Universität Karlsruhe Fakultät für Informatik. Algorithmentechnik

Größe: px
Ab Seite anzeigen:

Download "Universität Karlsruhe Fakultät für Informatik. Algorithmentechnik"

Transkript

1 Universität Karlsruhe Fakultät für Informatik Algorithmentechnik Skript zur Vorlesung von Prof. Dorothea Wagner, Karlsruhe, Wintersemester 08/09 Stand: 9. November Skript erstellt von Robert Görke und Steffen Mecke Fakultät für Informatik Universität Karlsruhe Basierend auf den Vorlesungsnotizen von Dorothea Wagner und dem Skript der Vorlesung Algorithmen und Datenstrukturen aus Konstanz

2

3 Inhaltsverzeichnis Inhaltsverzeichnis Abbildungsverzeichnis 5 Algorithmenverzeichnis 7 0 Grundlagen 0. Worst-case- und Average-case-Laufzeit Beispiel: Worst-case-Laufzeit von Finde Maximum Beispiel: Average-case-Laufzeit von Finde Maximum Beispiel: Average-case-Laufzeit von Quicksort Untere Schranken für Laufzeiten Untere Schranke für Sortieren Untere Schranke für Berechnung der konvexen Hülle Amortisierte Analyse Beispiel von Stackoperationen Die Ganzheitsmethode Die Buchungsmethode Die Potentialmethode Divide-and-Conquer Verfahren und das Prinzip der Rekursion Ein Beispiel aus der Informatik-Grundvorlesung Rekursionsabschätzungen Die Substitutionsmethode Die Iterationsmethode Der Aufteilungs-Beschleunigungssatz (Meistermethode, Master-Theorem). Grundlegende Datenstrukturen für Operationen auf Mengen 9. Union-Find Drei Ansätze Die Laufzeit von Union-Find Bemerkungen Anwendungsbeispiele für Union-Find

4 INHALTSVERZEICHNIS.. Der Algorithmus von Kruskal für MST Das Offline-Min-Problem Äquivalenz endlicher Automaten Priority Queues oder Heaps Heapify Makeheap Prozedur Delete Prozedur Sift-Up Prozedur Insert Sortierverfahren Heapsort Alternative Bottom-Up-Heapify Aufspannende Bäume minimalen Gewichts 4. Einführung Das MST-Problem Motivation Die Färbungsmethode von Tarjan Grüne Regel Rote Regel Färbungsinvariante Der Algorithmus von Kruskal Der Algorithmus von Prim Implementation des Algorithmus von Prim Greedy Verfahren und Matroide Schnitte in Graphen und Zusammenhang 5. Schnitte minimalen Gewichts: MinCut Der Algorithmus von Stoer & Wagner Flussprobleme und Dualität 6 4. Grundlagen Problemstellung Bestimmung maximaler Flüsse ( Max Flow ) Ford-Fulkerson-Algorithmus (96) Der Algorithmus von Edmonds und Karp (97) Der Algorithmus von Goldberg und Tarjan (988) Anwendungsbeispiel: Mehrmaschinen-Scheduling Kreisbasen minimalen Gewichts 8 5. Kreisbasen Das Kreismatroid

5 INHALTSVERZEICHNIS 5. Der Algorithmus von Horton Der Algorithmus von de Pina (995) Beispiel zum Algorithmus von de Pina Korrektheit des Algorithmus von de Pina Effiziente Berechnung eines Zertifikats für MCB Lineare Programmierung 9 6. Geometrische Repräsentation von LPs Algorithmen zur Lösung von LPs Approximationsalgorithmen Approximationsalgorithmen mit relativer Gütegarantie Das allgemeine Knapsack Problem Bin Packing (Optimierungsversion) Approximationsschemata Ein PAS für Multiprocessor Scheduling Asymptotische PAS für Bin Packing Ein APAS für Bin Packing AFPAS für Bin Packing Randomisierte Algorithmen 7 8. Grundlagen der Wahrscheinlichkeitstheorie I Randomisierte MinCut-Algorithmen Ein einfacher Monte Carlo-Algorithmus für MinCut Ein effizienterer randomisierter MinCut-Algorithmus Grundlagen der Wahrscheinlichkeitstheorie II Das Maximum Satisfiability Problem Der Algorithmus Random Sat Das MaxCut-Problem Ein Randomisierter Algorithmus für MaxCut Relaxierung von IQP Parallele Algorithmen 9 9. Das PRAM Modell Komplexität von parallelen Algorithmen Die Komplexitätsklassen Parallele Basisalgorithmen Broadcast Berechnung von Summen Berechnung von Präfixsummen List Ranking

6 4 INHALTSVERZEICHNIS Binäroperationen einer partitionierten Menge mit K Prozessoren Zusammenhangskomponenten Modifikation zur Bestimmung eines MST Der Algorithmus n 9.6. Reduzierung der Prozessorenzahl auf log n 9.7 ParallelSelect Das Scheduling-Problem Parametrisierte Algorithmen Parametrisierte Komplexitätstheorie (Exkurs) Grundtechniken zur Entwicklung parametrisierter Algorithmen

7 Abbildungsverzeichnis Sortieren mit der konvexen Hülle Mengen bei Union-Find Vereinigung von Mengen bei Union-Find Tiefe eines Baumes weighted Union : Union(i, j) Pfadkompression bei Find Rang eines Knoten Deterministischer endlicher Automat A Deterministischer endlicher Automat A Deterministischer endlicher Automat A Beispiel eines Heap Beispielhafte Arbeitsweise von Heapify Ein aufspannender Baum minimalen Gewichts Beispiel eines Schnitts (S, V \ S) Ein Kreis in einem Graphen Eine Anwendung der grünen Regel Eine Anwendung der roten Regel Die Invariante der grünen Regel Unabhängige Knotenmengen sind kein Matroid Beispiel eines minimalen Schnitts Ein Beispiel für das Verschmelzen von Knoten Phase Phase Phase Phase Phase Phase Phase

8 6 ABBILDUNGSVERZEICHNIS Erster aktiver Knoten v / S Erster aktiver Knoten v S Nächster aktiver Knoten Ein Fluss und Schnitte Negativbeispiel für Ford-Fulkerson Edmonds und Karp beim Start Edmonds und Karp nach Update Flussnetzwerk mit Präfluss Beispiel zu Goldberg-Tarjan Flussnetzwerk für Mehrmaschinen-Scheduling Beispiel einer Kreisbasis, die aus einem Spannbaum gewonnen wird Elemente der Basis können stets durch ihren Schnitt mit einem anderen Basiselement ersetzt werden Elemente der Basis können stets verkleinert werden Darstellung eines Kreises der MCB durch kürzeste Wege Ein Graph zur Illustration des Algorithmus von de Pina Geometrische Darstellung eines LP Klee-Minty-Polyeder Worst-case-Beispiel zu Next Fit Worst-case-Beispiel zu First Fit Jobzuteilung beim Multiprocessor Scheduling Eine Lösung von QP (I) Runden der zweidimensionalen Lösung Independent Set, Vertex Cover und Domintating Set eines Beispiel-Graphen

9 Algorithmenverzeichnis Finde Maximum Quicksort Multipop(S, k) Iteratives Merge-Sort(S, k) Rekursives Merge-Sort(A, p, r) SlowSelect(A, i) Select(A, i) Makeset(x) (#) Find(x) (#) Union(S i, S j, S k ) (#) Find(x) (#) Union(i, j) (#) Makeset(x) (#) Union(i, j) (#) Find(x) (#) Algorithmus von Kruskal Offline-Min Äquivalenz endlicher Automaten Heapify(A, i) Makeheap (M) Delete (A, i) Sift-Up(A, i) Insert(A, x) Heapsort(A) Bottom-Up-Heapify(A, ) Färbungsmethode von Tarjan Algorithmus von Kruskal (verbal) Algorithmus von Prim (verbal) Algorithmus von Prim Greedy Methode für ein Optimierungsproblem Minschnittphase(G i, c, a) Min Schnitt(G, c, a) Max-Flow Algorithmus von Ford-Fulkerson Algorithmus von Goldberg-Tarjan Prozedur Push Prozedur Relabel MCB-Greedy-Methode Algorithmus von Horton Algorithmus von de Pina ([]) Algorithmus von de Pina algebraisch Simple MCB

10 8 ALGORITHMENVERZEICHNIS 4 MCB-Checker Greedy-Knapsack Next Fit (NF) First Fit (FF) List Scheduling Algorithmus A l für Multiprocessor Scheduling APAS für Bin Packing Random MinCut Fast Random MinCut Random MaxCut Broadcast(N) Summe(a,..., a n ) Oder(x,..., x n ) Präfixsumme(a n,..., a n ) List Ranking(n, h) Zusammenhang(G) [Chandra, Hirschberg & Sarwarte 979] MST(G) ParallelSelect(S, k; p) ParallelScheduling Vertex-Cover(G, k)

11 When I consider what people generally want in calculating, I found that it always is a number. I also observed that every number is composed of units, and that any number may be divided into units. Moreover, I found that every number which may be expressed from one to ten, surpasses the preceding by one unit: afterwards the ten is doubled or tripled just as before the units were: thus arise twenty, thirty, etc. until a hundred: then the hundred is doubled and tripled in the same manner as the units and the tens, up to a thousand;... so forth to the utmost limit of numeration. Abu Ja far Muhammad ibn Musa Al-Khwarizmi 80 (Namensgeber des Begriffs Algorithmus )

12

13 Kapitel 0 Grundlagen Der Literaturtip. Ein gutes Buch unter vielen zum Gesamtthema der Vorlesung ist []. Es enthält auch einführende Kapitel zum Algorithmusbegriff sowie zur Laufzeitanalyse von Algorithmen und zu Wachstumsraten von Funktionen (O, Ω, Θ). Ein weiteres empfehlenswertes Buch ist [7]. 0. Worst-case- und Average-case-Laufzeit Definition 0. (Worst-case-Laufzeit). Bezeichne die Anzahl Operationen, die ein Algorithmus A bei Eingabe x ausführt, mit t A (x). Die Worst-case-Laufzeit eines Algorithmus A ist: T worst A (n) := max x Eingabe, x =n t A(x) Definition 0. (Average-case-Laufzeit). Die Average-case-Laufzeit eines Algorithmus A ist: TA av (n) := {x : x ist Eingabe mit x = n} x: x =n t A (x) Dies bedeutet, TA av(n) gibt die mittlere Laufzeit bzw. den Erwartungswert für die Laufzeit bei Eingabe der Länge n an, wobei Gleichverteilung unter allen Eingaben angenommen wird. Somit gilt für die Zufallsvariable t A (x): TA av(n) = E[t A(x)]. 0.. Beispiel: Worst-case-Laufzeit von Finde Maximum Es sei A[,..., n], n ein Array der Länge n. Bestimme das Maximum der Werte A[],..., A[n]. Algorithmus : Finde Maximum Eingabe : Unsortiertes Array von n verschiedenen Zahlen A = (A[],..., A[n]) Ausgabe : Maximum aller A[i] max A[] for i to n do Wenn A[i] > max max A[i] 4

14 Grundlagen c Aufwand von Schritt c Aufwand von Schritt und bei einem Durchlauf c Aufwand von Schritt 4 Also: T worst A (n) c + (n )(c + c ) 0.. Beispiel: Average-case-Laufzeit von Finde Maximum Es sei A[,..., n] eine beliebige Permutation der Zahlen A[],..., A[n]. Alle n! Permutationen seien gleich wahrscheinlich. Somit gilt: Pr(A[] > A[]) = Pr(A[] > max(a[], A[])) =. Pr(A[n] > max(a[],..., A[n ])) = n Nun sei X j für j {,..., n} eine Zufallsvariable mit: X j = { falls A[j] Maximum in A[,..., j] 0 sonst () dann ist der Erwartungswert E[X j ] = Pr(A[j] > max(a[],..., A[j ])) = j. Für Algorithmus gilt somit: n A (n) = c + (n )c + c E T av j= X j n = c + (n )c + c E[X j ] j= n = c + (n )c + c j j= } {{ } H n Hier ist H n die harmonische Reihe, für die gilt: ln(n + ) H n ln n +. Somit gilt: T av A (n) c + (n )c + c ln n

15 0. Worst-case- und Average-case-Laufzeit Algorithmus : Quicksort Eingabe : Unsortiertes Array von r l verschiedenen Zahlen A = (A[l],..., A[r]) Ausgabe : Sortiertes Array A Wenn r l > 0 x A[l] Ordne A = (A[l,..., r]) so um, dass alle Elemente, die kleiner bzw. größer als x sind, links, respektive rechts von x in A stehen. Sei das Element x danach an Position q in A Quicksort A[l,..., q ] Quicksort A[q +,..., r] Beispiel: Average-case-Laufzeit von Quicksort Wir wollen die Average-case-Laufzeit von Quicksort (Algorithmus ) bestimmen. Im Folgenden zählen wir für die Laufzeit nur noch die Anzahl der Vergleiche, die ein Sortieralgorithmus braucht. Bemerkung 0.. Der Worst-case tritt ein, falls zum Beispiel A bereits vorsortiert ist. Dann werden im ersten Aufruf n Vergleiche, im nächsten n Vergleiche etc. gemacht. Somit folgt: TQuicksort worst (n) = n i= i = (n )n Θ(n ), wobei wir in T nur die Vergleiche zählen. Annahme: Alle n! Permutationen sind gleich wahrscheinlich. Es bezeichne s i das i-kleinste Element in A. Weiterhin seien X ij Zufallsvariablen, definiert für alle Paare i < j: X i,j = { falls s i und s j verglichen werden 0 sonst () Bemerkung 0.4. Die Elemente s i und s j werden höchstens einmal verglichen. Es gilt: Quicksort(n) = E X ij = E[X ij ] i<j i<j T av und E[X ij ] = p ij 0 ( p ij ) = p ij wobei p ij die Wahrscheinlichkeit ist, dass s i und s j verglichen werden. Beobachtung 0.5. Die Elemente s i und s j werden genau dann verglichen, wenn µ = i oder µ = j, wobei s µ = A[k], k linkeste Stelle in A, an der ein Element aus s i, s i+,..., s j steht.

16 4 Grundlagen Somit folgt: p ij = j i+ und T av Quicksort(n) = i<j = = n j i + n i= j=i+ n j i + n+( i) i= j=i++( i) n n i= j= j } {{ } H n n(h n ) n ln n (, 86n log n) n j i + ( i) = harmonische Reihe! i= n+ i j= j 0. Untere Schranken für Laufzeiten 0.. Sortieren ist in Ω(n log n) Eingabe eines Sortieralgorithmus ist ein Array A = A[,..., n]. Die Ausgabe ist das Array in sortierter Form und somit eine von n! möglichen Permutationen von A[,..., n]. Ein beliebiges Sortierverfahren, welches eine Abfolge von Vergleichen ausführt, entspricht einem Entscheidungsbaum wie folgt: A[i]<A[j] A[.] < A[.]. ja nein... mindestens n! Blätter A[.] < A[.]. Höhe mind. log n! Somit gilt für jeden Sortieralgorithmus, der auf Vergleichen von je zwei Elementen beruht ( n ) n TSort worst (n) log n! log = n (log n ) Ω(n log n) Algorithmen, die nicht nur auf dem Vergleichen von zwei Elementen beruhen, fordern in der Regel spezielle Voraussetzungen, wie zum Beispiel Bucket Sort, oder erlauben spezielle algebraische Operationen. Gegebenenfalls ist Sortieren dann in Linearzeit möglich. Es gilt übrigens auch: TSort av (n) Ω(n log n), da auch die mittlere Blatttiefe log n! ist. 0.. Untere Schranke für Berechnung der konvexen Hülle von n Punkten ist Ω(n log n) Berechnung der konvexen Hülle H(P ) der Menge P von n Punkten im R, d.h. das minimale konvexe Polygon, so dass alle Punkte aus Q im Innern oder auf dem Rand des Polygons liegen. Graham-Scan-Algorithmus in O(n log n) Jarvis-March-Algorithmus in O(nh), mit h Anzahl der Punkte auf dem Rand von H(P )

17 0. Amortisierte Analyse 5 Annahme: Es gibt einen Algorithmus A, der H(P ) in T A (n) o(n log n) berechnet. Konstruiere aus n Zahlen a,..., a n eine Punktemenge P := {(a, a ), (a, a ),..., (a n, a n)}. Die Sortierung der Zahlen a,..., a n ist dann möglich mittels Berechnung von H(P ) und Minimum a min der Zahlen a,..., a n durch Ablauf des Randes von H(P ) im Gegenuhrzeigersinn ab (a min, a min ), denn alle Punkte aus P liegen auf dem Rand von H(P ). Siehe dazu Abbildung. Also: T Sort (n) O(T A (n) + n), ein Widerspruch zu Sortieren ist in Ω(n log n) (da wir auch hier wie üblich lediglich Vergleiche zulassen und i.a. keine weiteren Voraussetzungen haben). 5 a min 5 Abbildung : Die konvexe Hülle dieser Punktemenge liefert eine Sortierung 0. Amortisierte Analyse Die amortisierte Laufzeitanalyse ist eine Analysemethode, bei der die Zeit, die benötigt wird, um eine Folge von Operationen auszuführen, über alle auszuführenden Operationen gemittelt wird. Diese Analysemethode kann angewandt werden, um zu beweisen, dass die mittleren Kosten einer Operation klein sind, wenn man über eine Folge von Operationen mittelt, obwohl eine einzelne Operation sehr aufwendig sein kann. Im Unterschied zu der Average-case -Analyse werden keine Wahrscheinlichkeitsannahmen gemacht. Analyse-Techniken für die amortisierte Analyse sind:. Ganzheitsmethode: Bestimme eine obere Schranke T (n) für die Gesamtkosten von n Operationen. Das ergibt T (n) n als die amortisierten Kosten für eine Operation.. Buchungsmethode (engl. accounting): Bestimme die amortisierten Kosten jeder Operation. Verschiedene Operationen können verschiedene Kosten haben. Es werden frühe Operationen in der betrachteten Folge höher veranschlagt und die zu hoch veranschlagten Kosten jeweils als Kredit für festgelegte Objekte gespeichert. Dieser Kredit wird dann für spätere Operationen verbraucht, deren Kosten niedriger veranschlagt werden, als sie tatsächlich sind.. Potentialmethode: Ähnlich wie bei der Buchungsmethode werden die amortisierten Kosten jeder einzelnen Operation berechnet. Dabei werden möglicherweise wieder einzelne Operationen höher veranschlagt und später andere Operationen niedriger veranschlagt. Der Kredit wird als Potentialenergie insgesamt gespeichert, anstatt einzelnen Objekten zugeordnet zu werden.

18 6 Grundlagen Beachte dabei: Der Kredit wird nur für die Analyse eingeführt. 0.. Beispiel von Stackoperationen Wir wollen die drei Methoden am Beispiel Stack mit Multipop erläutern. Betrachte dazu eine Datenstruktur mit Last in First out, einen Stack S. Ein normaler Stack umfasst zwei Operationen: Push(S, x): lege Objekt x auf Stack S Pop(S): gib oberstes Objekt vom Stack aus und entferne es vom Stack. Beide Operationen sind in Θ(). Veranschlage daher die Kosten pro Operation mit. Dann sind die Gesamtkosten einer Folge von insgesamt n Push- und Pop-Operationen in Θ(n). Betrachte nun eine weitere Operation: Multipop(S, k): gib die obersten k Objekte vom Stack aus und entferne sie vom Stack, bzw. falls der Stack weniger als k Objekte enthält, gib alle Objekte aus, bis der Stack leer ist. Eine formale Beschreibung von Multipop(S, k) zeigt Algorithmus. Algorithmus : Multipop(S, k) Eingabe : Stack, Anzahl zu entfernender Elemente Ausgabe : Die k obersten Elemente des Stack Seiteneffekte : Stack verkleinert sich um bis zu k Elemente Solange S und k 0 tue Pop(S) k k Beispiel Push(S,8) Push(S,7) Pop(S) Ausgabe: Multipop(S,) Ausgabe: 8,, Multipop(S,) Ausgabe: 9,7,4 Die Laufzeit einer Operation Multipop(S, k) ist linear in der Anzahl der ausgeführten Pop- Operationen, also O(min(s, k)), wobei s = S ist und wobei die Kosten im Worst-case betrachtet werden. Für eine Folge von n Push-, Pop- und Multipop-Operationen, angewandt auf einen zu Beginn leeren Stack, ergibt sich: Worst-case-Laufzeit einer Multipop-Operation ist O(n) Worst-case-Laufzeit einer beliebigen Stack-Operation ist O(n) Für n Stack-Operationen ergibt sich dann im Worst-case O(n ).

19 0. Amortisierte Analyse Die Ganzheitsmethode Eine einzelne Multipop-Operation kann teuer sein, d.h. sie kann Kosten n haben. Andererseits gilt: Ein Objekt kann höchstens einmal wieder einen Pop erfahren für jedes Mal, dass es einen Push erfahren hat. Bei dieser Rechnung sind die Pop-Operationen von Multipop inbegriffen. Es sind also höchstens so viele Kosten für Pop-Operationen möglich wie für Push-Operationen, d.h. höchstens n. Die Gesamtlaufzeit ist also in O(n), und damit ist der amortisierte Aufwand einer einzelnen Operation in der Folge der n Stack-Operationen in O(). 0.. Die Buchungsmethode Es werden verschiedene Gebühren für verschiedene Operationen veranschlagt. Die Gebühr pro Operation ist dann der amortisierte Aufwand der Operation. Falls der amortisierte Aufwand einer einzelnen Operation höher ist als der wirkliche Aufwand, so wird die Differenz als Kredit speziellen Objekten zugeordnet. Dieser Kredit kann später benutzt werden, um Aufwand, der höher als der amortisierte Aufwand einer Operation ist, auszugleichen. Der amortisierte Aufwand muss sorgfältig veranschlagt werden. Der Kredit darf niemals negativ sein, denn die gesamte amortisierte Laufzeit einer Folge von Operationen muss immer eine obere Schranke für die wirkliche Laufzeit sein. Tatsächlicher Aufwand bei Stack-Operationen: Definiere amortisierten Aufwand (Gebühr): Push(S, x): Pop(S): Multipop(S, k): min( S, k) Push(S, x): Pop(S): 0 Multipop(S, k): 0 Beispiel 0.7 (Tabletts in der Mensa). Wenn wir ein Tablett auf den Stack legen, bezahlen wir zwei Einheiten. Eine Einheit wird sofort verwendet, um die wirklichen Kosten der Push- Operation zu bezahlen. Die zweite Einheit bleibt auf dem Tablett liegen. Wenn das Tablett ein Pop-Operation erfährt, egal ob durch Pop oder Multipop, wird die Einheit auf dem Tablett verwendet, um die wirklichen Kosten für Pop zu bezahlen. Offensichtlich ist der Kredit niemals negativ. Bei einer Folge von n Push-, Pop- und Multipop-Operationen benötigen wir höchstens n amortisierte Gesamtkosten, da für maximal n Push-Operationen je zwei als amortisierte Kosten veranschlagt werden. Die Gesamtlaufzeit ist also in O(n) Die Potentialmethode Es wird aus zu hoch veranschlagten Kosten ein Potential aufgespart, das später verbraucht werden kann. Starte mit einer Datenstruktur D 0, auf der n Operationen ausgeführt werden. Für i =,,..., n seien c i : die tatsächlichen Kosten der i-ten Operation D i : die Datenstruktur nach der i-ten Operation (angewandt auf D i ). Definiere eine Potentialfunktion C : D i C(D i ) Potential von D i und den amortisierten Aufwand ĉ i der i-ten Operation bzgl. C als ĉ i := c i + C(D i ) C(D i ) Die amortisierten Kosten sind also die tatsächlichen Kosten plus dem Zuwachs (oder Verlust) an

20 8 Grundlagen Potential entsprechend der Operation. Das heißt: n n ĉ i = (c i + C(D i ) C(D i )) i= = i= n c i + C(D n ) C(D 0 ). i= Wenn C so definiert wird, dass C(D n ) C(D 0 ) ist, dann sind die amortisierten Kosten eine obere Schranke für die Gesamtkosten. Im allgemeinen ist nicht unbedingt im vorhinein klar, wieviele Operationen ausgeführt werden. Falls C(D i ) C(D 0 ) für alle i, so ist allerdings garantiert, dass (wie bei der Buchungsmethode) im voraus immer genug Kredit angespart wurde. Oft ist es günstig, C so zu wählen, dass C(D 0 ) = 0 ist und zu zeigen, dass C(D i ) 0 ist für alle i. Intuitiv ist klar: Falls C(D i ) C(D i ) > 0 ist, dann wird durch die amortisierten Kosten ĉ i eine überhöhte Gebühr für die i-te Operation dargestellt, d.h. dass das Potential wächst. Falls C(D i ) C(D i ) < 0 ist, so ist ĉ i zu tief veranschlagt. Beispiel: Stack mit Multipop: Definiere C als Anzahl der Objekte auf dem Stack. Dann ist C(D 0 ) = 0. Da die Anzahl der Objekte auf einem Stack nie negativ ist, gilt für alle i C(D i ) C(D 0 ). C ist also gut gewählt, da die amortisierten Gesamtkosten l i= c i + C(D l ) C(D 0 ) zu jedem Zeitpunkt l eine obere Schranke für die wirklichen Gesamtkosten sind. Betrachte den amortisierten Aufwand für die verschiedenen Stack-Operationen:. Die i-te Operation sei ein Push, auf einen Stack mit s Objekten angewandt: Daraus folgt c i = und C(D i ) C(D i ) = (s + ) s =. ĉ i = c i + C(D i ) C(D i ) = + =.. Die i-te Operation sei ein Pop, angewandt auf einen Stack mit s Objekten: Daraus folgt c i = und C(D i ) C(D i ) = s s =. ĉ i = = 0.. Die i-te Operation sei ein Multipop(S, k), auf einen Stack S mit s Objekten und k := min( S, k) angewandt: Daraus folgt c i = k und C(D i ) C(D i ) = (s k ) s = k. ĉ i = c i + C(D i ) C(D i ) = k k = 0. Also ist n i= ĉi n; die amortisierte Gesamtlaufzeit ist damit im Worst-case in O(n). Bemerkung 0.8. Ein weiteres Beispiel, an dem sich die Ideen der amortisierten Analyse gut erklären lassen, sind dynamische Tabellen: Objekte sollen in einer Tabelle abgespeichert werden, wobei Objekte eingefügt bzw. gelöscht werden können. Zu Beginn einer Folge von Operationen vom Typ Einfügen und Löschen habe die Tabelle die Größe h. Wenn eine Operation Einfügen zu einem Zeitpunkt auf die Tabelle angewandt wird, an dem die Tabelle voll ist, soll eine Tabellenexpansion vorgenommen werden, in der die Tabelle verdoppelt wird. Die Tabellenexpansion (angewandt auf die Tabelle der Größe k) habe wirkliche Kosten k. Entsprechend werde eine Tabellenkontraktion durchgeführt, in der die Tabelle halbiert wird, wenn sie nur noch sehr dünn besetzt ist, etwa höchstens zu 4. Die Tabellenkontraktion angewandt auf eine Tabelle mit k Elementen hat dann wiederum Kosten k. Wie groß ist die amortisierte Laufzeit für eine Folge von n Operationen vom Typ Einfügen bzw. Löschen?

21 0.4 Divide-and-Conquer Verfahren und das Prinzip der Rekursion Divide-and-Conquer Verfahren und das Prinzip der Rekursion Ein grundlegendes algorithmisches Prinzip besteht darin, ein Problem zu lösen, indem man es in Probleme (meist desselben Typs) kleinerer Größe oder mit kleineren Werten aufteilt, diese löst und aus den Lösungen eine Lösung für das Ausgangsproblem konstruiert. Wir werden in den angegebenen rekursiven Algorithmen oft keine explizite Abbruchbedingung angeben. Es wird angenommen, dass eine geeignete Abbruchbedingung eingebaut wird Ein Beispiel aus der Informatik-Grundvorlesung Merge-Sort ist ein Verfahren zum Sortieren einer Folge von n Werten, auf denen es eine Ordnung gibt. Merge-Sort sortiert eine Folge der Länge n, indem es zunächst halb so lange Teilfolgen sortiert und aus diesen die sortierte Folge der Länge n zusammmenmischt. Dies kann, wie im Folgenden beschrieben, auf iterative oder auf rekursive Weise durchgeführt werden. Iterativ bzw. Bottom-up Algorithmus 4 : Iteratives Merge-Sort(S, k) Sortiere zunächst Teilfolgen der Länge zwei und mische sie zu sortierten Folgen der Länge vier zusammen Mische je zwei sortierte Folgen der Länge vier zu sortierten Folgen der Länge acht zusammen u.s.w. Rekursiv Sehr oft werden Divide-and-Conquer Verfahren jedoch rekursiv angewandt. Das bedeutet: Das Verfahren ruft sich selbst wieder auf, angewandt auf Eingaben kleinerer Länge bzw. mit kleineren Werten. Algorithmus 5 : Rekursives Merge-Sort(A, p, r) Eingabe : Array A mit n Elementen, die an den Stellen A[p] bis A[r] stehen. Ausgabe : n Elemente sortiert in Ergebnisarray B. Wenn p < r gilt q p+r B Merge-Sort(A; p, q) B Merge-Sort(A; q +, r) 4 B Merge(B ; B ) 5 6 sonst B A[p] } rekursive Aufrufe Die Hauptarbeit besteht hier bei Merge-Sort (vgl. Algorithmus 5), wie auch bei den meisten Divide-and-Conquer Verfahren, im Zusammensetzen der Teillösungen, bei Merge-Sort also in Merge (Zeile 4). Merge informell: Durchlaufe A einerseits von A[p] bis A[q] und andererseits von A[q+] bis A[r] und vergleiche die Elemente jeweils paarweise. Das kleinere der Elemente wird weggeschrieben

1. Musterlösung. Problem 1: Average-case-Laufzeit vs. Worst-case-Laufzeit

1. Musterlösung. Problem 1: Average-case-Laufzeit vs. Worst-case-Laufzeit Universität Karlsruhe Algorithmentechnik Fakultät für Informatik WS 06/07 ITI Wagner Musterlösung Problem : Average-case-Laufzeit vs Worst-case-Laufzeit pt (a) Folgender Algorithmus löst das Problem der

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

Abschnitt: Algorithmendesign und Laufzeitanalyse

Abschnitt: Algorithmendesign und Laufzeitanalyse Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher

Mehr

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel 3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36

Mehr

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.

Mehr

Codierung, Codes (variabler Länge)

Codierung, Codes (variabler Länge) Codierung, Codes (variabler Länge) A = {a, b, c,...} eine endliche Menge von Nachrichten (Quellalphabet) B = {0, 1} das Kanalalphabet Eine (binäre) Codierung ist eine injektive Abbildung Φ : A B +, falls

Mehr

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert Inhalt Einführung 1. Arrays 1. Array unsortiert 2. Array sortiert 3. Heap 2. Listen 1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert 3. Bäume

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Binäre Suchbäume Einführung und Begriffe Binäre Suchbäume 2 Binäre Suchbäume Datenstruktur für dynamische Mengen

Mehr

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen Was bisher geschah abstrakter Datentyp : Signatur Σ und Axiome Φ z.b. ADT Menge zur Verwaltung (Finden, Einfügen, Entfernen) mehrerer Elemente desselben Typs Spezifikation einer Schnittstelle Konkreter

Mehr

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2 1 2 Notation für Wörter Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg w a is die Anzahl der Vorkommen von a in w Beispiel: abba

Mehr

Kostenmaße. F3 03/04 p.188/395

Kostenmaße. F3 03/04 p.188/395 Kostenmaße Bei der TM nur ein Kostenmaß: Ein Schritt (Konfigurationsübergang) kostet eine Zeiteinheit; eine Bandzelle kostet eine Platzeinheit. Bei der RAM zwei Kostenmaße: uniformes Kostenmaß: (wie oben);

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

13. Binäre Suchbäume

13. Binäre Suchbäume 1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg 19.04.2011

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg 19.04.2011 Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 19.04.2011 Überlagern von Kartenebenen Beispiel: Gegeben zwei

Mehr

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v)

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v) Ein Baum T mit Knotengraden 2, dessen Knoten Schlüssel aus einer total geordneten Menge speichern, ist ein binärer Suchbaum (BST), wenn für jeden inneren Knoten v von T die Suchbaumeigenschaft gilt: Der

Mehr

Informatik II Bäume. Beispiele. G. Zachmann Clausthal University, Germany zach@in.tu-clausthal.de. Stammbaum. Stammbaum. Stammbaum

Informatik II Bäume. Beispiele. G. Zachmann Clausthal University, Germany zach@in.tu-clausthal.de. Stammbaum. Stammbaum. Stammbaum lausthal Beispiele Stammbaum Informatik II. Zachmann lausthal University, ermany zach@in.tu-clausthal.de. Zachmann Informatik - SS 06 Stammbaum Stammbaum / Parse tree, Rekursionsbaum Parse tree, Rekursionsbaum

Mehr

Laufzeit und Komplexität

Laufzeit und Komplexität Laufzeit und Komplexität Laufzeit eines Algorithmus Benchmarking versus Analyse Abstraktion Rechenzeit, Anzahl Schritte Bester, Mittlerer, Schlechtester Fall Beispiel: Lineare Suche Komplexitätsklassen

Mehr

Vorlesung 3 MINIMALE SPANNBÄUME

Vorlesung 3 MINIMALE SPANNBÄUME Vorlesung 3 MINIMALE SPANNBÄUME 72 Aufgabe! Szenario: Sie arbeiten für eine Firma, die ein Neubaugebiet ans Netz (Wasser, Strom oder Kabel oder...) anschließt! Ziel: Alle Haushalte ans Netz bringen, dabei

Mehr

Approximationsalgorithmen: Klassiker I. Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling

Approximationsalgorithmen: Klassiker I. Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling Approximationsalgorithmen: Klassiker I Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling VO Approximationsalgorithmen WiSe 2011/12 Markus Chimani

Mehr

Suchen und Sortieren Sortieren. Heaps

Suchen und Sortieren Sortieren. Heaps Suchen und Heaps (Folie 245, Seite 63 im Skript) 3 7 21 10 17 31 49 28 14 35 24 42 38 Definition Ein Heap ist ein Binärbaum, der die Heapeigenschaft hat (Kinder sind größer als der Vater), bis auf die

Mehr

Kap. 4.2: Binäre Suchbäume

Kap. 4.2: Binäre Suchbäume Kap. 4.2: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 11. VO DAP2 SS 2009 26. Mai 2009 1 Zusätzliche Lernraumbetreuung Morteza Monemizadeh:

Mehr

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können.

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können. 6. Bäume Lernziele 6. Bäume Lernziele: Definition und Eigenschaften binärer Bäume kennen, Traversierungsalgorithmen für binäre Bäume implementieren können, die Bedeutung von Suchbäumen für die effiziente

Mehr

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5) Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff

Mehr

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder Programmieren in PASCAL Bäume 1 1. Baumstrukturen Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder 1. die leere Struktur oder 2. ein Knoten vom Typ Element

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr

Approximationsalgorithmen

Approximationsalgorithmen Ausarbeitung zum Thema Approximationsalgorithmen im Rahmen des Fachseminars 24. Juli 2009 Robert Bahmann robert.bahmann@gmail.com FH Wiesbaden Erstellt von: Robert Bahmann Zuletzt berarbeitet von: Robert

Mehr

4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes.

4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes. Binäre Bäume Definition: Ein binärer Baum T besteht aus einer Menge von Knoten, die durch eine Vater-Kind-Beziehung wie folgt strukturiert ist: 1. Es gibt genau einen hervorgehobenen Knoten r T, die Wurzel

Mehr

3. Übung Algorithmen I

3. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der

Mehr

Suchen und Sortieren (Die klassischen Algorithmen)

Suchen und Sortieren (Die klassischen Algorithmen) Suchen und Sortieren (Die klassischen Algorithmen) Lineare Suche und Binäre Suche (Vorbedingung und Komplexität) Sortieralgorithmen (allgemein) Direkte Sortierverfahren (einfach aber langsam) Schnelle

Mehr

Algorithmen und Datenstrukturen Suchbaum

Algorithmen und Datenstrukturen Suchbaum Algorithmen und Datenstrukturen Suchbaum Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Motivation Datenstruktur zur Repräsentation dynamischer Mengen

Mehr

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt

Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Algorithmen und Datenstrukturen 265 10 Binäre Suchbäume Suchbäume Datenstruktur, die viele Operationen dynamischer Mengen unterstützt Kann als Wörterbuch, aber auch zu mehr eingesetzt werden (Prioritätsschlange)

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r )

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r ) Definition B : Menge der binären Bäume, rekursiv definiert durch die Regeln: ist ein binärer Baum sind t l, t r binäre Bäume, so ist auch t =, t l, t r ein binärer Baum nur das, was durch die beiden vorigen

Mehr

Programmiertechnik II

Programmiertechnik II Analyse von Algorithmen Algorithmenentwurf Algorithmen sind oft Teil einer größeren Anwendung operieren auf Daten der Anwendung, sollen aber unabhängig von konkreten Typen sein Darstellung der Algorithmen

Mehr

Zeichnen von Graphen. graph drawing

Zeichnen von Graphen. graph drawing Zeichnen von Graphen graph drawing WS 2006 / 2007 Gruppe: D_rot_Ala0607 Christian Becker 11042315 Eugen Plischke 11042351 Vadim Filippov 11042026 Gegeben sei ein Graph G = (V; E) Problemstellung V E =

Mehr

Programmiertechnik II

Programmiertechnik II Bäume Symboltabellen Suche nach Werten (items), die unter einem Schlüssel (key) gefunden werden können Bankkonten: Schlüssel ist Kontonummer Flugreservierung: Schlüssel ist Flugnummer, Reservierungsnummer,...

Mehr

HEUTE. Datenstrukturen im Computer. Datenstrukturen. Rekursion. Feedback Evaluation. abstrakte Datenstrukturen

HEUTE. Datenstrukturen im Computer. Datenstrukturen. Rekursion. Feedback Evaluation. abstrakte Datenstrukturen 9.2.5 HUT 9.2.5 3 atenstrukturen im omputer atenstrukturen ie beiden fundamentalen atenstrukturen in der Praxis sind rray und Liste Rekursion Feedback valuation rray Zugriff: schnell Umordnung: langsam

Mehr

Algorithmen und Datenstrukturen SS09

Algorithmen und Datenstrukturen SS09 Foliensatz 8 Michael Brinkmeier Technische Universität Ilmenau Institut für Theoretische Informatik Sommersemester 29 TU Ilmenau Seite / 54 Binärbäume TU Ilmenau Seite 2 / 54 Binäre Bäume Bäume und speziell

Mehr

4.9 Deterministische Kellerautomaten Wir haben bereits definiert: Ein PDA heißt deterministisch (DPDA), falls

4.9 Deterministische Kellerautomaten Wir haben bereits definiert: Ein PDA heißt deterministisch (DPDA), falls 4.9 Deterministische Kellerautomaten Wir haben bereits definiert: Ein PDA heißt deterministisch (DPDA), falls δ(q, a, Z) + δ(q, ɛ, Z) 1 (q, a, Z) Q Σ. Die von einem DPDA, der mit leerem Keller akzeptiert,

Mehr

- k Maximalwerte aus Menge mit n >> k Elementen (Rangfolgebestimmung von Suchmaschinen!) Die typische Operationen:

- k Maximalwerte aus Menge mit n >> k Elementen (Rangfolgebestimmung von Suchmaschinen!) Die typische Operationen: 6 Partiell geordnete binäre Bäume: Heap (Haufen) Motivation für manchen Anwendungen nur partielle Ordnung der Elemente statt vollständiger nötig, z.b. - Prioritätsschlange: nur das minimale (oder maximale)

Mehr

Sortierte Folgen 250

Sortierte Folgen 250 Sortierte Folgen 250 Sortierte Folgen: he 1,...,e n i mit e 1 apple applee n kennzeichnende Funktion: M.locate(k):= addressof min{e 2 M : e k} Navigations Datenstruktur 2 3 5 7 11 13 17 19 00 Annahme:

Mehr

3 Amortisierte Analyse

3 Amortisierte Analyse (M. Dietzfelbinger,.2.20) 3 Amortisierte Analyse Wir betrachten hier ein Analyseproblem, das oft bei Datenstrukturen, mitunter auch in anderen algorithmischen Situationen auftritt. Angenommen, wir haben

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Stefan Lucks Diskrete Strukturen (WS 2009/10) 57 2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32,

Mehr

Steinerbäume. Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering

Steinerbäume. Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering Steinerbäume Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering Verfasser Flamur Kastrati Betreuer Prof. Dr. habil. Thomas

Mehr

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1 3.2 Binäre Suche Beispiel 6.5.1: Intervallschachtelung (oder binäre Suche) (Hier ist n die Anzahl der Elemente im Feld!) Ein Feld A: array (1..n) of Integer sei gegeben. Das Feld sei sortiert, d.h.: A(i)

Mehr

Rekursionen (Teschl/Teschl 8.1-8.2)

Rekursionen (Teschl/Teschl 8.1-8.2) Rekursionen (Teschl/Teschl 8.1-8.2) Eine Rekursion kter Ordnung für k N ist eine Folge x 1, x 2, x 3,... deniert durch eine Rekursionsvorschrift x n = f n (x n 1,..., x n k ) für n > k, d. h. jedes Folgenglied

Mehr

DATENSTRUKTUREN UND ZAHLENSYSTEME

DATENSTRUKTUREN UND ZAHLENSYSTEME DATENSTRUKTUREN UND ZAHLENSYSTEME RALF HINZE Institute of Information and Computing Sciences Utrecht University Email: ralf@cs.uu.nl Homepage: http://www.cs.uu.nl/~ralf/ March, 2001 (Die Folien finden

Mehr

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12 Grundlagen: Folge 19 - Bäume 19.1 Binärbäume - Allgemeines Unter Bäumen versteht man in der Informatik Datenstrukturen, bei denen jedes Element mindestens zwei Nachfolger hat. Bereits in der Folge 17 haben

Mehr

Algorithms & Datastructures Midterm Test 1

Algorithms & Datastructures Midterm Test 1 Algorithms & Datastructures Midterm Test 1 Wolfgang Pausch Heiko Studt René Thiemann Tomas Vitvar

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Datenstrukturen und Algorithmen VO 708.031 Bäume robert.legenstein@igi.tugraz.at 1 Inhalt der Vorlesung 1. Motivation, Einführung, Grundlagen 2. Algorithmische Grundprinzipien 3. Sortierverfahren 4. Halden

Mehr

5.3 Sampling-Algorithmen

5.3 Sampling-Algorithmen 5.3 Sampling-Algorithmen Vorgehensweise in der Statistik: Gesamtheit von Werten durch kleine, möglichst repräsentative Stichprobe darstellen. (Vgl. z. B. Hochrechnungen für Wahlergebnisse.) Genauer: Gegeben

Mehr

KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN

KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN RALF HINZE Institut für Informatik III Universität Bonn Email: ralf@informatik.uni-bonn.de Homepage: http://www.informatik.uni-bonn.de/~ralf Februar, 2001 Binäre Suchbäume

Mehr

Entscheidungsprobleme. Berechenbarkeit und Komplexität Entscheidbarkeit und Unentscheidbarkeit. Die Entscheidbarkeit von Problemen

Entscheidungsprobleme. Berechenbarkeit und Komplexität Entscheidbarkeit und Unentscheidbarkeit. Die Entscheidbarkeit von Problemen Berechenbarkeit und Komlexität Entscheidbarkeit und Unentscheidbarkeit Wolfgang Schreiner Wolfgang.Schreiner@risc.uni-linz.ac.at Research Institute for Symbolic Comutation (RISC) Johannes Keler University,

Mehr

Idee: Wenn wir beim Kopfknoten zwei Referenzen verfolgen können, sind die Teillisten kürzer. kopf Eine Datenstruktur mit Schlüsselwerten 1 bis 10

Idee: Wenn wir beim Kopfknoten zwei Referenzen verfolgen können, sind die Teillisten kürzer. kopf Eine Datenstruktur mit Schlüsselwerten 1 bis 10 Binäre Bäume Bäume gehören zu den wichtigsten Datenstrukturen in der Informatik. Sie repräsentieren z.b. die Struktur eines arithmetischen Terms oder die Struktur eines Buchs. Bäume beschreiben Organisationshierarchien

Mehr

9.4 Binäre Suchbäume. Xiaoyi Jiang Informatik II Datenstrukturen und Algorithmen

9.4 Binäre Suchbäume. Xiaoyi Jiang Informatik II Datenstrukturen und Algorithmen 9.4 Binäre Suchbäume Erweiterung: Einfügen an der Wurzel Standardimplementierung: Der neue Schlüssel wird am Ende des Suchpfades angefügt (natürlich, weil zuerst festgestellt werden muss, ob der Schlüssel

Mehr

Algorithmen und Datenstrukturen Balancierte Suchbäume

Algorithmen und Datenstrukturen Balancierte Suchbäume Algorithmen und Datenstrukturen Balancierte Suchbäume Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Einführung Einfügen und Löschen Einfügen

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof Dr Hans-Dietrich Hecker Wintersemester 2003/04 Inhaltsverzeichnis 1 Einführung 9 11 Über schnelle und langsame Algorithmen 13 12 Die Klassen P und NP 14 13 Effiziente

Mehr

Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik

Kürzeste Wege in Graphen. Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Kürzeste Wege in Graphen Maurice Duvigneau Otto-von-Guericke Universität Fakultät für Informatik Gliederung Einleitung Definitionen Algorithmus von Dijkstra Bellmann-Ford Algorithmus Floyd-Warshall Algorithmus

Mehr

6. Algorithmen der Computer-Geometrie

6. Algorithmen der Computer-Geometrie 6. Algorithmen der Computer-Geometrie 1. Einführung 2. Schnitt von zwei Strecken 3. Punkt-in-Polygon-Test 4. Schnitt orthogonaler Strecken 5. Punkteinschlussproblem Geo-Informationssysteme 146 6.1 Computer-Geometrie

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Spezifikation der zulässigen Parameter. Bemerkungen: Bemerkungen: (2) Design by Contract:

Spezifikation der zulässigen Parameter. Bemerkungen: Bemerkungen: (2) Design by Contract: Spezifikation der zulässigen Parameter Bemerkungen: Bei jeder (partiellen) Funktion muss man sich überlegen und dokumentieren, welche aktuellen Parameter bei einer Anwendung zulässig sein sollen. Der Anwender

Mehr

15 Optimales Kodieren

15 Optimales Kodieren 15 Optimales Kodieren Es soll ein optimaler Kodierer C(T ) entworfen werden, welcher eine Information (z.b. Text T ) mit möglichst geringer Bitanzahl eindeutig überträgt. Die Anforderungen an den optimalen

Mehr

Sortieren. Eine Testmenge erstellen

Sortieren. Eine Testmenge erstellen Sortieren Eine der wohl häufigsten Aufgaben für Computer ist das Sortieren, mit dem wir uns in diesem Abschnitt eingeher beschäftigen wollen. Unser Ziel ist die Entwicklung eines möglichst effizienten

Mehr

Lenstras Algorithmus für Faktorisierung

Lenstras Algorithmus für Faktorisierung Lenstras Algorithmus für Faktorisierung Bertil Nestorius 9 März 2010 1 Motivation Die schnelle Faktorisierung von Zahlen ist heutzutage ein sehr wichtigen Thema, zb gibt es in der Kryptographie viele weit

Mehr

Tutorium Algorithmen & Datenstrukturen

Tutorium Algorithmen & Datenstrukturen June 16, 2010 Binärer Baum Binärer Baum enthält keine Knoten (NIL) besteht aus drei disjunkten Knotenmengen: einem Wurzelknoten, einem binären Baum als linken Unterbaum und einem binären Baum als rechten

Mehr

1 Einführung 2 1.1 Zwei Beispiele (MIN JOB SCHEDULING und MAXCUT)... 2 1.2 Notationen und Definitionen... 7 1.3 Übungsaufgaben...

1 Einführung 2 1.1 Zwei Beispiele (MIN JOB SCHEDULING und MAXCUT)... 2 1.2 Notationen und Definitionen... 7 1.3 Übungsaufgaben... Vorwort v I Approximative Algorithmen 1 1 Einführung 2 1.1 Zwei Beispiele (MIN JOB SCHEDULING und MAXCUT).... 2 1.2 Notationen und Definitionen... 7 1.3 Übungsaufgaben..... 18 2 DieKomplexitätsklassen

Mehr

Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise:

Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise: Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 192 Beispiel Bsp.: Betrachte Schlussweise in: 1 Wenn es regnet, dann wird die Straße nass. R N

Mehr

MATHEMATISCHE ANALYSE VON ALGORITHMEN

MATHEMATISCHE ANALYSE VON ALGORITHMEN MATHEMATISCHE ANALYSE VON ALGORITHMEN Michael Drmota Institut für Diskrete Mathematik und Geometrie, TU Wien michael.drmota@tuwien.ac.at www.dmg.tuwien.ac.at/drmota/ Ringvorlesung SS 2008, TU Wien Algorithmus

Mehr

Überblick. Lineares Suchen

Überblick. Lineares Suchen Komplexität Was ist das? Die Komplexität eines Algorithmus sei hierbei die Abschätzung des Aufwandes seiner Realisierung bzw. Berechnung auf einem Computer. Sie wird daher auch rechnerische Komplexität

Mehr

Programmierung und Modellierung

Programmierung und Modellierung Programmierung und Modellierung Terme, Suchbäume und Pattern Matching Martin Wirsing in Zusammenarbeit mit Moritz Hammer SS 2009 2 Inhalt Kap. 7 Benutzerdefinierte Datentypen 7. Binärer Suchbaum 8. Anwendung:

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens aw@awilkens.com Überblick Grundlagen Definitionen Elementare Datenstrukturen Rekursionen Bäume 2 1 Datenstruktur Baum Definition eines Baumes

Mehr

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: Beispiel: Wir untersuchen die rekursiv definierte Folge a 0 + auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: ( ) (,, 7, 5,...) Wir können also vermuten, dass die Folge monoton fallend

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Codierung. Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau

Codierung. Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau Codierung Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau Ein bisschen Informationstheorie Betrachten wir das folgende Problem: Wie lautet eine sinnvolle Definition für das quantitative

Mehr

Kapitel 5: Dynamisches Programmieren Gliederung

Kapitel 5: Dynamisches Programmieren Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Algorithmen und Datenstrukturen 1

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen 1 5. Vorlesung Martin Middendorf / Peter F. Stadler Universität Leipzig Institut für Informatik middendorf@informatik.uni-leipzig.de studla@bioinf.uni-leipzig.de Quick-Sort

Mehr

Beispiel zu Datenstrukturen

Beispiel zu Datenstrukturen zu Datenstrukturen Passend zum Kurs 01661 Version Juni 2008 Dieter Hoffmann Dipl.-Inform. Diese Kurshilfe zum Kurs Datenstrukuren I (Kursnummer 01661) bei Prof. Dr. Güting (Lehrgebiet Praktische Informatik

Mehr

Teile und Herrsche Teil 2

Teile und Herrsche Teil 2 Teile und Herrsche Teil 2 binär Suchen und schnell Multiplizieren Markus Fleck Manuel Mauky Hochschule Zittau/Görlitz 19. April 2009 Suchen in langen Listen (0, 1, 2, 7, 8, 9, 9, 13, 13, 14, 14, 14, 16,

Mehr

Vorname:... Matrikel-Nr.:... Unterschrift:...

Vorname:... Matrikel-Nr.:... Unterschrift:... Fachhochschule Mannheim Hochschule für Technik und Gestaltung Fachbereich Informatik Studiengang Bachelor of Computer Science Algorithmen und Datenstrukturen Wintersemester 2003 / 2004 Name:... Vorname:...

Mehr

1 Vom Problem zum Programm

1 Vom Problem zum Programm 1 Vom Problem zum Programm Ein Problem besteht darin, aus einer gegebenen Menge von Informationen eine weitere (bisher unbekannte) Information zu bestimmen. 1 Vom Problem zum Programm Ein Algorithmus ist

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Binäre Bäume Darstellung und Traversierung

Binäre Bäume Darstellung und Traversierung Binäre Bäume Darstellung und Traversierung Name Frank Bollwig Matrikel-Nr. 2770085 E-Mail fb641378@inf.tu-dresden.de Datum 15. November 2001 0. Vorbemerkungen... 3 1. Terminologie binärer Bäume... 4 2.

Mehr

Betriebsarten für Blockchiffren

Betriebsarten für Blockchiffren Betriebsarten für Blockchiffren Prof. Dr. Rüdiger Weis TFH Berlin Sommersemester 2008 Betriebsarten für Blockchiffren Was ist eine Betriebsart (engl. Mode of Operation )? Blockchiffre wird genutzt, um

Mehr

Also kann nur A ist roter Südler und B ist grüner Nordler gelten.

Also kann nur A ist roter Südler und B ist grüner Nordler gelten. Aufgabe 1.1: (4 Punkte) Der Planet Og wird von zwei verschiedenen Rassen bewohnt - dem grünen und dem roten Volk. Desweiteren sind die Leute, die auf der nördlichen Halbkugel geboren wurden von denen auf

Mehr

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12. Kapitel 13. Bäume. Bäume

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12. Kapitel 13. Bäume. Bäume 1 Kapitel 13 Ziele 2 Den Begriff des Baums in der Informatik kennenlernen als verkettete Datenstruktur repräsentieren können Rekursive Funktionen auf n verstehen und schreiben können Verschiedene Möglichkeiten

Mehr

Kapitel 9 Suchalgorithmen

Kapitel 9 Suchalgorithmen Kapitel 9 Suchalgorithmen Technische Universität München Suchverfahren: Verfahren, das in einem Suchraum nach Mustern oder Objekten mit bestimmten Eigenschaften sucht. Vielfältige Anwendungsbereiche für

Mehr

Kapiteltests zum Leitprogramm Binäre Suchbäume

Kapiteltests zum Leitprogramm Binäre Suchbäume Kapiteltests zum Leitprogramm Binäre Suchbäume Björn Steffen Timur Erdag überarbeitet von Christina Class Binäre Suchbäume Kapiteltests für das ETH-Leitprogramm Adressaten und Institutionen Das Leitprogramm

Mehr

Branch-and-Bound. Wir betrachten allgemein Probleme, deren Suchraum durch Bäume dargestellt werden kann. Innerhalb des Suchraums suchen wir

Branch-and-Bound. Wir betrachten allgemein Probleme, deren Suchraum durch Bäume dargestellt werden kann. Innerhalb des Suchraums suchen wir Effiziente Algorithmen Lösen NP-vollständiger Probleme 289 Branch-and-Bound Wir betrachten allgemein Probleme, deren Suchraum durch Bäume dargestellt werden kann. Innerhalb des Suchraums suchen wir 1.

Mehr

k-server-algorithmen Alexander Leider 4. Februar 2007

k-server-algorithmen Alexander Leider 4. Februar 2007 k-server-algorithmen Alexander Leider 4. Februar 2007 1 INHALTSVERZEICHNIS 2 Inhaltsverzeichnis 1 Einleitung 3 1.1 Online-Algorithmen....................... 3 1.2 Kompetitive Algorithmen....................

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Algorithmen und deren Programmierung Prof. Dr. Nikolaus Wulff Definition Algorithmus Ein Algorithmus ist eine präzise formulierte Handlungsanweisung zur Lösung einer gleichartigen

Mehr

Approximation in Batch and Multiprocessor Scheduling

Approximation in Batch and Multiprocessor Scheduling Approximation in Batch and Multiprocessor Scheduling Tim Nonner IBM Research Albert-Ludwigs-Universität Freiburg 3. Dezember 2010 Scheduling Zeit als Ressource und Beschränkung Formaler Gegeben sind Jobs

Mehr

Bäume. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 10: Collections 4. Inhalt. Bäume. Einführung. Bäume.

Bäume. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 10: Collections 4. Inhalt. Bäume. Einführung. Bäume. Universität Osnabrück 1 Bäume 3 - Objektorientierte Programmierung in Java Vorlesung 10: Collections 4 Einführung Bäume sind verallgemeinerte Listenstrukturen Lineare Liste Jedes Element hat höchstens

Mehr

Algorithmik II. a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge 20, 28, 35, 31, 9, 4, 13, 17, 37, 25 ein.

Algorithmik II. a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge 20, 28, 35, 31, 9, 4, 13, 17, 37, 25 ein. Aufgabe 10 Binäre Bäume a) Fügen Sie in einen anfangs leeren binären Baum die Schlüsselfolge, 28, 35, 31, 9, 4,, 17, 37, 25 ein. 1. Einfügen von : 3. Einfugen von 35: 2. Einfügen von 28: 28 28 10. Einfügen

Mehr

Highway Hierarchies. Kristian Dannowski, Matthias Hoeschel

Highway Hierarchies. Kristian Dannowski, Matthias Hoeschel Highway Hierarchies Kristian Dannowski, Matthias Hoeschel Gliederung Einleitung / Bidirektional Dijkstra Intuition / Naive Strategie Konstruktion der Highway Hierarchie Suche in der Highway Hierarchie

Mehr

Binäre lineare Optimierung mit K*BMDs p.1/42

Binäre lineare Optimierung mit K*BMDs p.1/42 Binäre lineare Optimierung mit K*BMDs Ralf Wimmer wimmer@informatik.uni-freiburg.de Institut für Informatik Albert-Ludwigs-Universität Freiburg Binäre lineare Optimierung mit K*BMDs p.1/42 Grundlagen Binäre

Mehr

Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz

Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Datenstruktur BDD 1986 von R. Bryant vorgeschlagen zur Darstellung von aussagenlogischen Formeln (genauer: Booleschen Funktionen)

Mehr