Lösen einer Gleichung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Lösen einer Gleichung"

Transkript

1 Zum Lösen von Gleichungen benötigen wir: mindestens einen Term eine Definition der in Frage kommenden Lösungen (Grundmenge) Die Grundmenge G enthält all jene Zahlen, die als Lösung für eine Gleichung in Betracht kommen. Es kann sein, dass für manche Elemente der Grundmenge G in der/den Gleichung(en) vorkommende Ausdrücke nicht definiert sind. Durch Entfernen jener Elemente, für die die Gleichung(en) nicht definierte Ausdrücke enthält, wir die Grundmenge zur Definitionsmenge. Die Definitionsmenge D enthält all jene Zahlen, die als Lösung in Betracht kommen. D G Lösen einer Gleichung bedeutet, alle Elemente der Definitionsmenge D finden, die die Gleichung erfüllen. Diese Elemente werden Lösungen der Gleichung genannt und bilden zusammen die Lösungsmenge L. Die Lösungsmenge G enthält all jene Elemente der Definitionsmenge Gleichung erfüllen. L D D, die die Lösungsmethoden Probieren graphische Verfahren numerische Näherungsverfahren Äquivalenzumformungen Lineare Gleichungen vom Typ ax b = 0 Definition: Eine Gleichung der Bauart a x b = 0, a, b R, a 0 heißt lineare Gleichung mit einer Variablen x (mit einer Unbekannten x). a x heißt lineares Glied

2 b heißt konstantes Glied Für lineare Gleichungen gilt der Satz: Satz: In R besitzt jede lineare Gleichung a x b = 0, a, b R, a 0 genau eine Lösung b a. Man kann eine solche Gleichung auch graphisch näherungsweise lösen. Dazu betrachtet man die Funktion f x = ax b. Der Graph von f ist eine Gerade mit der Steigung a und geht durch den Punkt 0 b. Die Lösung b dieser Gleichung ist die a Nullstelle von f x. Viele Gleichungen lassen sich durch Umformen auf Gleichungen des Typs ax b = 0 zurückführen. Für den Fall a = 0 erhält man zwei Sonderfälle: 1.) a = 0 b 0. Die Gleichung ax b = 0 wird zu b = 0. In der Definitionsmenge gibt es kein Element x,für das diese Gleichung erfüllt ist. Die Aussage ist immer eine unwahre Aussage, die Lösungsmenge L ist damit die leere Menge. Dieser Sonderfall entspricht einer Geraden, die im Abstand b parallel zur x-achse verläuft.

3 2.) a = 0 b = 0. Die Gleichung ax b = 0 wird zu 0 = 0. Diese Gleichung ist für alle Elemente x der Grundmenge erfüllt. Die Aussage ist immer eine wahre Aussage, die Lösungsmenge L ist damit die Definitionsenge. Dieser Sonderfall entspricht einer Geraden, die identisch mit der x-achse ist. Quadratische Gleichungen mit einer Variablen Eine Gleichung der Bauart ax 2 bx c = 0, a, b, c R ; a 0 heißt quadratische Gleichung mit der Variablen x. Der Ausdruck ax 2 heißt quadratisches Glied, bx heißt lineares Glied, c heißt konstantes Glied. Gleichungen vom Typ ax 2 c = 0 ax 2 c = 0 c ax 2 = c a x 2 = c a x 1,2 = ± c a Gleichungen vom Typ ax 2 bx = 0

4 ax 2 bx = 0 x ax b = 0 x = 0 ax b = 0 x 1 = 0 x 2 = b a Gleichungen vom Typ ax 2 bx c = 0 ax 2 bx c = 0 Ist die Normalform einer quadratischen Gleichung. Jede Normalform kann durch Division mit a auf die normierte Form gebracht werden: ax 2 bx c = 0 a x 2 b a x c a = 0 p = b a q = c a x 2 px q = 0 Eine quadratischen Gleichung der Form x 2 px q = 0 kann mit der Methode des Ergänzens auf ein vollständiges Quadrat gelöst werden. Beispiel: x 2 10x 24 = 0 x 2 10x = 0 Ergänzung x 2 10x 25 1 = 0 Binomialform x = 0 1 x 5 2 = 1 x 5 = 1 5 x = 5 ± 1 5 x 1 = 6 x 2 = 4 Die Schwierigkeit dieser Methode besteht im Finden einer geeigneten Zahl für die quadratische Ergänzung. Dieses Problem kann gelöst werden, wenn wir dieses Verfahren

5 allgemein durchrechnen: x 2 px q = 0 q x 2 px = q x 2 px p 2 2 p 2 2 x 2 px p 2 quadr.ergänzung 2 2 p 2 Binomialform x p 2 2 x p 2 2 x p 2 p 2 2 = q = q = q p 2 2 = p 2 2 q = ± p 2 2 q p 2 x 1,2 = p 2 ± p 2 2 q x 2 px q = 0 x 1,2 = p 2 ± p 2 2 q Diskriminante Auch für die allgemeine Form (Normalform) der quadratischen Gleichung ax 2 bx c = 0 kann mit Hilfe der Methode der Ergänzung auf ein vollständiges Quadrat eine Lösungsformel gefunden werden:

6 ax 2 bx c = 0 c ax 2 bx = c ax 2 bx b2 4a b2 4a quadr. Ergänzung ax 2 bx b2 4a b2 4a Binomialform a x a x a x 1,2 b 4a b 4a b 4a 2 b2 2 4a = c = c = c b2 4a = b2 4a c = ± b2 4a c b 4a a x 1,2 = b 4a ± b2 4a c x 1,2 = b 4a ± b 2 2 a 4a 4ac = 2 4 = b 2a ± b2 4ac = 4 x 1,2 = b 2a ± b2 4ac 2a ax 2 bx c = 0 x 1,2 = b ± b2 4ac 2a D = 4acDiskriminante Sowohl für die Normalform als auch die normierte Form der quadratischen Gleichung ist die Anzahl der Lösungen durch die Diskriminante bestimmt: D 0 zwei Lösungen D = 0 eine Lösung D 0 keine Lösung

7 Man kann eine solche Gleichung auch graphisch näherungsweise lösen. Dazu betrachtet man die Funktion f x = ax 2 bx c. Der Graph von f ist eine Parabel deren Achse parallel zur y- Achse verläuft. Die Lösungen dieser Gleichung sind die Nullstellen von f x. Der Fall, dass die Diskriminante D 0 ist, entspricht einer Parabel, die entweder vollständig ober/ oder vollständig unterhalb der x-achse verläuft. Ist die Diskriminante D = 0, dann berührt der Graph die x-achse in einem Punkt. Der Fall, dass die Diskriminante D 0 ist, bedeutet, dass die Parabel sowohl unterhalb als auch oberhalb der x-achse verläuft. Es gibt dadurch zwei Nullstellen. Die Satzgruppe von VIETA Produktgleichungen Wir setzten x 1 = p 2 D, x 2 = p 2 D mit D = p2 4 q 0 und berechnen das folgende Produkt: x x 1 x x 2 = = x 2 x 1 x x 2 x x 1 x 2 = = x 2 x 1 x 2 x x 1 x 2 = = x 2 p 2 D p 2 D x p 2 D p 2 D = Binomialform a b a b = x 2 p x p2 4 D = = x 2 p x p2 4 p2 4 q = = x 2 p x q Mit obiger Termumformung Gleichungen gezeigt: haben wir die Satzgruppe von VIETA für quadratische Satz:

8 Hat die Gleichung x 2 px q = 0 in R zwei Lösungen oder eine Doppellösung, so gilt: 1. x 1 x 2 = p 2. x 1 x 2 = q 3. x x 1 x x 2 = x 2 px q : Zerlegung des Gleichungsterms in ein Produkt aus zwei Linearfaktoren Lineare Gleichungssysteme mit zwei Variablen Definition: Eine Gleichung der Bauart ax by = c, a, b, c R, a, bnicht zugleich 0 heißt lineare Gleichung mit zwei Variablen x und y. Im Falle c = 0 heißt die Gleichung homogen, im Fall c 0 inhomogen. Lineare Gleichungen mit zwei Variablen können als implizite Darstellung eines linearen Zusammenhanges zwischen x und y betrachtet werden. Die Gleichung ax by = c lässt sich zu y = a b x c b umformen. Der Graph dieser Gleichung ist eine Gerade mit der Steigung k = a b, die durch den Punkt 0 c b geht. Definition: Ein lineares Gleichungssystem in zwei Unbekannten hat die Form: x y = c x y = c Definition: ein Zahlenpaar x y heißt Lösung des Gleichungssystems, wenn die reellen Zahlen x und y beide Gleichungen des Gleichungssystems erfüllen. Graphisches Lösen eines Gleichungssystems mit zwei Variablen

9 Die Lösungsmenge eines linearen Gleichungssystems besteht aus allen Zahlenpaaren x y, die sowohl die erste als auch die zweite Gleichung des Gleichungssystems erfüllen. All jene Zahlenpaare, die die erste Gleichung erfüllen, liegen auf dem Graphen g 1 der Funktion der ersten Gleichung. Im Falle linearer Gleichungen ist dieser Graph ist eine Gerade. Entsprechend liegen alle Zahlenpaare, die die zweite Gleichung erfüllen, auf dem Graphen g 2 der Funktion für die zweite Gleichung. Die Graphen g 1 und g 2 haben die Funktionsgleichungen: g 1 : y = x c 1 g 2 : y = x c 2 Die Lösungsmenge des Gleichungssystems wird also durch all jene Zahlenpaare gebildet, die sowohl auf dem Graphen g 1 der ersten, als auch auf dem Graphen g 2 der zweiten Funktion liegen. Die Lösungsmenge wird also durch den Schnittpunkt S der beiden Graphen gebildet. Je nach Verlauf der Graphen ergeben sich die folgenden Fälle: Hauptfall Sonderfälle k 1 k 2 eindeutig lösbar k 1 = k 2 = d 1 d 2 c 1 c 2 g 1 g 2 unlösbar k 1 = k 2 = d 1 = d 2 c 1 c 2 = g 1 g 2 mehrdeutig lösbar

10 Algebraisches Lösen linearer Gleichungssysteme mit zwei Variablen Das Komparationsverfahren (Gleichsetzungsverfahren) Beim Gleichsetzungsverfahren werden zu den Gleichungen des Gleichungssystem die Gleichungen der Funktionsgraphen wie folgt bestimmt: x y = c 1 g 1 : y = x c 1 x y = c 2 g 2 : y = x c 2 Im nächsten Schritt werden die beiden Graphen g 1 und g 2 miteinander geschnitten, d.h. wir berechnen x c 1 = x c 2 Löst man diese Gleichung nach x auf, erhält man:

11 x c 1 = x c 2 x x c 1 = c 2 c 1 x = c 2 c 1 x = b c b c b 2 x = c 2 c 1 x = c 2 c 1 Den Wert für die y-koordinate erhält man, indem man die x-koordinate in eine fer beiden Funktionsgleichungen g 1 oder g 2 einsetzt. Beispiel: I : 4x 2y = 24 II : 7x y = 33 Durch Umformung der Gleichungen erhalten wir: I : y = 2x 12 II : y = 7x 33 Diese beiden Gleichungen können nun gleich gesetzt werden: 2x 12 = 7x 33 7x 12 9x = 45 9 x = 5 Aus Gleichung I erhalten wir dann für y: y = 2x 12 = = = = 2 Die Lösungsmenge lautet damit: L = {5 2}

12 Das Substitutionssverfahren (Einsetzungsverfahren) Beim Substitutionssverfahren wird, kurz gesagt, Gleiches durch Gleiches ersetzt. Dazu wird aus einer der beiden Gleichungen eine der Variablen x oder y explizit ausgerechnet. Der so erhaltene Ausdruck wird dann in die zweite Gleichung eingesetzt. x y = c 1 {y = x c 1 x = y c 1 Beispiel: I : 4x 2y = 24 II : 7x y = 33 Durch Umformung der Gleichung I erhalten wir: I : y = 2x 12 Wir setzen nun in Gleichung II für y ein und erhalten: 7x y = 33 7x 2x 12 = 33 = y 9x 12 = x = 45 9 x = 5 Aus Gleichung I erhalten wir dann für y : y = 2x 12 = = = = 2 Die Lösungsmenge lautet damit: L = {5 2}

13 Das Eliminationssverfahren (GAUSS'sches Eliminationssverfahren) Gleichung I wird mit -2 multipliziert. Damit hat die Variable y in beiden Gleichungen den selben Koeffizienten, allerdings mit unterschiedlichem Vorzeichen. I : 4x 2y = 24 II : 7x y = 33 2 Durch Addition der beiden Gleichungen erhalten wir eine lineare Gleichung mit einer Variablen I : 4x 2y = 24 { II : 14x 2y = 66 Die lineare Gleichung wird nach x aufgelöst y erhält man durch Einsetzen in Gleichung oder II I 18x = x = 5 4x 2y = y = y = y = 4 2 y = 2 Diese Methode lässt sich wie folgt verallgemeinern: x y = c 1 x y = c 2 x y = c 1 x y = c 2 x = c 1 c 2 x = c 1 c 2

14 x y = c 1 x y = c 2 x y = c 1 x y = c 2 y = c 1 c 2 y = c 1 c 2 Die Lösungsmenge lautet damit: L = { c 1 c 2 c 1 c 2 2} b

Die gleiche Lösung erhält man durch Äquivalenzumformung:

Die gleiche Lösung erhält man durch Äquivalenzumformung: R. Brinkmann http://brinkmann-du.de Seite 3..0 Quadratische Gleichungen Reinquadratische Gleichung Lösen Sie die Gleichung x = 5 Durch probieren erhält man die Lösung: x = 5 oder x = 5 Denn x = 5 = 5 oder

Mehr

f : x y = mx + t Der Graph einer linearen Funktion ist eine Gerade, welche die y-achse im Punkt S schneidet. = m 2 x 2 m x 1

f : x y = mx + t Der Graph einer linearen Funktion ist eine Gerade, welche die y-achse im Punkt S schneidet. = m 2 x 2 m x 1 III. Funktionen und Gleichungen ================================================================== 3.1. Lineare Funktionen Eine Funktion mit der Zuordnungvorschrift f : x y = mx + t und m, t R heißt lineare

Mehr

Lineare Gleichungen mit 2 Variablen

Lineare Gleichungen mit 2 Variablen Lineare Gleichungen mit 2 Variablen Lineare Gleichungen mit 2 Variablen sind sehr eng verwandt mit linearen Funktionen. Die Funktionsgleichung einer linearen Funktion f(x) = m x+q m: Steigung, q: y Achsenabschnitt

Mehr

3 Lineare und quadratische Funktionen

3 Lineare und quadratische Funktionen 3 Lineare und quadratische Funktionen 31 Lineare Funktion Eine Funktion der Art f : mx + t, sind reelle Zahlen) x D heißt lineare Funktion (m und t Man kann die Funktionsgleichung auf zwei verschiedene

Mehr

+ 2. Bruchgleichungen

+ 2. Bruchgleichungen Bruchgleichungen Gleichungen mit einer Lösungsvariablen im Nenner eines Bruchs heißen Bruchgleichungen. Definitionsmenge: Nenner 0 Lösungsweg: 1. Multiplikation mit dem Hauptnenner 2. Äquivalenzumformungen

Mehr

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1 .1 Dr. Jürgen Roth Fachbereich 6: Abteilung Didaktik der Mathematik Elemente der Algebra . Inhaltsverzeichnis Elemente der Algebra & Argumentationsgrundlagen, Gleichungen und Gleichungssysteme Quadratische

Mehr

Lineare Gleichungssysteme mit zwei Unbekannten

Lineare Gleichungssysteme mit zwei Unbekannten Lineare Gleichungssysteme mit zwei Unbekannten Wie beginnen mit einem Beispiel: Gesucht ist die Lösung des folgenden Gleichungssystems: (I) 2x y = 4 (II) x + y = 5 Hier stehen eine Reihe von Verfahren

Mehr

4.2. Quadratische Funktionen

4.2. Quadratische Funktionen Definition: Normalform der Parabelgleichung.. Quadratische Funktionen Eine Funktion mit der Gleichung f() = a + b + c mit a R* und b,c R heißt quadratische Funktion oder ganzrationale Funktion. Grades

Mehr

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind Vorbereitungsaufgaben Mathematik. Bruchrechnung.. Grundlagen: gebrochene Zahl gemeiner Bruch Zähler Nenner Dezimalbruch Ganze, Zehntel Hundertstel Tausendstel Kürzen: Zähler und Nenner durch dieselbe Zahl

Mehr

A2.3 Lineare Gleichungssysteme

A2.3 Lineare Gleichungssysteme A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen

Mehr

Einführungsphase Mathematik. Thema: Quadratische Funktionen. quadratische Gleichungen

Einführungsphase Mathematik. Thema: Quadratische Funktionen. quadratische Gleichungen Thema: Quadratische Funktionen quadratische Gleichungen Normalform einer linearen Funktion Normalform einer quadratischen Funktion Handelt es sich um quadratische Funktionen??? Ja, denn a = 3, b = 0, c

Mehr

4 Gleichungen und Ungleichungen

4 Gleichungen und Ungleichungen In diesem Kapitel werden Techniken zur Bestimmung der Lösungsmengen von Gleichungen und Ungleichungen rekapituliert. 4.1 Eindimensionale Gleichungen und Ungleichungen Eine Gleichung oder Ungleichung ohne

Mehr

4 Ganzrationale Funktionen

4 Ganzrationale Funktionen FOS, Jahrgangsstufe (technisch) 4 Ganzrationale Funktionen 4 Polynomfunktionen Eine Funktion, die man auf die Form f : x a n x n + a n x n + + a 2 x 2 + a x + a 0 mit x R bringen kann, heißt ganzrationale

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Mathematik. Wiederholungen und Übungen zum leichteren Einstieg in das Fach Mathematik in den Beruflichen Gymnasien

Mathematik. Wiederholungen und Übungen zum leichteren Einstieg in das Fach Mathematik in den Beruflichen Gymnasien Mathematik Wiederholungen und Übungen zum leichteren Einstieg in das Fach Mathematik in den Beruflichen Gymnasien I. Termumformungen II. Lineare Gleichungen und ihre Lösungsmengen III. Quadratische Gleichungen

Mehr

Quadratische Funktion Aufgaben und Lösungen

Quadratische Funktion Aufgaben und Lösungen Quadratische Funktion Aufgaben und Lösungen http://www.fersch.de Klemens Fersch 9. August 0 Inhaltsverzeichnis Graph und Eigenschaften. y = a x + b x + c...............................................

Mehr

1. Grundbegriffe:... 2. 2. Das Lösen von Gleichungen... 5. 3. Lineare Gleichungen... 8. 4. Quadratische Gleichungen... 9

1. Grundbegriffe:... 2. 2. Das Lösen von Gleichungen... 5. 3. Lineare Gleichungen... 8. 4. Quadratische Gleichungen... 9 INHALTSVERZEICHNIS 1. Grundbegriffe:... 2 2. Das Lösen von Gleichungen... 5 3. Lineare Gleichungen... 8 4. Quadratische Gleichungen... 9 5. Bruchtermgleichungen... 13 6. Wurzelgleichungen... 13 7. Gleichungen

Mehr

Didaktik der Algebra Jürgen Roth Didaktik der Algebra 4.1

Didaktik der Algebra Jürgen Roth Didaktik der Algebra 4.1 Didaktik der Algebra 4.1 Didaktik der Algebra Didaktik der Algebra 4.2 Inhalte Didaktik der Algebra 1 Ziele und Inhalte 2 Terme 3 Funktionen 4 Gleichungen Didaktik der Algebra 4.3 Didaktik der Algebra

Mehr

Kapitel I. Lineare Gleichungssysteme

Kapitel I. Lineare Gleichungssysteme Kapitel I Lineare Gleichungsssteme Lineare Gleichungen in zwei Unbestimmten Die Grundaufgabe der linearen Algebra ist das Lösen von linearen Gleichungssstemen Beispiel : Gesucht sind alle Lösungen des

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. ausmultiplizieren. Anwenden von Potenzgesetzen, Wurzelgesetzen, Logarithmengesetzen

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. ausmultiplizieren. Anwenden von Potenzgesetzen, Wurzelgesetzen, Logarithmengesetzen 3. Algebraische Grundlagen 3.1. Termumformungen Begriff Term: mathematischer Ausdruck, der aus Zahlen, Variablen, Rechenzeichen oder Klammern besteht Termumformungen dienen der Vereinfachung von komplexen

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

Relationen / Lineare Funktionen

Relationen / Lineare Funktionen Relationen / Lineare Funktionen Relationen Werden Elemente aus einer Menge X durch eine Zuordnungsvorschrift anderen Elementen aus einer Menge Y zugeordnet, so wird durch diese Zuordnungsvorschrift eine

Mehr

8 Lineare Gleichungssysteme

8 Lineare Gleichungssysteme 8 Lineare Gleichungssysteme 8.1 Begriffe Allgemeine Form eines Gleichungssystems bestehend aus drei Gleichungen und drei Unbekannten: a 11 x 1 + a 12 x 2 + a 13 x 3 = b 1 a 21 x 1 + a 22 x 2 + a 23 x 3

Mehr

Repetitionsaufgaben: Quadratische Funktionen

Repetitionsaufgaben: Quadratische Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Quadratische Funktionen Zusammengestellt von Felix Huber, KSR Lernziele: - Sie wissen, dass der Graph einer quadratischen Funktion eine Parabel ist

Mehr

Gleichungsarten. Quadratische Gleichungen

Gleichungsarten. Quadratische Gleichungen Gleichungsarten Quadratische Gleichungen Normalform: Dividiert man die allgemeine Form einer quadratischen Gleichung durch a, erhält man die Normalform der quadratischen Gleichung. x 2 +px+q=0 Lösungsformel:

Mehr

Mathematik-Vorkus WS 2015/2016 14.09.-18.09.2015. Dilay Sonel

Mathematik-Vorkus WS 2015/2016 14.09.-18.09.2015. Dilay Sonel Mathematik-Vorkus WS 2015/2016 14.09.-18.09.2015 Dilay Sonel dilay.sonel@studmail.hs-lu.de Mathe Online Kurs Hier mit seinem Namen und seiner Normalen email Adresse registrieren Auf Nachfrage biete ich

Mehr

Gleichungslehre - 1.Teil Kapitel 3 aus meinem Lehrgang ALGEBRA. Ronald Balestra CH - 7028 St. Peter

Gleichungslehre - 1.Teil Kapitel 3 aus meinem Lehrgang ALGEBRA. Ronald Balestra CH - 7028 St. Peter Gleichungslehre - 1.Teil Kapitel 3 aus meinem Lehrgang ALGEBRA Ronald Balestra CH - 7028 St. Peter www.ronaldbalestra.ch 7. März 2010 Überblick über die bisherigen ALGEBRA - Themen: 1 Mengenlehre 1.1 Die

Mehr

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel:

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel: 1. Zahlenmengen Wissensgrundlage Aufgabenbeispiele Gib die jeweils kleinstmögliche Zahlenmenge an, welche die Zahl enthält? R Q Q oder All diejenigen Zahlen, die sich nicht mehr durch Brüche darstellen

Mehr

Funktionen (linear, quadratisch)

Funktionen (linear, quadratisch) Funktionen (linear, quadratisch) 1. Definitionsbereich Bestimme den Definitionsbereich der Funktion f(x) = 16 x 2 2x + 4 2. Umkehrfunktionen Wie lauten die Umkehrfunktionen der folgenden Funktionen? (a)

Mehr

Basistext Lineare Gleichungssysteme. Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=%

Basistext Lineare Gleichungssysteme. Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=% Basistext Lineare Gleichungssysteme Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=% Mit zwei Unbekannten gibt es die allgemeine Form:! #+% '=( Gelten mehrere dieser Gleichungen

Mehr

Übungsaufgaben zur Linearen Funktion

Übungsaufgaben zur Linearen Funktion Übungsaufgaben zur Linearen Funktion Aufgabe 1 Bestimmen Sie den Schnittpunkt der beiden Geraden mit den Funktionsgleichungen f 1 (x) = 3x + 7 und f (x) = x 13! Aufgabe Bestimmen Sie den Schnittpunkt der

Mehr

= 26 60 (Hauptnenner) 15x 12x + 10x = 26 60 zusammenfassen 13x = 26 60 :13 (Variable isolieren) x =

= 26 60 (Hauptnenner) 15x 12x + 10x = 26 60 zusammenfassen 13x = 26 60 :13 (Variable isolieren) x = WERRATALSCHULE HERINGEN KOMPENSATION MATHEMATIK JG. 11 1 Lineare Gleichungen Das Lösen linearer Gleichungen ist eine wichtige Rechenfertigkeit, die immer wieder gefordert wird und für den Mathematikunterricht

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Aufgaben zu den ganzrationalen Funktionen

Aufgaben zu den ganzrationalen Funktionen Aufgaben zu den ganzrationalen Funktionen. Bestimmen Sie die Nullstellen folgender ganzrationaler Funktionen. a) y x + x 6 b) y x x + x c) y (x + )(x + x ) d) y x 5x + e) y x + x x + 0 f) y x x 5x +50x

Mehr

Lineare Gleichungen Lineare Gleichungssysteme. Lineare Algebra 5. Ein Trainingsheft für Schüler

Lineare Gleichungen Lineare Gleichungssysteme. Lineare Algebra 5. Ein Trainingsheft für Schüler Lineare Gleichungen Lineare Gleichungssysteme Lineare Algebra Ein Trainingsheft für Schüler Manuelle Lösungen ohne Rechnerhilfen und (hier) ohne Determinanten Datei Nr. 600 Stand 8. September 04 FRIEDRICH

Mehr

24.1 Überblick. 24.2 Beispiele. A. Bestimmen einer ganzrationalen Funktion. 24. Interpolation mit Ableitungen

24.1 Überblick. 24.2 Beispiele. A. Bestimmen einer ganzrationalen Funktion. 24. Interpolation mit Ableitungen 4. Interpolation mit Ableitungen 4. Interpolation mit Ableitungen 4.1 Überblick Die Interpolationsaufgabe haben wir bereits in Kapitel 7 (Band Analysis 1) untersucht. Als Auffrischung: Zu n vorgegebenen

Mehr

Zuammenfassung: Reelle Funktionen

Zuammenfassung: Reelle Funktionen Zuammenfassung: Reelle Funktionen 1 Grundlegendes a) Zahlenmengen IN = {1; 2; 3; 4;...} Natürliche Zahlen IN 0 = IN {0} Natürliche Zahlen mit 0 ZZ = {... ; 2; 1; 0; 1; 2;...} Ganze Zahlen Q = { z z ZZ,

Mehr

Gleichungslehre - 1.Teil

Gleichungslehre - 1.Teil Gleichungslehre - 1.Teil ALGEBRA Kapitel 3 MNProfil - Mittelstufe KSOe Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 4. März 2012 Überblick über die bisherigen ALGEBRA - Themen:

Mehr

1 Analysis Kurvendiskussion

1 Analysis Kurvendiskussion 1 Analysis Kurvendiskussion 1.1 Allgemeingültige Betrachtungen Die folgenden aufgezeigten Betrachtungen und Rechenschritte gelten für alle Arten von Funktionen. Funktion (z.b. Polynom n-ten Grades) Schreibweise

Mehr

In der Mathematik spricht man von Aussagen, wenn für einen Sachverhalt entschieden werden kann, ob er wahr oder falsch ist.

In der Mathematik spricht man von Aussagen, wenn für einen Sachverhalt entschieden werden kann, ob er wahr oder falsch ist. 9 9.1 Geschichte Bereits in den Keilschriften des alten Babylon, die bis 3000 v. Chr. zurückreichen, treten Aussageformen wie auf. Nach den Zahlen gehören sie zu den ersten mathematischen Errungenschaften

Mehr

Übungsaufgaben zum Aufstellen von ganzrationalen Funktionsgleichungen

Übungsaufgaben zum Aufstellen von ganzrationalen Funktionsgleichungen Übungsaufgaben zum Aufstellen von ganzrationalen Funktionsgleichungen Aufgabe : Eine zum Ursprung symmetrische ganzrationale Funktion.Ordnung hat im Ursprung die Tangente mit der Gleichung y = 7x und in

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13

Corinne Schenka Vorkurs Mathematik WiSe 2012/13 4. Lineare Gleichungssysteme Ein lineares Gleichungssystem ist ein System aus Gleichungen mit Unbekannten, die nur linear vorkommen. Dieses kann abkürzend auch in Matrizenschreibweise 1 notiert werden:

Mehr

Aufgabe 1 (LGS mit Parameter): Bestimmen Sie die Lösungsmengen des folgenden LGS in Abhängigkeit vom Parameter :

Aufgabe 1 (LGS mit Parameter): Bestimmen Sie die Lösungsmengen des folgenden LGS in Abhängigkeit vom Parameter : Mathematik MB Übungsblatt Termin Lösungen Themen: Grundlagen Vektoren und LGS ( Aufgaben) DHBW STUTTGART WS / Termin SEITE VON Aufgabe (LGS mit Parameter): Bestimmen Sie die Lösungsmengen des folgenden

Mehr

Lineare Gleichungssysteme mit zwei Variablen

Lineare Gleichungssysteme mit zwei Variablen Lineare Gleichungssysteme mit zwei Variablen Anna Heynkes 4.11.2005, Aachen Enthält eine Gleichung mehr als eine Variable, dann gibt es unendlich viele mögliche Lösungen und jede Lösung besteht aus so

Mehr

DEMO für www.mathe-cd.de

DEMO für www.mathe-cd.de (1) Rechnen mit Paaren und Tripeln () Eine Gleichung mit oder 3 Unbekannten (3) Zwei Gleichungen mit 3 Unbekannten Datei Nr. 61 011 Stand 19. Oktober 010 Friedrich W. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Rechnen mit rationalen Zahlen

Rechnen mit rationalen Zahlen Rechnen mit rationalen Zahlen a ist die Gegenzahl von a und ( a) a Subtraktionsregel: Statt eine rationale Zahl zu subtrahieren, addiert man ihre Gegenzahl. ( 8) ( ) ( 8) + ( + ) 8 + 7, (,6) 7, + ( +,6)

Mehr

Gleichungen Aufgaben und Lösungen

Gleichungen Aufgaben und Lösungen Gleichungen Aufgaben und Lösungen http://www.fersch.de Klemens Fersch 6. Januar 3 Inhaltsverzeichnis Lineare Gleichung. a x + b = c....................................................... Aufgaben....................................................

Mehr

9. Klasse TOP 10 Grundwissen 9 Lösen von Gleichungen 1

9. Klasse TOP 10 Grundwissen 9 Lösen von Gleichungen 1 Lösen von Gleichungen 1 Allgemein: Klammern auflösen, wenn sinnvoll (z. B. nicht sinnvoll, wenn im Nenner eines Bruchs bereits ein Produkt steht). Gleichartige Terme zusammenfassen (z. B. x bzw. x ausklammern).

Mehr

Pflichtteil... 2. Wahlteil Analysis 1... 6. Wahlteil Analysis 2... 9. Wahlteil Analysis 3... 13. Wahlteil Analytische Geometrie 1...

Pflichtteil... 2. Wahlteil Analysis 1... 6. Wahlteil Analysis 2... 9. Wahlteil Analysis 3... 13. Wahlteil Analytische Geometrie 1... Pflichtteil... Wahlteil Analsis 1... 6 Wahlteil Analsis... 9 Wahlteil Analsis 3... 13 Wahlteil Analtische Geometrie 1... 16 Wahlteil Analtische Geometrie... 3 Lösungen: 006 Pflichtteil Lösungen zur Prüfung

Mehr

Wertetabelle : x 0 0,5 1 2 3 4 0,5 1. y = f(x) = x 2 0 0,25 1 4 9 16 0,25 1. Graph der Funktion :

Wertetabelle : x 0 0,5 1 2 3 4 0,5 1. y = f(x) = x 2 0 0,25 1 4 9 16 0,25 1. Graph der Funktion : Quadratische Funktionen ================================================================= 1. Die Normalparabel Die Funktion f : x y = x, D = R, heißt Quadratfunktion. Wertetabelle : x 0 0,5 1 3 4 0,5 1

Mehr

Funktionsgleichung in ABC-Form Funktionsgleichung in Scheitelform Funktionsgleichung in Nullstellenform. y 2 x 2x 3 2 ausklammern. Binom.

Funktionsgleichung in ABC-Form Funktionsgleichung in Scheitelform Funktionsgleichung in Nullstellenform. y 2 x 2x 3 2 ausklammern. Binom. Parabel zeichnen Parabel zeichnen Schritt für Schrittanleitungen unter www.fraengg.ch Klasse, GeoGebra) Funktionsgleichung in ABC-Form Funktionsgleichung in Scheitelform Funktionsgleichung in Nullstellenform

Mehr

Lineare Funktionen Geraden zeichnen Lage von Geraden Geradengleichung aufstellen

Lineare Funktionen Geraden zeichnen Lage von Geraden Geradengleichung aufstellen Geradengleichungen und lineare Funktionen Lese- und Lerntext für Anfänger Lineare Funktionen Geraden zeichnen Lage von Geraden Geradengleichung aufstellen Geraden schneiden Auch über lineare Gleichungssystem

Mehr

Geradengleichungen und lineare Funktionen

Geradengleichungen und lineare Funktionen Demo für Geradengleichungen und lineare Funktionen Geraden zeichnen Geradengleichungen aufstellen Schnittpunkte berechnen Lotgeraden Neue kompakte Fassung zum Wiederholen und Lernen. Ein Lese- und Übungsheft

Mehr

F u n k t i o n e n Quadratische Funktionen

F u n k t i o n e n Quadratische Funktionen F u n k t i o n e n Quadratische Funktionen Eine Parabolantenne bündelt Radio- und Mikrowellen in einem Brennpunkt. Dort wird die Strahlung detektiert. Die Form einer Parabolantenne entsteht durch die

Mehr

Wie löst man eine Gleichung?

Wie löst man eine Gleichung? Wie löst man eine Gleichung? Eine Gleichung wird gelöst, indem man sie, ohne dass sich die Lösungsmenge ändert, Schritt für Schritt in eine sog. unmittelbar auflösbare Gleichung umwandelt. Unter einer

Mehr

UND MOSES SPRACH AUCH DIESE GEBOTE

UND MOSES SPRACH AUCH DIESE GEBOTE UND MOSES SPRACH AUCH DIESE GEBOTE 1. Gebot: Nur die DUMMEN kürzen SUMMEN! Und auch sonst läuft bei Summen und Differenzen nichts! 3x + y 3 darfst Du NICHT kürzen! x! y. Gebot: Vorsicht bei WURZELN und

Mehr

x 0 0,5 1 2 3 4 0,5 1 2. Die Quadratfunktion ist für x 0 streng monoton fallend und für x 0 streng monoton steigend.

x 0 0,5 1 2 3 4 0,5 1 2. Die Quadratfunktion ist für x 0 streng monoton fallend und für x 0 streng monoton steigend. Quadratische Funktionen ================================================================= 1. Die Normalparabel Die Funktion f : x y = x 2, D = R, heißt Quadratfunktion. Ihr Graph heißt Normalparabel. Wertetabelle

Mehr

Nullstellen reeller Polynome

Nullstellen reeller Polynome Proseminar für Lehramt 27.11.2006 Überblick Beschreibung von Lösungswegen für das Lösen reeller Polynome bis zum Grad 4 Kurze Erläuterung der Problematik der Nullstellenbestimmung bei Polynomen mit Grad

Mehr

Fit für die MSS? Wiederholungsaufgaben aus Klasse 8-10

Fit für die MSS? Wiederholungsaufgaben aus Klasse 8-10 Fit für die MSS? Wiederholungsaufgaben aus Klasse 8-0 Aufgaben Richtig Themengebiet : Terme /. Vereinfache: (9x ) + 3x xy + x ( 3xy) (x + 3) (x ) + (x + 3)² abc 5x 0 3yx x +. Kürze: a) b) c) d) 5a² b 5

Mehr

Mathematik-Dossier 7 Gleichungen (angepasst an das Lehrmittel Mathematik 3)

Mathematik-Dossier 7 Gleichungen (angepasst an das Lehrmittel Mathematik 3) Name: Mathematik-Dossier 7 Gleichungen (angepasst an das Lehrmittel Mathematik 3) Inhalt: Quadratische Gleichungen Gleichungen und Ungleichungen Lineare Gleichungssysteme Lineare Ungleichungssysteme Verwendung:

Mehr

Lineare Gleichungssysteme Basis

Lineare Gleichungssysteme Basis Lineare Gleichungssysteme Basis Graphische Lösung von Gleichungen Regel Gegeben sind zwei Gleichungen von zwei Funktionen. Die Lösung dieses Systems ist gleich dem Schnittpunkt beider Graphen. Verlaufen

Mehr

Basistext Funktionen. Eine Funktion f ordnet jedem Element x aus einer Definitionsmenge D f genau ein Wert y zu.

Basistext Funktionen. Eine Funktion f ordnet jedem Element x aus einer Definitionsmenge D f genau ein Wert y zu. Basistext Funktionen Definition Eine Funktion f ordnet jedem Element x aus einer Definitionsmenge D f genau ein Wert y zu. Man schreibt: f: x -> y mit y = f(x) Die Wertemenge einer Funktion f besteht aus

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Übersicht Lineare Gleichungssystem mit 2 Variablen 1 Lineare Gleichungssystem mit 2 Variablen Beispiele 2 Fakultät Grundlagen Folie: 2 Beispiel I Lineare

Mehr

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html

Mehr

Aufstellen der Funktionsgleichung aus gegebenen Bedingungen

Aufstellen der Funktionsgleichung aus gegebenen Bedingungen R. Brinkmann http://brinkmann-du.de Seite.0.0 Aufstellen der Funktionsgleichung aus gegebenen Bedingungen Drei unterschiedliche Punkte, die alle auf einer Parabel liegen sollen sind gegeben. Daraus soll

Mehr

Inhaltsverzeichnis 1 Rechnen 1.1 Die Zahlen 1.2 Zahlen darstellen 1.3 Addieren 1.4 Subtrahieren 1.5 Vereinfachen algebraischer Summen

Inhaltsverzeichnis 1 Rechnen 1.1 Die Zahlen 1.2 Zahlen darstellen 1.3 Addieren 1.4 Subtrahieren 1.5 Vereinfachen algebraischer Summen 6 Inhaltsverzeichnis 1 Rechnen... 11 1.1 Die Zahlen... 11 1.1.1 Zahlenmengen und ihre Darstellung... 11 1.1.2 Übersicht über weitere Zahlenmengen... 17 1.1.3 Zahlen vergleichen... 18 1.1.4 Größen, Variablen

Mehr

Aus meiner Skriptenreihe: "Keine Angst vor "

Aus meiner Skriptenreihe: Keine Angst vor Dipl.-Kaufm. Wolfgang Schmitt Aus meiner Skriptenreihe: "Keine Angst vor " Verfahren der Nullstellenberechnung der Funktionen n n 1 n 2 n i 1 f x ax a x a x... ax... a x 0 1 2 3 i n für n > 1 http://www.nf-lernen.de

Mehr

Grundwissen Mathematik JS 11

Grundwissen Mathematik JS 11 GYMNASIUM MIT SCHÜLERHEIM PEGNITZ math-naturw u neusprachl Gymnasium WILHELM-VON-HUMBOLDT-STRASSE 7 957 PEGNITZ FERNRUF 94/48 FAX 94/564 Grundwissen Mathematik JS Was versteht man allgemein unter einer

Mehr

Erzeugende Funktionen

Erzeugende Funktionen Hallo! Erzeugende Funktionen sind ein Mittel um lineare Rekursionen schneller ausrechnen zu können. Es soll die Funktion nicht mehr als Rekursion angeschrieben werden, sondern so, dass man nur n einsetzen

Mehr

Funktionen. Funktionsbegriff Einführende Beispiele und Erklärungen Grundwissen. Beispiele zu den wichtigen Funktionsarten des Mathematikunterrichts

Funktionen. Funktionsbegriff Einführende Beispiele und Erklärungen Grundwissen. Beispiele zu den wichtigen Funktionsarten des Mathematikunterrichts Funktionen Allgemeines Funktionsbegriff Einführende Beispiele und Erklärungen Grundwissen Beispiele zu den wichtigen Funktionsarten des Mathematikunterrichts Ein Lesetext Datei Nr. 800 Stand: 5. Juli 0

Mehr

Klassenarbeit zu linearen Gleichungssystemen

Klassenarbeit zu linearen Gleichungssystemen Klassenarbeit zu linearen Gleichungssystemen Aufgabe : Bestimme die Lösungsmenge der Gleichungssysteme mit Hilfe des Additionsverfahrens: x + 4y = 8 5x y = x y = x y = Aufgabe : Bestimme die Lösungsmenge

Mehr

Aufstellen von Funktionstermen

Aufstellen von Funktionstermen Aufstellen von Funktionstermen Bisher haben wir uns mit der Untersuchung von Funktionstermen beschäftigt, um Eigenschaften des Graphen zu ermitteln. Nun wollen wir die Betrachtungsweise ändern. Wir gehen

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkommen zur der Um sich schnell innerhalb der ca. 50.000 Mathematikaufgaben zu orientieren, benutzen Sie unbedingt das Lesezeichen Ihres Acrobat Readers: Das Icon finden Sie in der links stehenden

Mehr

Kreissektoren und Bogenmaß

Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius Mittelpunktswinkel : Länge des Kreisbogens gilt für einen Kreissektor mit Fläche des Kreissektors Das Bogenmaß eines Winkels ist die Länge des

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen

Mehr

Vorbereitungskurs Mathematik

Vorbereitungskurs Mathematik Vorbereitungskurs Mathematik Grundlagen für das Unterrichtsfach Mathematik für die Fachhochschulreifeprüfung Zweijährige Höhere Berufsfachschule Berufsoberschule I Duale Berufsoberschule Inhalt 0. Vorwort...

Mehr

Gleichungen und Gleichungssysteme 5. Klasse

Gleichungen und Gleichungssysteme 5. Klasse Gleichungen und Gleichungssysteme 5. Klasse Andrea Berger, Martina Graner, Nadine Pacher Inhaltlichen Grundlagen zur standardisierten schriftlichen Reifeprüfung Inhaltsbereich Algebra und Geometrie (AG)

Mehr

Lineare Funktion Aufgaben und Lösungen

Lineare Funktion Aufgaben und Lösungen Lineare Funktion Aufgaben und Lösungen http://www.fersch.de Klemens Fersch. November 0 Inhaltsverzeichnis Ursprungsgerade. y = m x...................................................... Aufgaben.................................................

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f(x) = x sin( x + ) Aufgabe : ( VP) Berechnen Sie das Integral

Mehr

Inhaltsverzeichnis Mathematik

Inhaltsverzeichnis Mathematik 1. Mengenlehre 1.1 Begriff der Menge 1.2 Beziehungen zwischen Mengen 1.3 Verknüpfungen von Mengen (Mengenoperationen) 1.4 Übungen 1.5 Übungen (alte BM-Prüfungen) 1.6 Zahlenmengen 1.7 Grundmenge (Bezugsmenge)

Mehr

GRUNDKURS MATHEMATIK. Zahlenmengen. Natürliche Zahlen. Ganze Zahlen. Gebrochene Zahlen { } Rationale Zahlen { } Irrationale Zahlen { } Reelle Zahlen

GRUNDKURS MATHEMATIK. Zahlenmengen. Natürliche Zahlen. Ganze Zahlen. Gebrochene Zahlen { } Rationale Zahlen { } Irrationale Zahlen { } Reelle Zahlen GRUNDKURS MATHEMATIK Zahlenmengen Natürliche Zahlen Ganze Zahlen : 0, 1, 2, 3, Gebrochene Zahlen { } : 0, -1, 1, - Rationale Zahlen { } : 0,,, - Irrationale Zahlen { } : 0, -, Reelle Zahlen Addition und

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichungen Ungleichungen. Lineare Gleichungen Sei die Gleichung ax = b gegeben, wobei x die Unbekannte ist a, b reelle Zahlen sind. Diese Gleichung hat als Lösung die einzige reelle Zahl x = b, falls

Mehr

Formelsammlung Mathematik 9

Formelsammlung Mathematik 9 I Lineare Funktionen... 9.) Funktionen... 9.) Proportionale Funktionen... 9.) Lineare Funktionen... 9.4) Bestimmung von linearen Funktionen:... II) Systeme linearer Gleichungen... 9.5) Lineare Gleichungen

Mehr

Lösen von linearen Gleichungssystemen mit zwei Unbekannten:

Lösen von linearen Gleichungssystemen mit zwei Unbekannten: Lösen von linearen Gleichungssystemen mit zwei Unbekannten: 1. Additions- und Subtraktionsverfahren 3x = 7y 55 + 5x 3x = 7y 55 7y 5x + 2y = 4 3 5 werden, dass die Variablen links und die Zahl rechts vom

Mehr

8. Klasse TOP 10 Grundwissen 8 Funktionen verstehen 1

8. Klasse TOP 10 Grundwissen 8 Funktionen verstehen 1 8. Klasse TOP 0 Grundwissen 8 Funktionen verstehen Wesentliches Kennzeichen einer Funktion ist: Zu jedem -Wert gehört genau ein -Wert. Meistens gibt es einen Funktionsterm (eine Formel), die angibt, wie

Mehr

Lineare Gleichungen und lineare Gleichungssysteme mit zwei Variablen. 1.1 Beispiel einer linearen Gleichung mit zwei Variablen 2

Lineare Gleichungen und lineare Gleichungssysteme mit zwei Variablen. 1.1 Beispiel einer linearen Gleichung mit zwei Variablen 2 KBWR, Duisurg Seite von 30 9..006 Lineare Gleichungen und lineare Gleichungssysteme mit zwei Varialen Inhalt: Seite. Beispiel einer linearen Gleichung mit zwei Varialen. Normalform einer linearen Gleichung

Mehr

Mathematik Serie 1. 2. Als Resultate gelten nur eindeutig gekennzeichnete Zahlen, Mengen oder Sätze.

Mathematik Serie 1. 2. Als Resultate gelten nur eindeutig gekennzeichnete Zahlen, Mengen oder Sätze. Kaufmännische Berufsmatura Kanton Zürich 006 Mathematik Serie : Lösungen Mathematik Serie Serie Lösungen Prüfungsdauer: Ma. Punktzahl: 50 Minuten 00 Punkte Allgemeine Bewertungshinweise:. Mehrfachlösungen

Mehr

Leitidee: Funktionaler Zusammenhang 1. Halbjahr 2007 Quadratische Funktionen und Gleichungen. E.Wittig 08.01.2007

Leitidee: Funktionaler Zusammenhang 1. Halbjahr 2007 Quadratische Funktionen und Gleichungen. E.Wittig 08.01.2007 Kompetenzraster Mathematik Klasse 9 Leitidee: Funktionaler Zusammenhang 1. Halbjahr 2007 Quadratische Funktionen und Gleichungen Allgemeine Kompetenzen Gleichungen und Funktionen Algebra Leitidee Funktionaler

Mehr

Brückenkurs Elementarmathematik

Brückenkurs Elementarmathematik Brückenkurs Elementarmathematik IV. Ungleichungen November 13, 2013 Inhalt 1 Ungleichungen 2 Umformungen von Ungleichungen 2.1 Äquivalenzumformungen 2.2 Addition und Multiplikation von Ungleichungen 3

Mehr

Mathematik-Dossier. Die lineare Funktion

Mathematik-Dossier. Die lineare Funktion Name: Mathematik-Dossier Die lineare Funktion Inhalt: Lineare Funktion Lösen von Gleichungssystemen und schneiden von Geraden Verwendung: Dieses Dossier dient der Repetition und Festigung innerhalb der

Mehr

Dimensionen. Mathematik. Grundkompetenzen. für die neue Reifeprüfung

Dimensionen. Mathematik. Grundkompetenzen. für die neue Reifeprüfung Dimensionen Mathematik 5 GK Grundkompetenzen für die neue Reifeprüfung Inhaltsverzeichnis Buchkapitel Inhaltsbereiche Seite Zahlen und Rechengesetze Algebra und Geometrie 3 Grundbegriffe der Algebra Funktionen

Mehr

Lösungen. fw53hj Lösungen. fw53hj. Name: Klasse: Datum:

Lösungen. fw53hj Lösungen. fw53hj. Name: Klasse: Datum: Name: Klasse: Datum: 1) Welches Zahlenpaar ist eine Lösung der linearen Gleichung mit zwei Variablen? Ordne richtig zu. 2x + y = 2 5x 2y = 11 2x + y = 10 A(2 6) A(1,2 0) A(1 5) -x 2y = 4 A(0,5 1) 5x 0,6y

Mehr

Papierfalten und Algebra

Papierfalten und Algebra Arbeitsblätter zum Thema Papierfalten und Algebra en Robert Geretschläger Graz, Österreich 009 Blatt 1 Lösen quadratischer Gleichungen mit Zirkel und Lineal AUFGABE 1 Zeige, dass die x-koordinaten der

Mehr

1.2 Gauß-Algorithmus zum Lösen linearer Gleichungssysteme

1.2 Gauß-Algorithmus zum Lösen linearer Gleichungssysteme . Gauß-Algorithmus zum Lösen linearer Gleichungssysteme. Gauß-Algorithmus zum Lösen linearer Gleichungssysteme Die Bestimmung einer Polynomfunktion zu gegebenen Eigenschaften erfordert oft das Lösen eines

Mehr

Überprüfung der 2.Ableitung

Überprüfung der 2.Ableitung Übungen zum Thema: Extrempunkte ganzrationaler Funktionen Lösungsmethode: Überprüfung der.ableitung Version: Ungeprüfte Testversion vom 8.9.7 / 1. h 1. Finde lokale Extrema der unten aufgeführten ganzrationalen

Mehr

fwg Kreissektoren und Bogenmaß Mittelpunktswinkel : Das Bogenmaß eines Winkels ist die Länge des zugehörigen Kreisbogens im Einheitskreis ( ): M 10.

fwg Kreissektoren und Bogenmaß Mittelpunktswinkel : Das Bogenmaß eines Winkels ist die Länge des zugehörigen Kreisbogens im Einheitskreis ( ): M 10. M 10.1 Kreissektoren und Bogenmaß In einem Kreis mit Radius Mittelpunktswinkel : Länge des Kreisbogens gilt für einen Kreissektor mit Fläche des Kreissektors Das Bogenmaß eines Winkels ist die Länge des

Mehr

Kurzzusammenstellung der in der Vorlesung behandelten impliziten Gleichungen und deren Ableitungen

Kurzzusammenstellung der in der Vorlesung behandelten impliziten Gleichungen und deren Ableitungen Kurzzusammenstellung der in der Vorlesung behandelten impliziten Gleichungen und deren Ableitungen Einleitung: Funktion mit einer Veränderlichen Als Einleitung haben wir folgende Funktion besprochen: y

Mehr

Die folgende Abbildung zeigt dir, wie man mit Hilfe des Brennstrahls und des Parallelstrahls das Bild bestimmen kann.

Die folgende Abbildung zeigt dir, wie man mit Hilfe des Brennstrahls und des Parallelstrahls das Bild bestimmen kann. Begleitmaterial zum Modul Bruchgleichungen Die folgende Abbildung zeigt dir, wie man mit Hilfe des Brennstrahls und des Parallelstrahls das Bild bestimmen kann.. Führe eine entsprechende Konstruktion selbst

Mehr