4 Simulation. 4.0 Vorschau. 4.1 Wachstumsprozesse Simulation

Größe: px
Ab Seite anzeigen:

Download "4 Simulation. 4.0 Vorschau. 4.1 Wachstumsprozesse. 80 4 Simulation"

Transkript

1 80 4 Simulation 4 Simulation 4.0 Vorschau Unter Simulation versteht man eine möglichst wirklichkeitsgetreue Nachbildung eines realen Geschehens. Dieses wird durch ein Modell ersetzt, das dann auf seine Eigenschaften hin untersucht wird. Und daraus kann dann wieder auf das ursprüngliche Geschehen zurück geschlossen werden. Dieses Modell kann technischer Natur sein, wie etwa ein Modell eines Autos im Windkanal um seine Strömungseigenschaften zu untersuchen. Ökonomisch günstiger aber ist es, das reale Geschehen durch ein mathematisches Modellzubeschreiben.Indiesenmathematischen Modellen lassen sich dann die Auswirkungen von Änderungen der Eingangsgrößen auf das Ergebnis studieren. So ist etwa ein Flugzeugsimulator ein Gerät, wo die Eingangsgrößen (Aktionen des Piloten, aber auch Wind, Feuer an Bord, Ausfall eines Triebwerks usw.) in Reaktionen des (Modell-)Flugzeugs umgerechnet werden. Ähnliche Simulatoren stehen in Fahrschulen, wo man ohne Gefahr für sich, die Anderen oder das Auto trainieren kann. Aus den obigen Beispielen siehst du, dass eine Simulation vor allem dort angewendet wird, wo eine Realisierung des zu untersuchenden Vorgangs zu gefährlich oder nicht möglich ist. In der Ökonometrie (Mathematische Wirtschaftswissenschaft) wird die Simulation insbesondere im Bereich der Lagerhaltung, bei Warteschlangenproblemen, bei Wartungs- und Instandsetzungsvorgängen und vor allem bei volkswirtschaftlichen Vorgängen eingesetzt. So hängt etwa die Bevölkerungszahl einer bestimmten Region von der Zahl der Geburten, der Zahl der Todesfälle, der Zahl der Immigranten und der Zahl der Emigranten ab. Diese Eingangsgrößen hängen aber wieder von der Bevölkerungszahl ab, aber auch von einander ab. Erkläre! Ein anderes Beispiel ist der Gewinn beim Verkauf einer Ware. Dieser hängt ab vom Preis, von den Produktionskosten, von Steuern und Abgaben, von den Investitionskosten, usw. Der Preisaberwiederhängt ab von der abgesetzten Menge, diese wieder usw. Ein weiteres Beispiel sind die Zinsen, die man für ein der Bank übergebenes Kapital erhält. Jene hängen von der Höhe des Kapitals ab und vom Zinssatz. Dieser aber hängt von der Höhe des Kapitals, vom Veranlagungszeitraum, vom Risiko usw. ab. Dies alles sind Beispiele für dynamische Systeme. Man kann sie durch Funktionen, Formeln, (Un-)Gleichungen und Systeme von Gleichungen beschreiben. (Mehrere Gleichungen braucht man, wenn mehrere Variable zum Beschreiben des dynamischen Systems notwendig sind.) Da solche dynamischen Systeme nicht nur in der Wirtschaft auftreten, wollen wir in den folgenden Kapiteln zeigen, wie sehr Mathematik bei allen möglichen Problemen Anwendung finden kann. 4.1 Wachstumsprozesse Beispiel A: In einer Kleinstadt hatten vor zwei Jahren 20 Personen ein Handy. Heute gibt es dort 50 Handybesitzer. Insgesamt rechnet man mit einer Obergrenze von K = 3000 Personen. Wir setzen ein diskretes Modell für logistisches Wachstum voraus. Die Formel dafür lautet: N(t +1) N(t) N(t) ( = r 1 N(t) ) K

2 4.1 Wachstumsprozesse 81 wobei wir r allerdings erst bestimmen müssen. Berechne folgende Werte: Für den Zeitraum t =0, 1, 2, 3, 4, 10, 15, 20 Jahre die Anzahl der Handybesitzer N(t) die relative Zunahme der Handybesitzer die Anzahl der Personen ohne Handy (= Restkapazität ) und berechne anschließend das Verhältnis relative Zunahme : Restkapazität! Stelle den Zusammenhang zwischen Zeit und Handy-Absatz grafisch dar! Lösung: r finden wir durch systematisches Probieren (exakter durch Intervallschachtelung), wobei wir davon ausgehen müssen, dass im 2. Jahr 50 Handybesitzer vorhanden sind. Das Ergebnis findet sich in der folgenden Tabelle: r Jahre mit Handy rel. Zunahme ohne Handy rel. Zunahme ohne Handy 0, Obergrenze , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

3 82 4 Simulation Fortsetzung von Beispiel A: Nun setzen wir kontinuierliches logistisches Wachstum voraus. Charakteristisch für diesen Wachstumsprozess ist nicht nur, dass es sich um ein gebremstes Wachstum handelt sondern auch, dass das Verhältnis relative Zunahme der Handybesitzer : relative Abnahme der Noch-nicht-Besitzer einen exponentiellen Vorgang darstellt. Die Formel für dieses Wachstum lautet: N(t) = K N(0) a t N(0) a t +(K N(0)) wobei wir a berechnen müssen. Berechne folgende Werte: Für den Zeitraum t =0, 1, 2, 3, 4, 10, 15, 20 Jahre Die Anzahl der Handybesitzer N(t) DieRestkapazität K N(t) DasVerhältnis Handybesitzer : Obergrenze DasVerhältnis Handybesitzer : Restkapazität DasVerhältnis (Handybesitzer : Restkapazität) : (Anfangszahl : Restkapazität zu Beginn) Welchen Anstieg weist das zuletzt formulierte Verhältnis Jahr für Jahr auf?

4 4.1 Wachstumsprozesse 83 Lösung: Wir gehen wie vorhin vor und finden a entweder durch Intervallschachtelung : mit Handy mit Handy a Jahr mit Handy ohne Handy Verhältnis rel. Anstieg Obergrenze ohne Handy 1, ,007 0,007 1,000 Obergrenze ,011 0,011 1,589 1, ,017 0,017 2,525 1, ,026 0,027 4,013 1, ,041 0,043 6,378 1, ,064 0,068 10,135 1, ,098 0,108 16,107 1, ,147 0,172 25,596 1, ,214 0,273 40,676 1, ,303 0,434 64,640 1, ,408 0, ,724 1, ,523 1, ,244 1, ,635 1, ,421 1, ,735 2, ,261 1, ,815 4, ,149 1, ,875 6, ,135 1, ,917 11, ,528 1, ,946 17, ,307 1, ,966 28, ,385 1, ,978 44, ,115 1, ,986 70, ,192 1, , , ,103 1,589 Aufgaben 236. Weltbevölkerungs-Wachstum (1) Im Jahr 2000 lebten 6 Mrd. Menschen auf der Erde werden es vermutlich 8,04 Mrd. sein. Man nimmt an, dass 20 Mrd. eine Obergrenze für die Weltbevölkerung darstellt. Erstelle die entsprechende Formel, indem du das logistische kontinuierliche Wachstum laut Formel aus Bsp. A voraussetzt; runde dabei a auf 4 Dezimalen! Berechne die voraussichtliche Weltbevölkerung für 2050 (in Mrd., auf 2 Dez. gerundet)! (2)Die jährliche Wachstumsrate für die Jahre betrug 1,33 %, jene für betrug 1,43 %. Setze herkömmliches exponentielles Wachstum voraus und berechne, wie viele Menschen 1990 gelebt haben! Berechne, wie viele Menschen lt. diesem Modell im Jahre 2025 leben würden! (3) Setze die folgende Formel voraus und berechne anhand der Angaben aus (1) die Konstanten a und c; runde dabei a auf 4 Dezimalen. N(t) =K(1 c a t ) mit K = Kapazitätsgrenze

5 84 4 Simulation (4) Berechne laut der Formel aus (3), wie viele Menschen nach diesem Modell 2050 die Erde bevölkern werden (in Mrd., auf 2 Dez. gerundet)! (5)Wann würde nach den verschiedenen Modellen aus (2) bzw.aus(3) die 10-Mrd- Grenze überschritten? (6) Stelle die verschiedenen Wachstums-Modelle grafisch dar! 237. Handy-Absatz (1) Ein Handy-Anbieter setzt für die Beziehung Werbeaufwand-Absatz folgende Formel voraus: A(x) =c(1 a x )+b, a, b, c > 0 wobei A(x) die Absatzmenge (= verkaufte Handys) nach Investition eines Werbebudgets x darstellt. Wie kann man anhand der obigen Formel erklären, dass A(x) steigt, wenn a<1 ist? (2) Zeige ganz allgemein, dass c + b eine Obergrenze für diesen Vorgang bildet! (3) Man geht davonaus, dasses in einer bestimmten Stadt höchstens a) b) 5000 Handybesitzer geben kann. Investiert der Handyanbieter nichts in die Werbung, so kann er a) 1000 b) 500 Handys absetzen. Investiert er hingegen a) 80 b) 90 GE (Geldeinheiten), so steigt sein Absatz auf a) 2500 b) 1200 Handys. Berechne anhand der obigen Angaben die Konstanten a und b und erstelle die entsprechende Formel für dieses Beispiel. Wie kann man erklären, dass obwohl a<1 ist trotzdem ein Wachstum vorliegt? (4) Bei welchem Werbeaufwand wäre nach obiger Formel und obigen Voraussetzungen mit einem Absatz von a) 5000 b) 2500 Handys zu rechnen? (5) Welche grafische Bedeutung kommt den Konstanten b und c zu? (Erklärung in Worten oder anhand einer ganz allgemeinen Skizze.) 238. Internet-Nutzer Im Folgenden findest du eine Tabelle der Internet-Nutzer in a) Frankreich b) England für die Jahre 1999, 2000 und Jahr Frankreich England (1) Beweise/Widerlege anhand der Tabelle, dass es sich hier um ein herkömmliches lineares Wachstum handelt! (2) Beweise/Widerlege anhand der Tabelle, dass es sich hier um ein herkömmliches exponentielles Wachstum handelt! (3) Setze ein diskretes logistisches Wachstum voraus (siehe Beispiel A), nimm an, dass die Obergrenze 1 Million (Personen) ist und berechne aus den Daten den Faktor r sowie die voraussichtliche Internet-Nutzer-Zahl (Ergebnis in Personen) für 2002! (Vorsicht: Lösung überschreitet die Obergrenze!) Simuliere das Wachstum bis ins Jahr 2010 und stelle es grafisch dar! (4) Setze ein kontinuierliches logistisches Wachstum (siehe Beispiel A) voraus, wobei sich N 0 auf das Jahr 1999 bezieht und K = 1 Million (Personen) ist! Auf Grund vorhergehender Berechnungen weiß man, dass a) a =3, 75 b) a =3, 10 ist. Simuliere das Wachstum bis ins Jahr 2010 anhand eines TPK und stelle es grafisch dar! Wann werden nach diesem Modell a) b) Personen das Internet nutzen?

6 4.1 Wachstumsprozesse Aspirin, ein bekanntes schmerzstillendes Mittel, enthält als Wirkstoff Acetylsalizylsäure, die vom Körper mit einer Halbwertszeit von 3 Stunden exponentiell abnehmend ausgeschieden wird. Angenommen, einem Patienten wird ab 6 Uhr alle a) 6 Stunden b) 8 Stunden eine Tablette von 0,5 g Wirkstoff verabreicht. Simuliere den Prozess, indem du die Menge an Wirkstoff nach 6, 12 und Stunden ausrechnest Der Luftdruck nimmt mit zunehmender Höhe exponentiell ab. Er beträgt bei 5500 m Seehöhe nur noch 50 % des Wertes auf Meeresniveau (= ca mbar). (1)Gib eine Formel an, die es ermöglicht, den Luftdruck in Abhängigkeit von der Höhe zu bestimmen! (2) Simuliere die Veränderung des Luftdrucks lt. oben entwickelter Formel, indem du anhand eines TKP den Luftdruck in 0, 500, 1000, 1500 usw. Meter Höhe berechnest! (3) Stelle die Abhängigkeit des Luftdrucks von der Höhe grafisch dar! 241. DDT (Dichlordiphenyltrichlorethan) ist ein bekanntes Schädlingsbekämpfungsmittel, dessen bedenkenloser Einsatz dazu geführt hat, dass es überall auf der Welt vorkommt, so auch durch die Nahrungskette in der Muttermilch. Eine Konzentration von 0,05 ppm (parts per million, also 10 4 %) ist zwar noch tolerabel, doch wäre es wünschenswert, wenn die Toleranzgrenze auf 0,02 ppm gesenkt werden könnte. Simuliere diesen Abbau- Prozess mittels eines TKP (0 t 100, Abstände von jeweils 10 Jahren), wenn man voraussetzt, dass ab sofort kein DDT mehr verwendet wird und die Halbwertszeit von DDT etwa 30 Jahre beträgt! 242. In einem Gefäß befindet sich heißes Wasser mit der Temperatur δ 2 = 80 C.Die Umgebung hat die Temperatur a) δ 1 =20 C b) δ 1 =30 C.DieAbkühlung auf die Temperatur δ(t) erfolgt nach dem Gesetz δ(t) =δ 1 +(δ 2 δ 1 ) e 0,05 t (δ in C, t in Minuten). Simuliere den Abkühlungsvorgang für 10, 20,... Minuten bis zu 1 Stunde! 243. Heidi erhält eine Tasse mit besonders heißem Tee (90 C) serviert. Da sie ihn gezuckert liebt, möchte sie zwei Stück Zucker hineinwerfen. Dadurch wird der Tee, vor allem durch den Lösungsvorgang, um etwa 15 Cabgekühlt. Heidi liebt eine Trinktemperatur von etwa a) 35 Cb) 30 C. Soll sie den Zucker sofort hineinwerfen oder erst abwarten, bis der Tee auf eine Temperatur von 50 Cabgekühlt ist und dann erst zuckern? Verwende die Formel sowie die Raumtemperatur aus obigem Beispiel und simuliere beide Möglichkeiten! 244. Ein Körper mit konstanter Temperatur δ 2 wird in einen Raum mit Raumtemperatur δ 1 gebracht. Ist die Raumtemperatur niedriger als die Temperatur des Körpers, so kühlt sich dieser ab. δ(t) bezeichnet die Temperatur des Körpers zum Zeitpunkt t (in Minuten nach Beginn des Vorgangs). Es gilt: Die Temperaturdifferenz [δ(t) δ 1 ]nimmt exponentiell ab. Angenommen, δ(t) δ 1 nimmt pro Minute um 1% ab. Simuliere den Abkühlungsprozess, wenn a) δ 1 =11 C b) δ 1 =20 C und δ 2 =37 C betragen! Wähle Temperaturabschnitte von jeweils 1 C und 0 t 10!

7 86 4 Simulation 245. Ein (bestimmter) Raucher führt seinem Blut täglich 0,02 mg Nikotin zu. Andererseits wird täglich 1 % des im Blut vorhandenen Nikotins abgebaut. Zu Beginn sei im Blut kein Nikotin enthalten. (1) Simuliere den Nikotingehalt am 2., 3., 4.,..., 10. Tag! (2) Weise anhand einer Grafik nach, dass der Nikotingehalt im Blut insgesamt steigt (d. h., dass der Körper mit dem Abbauen nicht nachkommt)! (3) 1 mg Nikotin im Blut ist ein gefährlicher Schwellenwert, bei dem andere, sehr schädliche chemische Prozesse einsetzen. Löse folgende Frage (Berechne die Werte für etwa ein Jahr!): Wird bei diesem Rauchverhalten jener Wert jemals erreicht oder sogar überstiegen? Wann? 246. Die Zuwachsrate der Keime in der Kuhmilch beträgtetwa1%prominute.nachwie vielen Minuten verdoppelt sich eine Anfangskeimzahl von /cm 3? 247. Jemand nimmt täglich ein bestimmtes Medikament ein. Dabei werden seinem Körper jeweils 4 mg einer bestimmten Substanz zugeführt. Während 24 Stunden werden aber 40 % dieser Substanz wieder abgebaut. Zu Beginn der Medikamenten-Kur hatte der Patient a) 0mgb) 0,5 mg dieser Substanz im Blut. (1) Simuliere die Veränderung des Gehalts dieser Substanz im Laufe vom 1. bis zum 15. Tag! (2) Weise grafisch nach, dass der Blutgehalt dieser Substanz während der Kur schrittweise steigt! (3) Wann wird der Patient mindestens 9 mg dieses Stoffes im Blut haben? (4) An welchem Tag ist die zugeführte gleich der abgebauten Menge, sodass der Substanzgehalt stabil bleibt? 248. Der jährliche Zuwachs der Holzmenge eines Schlages von m 3 beträgt 2,56 %. Die jährliche Schlägerungsrate beträgt 500 m 3 (1) Simuliere die Veränderung des Holzbestandes für 30 Jahre! (2) Stelle diese Veränderung grafisch dar! (3) Der Förster behauptet, dass bei einem solchen Schlägerungsverhalten dieser Wald nicht länger als 30 Jahre steht. Kann das stimmen? (4) Simuliere den Holzbestand für verschiedene Schlägerungsraten und beantworte durch Ausprobieren anhand des TKP die folgende Frage: Bei welcher Schlägerungsrate würde der Holzbestand konstant bleiben? Wie kann man das berechnen?

Freiherr-vom-Stein Schule Fach: Mathematik Herr Pfaffenbach. Logistisches Wachstum. am Beispiel einer Hefekultur

Freiherr-vom-Stein Schule Fach: Mathematik Herr Pfaffenbach. Logistisches Wachstum. am Beispiel einer Hefekultur Freiherr-vom-Stein Schule Fach: Mathematik Herr Pfaffenbach Logistisches Wachstum am Beispiel einer Hefekultur 16.04.2012 Inhaltsverzeichnis 1.0 Vorwort...3 2.0 Logistisches Wachstum allgemein...4 2.1

Mehr

Aufgabe b) Anfangs eine simple Aufgabe, doch nach ungefähr dem siebten Glas (64 Reiskörner) eine mühselige Arbeit.

Aufgabe b) Anfangs eine simple Aufgabe, doch nach ungefähr dem siebten Glas (64 Reiskörner) eine mühselige Arbeit. 1. Schachbrett voller Reis Wir haben uns für mehr als 1000 kg entschieden, da wir glauben, dass aufgrund des stark ansteigenden Wachstums (exponentiell!) dieses Gewicht leicht zustande kommt. Anfangs eine

Mehr

Der monatliche Tarif für ein Handy wurde als lineare Funktion der Form f(x) = k x + d modelliert (siehe Grafik).

Der monatliche Tarif für ein Handy wurde als lineare Funktion der Form f(x) = k x + d modelliert (siehe Grafik). 1) Handytarif Der monatliche Tarif für ein Handy wurde als lineare Funktion der Form f(x) = k x + d modelliert (siehe Grafik). Euro Gesprächsminuten Tragen Sie in der folgenden Tabelle ein, welche Bedeutung

Mehr

Der Schmelzpunkt von Salzen

Der Schmelzpunkt von Salzen Der Schmelzpunkt von Salzen Vergleich die Smp. der Salze (links). Welche Rolle könnten die Ionenradien bzw. die Ladung der enthaltenen Ionen spielen? Der Schmelzpunkt von Salzen ist i.d.r. sehr hoch. Er

Mehr

Angewandte Mathematik

Angewandte Mathematik Name: Klasse/Jahrgang: Standardisierte kompetenzorientierte schriftliche Reife- und Diplomprüfung BHS 11. Mai 2015 Angewandte Mathematik Teil B (Cluster 8) Hinweise zur Aufgabenbearbeitung Das vorliegende

Mehr

Ein Zugang zur Iteration (Zyklische Maschine) Zinseszinsrechnung (mit und ohne KESt) und Ratenrückzahlungsmodell

Ein Zugang zur Iteration (Zyklische Maschine) Zinseszinsrechnung (mit und ohne KESt) und Ratenrückzahlungsmodell Ein Zugang zur Iteration (Zyklische Maschine) Zinseszinsrechnung (mit und ohne KESt) und Ratenrückzahlungsmodell Walter Klinger (BG/BRG Stockerau) 1998 Themenbereich Zinseszinsrechnung und Ratenrückzahlung

Mehr

Der Gesamtdruck eines Gasgemisches ist gleich der Summe der Partialdrücke. p [mbar, hpa] = p N2 + p O2 + p Ar +...

Der Gesamtdruck eines Gasgemisches ist gleich der Summe der Partialdrücke. p [mbar, hpa] = p N2 + p O2 + p Ar +... Theorie FeucF euchtemessung Das Gesetz von v Dalton Luft ist ein Gemisch aus verschiedenen Gasen. Bei normalen Umgebungsbedingungen verhalten sich die Gase ideal, das heißt die Gasmoleküle stehen in keiner

Mehr

Musterlösung Tutorium 3 zur Vorlesung

Musterlösung Tutorium 3 zur Vorlesung PROF. DR.MICHAEL FUNKE DIPL.VW. KRISTIN GÖBEL Musterlösung Tutorium 3 zur Vorlesung Makroökonomik (WS 2010/11) Aufgabe 1: Das IS-LM-Modell in einer geschlossenen Volkswirtschaft a) Zeigen Sie unter Verwendung

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A

Name: Klasse: Datum: Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A Name: Klasse: Datum: Teil B Klassenarbeit Wachstumsvorgänge Kl10-Gruppe A 1. Gegeben ist die Exponentialfunktion y=f x = 0,5 x ; x R. (9P) a) Geben Sie die folgenden Eigenschaften dieser Funktion an! Wertebereich,

Mehr

Zugelassenes Hilfsmittel: nicht programmierbarer Taschenrechner.

Zugelassenes Hilfsmittel: nicht programmierbarer Taschenrechner. Bachelor-Kursprüfung Kapitalmarkttheorie Schwerpunktmodul Finanzmärkte 6 Kreditpunkte WS 2014/15 23.2.2015 Prof. Dr. Lutz Arnold Bitte gut leserlich ausfüllen: Name: Vorname: Matr.-nr.: Wird vom Prüfer

Mehr

Hotline: 018 05-31 31 31* www.rauch-frei.info. *Kostenpfl ichtig i.d.r. 0,14 3/Min. aus dem dt. Festnetz, abweichender Mobilfunktarif möglich.

Hotline: 018 05-31 31 31* www.rauch-frei.info. *Kostenpfl ichtig i.d.r. 0,14 3/Min. aus dem dt. Festnetz, abweichender Mobilfunktarif möglich. Vorsicht Wasserpfeife! Hotline: 018 05-31 31 31* www.rauch-frei.info *Kostenpfl ichtig i.d.r. 0,14 3/Min. aus dem dt. Festnetz, abweichender Mobilfunktarif möglich. Das Rauchen von Wasserpfeifen (Shishas)

Mehr

Es handelt sich um die Ausgabe eines Textes. Dies erfolgt mit dem Befehl print. Der Text steht in Anführungszeichen. Kommentar

Es handelt sich um die Ausgabe eines Textes. Dies erfolgt mit dem Befehl print. Der Text steht in Anführungszeichen. Kommentar Aufgaben ================================================================== I. Lineare Programme 1. Die Botschaft "Mein erstes Python-Programm" soll ausgegeben werden. Es handelt sich um die Ausgabe eines

Mehr

Abzahlungsplan und Abzahlungsgleichung Gekürzte Fassung des ETH-Leitprogramms von Jean Paul David und Moritz Adelmeyer Teil 2

Abzahlungsplan und Abzahlungsgleichung Gekürzte Fassung des ETH-Leitprogramms von Jean Paul David und Moritz Adelmeyer Teil 2 - 5 - Abzahlungsplan und Abzahlungsgleichung Gekürzte Fassung des ETH-Leitprogramms von Jean Paul David und Moritz Adelmeyer Teil 2 Frau X hat ein Angebot der Bank: Sie würde 5000 Euro erhalten und müsste

Mehr

Rekursionen (Teschl/Teschl 8.1-8.2)

Rekursionen (Teschl/Teschl 8.1-8.2) Rekursionen (Teschl/Teschl 8.1-8.2) Eine Rekursion kter Ordnung für k N ist eine Folge x 1, x 2, x 3,... deniert durch eine Rekursionsvorschrift x n = f n (x n 1,..., x n k ) für n > k, d. h. jedes Folgenglied

Mehr

Kann eine Wirtschaft auch ohne Wachstum funktionieren? Prof. Dr. Mathias Binswanger

Kann eine Wirtschaft auch ohne Wachstum funktionieren? Prof. Dr. Mathias Binswanger Kann eine Wirtschaft auch ohne Wachstum funktionieren? Prof. Dr. Mathias Binswanger Inhalt 1. Historischer Überblick 2. Traditionelle Argumente für Wachstum 3. Wie kommt es zu einem Wachstumszwang? 4.

Mehr

Gliederung zu Kapitel 7. 7. Break-Even-Analyse

Gliederung zu Kapitel 7. 7. Break-Even-Analyse Gliederung zu Kapitel 7 7. Break-Even-Analyse 7.1 Zielsetzung und Annahmen von Break-Even-Analysen 7.2 Break-Even-Analysen bei einem Produkt 7.3 Break-Even-Analysen bei mehreren Produkten 7.4 Analyse der

Mehr

3.2 Exponentialfunktion und Wachstum/Zerfall

3.2 Exponentialfunktion und Wachstum/Zerfall 3.2 Exponentialfunktion und Wachstum/Zerfall Inhaltsverzeichnis 1 Die Exponentialfunktion 2 2 Exponentielles Wachtum und exponentieller Zerfall 5 2.1 Die Schreibweise B(t)=B(0) a t................................

Mehr

Prozent ist genug die Money-Management-Formel für pfiffige Anleger

Prozent ist genug die Money-Management-Formel für pfiffige Anleger 8 Ein Prozent ist genug die Money-Management-Formel für pfiffige Anleger Der Grundsatz der erfahrensten Spekulanten ist, sich nicht mit den Aktien zu verheiraten. Wenn Ihr aber in die Schlingen der Spekulation

Mehr

Chemie Klausur #1 12.2

Chemie Klausur #1 12.2 Chemie Klausur #1 12.2 Chemisches Gleichgewicht Ein chemisches Gleichgewicht liegt bei allen Reaktionen vor, die umkehrbar sind. Dabei wird bei bestimmten Bedingungen vor allem die Synthese (Erstellung)

Mehr

Berechne 40 % von 320. Wenn 1% = 0,01 ist, dann entspricht 40 % = 40 0,01 = 0,40; also: 320 0,4 = 128 ; oder mit Dreisatzschluss:

Berechne 40 % von 320. Wenn 1% = 0,01 ist, dann entspricht 40 % = 40 0,01 = 0,40; also: 320 0,4 = 128 ; oder mit Dreisatzschluss: 2 2. Prozentrechnung Was du schon können musst: Du solltest proportionale Zusammenhänge kennen und wissen, wie man damit rechnet. Außerdem musst du Dreisatzrechnungen rasch und sicher durchführen können.

Mehr

Große Aufgabensammlung. Wird ab und zu durch neue Aufgaben erweitert. Auch: Finanzmathematik. Stand: 23. Februar 2012. Datei Nr.

Große Aufgabensammlung. Wird ab und zu durch neue Aufgaben erweitert. Auch: Finanzmathematik. Stand: 23. Februar 2012. Datei Nr. Exponentielles WACHSTUM Große Aufgabensammlung Wird ab und zu durch neue Aufgaben erweitert Auch: Finanzmathematik Stand: 23. Februar 2012 Datei Nr. 18815 Friedrich W. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Kapitel 15: Differentialgleichungen

Kapitel 15: Differentialgleichungen FernUNI Hagen WS 00/03 Kapitel 15: Differentialgleichungen Differentialgleichungen = Gleichungen die Beziehungen zwischen einer Funktion und mindestens einer ihrer Ableitungen herstellen. Kommen bei vielen

Mehr

Klausur Physikalische Chemie für TUHH (Chemie III)

Klausur Physikalische Chemie für TUHH (Chemie III) 07.03.2012 14.00 Uhr 17.00 Uhr Moritz / Pauer Klausur Physikalische Chemie für TUHH (Chemie III) Die folgende Tabelle dient Korrekturzwecken und darf vom Studenten nicht ausgefüllt werden. 1 2 3 4 5 6

Mehr

Das makroökonomische Grundmodell

Das makroökonomische Grundmodell Universität Ulm 89069 Ulm Germany Dipl.-Kfm. hilipp Buss Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Wintersemester 2013/2014

Mehr

Linearer Zusammenhang von Datenreihen

Linearer Zusammenhang von Datenreihen Linearer Zusammenhang von Datenreihen Vielen Problemen liegen (möglicherweise) lineare Zusammenhänge zugrunde: Mein Internetanbieter verlangt eine Grundgebühr und rechnet minutenweise ab Ich bestelle ein

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

Wachstums- und Zerfallsprozesse. Mathematische Beschreibung natürlicher Prozesse

Wachstums- und Zerfallsprozesse. Mathematische Beschreibung natürlicher Prozesse Wachstums- und Zerfallsprozesse Mathematische Beschreibung natürlicher Prozesse Definition Bei Wachstumsvorgängen ändern sich eine oder mehrere Wachstumsgrößen im Verlauf eines Prozesses, die Größe selbst

Mehr

Informationen zum Aufnahmetest Mathematik

Informationen zum Aufnahmetest Mathematik Erwachsenenschule Bremen Abendgymnasium und Kolleg Fachvertretung Mathematik Informationen zum Aufnahmetest Mathematik Der Aufnahmetest Mathematik ist eine schriftliche Prüfung von 60 Minuten Dauer. Alle

Mehr

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr.

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Gert Zöller Übungsklausur Hilfsmittel: Taschenrechner, Formblatt mit Formeln. Lösungswege sind stets anzugeben. Die alleinige Angabe eines

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

Preisangabenverordnung (PAngV) Bekanntmachung der Neufassung vom 28. Juli 2000 BGBl. I, S. 1244 ff. In Kraft getreten am 1.

Preisangabenverordnung (PAngV) Bekanntmachung der Neufassung vom 28. Juli 2000 BGBl. I, S. 1244 ff. In Kraft getreten am 1. Preisangabenverordnung (PAngV) Bekanntmachung der Neufassung vom 28. Juli 2000 BGBl. I, S. 44 ff. In Kraft getreten am 1. September 2000 6 Kredite (1) Bei Krediten sind als Preis die Gesamtkosten als jährlicher

Mehr

Mathematik. Hauptschulabschlussprüfung 2010. Saarland. Schriftliche Prüfung Wahlaufgaben. Name: Vorname: Klasse: Bearbeitungszeit: 40 Minuten

Mathematik. Hauptschulabschlussprüfung 2010. Saarland. Schriftliche Prüfung Wahlaufgaben. Name: Vorname: Klasse: Bearbeitungszeit: 40 Minuten Hauptschulabschlussprüfung 2010 Schriftliche Prüfung Wahlaufgaben Mathematik Saarland Ministerium für Bildung Name: Vorname: Klasse: Bearbeitungszeit: 40 Minuten Fach: Mathematik Wahlaufgaben Seite 2 von

Mehr

Mathematik-Dossier. Die lineare Funktion

Mathematik-Dossier. Die lineare Funktion Name: Mathematik-Dossier Die lineare Funktion Inhalt: Lineare Funktion Lösen von Gleichungssystemen und schneiden von Geraden Verwendung: Dieses Dossier dient der Repetition und Festigung innerhalb der

Mehr

Investition & Finanzierung. 2. Investitionsrechnung unter Sicherheit

Investition & Finanzierung. 2. Investitionsrechnung unter Sicherheit Investition & Finanzierung 2. Investitionsrechnung unter Univ.-Prof. Dr. Dr. Andreas Löffler (AL@wacc.de) 1 Unter Cashflows verstehen wir Ein- sowie Auszahlungen. Wir konzentrieren uns vollkommen auf diese

Mehr

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre

Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Grundlagen der Betriebswirtschaftslehre, Kurs 00091, KE 4, 5 und 6, SS 2008 1 Kurs 00091: Finanzierungs- und entscheidungstheoretische Grundlagen der Betriebswirtschaftslehre Lösungshinweise zur Einsendearbeit

Mehr

Mathematik-Klausur vom 16.4.2004

Mathematik-Klausur vom 16.4.2004 Mathematik-Klausur vom 16..200 Aufgabe 1 Die Wucher-Kredit GmbH verleiht Kapital zu einem nominellen Jahreszinsfuß von 20%, wobei sie die anfallenden Kreditzinsen am Ende eines jeden Vierteljahres der

Mehr

Das Solow-Modell und optimales Wachstum

Das Solow-Modell und optimales Wachstum Universität Ulm 89069 Ulm German Dipl.-WiWi Christian Peukert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Wintersemester 2010/11

Mehr

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort:

Tangentengleichung. Wie lautet die Geradengleichung für die Tangente, y T =? Antwort: Tangentengleichung Wie Sie wissen, gibt die erste Ableitung einer Funktion deren Steigung an. Betrachtet man eine fest vorgegebene Stelle, gibt f ( ) also die Steigung der Kurve und somit auch die Steigung

Mehr

UNIVERSITÄT HOHENHEIM

UNIVERSITÄT HOHENHEIM UNIVERSITÄT HOHENHEIM INSTITUT FÜR LANDWIRTSCHAFTLICHE BETRIEBSLEHRE FACHGEBIET: PRODUKTIONSTHEORIE UND RESSOURCENÖKONOMIK Prof. Dr. Stephan Dabbert Planung und Entscheidung (B 00202) Lösung Aufgabe 7

Mehr

Chemische Verbrennung

Chemische Verbrennung Christopher Rank Sommerakademie Salem 2008 Gliederung Die chemische Definition Voraussetzungen sgeschwindigkeit Exotherme Reaktion Reaktionsenthalpie Heizwert Redoxreaktionen Bohrsches Atommodell s Elektrochemie:

Mehr

Zentrale Aufnahmeprüfung für die Handelsmittelschulen des Kantons Zürich

Zentrale Aufnahmeprüfung für die Handelsmittelschulen des Kantons Zürich Zentrale Aufnahmeprüfung für die Handelsmittelschulen des Kantons Zürich Aufnahmeprüfung 2013 Für Kandidatinnen und Kandidaten mit herkömmlichem Lehrmittel Mathematik Name:... Nummer:... Dauer der Prüfung:

Mehr

DAXsignal.de Der Börsenbrief zum DAX. 10 Tipps für erfolgreiches Trading. Das kostenlose E-Book für den charttechnisch orientierten Anleger.

DAXsignal.de Der Börsenbrief zum DAX. 10 Tipps für erfolgreiches Trading. Das kostenlose E-Book für den charttechnisch orientierten Anleger. Das kostenlose E-Book für den charttechnisch orientierten Anleger. Wie Sie mit einer Trefferquote um 50% beachtliche Gewinne erzielen Tipp 1 1. Sie müssen wissen, dass Sie nichts wissen Extrem hohe Verluste

Mehr

SS 2014 Torsten Schreiber

SS 2014 Torsten Schreiber SS 2014 Torsten Schreiber 221 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Wird im Bereich der Rentenrechnung die zugehörige zu Beginn eines Jahres / einer Zeitperiode eingezahlt, so spricht

Mehr

Probleme sind Gelegenheiten zu zeigen, was man kann. Duke Ellington, amerikanischer Jazz-Musiker (1899-1974)

Probleme sind Gelegenheiten zu zeigen, was man kann. Duke Ellington, amerikanischer Jazz-Musiker (1899-1974) 1 H 2 -Atemtest (Lactose-Toleranztest) Inhalt Probleme sind Gelegenheiten zu zeigen, was man kann. Duke Ellington, amerikanischer Jazz-Musiker (1899-1974) 1 Lactose-Intoleranz: Einführung... 1 2 Wasserstoff...

Mehr

Makroökonomik [PROTOLL VOM 17.06.2015]

Makroökonomik [PROTOLL VOM 17.06.2015] Finanzmärkte Die große Rezession Durch die große Depression hat die Regierung den Banken Regulierungen vorgeschrieben, damit es nicht wieder zu einer solchen Finanzkrise kommt. Die Banken haben versucht

Mehr

1.1 Was ist Statistik und warum ist Statistik wichtig?

1.1 Was ist Statistik und warum ist Statistik wichtig? 1.1 Was ist Statistik und warum ist Statistik wichtig? Typischer Lexikon-Eintrag für den Begriff Statistik : Methode zur Untersuchung von Massenerscheinungen Versuch, den Umfang, die Gliederung oder Struktur

Mehr

Binäre abhängige Variablen

Binäre abhängige Variablen Binäre abhängige Variablen Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Einführung Oft wollen wir qualitative Variablen

Mehr

Wie viel Alkohol darf ich trinken, wenn ich noch Autofahren muss und nicht meinen Führerschein verlieren will?

Wie viel Alkohol darf ich trinken, wenn ich noch Autofahren muss und nicht meinen Führerschein verlieren will? Unterrichts- und Lernmaterialien geprüft vom PARSEL-Konsortium im Rahmen des EC FP6 geförderten Projekts: SAS6-CT-2006-042922-PARSEL Kooperierende Institutionen und Universitäten des PARSEL-Projekts: Anregungen

Mehr

Kommentierter SPSS-Ausdruck zur logistischen Regression

Kommentierter SPSS-Ausdruck zur logistischen Regression Daten: POK V AG 3 (POKV_AG3_V07.SAV) Kommentierter SPSS-Ausdruck zur logistischen Regression Fragestellung: Welchen Einfluss hat die Fachnähe und das Geschlecht auf die interpersonale Attraktion einer

Mehr

Ein neuer Beweis, dass die Newton sche Entwicklung der Potenzen des Binoms auch für gebrochene Exponenten gilt

Ein neuer Beweis, dass die Newton sche Entwicklung der Potenzen des Binoms auch für gebrochene Exponenten gilt Ein neuer Beweis, dass die Newton sche Entwicklung der Potenzen des Binoms auch für gebrochene Exponenten gilt Leonhard Euler 1 Wann immer in den Anfängen der Analysis die Potenzen des Binoms entwickelt

Mehr

Alkohol und Rauchen in der Schwangerschaft

Alkohol und Rauchen in der Schwangerschaft Alkohol und Rauchen in der alkohol in der Ihr Baby trinkt mit Wenn Sie in der Alkohol trinken, trinkt Ihr Baby mit. Es hat dann ungefähr die gleiche Menge Alkohol im Blut wie Sie selbst. Das stört die

Mehr

Für die Abhängigkeit der Freiheitsgrade von der Zahl der Komponenten und der Phasen eines Systems existiert die Gibbs sche Phasenregel: F = K P + 2

Für die Abhängigkeit der Freiheitsgrade von der Zahl der Komponenten und der Phasen eines Systems existiert die Gibbs sche Phasenregel: F = K P + 2 hasengleichgewichte Definitionen: hase: Homogener Raumbereich, innerhalb dessen sich keine physikalische Größe (z.b. Dichte, Zusammensetzung, emperatur...) sprunghaft ändert. Das Berührungsgebiet zweier

Mehr

Bsp. 12% = 100. W- Prozentwert p-prozentsatz G- Grundwert. oder Dreisatz 100% 30 : 100 15% 4,50

Bsp. 12% = 100. W- Prozentwert p-prozentsatz G- Grundwert. oder Dreisatz 100% 30 : 100 15% 4,50 Prozent- und Zinsrechnung Grundgleichung der Prozentrechnung 1 1% = 100 % = 100 12 Bs. 12% = 100 W G W- Prozentwert -Prozentsatz G- Grundwert 1. Berechnung von Prozentwerten W = G Bs. Wie viel sind 15%

Mehr

Download. Mathematik üben Klasse 8 Zinsrechnung. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert

Download. Mathematik üben Klasse 8 Zinsrechnung. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert Download Jens Conrad, Hardy Seifert Mathematik üben Klasse 8 Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 8 Differenzierte Materialien

Mehr

Wurzeln, Potenzen, reelle Zahlen

Wurzeln, Potenzen, reelle Zahlen 1. Zahlenpartner Wurzeln, Potenzen, reelle Zahlen Wie lassen sich die Zahlen auf dem oberen und unteren Notizzettel einander sinnvoll zuordnen? Quelle: Schnittpunkt 9 (1995) Variationen: (a) einfachere

Mehr

Zinseszins- und Rentenrechnung

Zinseszins- und Rentenrechnung Zinseszins- und Rentenrechnung 1 Berechnen Sie den Zeitpunkt, an dem sich das Einlagekapital K bei a) jährlicher b) monatlicher c) stetiger Verzinsung verdoppelt hat, wobei i der jährliche nominelle Zinssatz

Mehr

Langfristige Hausaufgaben Mathematik Klasse 10 Prozent- und Zinsrechnung 100 G

Langfristige Hausaufgaben Mathematik Klasse 10 Prozent- und Zinsrechnung 100 G Langfristige Hausaufgaben Mathematik Klasse 10 Prozent- und Zinsrechnung In der Prozentrechnung kommen drei Größen vor: Grundwert G Prozentsatz p Prozentwert W p W Aus der Grundgleichung der Prozentrechnung

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

Lösen von linearen Gleichungssystemen mit zwei Unbekannten:

Lösen von linearen Gleichungssystemen mit zwei Unbekannten: Lösen von linearen Gleichungssystemen mit zwei Unbekannten: 1. Additions- und Subtraktionsverfahren 3x = 7y 55 + 5x 3x = 7y 55 7y 5x + 2y = 4 3 5 werden, dass die Variablen links und die Zahl rechts vom

Mehr

Prüfungsvorbereitung: Aufgabensammlung I

Prüfungsvorbereitung: Aufgabensammlung I Thema Dokumentart Spezielle Themen: 5. Semester Vollzeit Aufgabensammlung Prüfungsvorbereitung: Aufgabensammlung I Aufgabe 1 In welcher Teilbilanz der Zahlungsbilanz werden die folgenden aussenwirtschaftlichen

Mehr

Darf ich schon rauchen?

Darf ich schon rauchen? Darf ich schon rauchen? www.rauchfrei-dabei.at RAUCHFREI D BEI Ich zieh mit! Leo Ich darf schon rauchen. In unserem Auto gibt es täglich Feinstaubalarm. In einem verrauchten Raum inhalieren Kinder in einer

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Kreditinstitute: Rückläufige Bilanzsumme und gebremstes Kreditwachstum

Kreditinstitute: Rückläufige Bilanzsumme und gebremstes Kreditwachstum Kreditinstitute: Rückläufige Bilanzsumme und gebremstes Kreditwachstum Wesentliche Entwicklungen im inländischen Finanzwesen im ersten Quartal Norbert Schuh Trotz historisch niedriger Zinssätze kam es

Mehr

Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik

Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik Aufgabenbeispiele/ Schwerpunkte zur Vorbereitung auf die Eignungsprüfung im Fach Mathematik. Bruchrechnung (ohne Taschenrechner!!!) a) Mache gleichnamig! 4 und ; und ; 4 7 b) Berechne! 8 7 8 + 4 9 8 4

Mehr

Mundell-Fleming Modell. b) Was versteht man unter der Preis- und der Mengennotierung des Wechselkurses?

Mundell-Fleming Modell. b) Was versteht man unter der Preis- und der Mengennotierung des Wechselkurses? Mundell-Fleming Modell 1. Wechselkurse a) Was ist ein Wechselkurs? b) Was versteht man unter der Preis- und der Mengennotierung des Wechselkurses? c) Wie verändert sich bei der Preisnotierung der Wechselkurs,

Mehr

Lernaufgabe: Richtigstellen von Reaktionsgleichungen

Lernaufgabe: Richtigstellen von Reaktionsgleichungen Lernaufgabe: Richtigstellen von Reaktionsgleichungen Hilfreiche Angaben: Unterrichtsfach: Chemie Schultyp: Maturitätsschulen Jahrgangsstufe, Kurs: Grundlagenfach Bearbeitungsdauer: 20 Minuten Bearbeitung,

Mehr

Die Duration von Standard-Anleihen. - Berechnungsverfahren und Einflussgrößen -

Die Duration von Standard-Anleihen. - Berechnungsverfahren und Einflussgrößen - Die Duration von Standard-Anleihen - Berechnungsverfahren und Einflussgrößen - Gliederung Einleitendes Herleitung einer Berechnungsvorschrift Berechnungsvorschriften für Standardfälle Einflussgrößen und

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Rudolf Feile Dipl. Phys. Markus Domschke Sommersemster 2010 17. 21. Mai 2010 Physik für Bauingenieure Übungsblatt 5 Gruppenübungen 1. Wärmepumpe Eine Wärmepumpe hat eine Leistungszahl

Mehr

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 20.02.2015

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 20.02.2015 HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 20.02.205 B Name, Vorname Matr. Nr. Sem. gr. Aufgabe 2 4 5 6 7 8 gesamt erreichbare P.

Mehr

Energie, mechanische Arbeit und Leistung

Energie, mechanische Arbeit und Leistung Grundwissen Physik Klasse 8 erstellt am Finsterwalder-Gymnasium Rosenheim auf Basis eines Grundwissenskatalogs des Klenze-Gymnasiums München Energie, mechanische Arbeit und Leistung Mit Energie können

Mehr

b) Bestimmen Sie den Zeitpunkt, zu dem das Medikament am stärksten abgebaut wird. 10 P

b) Bestimmen Sie den Zeitpunkt, zu dem das Medikament am stärksten abgebaut wird. 10 P Abitur 008 I. Medikation ANALYSIS Nach Einnahme eines Medikamentes kann man dessen Konzentration im Blut eines Patienten messen. Für die ersten 6 Stunden beschreibt die Funktion f mit der Gleichung f()

Mehr

HR Strategy & Human Capital Management

HR Strategy & Human Capital Management HR Strategy & Human Capital Management Prof. Dr. Christian Scholz 2013/2014 Vorlesung 5 / 26. November 2013 HR System Dynamics Quelle: Booth Sweeney, Linda, Sterman, John D., Bathtub Dynamics: Inital Results

Mehr

Repetitionsaufgaben: Lineare Funktionen

Repetitionsaufgaben: Lineare Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Funktionen Zusammengestellt von Irina Bayer-Krakvina, KSR Lernziele: - Wissen, was ein Steigungsdreieck einer Geraden ist und wie die Steigungszahl

Mehr

Helping Hands - Finanzierung. Handout-Sammlung für das Ideenpapier

Helping Hands - Finanzierung. Handout-Sammlung für das Ideenpapier Helping Hands - Finanzierung Handout-Sammlung für das Ideenpapier Gliederung 1. Investitionsplanung 2. Kapitalbedarfsplanung 3. Woher bekomme ich mein Geld? 4. Umsatz- und Kostenplanung Solltet ihr Fragen

Mehr

1 Ein Beispiel: Das Berechnen eines Schulzeugnisses

1 Ein Beispiel: Das Berechnen eines Schulzeugnisses Funktionen in Excel 1 Ein Beispiel: Das Berechnen eines Schulzeugnisses Jim hat die folgenden Noten im 1. Trimester: Fach Prüfung 1 Prüfung 2 Prüfung 3 Englisch 35 38 43 Deutsch 44 42 48 Französisch 28

Mehr

IS-LM-Modell. simultanes Gleichgewicht am Geld- und Gütermarkt. Gleichgewicht: Produktion (Einkommen) = Güternachfrage

IS-LM-Modell. simultanes Gleichgewicht am Geld- und Gütermarkt. Gleichgewicht: Produktion (Einkommen) = Güternachfrage IS-LM-Modell simultanes Gleichgewicht am Geld- und Gütermarkt Gütermarkt: Gleichgewicht: Produktion (Einkommen) = Güternachfrage Investitionen sind endogen Absatz Zinssatz I =(Y,i) mit di dy > 0, di di

Mehr

1. Grundlegende Konzepte der Informatik

1. Grundlegende Konzepte der Informatik 1. Grundlegende Konzepte der Informatik Inhalt Algorithmen Darstellung von Algorithmen mit Programmablaufplänen Beispiele für Algorithmen Aussagenlogik Zahlensysteme Kodierung Peter Sobe 1 Algorithmen

Mehr

Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker

Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker Technische Universität Braunschweig Institut für Geophysik und extraterrestrische Physik Prof. A. Hördt Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker

Mehr

Online- Tutorium. Aufgaben zum Themenfeld: Betrieblicher Umsatzprozess 01.10.2013. Diedrich

Online- Tutorium. Aufgaben zum Themenfeld: Betrieblicher Umsatzprozess 01.10.2013. Diedrich Online- Tutorium Aufgaben zum Themenfeld: Betrieblicher Umsatzprozess 01.10.2013 Aufgabe 1: Die NachwuchswissenschaEler Dr. Sheldon Cooper, Dr. Leonard Hofstadter, Dr. Rajesh Koothrappali und Howard Wolowitz

Mehr

Abschlussklausur der Vorlesung Bank I, II:

Abschlussklausur der Vorlesung Bank I, II: Seite 1 von 23 Name: Matrikelnummer: Abschlussklausur der Vorlesung Bank I, II: Bankmanagement und Theory of Banking Hinweise: o Bitte schreiben Sie Ihren Namen und Ihre Matrikelnummer auf die Klausur

Mehr

Einführung in die Betriebswirtschaftslehre

Einführung in die Betriebswirtschaftslehre Ernst-Moritz-Arndt- Rechts- und Staatswissenschaftliche Fakultät Lehrstuhl für Betriebswirtschaftslehre, insbesondere Marketing Daniel Hunold Skript zur Übung Einführung in die Betriebswirtschaftslehre

Mehr

Beispielsammlung - Matura Juni 2010

Beispielsammlung - Matura Juni 2010 1 Beispielsammlung - Matura Juni 2010 I. TRIGONOMETRIE 1) Von einem Grundstück sind bekannt: CD = 48 m; AB = 35 m; AD = 36,6 m sowie die Winkel =

Mehr

einfache IS-XM-Modell

einfache IS-XM-Modell Universität Ulm 89069 Ulm Germany Prof. Dr. Werner Smolny Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Institutsdirektor Wintersemester

Mehr

UE5: Fragen zu Geldpolitik

UE5: Fragen zu Geldpolitik UE5: Fragen zu Geldpolitik 1) Was ist das vorrangige Ziel der Europäischen Zentralbank (EZB) und welche geldpolitischen Instrumente werden eingesetzt für die Erreichung dieses Ziels? 2) a) Woraus besteht

Mehr

Derivatebewertung im Binomialmodell

Derivatebewertung im Binomialmodell Derivatebewertung im Binomialmodell Roland Stamm 27. Juni 2013 Roland Stamm 1 / 24 Agenda 1 Einleitung 2 Binomialmodell mit einer Periode 3 Binomialmodell mit mehreren Perioden 4 Kritische Würdigung und

Mehr

2. Die Darstellung von Algorithmen

2. Die Darstellung von Algorithmen 2. Die Darstellung von Algorithmen Aus den Einführungsbeispielen und Übungsaufgaben ist erkennbar, dass zur Darstellung von Algorithmen Grundelemente notwendig sind. Neben der Notation einzelner elementarer

Mehr

Kapitel 3: IS-LM mit Erwartungen. Makroökonomik I - IS-LM mit Erwartungen

Kapitel 3: IS-LM mit Erwartungen. Makroökonomik I - IS-LM mit Erwartungen Kapitel 3: IS-LM mit Erwartungen 1 Ausblick: IS-LM mit Erwartungen IS-LM mit Erwartungen Geldpolitik und die Rolle von Erwartungen Abbau des Budgetdefizits bei rationalen Erwartungen 2 3.1 IS-LM mit Erwartungen

Mehr

Bachelorprüfung. Fakultät für Bauingenieurwesen und Umweltwissenschaften Institut für Werkstoffe des Bauwesens Univ.-Prof. Dr.-Ing. K.-Ch.

Bachelorprüfung. Fakultät für Bauingenieurwesen und Umweltwissenschaften Institut für Werkstoffe des Bauwesens Univ.-Prof. Dr.-Ing. K.-Ch. Fakultät für Bauingenieurwesen und Umweltwissenschaften Institut für Werkstoffe des Bauwesens Univ.-Prof. Dr.-Ing. K.-Ch. Thienel Bachelorprüfung Prüfungsfach: Geologie, Werkstoffe und Bauchemie Prüfungsteil:

Mehr

Unterrichtsprotokoll E-Phase Physik, Charlotte-Wolff-Kolleg. Mensch und Energie

Unterrichtsprotokoll E-Phase Physik, Charlotte-Wolff-Kolleg. Mensch und Energie Unterrichtsprotokoll E-Phase Physik, Charlotte-Wolff-Kolleg Mensch und Energie Kurs: CWK/ A 41/ E-Phase /PH 2 Datum: 19.03.2012 im 2.Block Dozent: Herr Winkowski Protokollantin: Saviana Theiss Themen der

Mehr

HYGROMETRIE. Im Folgenden werden vier unterschiedliche Verfahren zur Bestimmung der relativen Luftfeuchtigkeit vorgestellt. 1.

HYGROMETRIE. Im Folgenden werden vier unterschiedliche Verfahren zur Bestimmung der relativen Luftfeuchtigkeit vorgestellt. 1. Versuch 7/1 HYGROMETRIE 04.06.2012 Blatt 1 HYGROMETRIE Im Folgenden werden vier unterschiedliche Verfahren zur Bestimmung der relativen Luftfeuchtigkeit vorgestellt. 1. Grundbegriffe Die Luftfeuchtigkeit

Mehr

Vorlesung. Informationsökonomik und die Theorie der Firma

Vorlesung. Informationsökonomik und die Theorie der Firma Vorlesung Informationsökonomik und die Theorie der Firma Ulrich Schwalbe Universität Hohenheim 5. Vorlesung 28.11.2007 Ulrich Schwalbe (Universität Hohenheim) Informationsökonomik 5. Vorlesung 28.11.2007

Mehr

1 Dein TI nspire CAS kann fast alles

1 Dein TI nspire CAS kann fast alles INHALT 1 Dein kann fast alles... 1 2 Erste Schritte... 1 2.1 Systemeinstellungen vornehmen... 1 2.2 Ein Problem... 1 3 Menü b... 3 4 Symbolisches Rechnen... 3 5 Physik... 4 6 Algebra... 5 7 Anbindung an

Mehr

Nichtrauchen. Tief durchatmen. In der Schwangerschaft

Nichtrauchen. Tief durchatmen. In der Schwangerschaft Nichtrauchen. Tief durchatmen In der Schwangerschaft Eine Schwangerschaft bietet die große Chance, mit dem Rauchen aufzuhören. Viele Frauen schaffen es, in der Schwangerschaft das Rauchen zu beenden. Sie

Mehr

Der Auto Report. Der Auto-Report. Prozent Rechnen. Autozählen Verbrauch - Abschreibung. Copyright by ILV-H

Der Auto Report. Der Auto-Report. Prozent Rechnen. Autozählen Verbrauch - Abschreibung. Copyright by ILV-H Der Auto-Report Prozent Rechnen Autozählen Verbrauch - Abschreibung 1. Thematik: Autozählung auf der Autobahn Der Staatsrat gibt im Auftrag der Umweltkommission eine Autozählung in Auftrag. Das Ziel dieser

Mehr

Alkohol. Ein Projekt von Marina Honvehlmann und Lisa Vogelsang

Alkohol. Ein Projekt von Marina Honvehlmann und Lisa Vogelsang Alkohol Ein Projekt von Marina Honvehlmann und Lisa Vogelsang Was passiert bei wie viel Promille? Ab 0,1 Promille: Ab 0,3 Promille: Ab 0,8 Promille: Die Stimmung hebt sich, das Gefühl ist angenehm. Konzentration,

Mehr

A n a l y s i s Finanzmathematik

A n a l y s i s Finanzmathematik A n a l y s i s Finanzmathematik Die Finanzmathematik ist eine Disziplin der angewandten Mathematik, die sich mit Themen aus dem Bereich von Finanzdienstleistern, wie etwa Banken oder Versicherungen, beschäftigt.

Mehr

Einführung in die Mikroökonomie Angebot und Nachfrage

Einführung in die Mikroökonomie Angebot und Nachfrage Einführung in die Mikroökonomie Angebot und Nachfrage Universität Erfurt Wintersemester 07/08 Prof. Dittrich (Universität Erfurt) Angebot und Nachfrage Winter 1 / 39 Themenübersicht Märkte Angebot und

Mehr

Sparplan schlägt Einmalanlage

Sparplan schlägt Einmalanlage Sparplan schlägt Einmalanlage Durch den Cost-Average-Effekt hat der DAX-Sparer seit Anfang des Jahrtausends die Nase deutlich vorne 29. Oktober 2013 Herausgeber: VZ VermögensZentrum GmbH Bleichstraße 52

Mehr

Eine Übersicht zu unseren Excel-Informationen finden Sie hier: www.urs-beratung.de/toolbox.htm

Eine Übersicht zu unseren Excel-Informationen finden Sie hier: www.urs-beratung.de/toolbox.htm urs toolbox - Tipps für Excel-Anwender Excel - Thema: Finanzmathematik excel yourself Autoren: Ralf Sowa, Christian Hapke Beachten Sie unsere Hinweise und Nutzungsbedingungen. Vorgestellte Musterlösungen

Mehr