Mehr

15 Wahrscheinlichkeitsrechnung und Statistik

15 Wahrscheinlichkeitsrechnung und Statistik 5 Wahrscheinlichkeitsrechnung und Statistik Alles, was lediglich wahrscheinlich ist, ist wahrscheinlich falsch. ( Descartes ) Trau keiner Statistik, die du nicht selbst gefälscht hast. ( Churchill zugeschrieben

Mehr

Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg

Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com August 05 Übungsaufgaben:

Mehr

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Wichtige Tatsachen und Formeln zur Vorlesung Mathematische Grundlagen für das Physikstudium 3 Franz Embacher http://homepage.univie.ac.at/franz.embacher/

Mehr

1. Grundlagen der Wahrscheinlichkeitsrechnung

1. Grundlagen der Wahrscheinlichkeitsrechnung 1. Grundlagen der Wahrscheinlichkeitsrechnung Ereignisse und Wahrscheinlichkeiten Zufälliger Versuch: Vorgang, der (zumindest gedanklich) beliebig oft wiederholbar ist und dessen Ausgang innerhalb einer

Mehr

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung Mathematik: LehrerInnenteam Arbeitsblatt 7-7. Semester ARBEITSBLATT Erwartungswert, Varianz und Standardabweichung Die Begriffe Varianz und Standardabweichung sind uns bereits aus der Statistik bekannt

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 6 5 Hilfsmittel aus der Kombinatorik 7 1 Vorbemerkungen

Mehr

An die Zweige schreibt man jeweils die Wahrscheinlichkeit, die für dieses Ereignis gilt.

An die Zweige schreibt man jeweils die Wahrscheinlichkeit, die für dieses Ereignis gilt. . Mehrstufige Zufallsversuche und Baumdiagramme Entsprechend der Anmerkung in. wollen wir nun auf der Basis von bekannten Wahr- scheinlichkeiten weitere Schlüsse ziehen. Dabei gehen wir immer von einem

Mehr

Begriffe der Wahrscheinlichkeitsrechnung

Begriffe der Wahrscheinlichkeitsrechnung Begriffe der Wahrscheinlichkeitsrechnung Das vorliegende Papier ist ein Diskussionspapier. Die Definitionen und Begrifflichkeiten sind den hinten genannten Büchern entnommen Bei dem Vergleich der unterschiedlichen

Mehr

Grundbegriffe der Wahrscheinlichkeitstheorie

Grundbegriffe der Wahrscheinlichkeitstheorie KAPITEL 1 Grundbegriffe der Wahrscheinlichkeitstheorie 1. Zufallsexperimente, Ausgänge, Grundmenge In der Stochastik betrachten wir Zufallsexperimente. Die Ausgänge eines Zufallsexperiments fassen wir

Mehr

Absolute und relative Häufigkeit Übung III

Absolute und relative Häufigkeit Übung III Absolute und relative Übung III In der Tabelle sind die Würfelergebnisse von Marc, Felix, Bjorn und René aus der Basketball-AG notiert. Wer kann am besten Körbe werfen? Würfe Treffer Marc 7 Felix 8 Bjorn

Mehr

Kontrolle. Themenübersicht

Kontrolle. Themenübersicht Themenübersicht Arbeitsblatt 1 Statistik Arbeitsblatt 2 Erheben und Auswerten von Daten Arbeitsblatt 3 Zufallsexperimente Arbeitsblatt 4 mehrstufige Zufallsexperimente Inhalt, Schwerpunkte des Themas Urliste,

Mehr

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente Mehrstufige Zufallsexperimente Inhalt 6.1 6.1 Mehrstufige Experimente 6.2 6.2 Bedingte Wahrscheinlichkeiten Seite 2 6.1 Mehrstufige Experimente Grundvorstellung: Viele Viele Experimente werden der der

Mehr

Kurs 2 Stochastik EBBR Vollzeit (1 von 2)

Kurs 2 Stochastik EBBR Vollzeit (1 von 2) Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 281 Bremen Kurs 2 Stochastik EBBR Vollzeit (1 von 2) Name: Ich 1. 2. 3. 4.. 6. 7. So schätze ich meinen Lernzuwachs ein.

Mehr

Daten und Zufall in der Jahrgangsstufe 8 Seite 1

Daten und Zufall in der Jahrgangsstufe 8 Seite 1 Daten und ufall in der Jahrgangsstufe Seite Bei vielen Experimenten, wie z. B. Experimenten der Physik, kann das Ergebnis mit Sicherheit vorhergesagt werden. Solche Experimente heißen kausale Experimente.

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung 2 Wahrscheinlichkeitsrechnung 2.1 Grundbegriffe Wir betrachten zwei Beispiele, um erste Grundbegriffe anschaulich einzuführen. Beispiel 2.1.1. In einem Elektronikmarkt liegen 50 MP3-Player auf einem Tisch,

Mehr

Wahrscheinlichkeitsrechnung Teil 1

Wahrscheinlichkeitsrechnung Teil 1 Wahrscheinlichkeitsrechnung Teil Einführung in die Grundbegriffe Sekundarstufe Datei Nr. 30 Stand 29. März 200 Friedrich W. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Inhalt Zufallsexperimente, Ereignisse

Mehr

Ein Würfel wird geworfen. Einsatz: Fr Gewinn: Fr. 6.--

Ein Würfel wird geworfen. Einsatz: Fr Gewinn: Fr. 6.-- 1 Ein Würfel wird geworfen. : Fr. 1.-- : Fr. 6.-- Der Spieler hat gewonnen falls eine 6 erscheint. 2 Zwei Würfel werden geworfen. : Fr. 1.-- : Fr. 7.-- Der Spieler hat gewonnen falls die Augensumme gleich

Mehr

Ringvorlesung Einführung in die Methoden der empirischen Sozialforschung II

Ringvorlesung Einführung in die Methoden der empirischen Sozialforschung II Ringvorlesung Einführung in die Methoden der empirischen Sozialforschung II Auswahlverfahren - Begriffe und theoretische Grundlagen 1 USA 1936: - Wahlstudie mit 10.000.000 Probestimmzetteln - Quelle: Telefonverzeichnis

Mehr

Glücksrad-Aufgabe. Das Glücksrad ist in 2 Sektoren mit den Zahlen 1 (Winkel 120 ) und 2 eingeteilt.

Glücksrad-Aufgabe. Das Glücksrad ist in 2 Sektoren mit den Zahlen 1 (Winkel 120 ) und 2 eingeteilt. Glücksrad-Aufgabe Das Glücksrad ist in Sektoren mit den Zahlen (Winkel ) und eingeteilt. a) Das Glücksrad wird dreimal gedreht. Wie groß ist die Wahrscheinlichkeit für die folgenden Ereignisse: A: Die

Mehr

Beschreibende Statistik anhand realer Situationen

Beschreibende Statistik anhand realer Situationen Beschreibende Statistik anhand realer Situationen Paula Lagares Barreiro Frederico Perea Rojas-Marcos Justo Puerto Albandoz MaMaEuSch Management Mathematics for European Schools 94342 - CP - 1-2001 - 1

Mehr

Wahrscheinlichkeit und Binomialverteilung

Wahrscheinlichkeit und Binomialverteilung und Binomialverteilung Umwas geht es? Häufigkeit in der die Fehlerzahl auftritt 9 6 5 3 2 2 3 5 6 Fehlerzahl in der Stichprobe Wozu dient die? Häfigkeit der Fehlerzahl 9 6 5 3 2 Häufigkeit der Fehlerzahlen

Mehr

Wahrscheinlichkeitsrechnung (mit dem Zufall rechnen) 1 2 3 4 5 6 Bezeichnungen Summe. 1 2 3 4 5 6 Bezeichnungen Summe

Wahrscheinlichkeitsrechnung (mit dem Zufall rechnen) 1 2 3 4 5 6 Bezeichnungen Summe. 1 2 3 4 5 6 Bezeichnungen Summe ahrscheinlichkeitsrechnung (mit em Zufall rechnen) Zufallsgerät ürfel: Jeer Schüler wirft mit einem ürfel 2-mal, er Tischnachbar führt eine Strichliste für ie gewürfelten Ergebnisse in er folgenen Tabelle:

Mehr

Einführung in die Wahrscheinlichkeitsrechnung

Einführung in die Wahrscheinlichkeitsrechnung Einführung in die Wahrscheinlichkeitsrechnung Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) Wahrscheinlichkeitsrechnung

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Binomialverteilung und Bernoulli- Experiment

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Binomialverteilung und Bernoulli- Experiment Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Binomialverteilung und Bernoulli- Experiment Das komplette Material finden Sie hier: Download bei School-Scout.de TOSSNET Der persönliche

Mehr

P A P( A B) Definition Wahrscheinlichkeit

P A P( A B) Definition Wahrscheinlichkeit Unabhaengige Ereignisse edingte Wahrscheinlichkeit Definition Wahrscheinlichkeit Die Wahrscheinlichkeit eines Ereignisses ist das Verhältnis der günstigen Ergebnisse zur Gesamtmenge der Ergebnisse nzahl

Mehr

Venndiagramm, Grundmenge und leere Menge

Venndiagramm, Grundmenge und leere Menge Venndiagramm, Grundmenge und leere Menge In späteren Kapitel wird manchmal auf die Mengenlehre Bezug genommen. Deshalb sollen hier die wichtigsten Grundlagen und Definitionen dieser Disziplin kurz zusammengefasst

Mehr

3 Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen

3 Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen.1 Pfadregeln.1.1 Pfadmultiplikationsregel Eine faire Münze und

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Abiturvorbereitung Wahrscheinlichkeitsrechnung S. 1 von 9 Wahrscheinlichkeitsrechnung Kombinatorik Formeln für Wahrscheinlichkeiten Bedingte Wahrscheinlichkeiten Zusammenfassung wichtiger Begriffe Übungsaufgaben

Mehr

SS 2016 Torsten Schreiber

SS 2016 Torsten Schreiber SS 01 Torsten Schreiber 15 Ein lineares Gleichungssystem besteht immer aus einer Anzahl an Variablen und Gleichungen. Die Zahlen vor den Variablen werden in der sogenannten zusammen gefasst und die Zahlen

Mehr

Statistik I für Betriebswirte Vorlesung 1

Statistik I für Betriebswirte Vorlesung 1 Statistik I für Betriebswirte Vorlesung 1 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 4. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Mathematik. Abiturprüfung 2015. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden.

Mathematik. Abiturprüfung 2015. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Mathematik Abiturprüfung 2015 Prüfungsteil A Arbeitszeit: 90 Minuten Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Zu den Themengebieten Analysis, Stochastik und Geometrie

Mehr

4. Beispielitems aus der Standardüberprüfung Mathematik 2012 für die 8. Schulstufe

4. Beispielitems aus der Standardüberprüfung Mathematik 2012 für die 8. Schulstufe 4. Beispielitems aus der Standardüberprüfung Mathematik 2012 für die 8. Schulstufe Die folgenden Beispielitems stammen aus der Standardüberprüfung 2012 in Mathematik. Sie zeigen, welche Testaufgaben Schüler/innen

Mehr

Mathematik. Abiturprüfung 2014. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden.

Mathematik. Abiturprüfung 2014. Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Mathematik Abiturprüfung 2014 Prüfungsteil A Arbeitszeit: 90 Minuten Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Zu den Themengebieten Analysis, Stochastik und Geometrie

Mehr

Hauptprüfung Fachhochschulreife 2014. Baden-Württemberg

Hauptprüfung Fachhochschulreife 2014. Baden-Württemberg Hauptprüfung Fachhochschulreife 2014 Baden-Württemberg Aufgabe 6 Stochastik Hilfsmittel: grafikfähiger Taschenrechner Berufskolleg Alexander Schwarz www.mathe-aufgaben.com September 2014 1 Ein Glücksrad

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Was du wissen musst: Die Begriffe Zufallsexperiment, Ereignisse, Gegenereignis, Zufallsvariable und Wahrscheinlichkeit sind dir geläufig. Du kannst mehrstufige Zufallsversuche

Mehr

Basistext - Wahrscheinlichkeitsrechnung

Basistext - Wahrscheinlichkeitsrechnung Basistext - Wahrscheinlichkeitsrechnung Die Wahrscheinlichkeitsrechnung beschäftigt sich mit Vorgängen, die in ihrem Ausgang unbestimmt sind. Sie versucht mögliche Ergebnisse der Vorgänge zu quantifizieren.

Mehr

Stochastik - Kapitel 3

Stochastik - Kapitel 3 Aufgaben ab Seite 8 3. edingte Wahrscheinlichkeit und Unabhängigkeit 3.1 edingte Wahrscheinlichkeit und die Formel von ayes eispiel zum Einstieg in das Thema: Peter wirft zwei Würfel. Danach möchte er

Mehr

2.2 Ereignisse und deren Wahrscheinlichkeit

2.2 Ereignisse und deren Wahrscheinlichkeit 2.2 Ereignisse und deren Wahrscheinlichkeit Literatur: [Papula Bd., Kap. II.2 und II.], [Benning, Kap. ], [Bronstein et al., Kap. 1.2.1] Def 1 [Benning] Ein Zufallsexperiment ist ein beliebig oft wiederholbarer,

Mehr

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen?

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen? 1 Kombinatorik Aus einer Grundgesamtheit mit n Elementen wird eine Stichprobe k Elementen entnommen. Dabei kann die Stichprobe geordnet oder ungeordnet sein. "Geordnet" bedeutet, dass die Reihenfolge der

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen)

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen) Dr. Jürgen Senger INDUKTIVE STATISTIK Wahrscheinlichkeitstheorie, Schätz- und Testverfahren ÜUNG. - LÖSUNGEN. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen Die Urne enthält 4 weiße und 8 rote Kugeln.

Mehr

Stochastik. 1 Grundlagen

Stochastik. 1 Grundlagen 1 Grundlagen Stochastik S 1.1 Beim Mensch-ärgere-dich-nicht darf zu Beginn bis zu dreimal gewürfelt werden, um eine Sechs zu bekommen. Mit welcher Wahrscheinlichkeit gelingt dies? S 1.2 Für einen Flug

Mehr

Spielgeräte: Von Wahrscheinlichkeiten bis Binomialverteilung

Spielgeräte: Von Wahrscheinlichkeiten bis Binomialverteilung Bernoulli-Kette, und hypergeometrische Verteilung: F. 2. 32 Spielgeräte: Von Wahrscheinlichkeiten bis Die folgende Stationenarbeit dient dazu, die Begriffe der Oberstufenstochastik (Wahrscheinlichkeit;

Mehr

Zufallsversuche. Christine Hartmann

Zufallsversuche. Christine Hartmann Zufallsversuche Christine Hartmann Ausarbeitung zum Vortrag im Seminar Mathematische Modellierung (Wintersemester 2008/09, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: Der Vortrag zum Thema Zufallsversuche

Mehr

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis

Aufgabe 2.1. Ergebnis, Ergebnismenge, Ereignis Aufgabe 2. Ergebnis, Ergebnismenge, Ereignis Ergebnis und Ergebnismenge Vorgänge mit zufälligem Ergebnis, oft Zufallsexperiment genannt Bei der Beschreibung der Ergebnisse wird stets ein bestimmtes Merkmal

Mehr

KAPITEL 2. Kombinatorik

KAPITEL 2. Kombinatorik KAPITEL 2 Kombinatori In der Kombinatori geht es um das Abzählen von Kombinationen 21 Geburtstagsproblem Beispiel 211 (Geburtstagsproblem In einem Raum befinden sich 200 Studenten Wie groß ist die Wahrscheinlicheit,

Mehr

A Grundlegende Begriffe

A Grundlegende Begriffe Grundlegende egriffe 1 Zufallsexperimente und Ereignisse Ein Zufallsexperiment besteht aus der wiederholten Durchführung eines Zufallsversuchs. ei einem Zufallsversuch können verschiedene Ergebnisse (chreibweise:

Mehr

Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium

Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium Alexander Schwarz www.mathe-aufgaben.com Oktober 205 Aufgabe : In einer Urne befinden sich drei gelbe, eine rote und

Mehr

ALGEBRA UND MENGENLEHRE

ALGEBRA UND MENGENLEHRE ALGEBRA UND MENGENLEHRE EINE EINFÜHRUNG GRUNDLAGEN DER ALGEBRA 1 VARIABLE UND TERME In der Algebra werden für Grössen, mit welchen gerechnet wird, verallgemeinernd Buchstaben eingesetzt. Diese Platzhalter

Mehr

Polizeidienst-Aufgabe Abiturprüfung Bayern LK 2003

Polizeidienst-Aufgabe Abiturprüfung Bayern LK 2003 Polizeidienst-Aufgabe Abiturprüfung Bayern LK 003 a) Bei einem Einstellungstermin für den Polizeidienst waren 0% der Bewerber Frauen, von denen 90% die Aufnahmeprüfung bestanden. Drei Viertel derjenigen,

Mehr

Aufgabe 1 (mdb632540): Murat hat zehn Spielkarten verdeckt auf den Tisch gelegt: Buben, Könige, Asse, Zehn.

Aufgabe 1 (mdb632540): Murat hat zehn Spielkarten verdeckt auf den Tisch gelegt: Buben, Könige, Asse, Zehn. Wahrscheinlichkeiten Aufgabe 1 (mdb632540): Murat hat zehn Spielkarten verdeckt auf den Tisch gelegt: Buben, Könige, Asse, Zehn. Bestimme die Wahrscheinlichkeit, dass Anna a) ein Ass, b) einen Buben, c)

Mehr

WAHRSCHEINLICHKEITSLEHRE

WAHRSCHEINLICHKEITSLEHRE Wahrscheinlichkeitstheorie Herbert Paukert 1 WAHRSCHEINLICHKEITSLEHRE Version 2.0 Herbert Paukert Drei Zufallsexperimente [ 02 ] Wahrscheinlichkeitstheorie I [ 05 ] Wahrscheinlichkeitstheorie II [ 12 ]

Mehr

Ergebnis Ergebnisraum Ω. Ereignis. Elementarereignis

Ergebnis Ergebnisraum Ω. Ereignis. Elementarereignis Stochastik Die Stochastik besteht aus zwei Teilgebieten, der Statistik und der Wahrscheinlichkeitsrechnung. Die Statistik beschreibt die Vergangenheit und verwendet Informationen, die (in realen Versuchen)

Mehr

Beurteilende Statistik

Beurteilende Statistik Beurteilende Statistik Wahrscheinlichkeitsrechnung und Beurteilende Statistik was ist der Unterschied zwischen den beiden Bereichen? In der Wahrscheinlichkeitstheorie werden aus gegebenen Wahrscheinlichkeiten

Mehr

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1

P X =3 = 2 36 P X =5 = 4 P X =6 = 5 36 P X =8 = 5 36 P X =9 = 4 P X =10 = 3 36 P X =11 = 2 36 P X =12 = 1 Übungen zur Stochastik - Lösungen 1. Ein Glücksrad ist in 3 kongruente Segmente aufgeteilt. Jedes Segment wird mit genau einer Zahl beschriftet, zwei Segmente mit der Zahl 0 und ein Segment mit der Zahl

Mehr

Stochastik (Laplace-Formel)

Stochastik (Laplace-Formel) Stochastik (Laplace-Formel) Übungen Spielwürfel oder Münzen werden ideal (oder fair) genannt, wenn jedes Einzelereignis mit gleicher Wahrscheinlichkeit erwartet werden kann. 1. Ein idealer Spielwürfel

Mehr

5. Übungsblatt zur Einführung in die Stochastik

5. Übungsblatt zur Einführung in die Stochastik Fachbereich Mathematik Prof. Dr. Michael Kohler Dipl.-Math. Andreas Fromkorth Dipl.-Inf. Jens Mehnert SS 09 25.5.2009 5. Übungsblatt zur Einführung in die Stochastik Aufgabe 18 Drei Spieler bekommen jeweils

Mehr

Ü b u n g s b l a t t 15

Ü b u n g s b l a t t 15 Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel 2. 7. 2007 Ü b u n g s b l a t t 15 Hier ist zusätzliches Übungsmaterial zur Klausurvorbereitung quer durch die Inhalte der Vorlesung. Eine

Mehr

Vorkurs Mathematik für Informatiker Kombinatorik --

Vorkurs Mathematik für Informatiker Kombinatorik -- Vorkurs Mathematik für Informatiker -- 10 Kombinatorik -- Thomas Huckle Stefan Zimmer 30.09.2014 1 Urnenmodell In der Kombinatorik interessiert man sich dafür, wie viele Möglichkeiten es für die Ergebnisse

Mehr

Stochastik - Kapitel 1

Stochastik - Kapitel 1 Stochastik - Kapitel Aufgaben ab Seite 9 I. reignisräume. rgebnis und rgebnisraum; Baumdiagramm xperimente werden nach der Vorhersehbarkeit ihres Versuchsausganges unterschieden: - xperimente, deren rgebnisse

Mehr

André Hoffmann Wiederholung Mathematik Klasse 7 05.08.2010

André Hoffmann Wiederholung Mathematik Klasse 7 05.08.2010 André Hoffmann Wiederholung Mathematik Klasse 7 05.08.2010 1. Kongruenz: 1. Satz: Stimmen zwei Dreiecke ΔABC und ΔA B C in bestimmten Kombinationen einzelner Winkel und Längen überein, dann sind die Dreiecke

Mehr

8. Wahrscheinlichkeitsrechnung

8. Wahrscheinlichkeitsrechnung Didaktik der Geometrie und Stochastik WS 09/10 Bürker 27. 1. 11 8. Wahrscheinlichkeitsrechnung 8.1 Begriffe 8.1.1 Zufallsexperiment Was ist ein Zufallsexperiment? a) Mehrere Ergebnisse möglich b) Ergebnis

Mehr

Argumentationstheorie 5. Sitzung

Argumentationstheorie 5. Sitzung Zwei Arten von Schlüssen Argumentationstheorie 5. Sitzung All reasonings may be divided into two kinds, namely demonstrative reasoning, [ ] and moral (or probable) reasoning. David Hume An Enquiry Concerning

Mehr

Direkte Proportionalität

Direkte Proportionalität M 8.1 Direkte Proportionalität Zwei einander zugeordnete Größen und sind (direkt) proportional, wenn zum -fachen Wert von der -fache Wert von gehört. der Quotient für alle Wertepaare gleich ist. ( Proportionaliätsfaktor

Mehr

11 Wahrscheinlichkeitsrechnung

11 Wahrscheinlichkeitsrechnung 1 Kap 11 Wahrscheinlichkeitsrechnung 11 Wahrscheinlichkeitsrechnung 11.1 Zufallsexperimente Beispiele 1. 2. 3.... Definition: Vorgänge bei denen man das Ergebnis noch nicht kennt, heissen Zufallsexperimente.

Mehr

Allgemeine diskrete Wahrscheinlichkeitsräume II. Beispiel II. Beispiel I. Definition 6.3 (Diskreter Wahrscheinlichkeitsraum)

Allgemeine diskrete Wahrscheinlichkeitsräume II. Beispiel II. Beispiel I. Definition 6.3 (Diskreter Wahrscheinlichkeitsraum) Allgemeine diskrete Wahrscheinlichkeitsräume I Allgemeine diskrete Wahrscheinlichkeitsräume II Verallgemeinerung von Laplaceschen Wahrscheinlichkeitsräumen: Diskrete Wahrscheinlichkeitsräume Ω endlich

Mehr

Teil I (Richtzeit: 30 Minuten)

Teil I (Richtzeit: 30 Minuten) Gymnasium Unterstrass Zürich Seite 1 Gymnasium Unterstrass Zürich Aufnahmeprüfung 2012 Kurzgymnasium (Anschluss 3. Sekundarklasse, NLM) Mathematik Name: Die Prüfung besteht aus zwei Teilen. Im ersten Teil

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 3. November 2010 1 Kombinatorik Fakultät Binomialkoeffizienten Urnenmodelle 2 Definition Tabellen Fakultät, Beispiel

Mehr

Kombinatorik BEISPIEL: WIE VIELE MÖGLICHKEITEN GIBT ES, EINE DREISTELLIGE ZAHL MIT DEN ZIFFERN 3

Kombinatorik BEISPIEL: WIE VIELE MÖGLICHKEITEN GIBT ES, EINE DREISTELLIGE ZAHL MIT DEN ZIFFERN 3 Kombinatorik Die Kombinatorik beschäftigt sich damit, verschiedene mögliche Auswahlen und Anordnungen von Elementen aus endlichen Mengen zu untersuchen. Insbesondere wird die Anzahl dieser berechnet. BEISPIEL:

Mehr

Zufall und Wahrscheinlichkeit in der Grundschule

Zufall und Wahrscheinlichkeit in der Grundschule Zufall und Wahrscheinlichkeit in der Grundschule Dr. Bernd Neubert, Uni Gießen 15. Tage des mathematischen und naturwissenschaftlichen Unterrichts Erfurt 12./13.3.2009 Auch der Zufall ist nicht unergründlich,

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 2. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 2. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN Bisher kennen wir bereits folgende Zahlenbereiche: N Natürliche Zahlen Z Ganze Zahlen Q Rationale Zahlen Bei

Mehr

Inferenzstatistik (=schließende Statistik)

Inferenzstatistik (=schließende Statistik) Inferenzstatistik (=schließende Statistik) Grundproblem der Inferenzstatistik: Wie kann man von einer Stichprobe einen gültigen Schluß auf di Grundgesamtheit ziehen Bzw.: Wie groß sind die Fehler, die

Mehr

7 Unabhängigkeit von Ereignissen; bedingte Wahrscheinlichkeit

7 Unabhängigkeit von Ereignissen; bedingte Wahrscheinlichkeit Übungsmaterial 7 Unabhängigkeit von reignissen; bedingte Wahrscheinlichkeit 7. Unabhängigkeit von reignissen Wir betrachten folgendes Beispiel: Zwei unterscheidbare Münzen werden geworfen. Man betrachtet

Mehr

Übungsaufgaben Wahrscheinlichkeit

Übungsaufgaben Wahrscheinlichkeit Übungsaufgaben Wahrscheinlichkeit Aufgabe 1 (mdb500405): In einer Urne befinden sich gelbe (g), rote (r), blaue (b) und weiße (w) Kugel (s. Bild). Ohne Hinsehen sollen aus der Urne in einem Zug Kugeln

Mehr

Statistik nach der Grundausbildung

Statistik nach der Grundausbildung Statistik nach der Grundausbildung Andreas Handl Torben Kuhlenkasper 8. Januar 2016 1 Grundlage des vorliegenden Skripts sind Aufzeichnungen von Andreas Handl, die er bis zum Jahr 2007 an der Universität

Mehr

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen?

M 5.1. Natürliche Zahlen und Zahlenstrahl. Welche Zahlen gehören zur Menge der natürlichen Zahlen? M 5.1 Natürliche Zahlen und Zahlenstrahl Welche Zahlen gehören zur Menge der natürlichen Zahlen? Zeichne die Zahlen, und auf einem Zahlenstrahl ein. Woran erkennt man auf dem Zahlenstrahl, welche der Zahlen

Mehr

Grundwissen. 8. Jahrgangsstufe. Mathematik

Grundwissen. 8. Jahrgangsstufe. Mathematik Grundwissen 8. Jahrgangsstufe Mathematik Grundwissen Mathematik 8. Jahrgangsstufe Seite 1 1 Proportionalität 1.1 Direkte Proportionalität Eigenschaften: y Quotientengleichheit Bei kommt immer das Gleiche

Mehr

Problemlösen Kombinationen - Wahrscheinlichkeit

Problemlösen Kombinationen - Wahrscheinlichkeit Problemlösen Kombinationen - Wahrscheinlichkeit Zusammengestellt aus dem Mathebuch der Bezirksschule Brugg Anzahl möglicher Anordnungen bei 3 Elementen Wie viele mögliche Anordnungen lassen sich aus drei

Mehr

Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg

Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg Pflichtteilaufgaben zu Stochastik (Pfadregeln, Erwartungswert, Binomialverteilung) Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com September 016

Mehr

Eignungstest Mathematik

Eignungstest Mathematik Eignungstest Mathematik Klasse 3 Name: Datum: Von Punkten hast du Punkte erreicht Zensur: 1. Kreuze jeweils die richtigen se (Umrechnungen) an! 2. Ergänze jeweils! Gib jeweils unbedingt die entsprechende

Mehr

Stochastik - Kapitel 2

Stochastik - Kapitel 2 Aufgaben ab Seite 7 2. Häufigkeiten, Wahrscheinlichkeiten und Laplace-Experimente 2.1 Die absolute und die relative Häufigkeit 1. Beispiel: Ich werfe mal einen Würfel und möchte herausfinden, wie oft jeweils

Mehr

Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel "GlücksPasch" an.

Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel GlücksPasch an. Aufgabe 4 Glückspasch" (16 Punkte) Auf dem Schulfest bietet Peter als Spielleiter das Glücksspiel "GlücksPasch" an. Spielregeln: Einsatz 1. Der Mitspieler würfelt mit 2 Oktaederwürfeln. Fällt ein Pasch,

Mehr

Lösungen Zufallsexperimente, Baumdiagramm, Ergebnismenge I

Lösungen Zufallsexperimente, Baumdiagramm, Ergebnismenge I R. rinkmann http://brinkmann-du.de Seite 1 23.09.2013 Lösungen Zufallsexperimente,, I en: 1 1 2 2 3 Was verstehen Sie unter einem Zufallsexperiment? Nennen Sie die wichtigsten Eigenschaften. Ein Zufallsexperiment

Mehr