Lösungen Prüfung Fachmaturität Pädagogik

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Lösungen Prüfung Fachmaturität Pädagogik"

Transkript

1 Fachmaturität Mathematik Lösungen Prüfung Lösungen Prüfung Fachmaturität Pädagogik. (7 min,7.5 P.) Brüche Forme so um, dass im Ergebnis maximal ein Bruchstrich vorkommt und nicht mehr weiter gekürzt werden kann. Berechne bei c) die Lösungsmenge der Gleichung. Gib Dein Ergebnis in der Form L = {} an. a) ( min, P.,Standard,leicht) a a a(a ) = a a a a = a a a a b) (5 min,.5 P.,Standard,leicht) a = a a a + a = a+ a (a ) = = a a (a + ) :(a a)= a (a + ) : a a = a (a + ) a a = a (a + )(a a) = (a + )(a ) (a + )(a a) = a (a+)(a ) a = = a+ a a(a ) a c) (8 min, P.,Standard,leicht) Berechne die Lösungsmenge der folgenden Gleichung. Gib Dein Ergebnis in der Form L = {...} an. x + x = 5 6 D = R \ {,} + x 5(x ) = x 6 5(x )(x ) x +x = x 5 = 6 5(x )(x ) 6 x 0 = 5(x )(x ) x 0 = 5(x 5x+6) x 0 = 5x 5x+0 5x 7x+60 = 0 x, = ( 7) ± ( 7) 5 60 x =.,x = 5 5. D und 5 D L = {.,5}. ( min,6 P.) Faktorisieren Faktorisiere soweit wie möglich bzw. forme bei d) so um, dass nicht mehr weiter gekürzt werden kann. a) ( min, P.,Standard,leicht) ab a+b = a(b )+(b ) = (b )(a+) b) ( min,.5 P.,Standard,leicht) (a + b)(a + b) (a + b)(a b) = (a + b)(a + b a + b) = (a + b)(a + b) = (a+b) c) ( min,.5 P.,Standard,mittel) 5a + 0ab+9b c = (5a+b) c = (5a+b+c)(5a+b c) d) ( min, P.,Standard,leicht) x x (x )(x+) x = + x+ (x+)(x+) = x x+. (9 min,.5 P.) Wurzelterme Forme so um, dass im Schlussergebnis kein Wurzelterm vorkommt (Die Definitionsbereiche für a und b sind so gewählt, dass der Term unter der Wurzel nicht negativ sein kann).

2 Fachmaturität Mathematik Lösungen Prüfung a) ( min,.5 P.,Standard,leicht) (a + b ) (a b ) = a + a b + b (a a b + b ) = a b = ab b) (5 min, P.,Standard,mittel) ) ( a+b a ab = + ab + b a ab = ab ) + b ( a b = = a b. (5 min,6 P.) Wurzelgleichungen Bestimme die Lösungsmenge der folgenden Gleichungen. Gib Dein Ergebnis in der Form L = {..} an. a) (6 min,.5 P.,Standard,leicht) x x = x x x +x = x x = x+ x x = x x(x ) = x x+ x x = x x+ x = Kontrolle: = L = {} b) (9 min,.5 P.,Standard,mittel) x++ x+ = x+ x++ x+ x++x+ = x+ x+ x+ = x+8 x+ x+ = x+9 (x+)(x+) = x 8x+8 x + 5x+ = x 8x+8 x + x 78 = 0 (x+6)(x ) = 0 x = 6,x = Kontrolle: ( 6)++ 6+ = 6+ f ++ + = + L = {} 5. ( min,8 P.) Funktionen.Grades a) (7 min,.5 P.,Standard,leicht) Zeichne den Graphen der Parabel mit der Vorschrift f(x) = x + x+ im Bereich x. Dabei muss das Koordinatensystem skaliert sein und es müssen mindestens drei Punkte auf dem Graphen sichtbar sein. b) (8 min,.5 P.,Standard,mittel) Eine Parabel der Form hat ihren Scheitelpunkt in ( 5), dazu liegt der Punkt ( -) auf ihr. Wie lauten die Parameter a,b und c dieser Parabel? y = a(x ) + 5 = a( ) + 5 = a+5 a =

3 Fachmaturität Mathematik Lösungen Prüfung y = (x ) + 5 = x + x a =,b =,c = c) (8 min, P.,neu,mittel) Aus einem Kupferblech mit einer Breite von 00cm ist eine Ablaufrinne zu biegen (s. Zeichnung unten). Wie müssen x und y gewählt werden, damit die Querschnittsfläche (ausgemalte Fläche) möglichst gross ist? x x y y x F(x,y) = x y NB : x+x+y = 00 5x+y = 00 y = 00 5x = 5.5x F(r) = x (5.5x) Fall : x = 0 Fall : 5.5x = 0.5x = 5 x = 0 s x = x max = 0+0 = 0 y max = =.5 6. (9 min,8 P.) Folgen a) ( min, P.,Standard/leicht) Gib die rekursive Definition der geometrischen Folge,,8,... an. a n+ = a n,a = b) ( min, P.,Standard/leicht) Gib die explizite Definition der arithmetischen Folge mit den Gliedern a = 0 und a = 8 an. (0.5 P.) = 8 ( P.) 8 0 = 8 (0.5 P.) d = 8 : 8 =.5 a + d = a a = a d = 0.5 =.5 (0.5 P.) a n =.5+.5(n ) c) (5 min,.5 P.,Standard/mittel) Die rekursive Definition einer Folge lautet: a n+ = a n n,a 6 = 00. Berechne das Glied a 8. (0.5 P.) a 6 ist gegeben, a 7 ist gesucht, wir setzen n = 6 (tiefere Zahl). ( P.) n = 6 : a 7 = a 6 6 = 00 6 = 6 ( P.) n = 7 : a 8 = a 7 9 = 6 9 = 5 d) (8 min,.5 P./Standard/mittel) Auf der Abbildung sind Quadrate und rechtwinklige, gleichschenklige Dreiecke zu sehen. Wir nehmen dabei an, dass es immer weitergeht, dass also immer kleinere Dreiecke und Quadrate dazukommen. Die Flächeninhalte der Quadrate bilden eine GF. Was erhalten wir, wenn wir alle Flächeninhalte der Quadrate aufsummieren? Erstes Quadrat: = Erstes Dreieck: x + x = x = x = Q D Q Zweites Quadrat: = a =,q = s = =

4 Fachmaturität Mathematik Lösungen Prüfung 7. ( min/7.5 P.) Strahlensätze a) (7 min/ P./Standard/leicht) Gegeben ist ein Dreieck mit den Punkten A(0 ), B( ) und C( ). Führe eine zentrische Streckung mit k = aus, wenn sich das Streckzentrum in Z(0 ) befindet. C A B Z A B 6 C b) (5 min/ P./Standard/leicht) In der untenstehenden Abbildung liegt ein Quadrat mit einer Seitenlänge von 0cm vor. Berechne den Flächeninhalt des gefüllten Dreiecks..5cm Die beiden Dreiecke sind ähnlich. 0cm :.5cm = h : h = h = h h + h = 0cm 5h = 0cm h = cm A =.5cm cm =.5cm c) (0 min/.5 P./Standard/leicht) Gegeben ist ein Dreieck mit a = 0cm,b = 0cm und c = cm. Dieses Dreieck soll nun mit zwei Geraden, die parallel zur Seite c sind, in drei gleich grosse Teile zerlegt werden. Auf welcher Höhe müssen die Geraden gezeichnet werden? Zuerst berechnen wir die Höhe der oberen Geraden: Das Ursprungsdreieck ist das grosse Dreieck, das Bilddreieck wird von der oberen Geraden und der Spitze des grossen Dreiecks eingeschlossen. h = 0 6 = 8cm A = 6cm 8cm = 8cm A = 8cm : = 6cm k A = A k 8cm = 6cm k = h = h.6cm 8cm.6cm =.8cm Jetzt berechnen wir die Höhe der unteren Geraden: A = cm k = h = 8cm 6.5cm 8cm 6.5cm =.7cm

5 Fachmaturität Mathematik Lösungen Prüfung 5 8. ( min/.5 P./neu/leicht) Planimetrie Berechne die Winkel α,β und γ. β α β α γ α = 80 = 78 β = = 9 = 5 γ = 7 9. ( min/5 P./Standard/leicht) Zahlensysteme Die untenstehenden Zahlen sind alle mit dem 7-er System dargestellt. Löse die Aufgaben schriftlich. Es muss der gesamte Lösungsweg im 7-er System sichtbar sein. Bei der Division reicht es, nur mit den Resten zu rechnen. a) ( P./ min/standard/leicht) b) ( P./5 min/standard/leicht) c) ( P./5 min/standard/leicht) 6 0 : =

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

2.5 Funktionen 2.Grades (Thema aus dem Bereich Analysis)

2.5 Funktionen 2.Grades (Thema aus dem Bereich Analysis) .5 Funktionen.Grades (Thema aus dem Bereich Analysis) Inhaltsverzeichnis 1 Definition einer Funktion.Grades. Die Verschiebung des Graphen 5.1 Die Verschiebung des Graphen in y-richtung.........................

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe 1. Bestimme m so, dass die quadratische Gleichung nur 1 Lösung hat: 4x² - mx + 5m = 0 2.0 Von einer zentrischen Streckung sind A (-3/3), A (2/-2), B (-5/-1), B (2,5/-1) und C(-5/3) bekannt. 2.1 Konstruiere

Mehr

Mathematik I Prüfung für den Übertritt aus der 8. Klasse

Mathematik I Prüfung für den Übertritt aus der 8. Klasse Aufnahmeprüfung 016 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 8. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

JAHRESPRÜFUNG MATHEMATIK 2. KLASSEN KANTONSSCHULE REUSSBÜHL. 26. Mai 2014 Zeit: Uhr

JAHRESPRÜFUNG MATHEMATIK 2. KLASSEN KANTONSSCHULE REUSSBÜHL. 26. Mai 2014 Zeit: Uhr KLASSE: NAME: VORNAME: Mögliche Punktzahl: 5 50 Punkte = Note 6 Erreichte Punktzahl: Note: JAHRESPRÜFUNG MATHEMATIK. KLASSEN KANTONSSCHULE REUSSBÜHL 6. Mai 014 Zeit: 1.10 14.40 Uhr Allgemeines: unbedingt

Mehr

Fit für den Mathematik-Lehrgang? Teste dich selbst!

Fit für den Mathematik-Lehrgang? Teste dich selbst! Fit für den Mathematik-Lehrgang? Teste dich selbst Erlaubte Hilfsmittel: Die offizielle Formelsammlung für den Vorkurs (siehe Homepage der ISME, Vorkurs + EP PH/Dokumente) eventuell ein einfacher Taschenrechner

Mehr

ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter

ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter Berufsmaturitätsschule GIB Bern Aufnahmeprüfung 2005 Mathematik Teil A Zeit: 45 Minuten Name / Vorname:... ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese

Mehr

2.2 Funktionen 1.Grades

2.2 Funktionen 1.Grades . Funktionen.Grades (Thema aus dem Bereich Analysis) Inhaltsverzeichnis Was ist eine Funktion.Grades? Die Steigung einer Geraden. Die Definition der Steigung.................................... Die Berechnung

Mehr

Berufliches Gymnasium Gelnhausen

Berufliches Gymnasium Gelnhausen Berufliches Gymnasium Gelnhausen Fachbereich Mathematik Die inhaltlichen Anforderungen für das Fach Mathematik für Schülerinnen und Schüler, die in die Einführungsphase (E) des Beruflichen Gymnasiums eintreten

Mehr

Seite 1 von Klasse der Hauptschule. Abschlussprüfung zum Erwerb des mittleren Schulabschlusses (25. Juni 2008 von 8.30 bis 11.

Seite 1 von Klasse der Hauptschule. Abschlussprüfung zum Erwerb des mittleren Schulabschlusses (25. Juni 2008 von 8.30 bis 11. Seite 1 von 7 10. Klasse der Hauptschule Abschlussprüfung zum Erwerb des mittleren Schulabschlusses 008 (5. Juni 008 von 8.0 bis 11.00 Uhr) M A T H E M A T I K Bei der Abschlussprüfung zum Erwerb des mittleren

Mehr

Fach: Mathematik (schriftlich: 180 Minuten)

Fach: Mathematik (schriftlich: 180 Minuten) Ergänzungsprüfung für die Zulassung zu den Studiengängen Vorschul-/Primarstufe bzw. Primarschulstufe (gemäss Richtlinien der PH vom 17. Januar 2013): Musterarbeit Fach: Mathematik (schriftlich: 180 Minuten)

Mehr

MATHEMATIK 7. Schulstufe Schularbeiten

MATHEMATIK 7. Schulstufe Schularbeiten MATHEMATIK 7. Schulstufe Schularbeiten 1. S c h u l a r b e i t Grundrechnungsarten mit ganzen Zahlen Koordinatensystem rationale Zahlen Prozentrechnung a) Berechne: [( 26) : (+ 2) ( 91) : ( 7)] + ( 12)

Mehr

Thema aus dem Bereich Analysis Funktionen 1.Grades

Thema aus dem Bereich Analysis Funktionen 1.Grades Thema aus dem Bereich Analysis -. Funktionen.Grades Inhaltsverzeichnis Einführung in den Funktionsbegriff Der Funktionsgraph und die Wertetabelle Was ist eine Funktion.Grades? Die Steigung einer Geraden

Mehr

1.10 Geometrie. 1 Die zentrische Streckung Einführung und Definition der zentrischen Streckung... 2

1.10 Geometrie. 1 Die zentrische Streckung Einführung und Definition der zentrischen Streckung... 2 1.10 Geometrie Inhaltsverzeichnis 1 Die zentrische Streckung 2 1.1 Einführung und Definition der zentrischen Streckung..................... 2 1.2 Flächeninhalte bei zentrischer Streckung............................

Mehr

F u n k t i o n e n Quadratische Funktionen

F u n k t i o n e n Quadratische Funktionen F u n k t i o n e n Quadratische Funktionen Eine Parabolantenne bündelt Radio- und Mikrowellen in einem Brennpunkt. Dort wird die Strahlung detektiert. Die Form einer Parabolantenne entsteht durch die

Mehr

Lösungen lineare Funktionen

Lösungen lineare Funktionen lineare Funktionen Lösungen 1 Lösungen lineare Funktionen Schnittpunkt gegeben bestimme Funktionsvorschrift. Flächeninhalt von eingeschlossenem Dreieck berechnen. Schnittwinkel gegeben, berechne Steigung.

Mehr

I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE

I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE I. Reelle Zahlen 1. Die Menge der rationalen Zahlen und die Menge der irrationalen Zahlen bilden zusammen die Menge der reellen Zahlen. Nenne Beispiele für rationale und irrationale Zahlen.. Aus negativen

Mehr

Taschenrechner TI 30, Formelsammlung Fundamentum

Taschenrechner TI 30, Formelsammlung Fundamentum Ergänzungsprüfung Pädagogik - Lösungen Mathematik Bemerkungen Alle Berechnungen müssen in nachvollziehbaren Einzelschritten aufgeführt sein. Ungültiges ist durchzustreichen. Lösen Sie jede Aufgabe direkt

Mehr

Übungsaufgaben Mathematik - Aufgaben (Studiengang Wirtschaftsingenieurwesen)

Übungsaufgaben Mathematik - Aufgaben (Studiengang Wirtschaftsingenieurwesen) 40 cm Übungsaufgaben Mathematik - Aufgaben (Studiengang Wirtschaftsingenieurwesen) 1. Zahlenarten und Rechnen b) ( ) 5 ( 2 8 ) ( 1,25) 25 1,8 5,2 ( ) Wie viel sind 20% von? 2. Kenntnisse der Elementargeometrie

Mehr

Mathematik Aufnahmeprüfung 2013 Profile m,n,s

Mathematik Aufnahmeprüfung 2013 Profile m,n,s Mathematik Aufnahmeprüfung 2013 Profile m,n,s Zeit: 2 Stunden. Rechner: TI30/TI34 oder vergleichbare. Hinweis: Der Lösungsweg muss nachvollziehbar sein, ansonsten werden keine Teilpunkte vergeben. Aufgabe

Mehr

(3r) r 2 =? xy 3y a + 6b 14. ( xy

(3r) r 2 =? xy 3y a + 6b 14. ( xy Mathematik Aufnahmeprüfung 2014 Profile m,n,s Lösungen Aufgabe 1 (a) Vereinfache (schreibe als einen Bruch): 2 + a 2 + 3b 7 =? (b) (c) Vereinfache so weit wie möglich: Vereinfache so weit wie möglich:

Mehr

Repetitionsaufgaben: quadratische Funktionen

Repetitionsaufgaben: quadratische Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: quadratische Funktionen Zusammengestellt von Bruno Wyrsch und Erich Huber, KS Seetal Inhaltsverzeichnis 1. Einführungsbeispiel.... Allgemeine Form der

Mehr

Station A * * 1-4 ca. 16 min

Station A * * 1-4 ca. 16 min Station A * * 1-4 ca. 16 min Mit einem 80 m langen Zaun soll an einer Hauswand ein Rechteck eingezäunt werden. Wie lang müssen die Seiten des Rechtecks gewählt werden, damit es einen möglichst großen Flächeninhalt

Mehr

Abbildungen im Koordinatensystem

Abbildungen im Koordinatensystem Klasse 0 I. Drehe die Gerade g mit y = x um O(0/0) mit α = 5. Bestimme die Gleichung der Bildgeraden g. Berechne das Maß des Winkels zwischen g und g.. Die Gerade g mit y = x + 5 soll um O(0/0) so gedreht

Mehr

Berufsmaturitätsprüfung 2013 Mathematik

Berufsmaturitätsprüfung 2013 Mathematik GIBB Gewerblich-Industrielle Berufsschule Bern Berufsmaturitätsschule Berufsmaturitätsprüfung 2013 Mathematik Zeit: Hilfsmittel: Hinweise: Punkte: 180 Minuten Formel- und Tabellensammlung ohne gelöste

Mehr

Realschule. 1. Schulaufgabe aus der Mathematik. Klasse 8 / I ; B( 1 1,5)

Realschule. 1. Schulaufgabe aus der Mathematik. Klasse 8 / I ; B( 1 1,5) 1. Schulaufgabe aus der Mathematik 1. Gegeben sind die Punkte A( ) ; B( 0,5) und C( 0,5 ) 1.1 Konstruiere den Umkreis k des Dreiecks mit Mittelpunkt M. 1. Kennzeichne die Lösungsmenge mit grüner Farbe:

Mehr

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m)

1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: m (ausgesprochen: T von t und m) Grundwissen Mathematik 7. Klasse 1. Algebra 1.1 Terme Man schreibt für einen Term T, der von den Variablen t und m abhängt: Ttm (, ) = ( t 5+ 6) 20+ m (ausgesprochen: T von t und m) Ein Term besteht aus

Mehr

Zahlenfolgen. Aufgabe 1 (Streichholzfiguren)

Zahlenfolgen. Aufgabe 1 (Streichholzfiguren) Zahlenfolgen Aufgabe (Streichholzfiguren) a) Wie viele Streichhölzer benötigt man für die 0. Figur? b) Gib für die Streichholzfolge eine rekursive und eine explizite Berechnungsvorschrift an. Aufgabe (Quadratzahlen)

Mehr

Berufsmaturität. Aufnahmeprüfung Mathematik - Beispielprüfung - Lösungen. Anweisungen. Viel Erfolg! Natur, Landschaft Lebensmittel (NBM)

Berufsmaturität. Aufnahmeprüfung Mathematik - Beispielprüfung - Lösungen. Anweisungen. Viel Erfolg! Natur, Landschaft Lebensmittel (NBM) Berufsmaturität Natur, Landschaft Lebensmittel (NBM) Gesundheit und Soziales (GSBM) Lehrgang Gesundheit und Lehrgang Soziale Arbeit Aufnahmeprüfung Mathematik - Beispielprüfung - Lösungen Name: Nummer:

Mehr

alte Maturaufgaben zu Folgen+Reihen

alte Maturaufgaben zu Folgen+Reihen Folgen+Reihen 01.0.013 alte Maturaufgaben 1 alte Maturaufgaben zu Folgen+Reihen 1 006/007 1. (5 P.) In ein Quadrat mit der Seitenlänge a wird ein gleichseitiges Dreieck einbeschrieben, in dieses wiederum

Mehr

(a) 2 Punkte, (b) 2 Punkte (a) 1 Punkt, (b) 1 Punkt, (c) 2 Punkte (a) 1 Punkt, (b) 3 Punkte

(a) 2 Punkte, (b) 2 Punkte (a) 1 Punkt, (b) 1 Punkt, (c) 2 Punkte (a) 1 Punkt, (b) 3 Punkte Mathematik Aufnahmeprüfung 015 Aufgabe 1 3 4 5 6 7 8 9 10 11 1 Summe Punkte 4 4 3 3 3 3 4 4 4 4 40 Punkte für die Teilaufgaben: (a) Punkte, (b) Punkte (a) 1 Punkt, (b) 1 Punkt, (c) Punkte (a) 1 Punkt,

Mehr

Thema aus dem Bereich Algebra Gleichungen III

Thema aus dem Bereich Algebra Gleichungen III Thema aus dem Bereich Algebra - 2.3 Gleichungen III Inhaltsverzeichnis 1 Quadrierte Gleichungen mit einer Unbekannten 2 2 Wurzelgleichungen 3 2.1 Definition einer Wurzelgleichung................................

Mehr

2.1 Gleichungen 2.Grades mit einer Unbekannten (Thema aus dem Bereich Algebra)

2.1 Gleichungen 2.Grades mit einer Unbekannten (Thema aus dem Bereich Algebra) 2.1 Gleichungen 2.Grades mit einer Unbekannten (Thema aus dem Bereich Algebra) Inhaltsverzeichnis 1 Definition der Gleichung 2.Grades mit einer Unbekannten 2 2 1.Spezialfall: Die Gleichung lässt sich faktorisieren

Mehr

Mathematik. Matur-Aufgaben Stefan Dahinden. 26. Juni 2007

Mathematik. Matur-Aufgaben Stefan Dahinden. 26. Juni 2007 Mathematik Matur-Aufgaben 2006 Stefan Dahinden 26. Juni 2007 Rotationskörper Lassen Sie die Kurve mit der Gleichung y = 9 x für 0 x 9 um die x- Achse rotieren und berechnen Sie das exakte Volumen des entstehenden

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe Klasse 0 / II.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 4 cm;

Mehr

Minimalziele Mathematik

Minimalziele Mathematik Jahrgang 5 o Kopfrechnen, Kleines Einmaleins o Runden und Überschlagrechnen o Schriftliche Grundrechenarten in den Natürlichen Zahlen (ganzzahliger Divisor, ganzzahliger Faktor) o Umwandeln von Größen

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe Achtung! Alle Ergebnisse auf zwei Stellen nach dem Komma runden. 1 1.0 Gegeben ist die Funktion f 1 mit y = x + bx + c (b, c ). Der Graph zu f 3 1 ist die Parabel p 1, die durch die Punkte A(-/-4) und

Mehr

10. Klasse der Haupt-/Mittelschule. Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses (30. Juni 2011 von 8:30 bis 11:00 Uhr)

10. Klasse der Haupt-/Mittelschule. Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses (30. Juni 2011 von 8:30 bis 11:00 Uhr) 10. Klasse der Haupt-/Mittelschule bschlussprüfung zum Erwerb des Mittleren Schulabschlusses 011 (0. Juni 011 von 8:0 bis 11:00 Uhr) M T H E M T I K ei der bschlussprüfung zum Erwerb des Mittleren Schulabschlusses

Mehr

Musterprüfung Gymnasiale Maturitätsschulen. Name/Vorname: Wohnort:

Musterprüfung Gymnasiale Maturitätsschulen. Name/Vorname: Wohnort: Musterprüfung Gymnasiale Maturitätsschulen Name/Vorname: Wohnort: Mathematik schriftlich Zeit: 120 Minuten Hinweise: Schreibe auf jedes Blatt deinen Namen. Löse alle Aufgaben direkt auf den Prüfungsblättern.

Mehr

1. Schularbeit Stoffgebiete:

1. Schularbeit Stoffgebiete: 1. Schularbeit Stoffgebiete: Grundrechnungsarten mit ganzen Zahlen Koordinatensystem a) Berechne: 6 Punkte [( 36) + ( 64)] : ( 4) + ( 144) : ( 12) 16 ( 2) = b) Löse die drei Gleichungen und mache die Probe:

Mehr

und (c) ( 1 2 ) und (c) 2 x + z y

und (c) ( 1 2 ) und (c) 2 x + z y Teil II: Übungen 59 Übung 1 1. Berechne (((4/3+5/2) 6/5) 2/5) 5/2. 2. Berechne (a) 1 ( 2 ( ( 2 3 ) ( 3 4 ) ), (b) 1 und (c) ( 1 2 ) 4 ) ( 3 ). 4 3. Vereinfache: (a) ( 4 xy + 3 4z yz )( xy 2 y ),(b) x y

Mehr

Wurzelfunktionen Aufgaben

Wurzelfunktionen Aufgaben Wurzelfunktionen Aufgaben. Für jedes k (k > 0) ist die Funktion f k (x) = 8 (x k ) kx, 0 x gegeben. a) Untersuchen Sie die Funktion f k auf Nullstellen und Extrema. Ermitteln Sie lim f k(x) sowie für 0

Mehr

Aufgabe S1 (4 Punkte) Wie lang ist die kürzeste Höhe in dem Dreieck mit den Seiten 5, 12 und 13? Das Dreieck ist rechtwinklig, da 13 2 =

Aufgabe S1 (4 Punkte) Wie lang ist die kürzeste Höhe in dem Dreieck mit den Seiten 5, 12 und 13? Das Dreieck ist rechtwinklig, da 13 2 = Aufgabe S1 (4 Punkte) Wie lang ist die kürzeste Höhe in dem Dreieck mit den Seiten 5, 12 und 13? Lösung Das Dreieck ist rechtwinklig, da 13 2 = 12 2 + 5 2 Also gilt für die gesuchte Höhe auf der Hypotenuse

Mehr

Name Vorname Schuljahr 2005/2006 Datum der Durchführung Donnerstag, ORIENTIERUNGSARBEIT

Name Vorname Schuljahr 2005/2006 Datum der Durchführung Donnerstag, ORIENTIERUNGSARBEIT Sekundarschule 4. Klasse Niveau P Name Vorname Schuljahr 2005006 Datum der Durchführung Donnerstag, 17.11.05 ORIENTIERUNGSARBEIT Sekundarschule Mathematik Niveau P (M6) Lies zuerst Anleitung und Hinweise

Mehr

Mathematik I Prüfung für den Übertritt aus der 9. Klasse

Mathematik I Prüfung für den Übertritt aus der 9. Klasse Aufnahmeprüfung 016 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 9. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

Grundwissen. 8. Jahrgangsstufe. Mathematik

Grundwissen. 8. Jahrgangsstufe. Mathematik Grundwissen 8. Jahrgangsstufe Mathematik Grundwissen Mathematik 8. Jahrgangsstufe Seite 1 1 Proportionalität 1.1 Direkte Proportionalität Eigenschaften: y Quotientengleichheit Bei kommt immer das Gleiche

Mehr

Einleitung. Aufgaben: Vergrössern / Verkleinern. 1. Die Geo-Maus

Einleitung. Aufgaben: Vergrössern / Verkleinern. 1. Die Geo-Maus Kantonsschule Solothurn Geometrie: Zentrische Streckung und Ähnlichkeit RYS Zentrische Streckung und Ähnlichkeit Einleitung Aufgaben: Vergrössern / Verkleinern 1. Die Geo-Maus a) Zeichne die Geo-Maus noch

Mehr

Quadratische Funktionen

Quadratische Funktionen Quadratische Funktionen Aufgabe 1 Verschieben Sie die gegebenen Parabeln so, dass ihr Scheitelpunkt in S liegt. Gesucht sind die Scheitelpunktsform und die allgemeine Form der Parabelgleichung a) y = x²,

Mehr

Mecklenburg - Vorpommern

Mecklenburg - Vorpommern Realschulabschlussprüfung 2005 Mathematik Seite 1 Mecklenburg - Vorpommern Realschulabschlussprüfung 2005 Prüfungsarbeit Mathematik Realschulabschlussprüfung 2005 Mathematik Seite 2 Hinweise für Schülerinnen

Mehr

1 Kurvenuntersuchung /40

1 Kurvenuntersuchung /40 00 Herbst, (Mathematik) Aufgabenvorschlag B Kurvenuntersuchung /40 Die Tragflächen des berühmten Flugzeuges Junkers Ju-5 können an der Nahtstelle zum Flugzeugrumpf mithilfe der Funktionen f und g mit 8

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengang Bauingenieurwesen Dresden 2005 . Mengen Kenntnisse

Mehr

2. Mathematikschulaufgabe

2. Mathematikschulaufgabe . Mathematikschulaufgabe 1. Ist das Dreieck mit folgenden Maßen konstruierbar? Begründe! b = 6 cm, β = 76, Außenwinkel γ * = 59.. Ein Draht soll zu einem Dreieck gebogen werden. Eine Seite soll 1m lang

Mehr

Unterlagen für die Lehrkraft

Unterlagen für die Lehrkraft Ministerium für Bildung, Jugend und Sport Zentrale Prüfung zum Erwerb der Fachhochschulreife im Schuljahr 0/0 Mathematik B 8. Mai 0 09:00 Uhr Unterlagen für die Lehrkraft . Aufgabe: Differentialrechnung

Mehr

Mathematik I Prüfung für den Übertritt aus der 8. Klasse

Mathematik I Prüfung für den Übertritt aus der 8. Klasse Aufnahmeprüfung 015 für den Eintritt in das 9. Schuljahr eines Gymnasiums des Kantons Bern Mathematik I Prüfung für den Übertritt aus der 8. Klasse Bitte beachten: - Bearbeitungsdauer: 60 Minuten - Alle

Mehr

Formelsammlung Mathematik 9

Formelsammlung Mathematik 9 I Lineare Funktionen... 9.) Funktionen... 9.) Proportionale Funktionen... 9.) Lineare Funktionen... 9.4) Bestimmung von linearen Funktionen:... II) Systeme linearer Gleichungen... 9.5) Lineare Gleichungen

Mehr

Wiederholungsaufgaben Klasse 10

Wiederholungsaufgaben Klasse 10 Wiederholungsaufgaben Klasse 10 (Lineare und quadratische Funktionen / Sinus, Kosinus, Tangens und Anwendungen) 1. In welchem Punkt schneiden sich zwei Geraden, wenn eine Gerade g durch die Punkte A(1

Mehr

Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS

Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS Informationsblatt für den Einstieg ins 1. Mathematikjahr AHS Stoff für den Einstufungstest Mathematik in das 1. Jahr AHS: Mit und ohne Taschenrechner incl. Vorrangregeln ( Punkt vor Strich, Klammern, ):

Mehr

Figuren Lösungen. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60.

Figuren Lösungen. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. Es gibt drei Symmetrieachsen. Gleichseitiges Dreieck Zwei Seiten stehen normal.

Mehr

Tag der Mathematik 2008

Tag der Mathematik 2008 Tag der Mathematik 008 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner

Mehr

Sekundarschulabschluss für Erwachsene

Sekundarschulabschluss für Erwachsene SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2011 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

Hauptschule Bad Lippspringe Schlangen Klassenarbeit Mathematik 9a/b Name: Dutkowski

Hauptschule Bad Lippspringe Schlangen Klassenarbeit Mathematik 9a/b Name: Dutkowski 02.12.2010 Aufgabe 1: Basiswissen a) Prozentrechnung (7 P.) a) b) c) d) Prozentzahl Bruch Dezimalzahl 30% 3 10 O,3 25% 25 1 = 100 4 0,25 50% 1 50 = 2 100 0,5 75 % 75 100 0,75 b) Zuordnungen (6 P.) Frau

Mehr

Mathematik I Pflichtteil - Nachtermin Aufgabe P 1. Klasse: Platzziffer: Punkte:

Mathematik I Pflichtteil - Nachtermin Aufgabe P 1. Klasse: Platzziffer: Punkte: Prüfungsdauer: Abschlussprüfung 2006 150 Minuten an den Realschulen in Bayern R4/R6 Mathematik I Pflichtteil - Nachtermin Aufgabe P 1 Name: Vorname: Klasse: Platzziffer: Punkte: P 1.0 Gegeben sind der

Mehr

Übungen zu Kurvenscharen

Übungen zu Kurvenscharen Übungen zu Kurvenscharen. Gegeben ist die Geradenschar g t : = (t ) ( t) + 9 (t 9) mit D(g t ) = R, t R. a) Zeichnen Sie die Graphen der Funktionen g und g in ein Koordinatensstem. b) Geben Sie die Schnittpunkte

Mehr

Repetition Mathematik 7. Klasse

Repetition Mathematik 7. Klasse Repetition Mathematik 7. Klasse 1. Ein neugeborenes Kätzchen wiegt bei der Geburt durchschnittlich 100g. Es nimmt in den ersten 8 Wochen pro Woche 60g zu. Wie viel beträgt nachher die Gewichtszunahme pro

Mehr

Grundwissen Mathematik 9. Klasse

Grundwissen Mathematik 9. Klasse Welfen-Gymnasium Schongau 1 Grundwissen Mathematik 9. Klasse Wissen Aufgaben/Beispiele Lösungen Quadratwurzeln: a, a 0 ist diejenige nichtnegative Zahl, deren Quadrat a ergibt. D.h.: a ist die nichtnegative

Mehr

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind Vorbereitungsaufgaben Mathematik. Bruchrechnung.. Grundlagen: gebrochene Zahl gemeiner Bruch Zähler Nenner Dezimalbruch Ganze, Zehntel Hundertstel Tausendstel Kürzen: Zähler und Nenner durch dieselbe Zahl

Mehr

Einstiegsvoraussetzungen 1. Semester

Einstiegsvoraussetzungen 1. Semester Einstiegsvoraussetzungen 1. Semester Bereich: Zahlen und Maße Mengen können Mengen angeben. verstehen die Begriffe Element von und Teilmenge und können sie anwenden. kennen die Mengenoperationen Vereinigung,

Mehr

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich

Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Aufnahmeprüfung 2015 für die Berufsmaturitätsschulen des Kantons Zürich Mathematik Basierend auf Lehrmittel: Mathematik (Schelldorfer) Serie: A2 Dauer: 90 Minuten Name: Vorname: Adresse: Prüfungsnummer:

Mehr

Mecklenburg - Vorpommern

Mecklenburg - Vorpommern Mecklenburg - Vorpommern Realschulabschlussprüfung 2002 Prüfungsarbeit Mathematik Realschulabschlussprüfung 2002 Mathematik Seite 1 Hinweise für Schülerinnen und Schüler: Die vorliegende Arbeit besteht

Mehr

Jahresprüfung Mathematik. 1. Klassen Kantonsschule Reussbühl Luzern. Dienstag, 26. Mai 2015

Jahresprüfung Mathematik. 1. Klassen Kantonsschule Reussbühl Luzern. Dienstag, 26. Mai 2015 Jahresprüfung Mathematik 1. Klassen Kantonsschule Reussbühl Luzern Dienstag, 26. Mai 2015 Zeit: Hilfsmittel: 90 Minuten (13.10-14.40 Uhr) Taschenrechner (TI-30) maximum: 75 Notenmassstab: 68 ergeben die

Mehr

FUNKTIONEN. ein Leitprogramm für die Berufsmaturität

FUNKTIONEN. ein Leitprogramm für die Berufsmaturität FUNKTIONEN ein Leitprogramm für die Berufsmaturität von Johann Berger 2000 Inhaltsverzeichnis Einleitung 3 Arbeitsanleitung 3 1 Der Funktionsbegriff 3 2 Lineare 6 3 Quadratische 10 EINLEITUNG Dieses Leitprogramm

Mehr

Tag der Mathematik 2013

Tag der Mathematik 2013 Tag der Mathematik 2013 Gruppenwettbewerb Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind nicht zugelassen. Teamnummer Die folgende

Mehr

r)- +"1. ([+ ax1 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf 2. Multipliziere aus:

r)- +1. ([+ ax1 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf 2. Multipliziere aus: Seite 1 von 22 8t1 1. Klammere alle gemeinsamen Faktoren aus. 1Bx2y3-2axtf Multipliziere aus: r)- +"1. ([+ ax1 Venvandle mit Hilfe einer binomischen Formel in ein Produkt. 9a2-30ab'+ ba In einem Dreieck

Mehr

Übungsaufgabe z. Th. lineare Funktionen und Parabeln

Übungsaufgabe z. Th. lineare Funktionen und Parabeln Übungsaufgabe z. Th. lineare Funktionen und Parabeln Gegeben sind die Parabeln: h(x) = 8 x + 3 x - 1 9 und k(x) = - 8 x - 1 1 8 x + 11 a) Bestimmen Sie die Koordinaten der Schnittpunkte A und C der Graphen

Mehr

St.Gallische Kantonsschulen Aufnahmeprüfung 2010 Gymnasium. Kandidatennummer: Geburtsdatum: Note: Aufgabe

St.Gallische Kantonsschulen Aufnahmeprüfung 2010 Gymnasium. Kandidatennummer: Geburtsdatum: Note: Aufgabe St.Gallische Kantonsschulen Aufnahmeprüfung 010 Gymnasium Mathematik 1 ohne Taschenrechner Dauer: 90 Minuten Kandidatennummer: Summe: Geburtsdatum: Note: Aufgabe 1 3 4 5 6 7 8 9 10 11 1 13 Punkte Löse

Mehr

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel:

1. Vereinfache wie im Beispiel: 3. Vereinfache wie im Beispiel: 4. Schreibe ohne Wurzel wie im Beispiel: 1. Zahlenmengen Wissensgrundlage Aufgabenbeispiele Gib die jeweils kleinstmögliche Zahlenmenge an, welche die Zahl enthält? R Q Q oder All diejenigen Zahlen, die sich nicht mehr durch Brüche darstellen

Mehr

2. Mathematikschulaufgabe

2. Mathematikschulaufgabe . Mathematikschulaufgabe Klasse 9 GM_A0009 **** Lösungen Seiten www.mathematik-aufgaben.de . Mathematikschulaufgabe Klasse 9 GM_A00 **** Lösungen Seiten www.mathematik-aufgaben.de . Mathematikschulaufgabe

Mehr

Mathematik Aufnahmeprüfung 2015

Mathematik Aufnahmeprüfung 2015 Mathematik Aufnahmeprüfung 2015 Zeit: 2 Stunden. Rechner: TI30/TI34 oder vergleichbare. Hinweis: Der Lösungsweg muss nachvollziehbar sein, ansonsten werden keine Teilpunkte vergeben. Numerische Resultate

Mehr

EPREUVE SPECIFIQUE EN MATHEMATIQUES - Session 2007 SECTION EUROPEENNE Mathématiques et Allemand - Session 2007 Sujet 1

EPREUVE SPECIFIQUE EN MATHEMATIQUES - Session 2007 SECTION EUROPEENNE Mathématiques et Allemand - Session 2007 Sujet 1 - Session 2007 Sujet 1 Gegeben ist ein gleichseitiges Dreieck ABC mit AB=5cm. Man nennt I den Mittelpunkt der Strecke [BC]. a) Wie groß ist die Länge AI? Zuerst wird eine Figur gezeichnet. (Siehe unten).

Mehr

Reelle Zahlen (R)

Reelle Zahlen (R) Reelle Zahlen (R) Bisher sind bekannt: Natürliche Zahlen (N): N {,,,,,6... } Ganze Zahlen (Z): Z {...,,,0,,,... } Man erkennt: Rationale Zahlen (Q):.) Zwischen den natürlichen Zahlen befinden sich große

Mehr

Der Satz des Pythagoras

Der Satz des Pythagoras Der Satz des Pythagoras Das rechtwinklige Dreieck Jedes rechtwinklige Dreieck besitzt eine Hypotenuse (c), das ist die längste Seite des Dreiecks (bzw. diejenige gegenüber dem rechten Winkel). Die anderen

Mehr

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf.

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Arbeitsblätter zur Vergleichsklausur EF Arbeitsblatt I.1 Nullstellen Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Beachte den Satz: Ein Produkt wird null, wenn einer der

Mehr

z. B. Packung c) Nenne einen Gegenstand, der etwa 1 kg wiegt. Zucker, Mehl, Milch d) Zeichne ein Quadrat mit dem Flächeninhalt 9 cm².

z. B. Packung c) Nenne einen Gegenstand, der etwa 1 kg wiegt. Zucker, Mehl, Milch d) Zeichne ein Quadrat mit dem Flächeninhalt 9 cm². Einsetzbar ab Lerneinheit Zuordnungen a) Runde 34,92 auf Zehntel. 35,0 b) Berechne: 3 5 11 3 +. = 1 4 8 8 8 z. B. Packung c) Nenne einen Gegenstand, der etwa 1 kg wiegt. Zucker, Mehl, Milch d) Zeichne

Mehr

Abschlussprüfung 2010 an den Realschulen in Bayern

Abschlussprüfung 2010 an den Realschulen in Bayern Prüfungsdauer: 50 Minuten bschlussprüfung 00 an den Realschulen in ayern Mathematik II Name: Vorname: Klasse: Platzziffer: Punkte: ufgabe Nachtermin.0 ie nebenstehende Skizze zeigt ein Schrägbild des Würfels

Mehr

Grundwissen. 8. Jahrgangsstufe. Mathematik

Grundwissen. 8. Jahrgangsstufe. Mathematik Grundwissen 8. Jahrgangsstufe Mathematik Grundwissen Mathematik 8. Jahrgangsstufe Seite 1 1 Proportionalität 1.1 Direkte Proportionalität Eigenschaften: y Quotientengleichheit Bei kommt immer das Gleiche

Mehr

Maturitätsprüfung Mathematik

Maturitätsprüfung Mathematik Maturitätsprüfung 007 Mathematik Klasse 4bN Kantonsschule Solothurn Mathematisch-naturwissenschaftliches Maturitätsprofil Name: Note: Hinweise zur Bearbeitung der Prüfung: Zur Lösung der Aufgaben stehen

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

)e2 (3 x2 ) a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen Sie das Verhalten von f für x.

)e2 (3 x2 ) a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen Sie das Verhalten von f für x. Analysis Aufgabe aus Abiturprüfung Bayern GK (abgeändert). Gegeben ist die Funktion f(x) = ( x )e ( x ). a) Untersuchen Sie den Graphen auf Symmetrie, ermitteln Sie die Nullstellen von f und bestimmen

Mehr

TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG MATHEMATIK

TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG MATHEMATIK TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG TEST IM FACH MATHEMATIK FÜR STUDIENBEWERBER MIT BERUFSQUALIFIKATION NAME : VORNAME : Bearbeitungszeit : 180 Minuten Hilfsmittel : Formelsammlung, Taschenrechner.

Mehr

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe

Mehr

Tag der Mathematik 2007

Tag der Mathematik 2007 Tag der Mathematik 2007 Gruppenwettbewerb Einzelwettbewerb Speed-Wettbewerb Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe .0 Berechne folgende Terme:.. x + 4 = x =. (y x) (x + y) =.0 Schreibe ohne Klammern und vereinfache soweit wie möglich:. (x + ) (x 4) =. (0,4x + y) (0,4x y) + (y) =. Ermittle den Extremwert durch Termumformung.

Mehr

1.4 Trigonometrie I. 1 Seitenverhältnisse beim rechtwinkligen Dreieck 2. 2 Die trigonometrischen Funktionen 4

1.4 Trigonometrie I. 1 Seitenverhältnisse beim rechtwinkligen Dreieck 2. 2 Die trigonometrischen Funktionen 4 1.4 Trigonometrie I Inhaltsverzeichnis 1 Seitenverhältnisse beim rechtwinkligen Dreieck 2 2 Die trigonometrischen Funktionen 4 2.1 Was sind trigonometrischen Funktionen?........................... 4 2.2

Mehr

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7

Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Regiomontanus - Gymnasium Haßfurt - Grundwissen Mathematik Jahrgangsstufe 7 Wissen und Können 1. Terme Terme sind sinnvolle Rechenausdrücke mit Zahlen, Variablen und Rechenzeichen. Berechnung von Termwerten

Mehr

Lösungen zu Differentialrechnung IV-Extremalprobleme

Lösungen zu Differentialrechnung IV-Extremalprobleme Diff rechnung IV 12.12.2006 Lösungen 1 Lösungen zu Differentialrechnung IV-Extremalprobleme 1. Ein Kugelstösser stösst eine Kugel. Die Flugbahn der Kugel lässt sich mit dem folgenden Gesetz beschreiben:

Mehr

6,5 34,5 24,375 46,75

6,5 34,5 24,375 46,75 Teste dich! - (/5) Für eine Taxifahrt zahlt man für jeden gefahrenen Kilometer,60. Zusätzlich wird eine Grundgebühr von 2,50 gezahlt. Stelle den Preis für 20 km (0 km; x km) Fahrt als Term dar. 2,5 +,6

Mehr

a) Von welcher Art ist die Zuordnung : Anzahl der Tage mögliche Ausgaben pro Tag?

a) Von welcher Art ist die Zuordnung : Anzahl der Tage mögliche Ausgaben pro Tag? Aufgaben zum Grundwissen ================================================================== I. Proportionale und umgekehrt proportionale Zuordnungen 1. Von welcher Art können die durch die Tabellen gegebenen

Mehr

ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 11 LÖSUNGEN MAT121/MAT131 ANALYSIS II FRÜHJAHRSSEMESTER 2011 PROF. DR. CAMILLO DE LELLIS Aufgabe 1. a) Gegeben sei die Gleichung 2x 2 4xy +y 2 3x+4y = 0. Verifizieren Sie, dass diese Gleichung

Mehr

Ferienaufgaben Mathematik 8. Klasse

Ferienaufgaben Mathematik 8. Klasse Ferienaufgaben Mathematik 8. Klasse 8.A Funktionen 8.A. Begriff Entscheide in den folgenden Fällen, ob eine Funktion vorliegt und begründe Deine Antwort! Jeder Zahl wird ihr um eins erhöhtes Quadrat zugeordnet.

Mehr

1. Mathematikschulaufgabe

1. Mathematikschulaufgabe 1.0 Gegeben ist die Funktion f: y = 1 ( ) 1 x + in G= x. 1.1 Tabellarisiere f für x = [ -1; 7 ] mit x = 1 sowie für x =,5 und x =,5. 1. Zeichne den Graphen von f. Für die Zeichnung: 1 LE = 1 cm - 1 x 8-1

Mehr