Vorlesung Biophysik I - Molekulare Biophysik W. Kremer

Größe: px
Ab Seite anzeigen:

Download "Vorlesung Biophysik I - Molekulare Biophysik W. Kremer"

Transkript

1 Vorlesung Biophysik I - Molekulare Biophysik W. Kremer Zelle Biologische Makromoleküle I Biologische Makromoleküle II Nukleinsäuren-Origami (DNA, RNA) Aminosäuren-Origami (Protein-Nanotechnologie) Molekulare Motoren Methoden zur Strukturbestimmung: Magnetische Resonanzspektroskopie I - Grundlagen Magnetische Resonanzspektroskopie II - Mehrdimensionale NMR- Spektroskopie Magnetische Resonanzspektroskopie III Proteinstrukturbestimmung, Dynamik und Bewegung, ESR-Spektroskopie Röntgenstrukturanalyse I Streuung von Wellen, Faltungstheorem, Pattersonfunktion, Phasenproblem Röntgenstrukturanalyse II - Synchrotonstrahlung, zeitaufgelöste Kristallographie Röntgenkleinwinkelstreuung Elektronenmikroskopie I Elektronenoptik, Kontrastentstehung und Bildinformation Elektronenmikroskopie II Kristalline Objekte, Tomographie Rastertunnel- und Rasterkraftmikroskopie

2 Magnetische Resonanzmethoden Elektronenspinresonanz (ESR) Ungepaarte Elektronenspins Metallkomplexe Radikale Spinlabel Kernmagnetische Resonanz (NMR) Kernspins NMR in homogenen Medien In-vivo-Spektroskopie NMR-Tomographie und NMR- Mikroskopie

3 Spezifische Eigenschaften der Strukturmethoden NMR-Spektroskopie Röntgenkristallographie Vorteile Struktur in Lösung - quasiphysiologische Bedingungen Nachteile Struktur im Kristallgitter - unphysiologisch - keine Kristallisation notwendig - Kristallisation oft sehr langwierig - dynamische Prozesse gut beobachtbar - Bewegung schwer von Unordnung unterscheidbar Nachteile Vorteile Größenbegrenzung (bis vor kurzem: ca. 300 Aminosäuren) prinzipiell keine Größenbegrenzung

4 Lehrbücher makromolekulare Kristallographie C. R. Cantor & P. R. Schimmel Biophysical Chemistry Teil II Freeman nd Company, San Francisco J. Drenth Principles of Protein X-Ray Crystallography Springer Verlag, Heidelberg

5 -Kristallisation von Proteinen -Proteinkristalle, Cryotechniken -Röntgenbeugung, Kristallsymmetrien und Raumgruppen

6 Kristallisation von Proteinen - Phasendiagramm

7 Kristallisationsmethoden - Batchverfahren - Dialyseverfahren - Flüssigkeits-Flüssigkeits-Diffusion - Dampfdiffusion

8 Dialyseverfahren zur Kristallisation

9 Flüssigkeit-Flüssigkeits-Diffusion

10 Kristallisation im Dampfdiffusionsverfahren Hängender Tropfen (hanging drop) Sitzender Tropfen (sitting drop)

11 Testansätze für die Kristallisation

12 Schematischer Aufbau einer Röntgenstruktureinheit Strahlungsquelle Kristall -Röntgenröhre --Synchroton Monochromator Goniometer

13 Erzeugung von Röntgenstrahlen mit der Kupferanode M-Schale K- Absorptions- L-Schale Emissionsspektrum einer Cu-Anode Schalenmodel von Cu Grenze K-Schale I Charakteristische Strahlung nm nm Bremsstrahlung λ min =hc/ev

14 Absorption von Röntgenstrahlen

15 Beschreibung einer elektromagnetischen Welle (Strahlung) 2 πi ( kr νt + ϕ ) E ( r, t) = E e 0 E ( r, t) = E cos(2π ( kr νt + ϕ)) + i sin(2π ( kr νt + ϕ)) 0 { } mit k = ˆk / λ E(r,t): Elektrisches Feld E am Ort r zur Zeit t E 0 : Amplitude k: Wellenvektor λ: Wellenlänge ν: Frequenz φ: Phasenfaktor

16 Streuung einer EM-Welle an einem Elektron im Ursprung des Koordinatensystems k k 0 k 0 = (1/λ) k 0 k = (1/λ) k Streuvektor S: S = k - k 0 = (1/λ)( k - k 0 )

17 Streuung einer EM-Welle an einem Elektron im Ursprung des Koordinatensystems k k 0 Streuvektor S: S = k - k 0 = (1/λ)( k - k 0 ) S = (SS) 1/2 = (1/λ)( k 2-2 k k 0 cos2θ + k 0 2 ) 1/2 S = (2 sinθ )/λ

18 Geometrische Interpretation von S k 0 S -k 0 θ θ k Der Streuvektor S steht senkrecht auf der Reflexionsebene

19 Streuung einer EM-Welle an einem Elektron: Phasenverschiebung φ

20 Verschiebung im Koordinatensystem führt zur Phasendifferenz φ rk 0 rk Wegunterschied p: p = rk - rk 0 = λ (rk- rk 0 ) = λ rs Phasenunterschied φ: φ =(2π/λ) p= 2π rs

21 Strukturfaktor F(S) F ( S) = E( S,r) E( S,0) Mit E der Feldstärke der durch die Elektronen des Objekts gestreuten Welle und r dem Ortsvektor

22 Atomarer Strukturfaktor f Elektronendichte ρ(r) Strukturfaktor f eines Kohlenstoffatoms

23 Vorlesung Biophysik I - Molekulare Biophysik W. Kremer Zelle Biologische Makromoleküle I Biologische Makromoleküle II Nukleinsäuren-Origami (DNA, RNA) Aminosäuren-Origami (Protein-Nanotechnologie) Molekulare Motoren Methoden zur Strukturbestimmung: Magnetische Resonanzspektroskopie I - Grundlagen Magnetische Resonanzspektroskopie II - Mehrdimensionale NMR- Spektroskopie Magnetische Resonanzspektroskopie III Proteinstrukturbestimmung, Dynamik und Bewegung, ESR-Spektroskopie Röntgenstrukturanalyse I Streuung von Wellen, Faltungstheorem, Pattersonfunktion, Phasenproblem Röntgenstrukturanalyse II - Synchrotonstrahlung, zeitaufgelöste Kristallographie Röntgenkleinwinkelstreuung Elektronenmikroskopie I Elektronenoptik, Kontrastentstehung und Bildinformation Elektronenmikroskopie II Kristalline Objekte, Tomographie Rastertunnel- und Rasterkraftmikroskopie

Was ist Biophysik? Mögliche Definition: Biophysik ist die Lehre von den physikalischen Gesetzmäßigkeiten, die den lebenden Systemen zu Grunde liegen.

Was ist Biophysik? Mögliche Definition: Biophysik ist die Lehre von den physikalischen Gesetzmäßigkeiten, die den lebenden Systemen zu Grunde liegen. Mögliche Definition: Was ist Biophysik? Biophysik ist die Lehre von den physikalischen Gesetzmäßigkeiten, die den lebenden Systemen zu Grunde liegen. Beispiele: Mechanische Eigenschaften von Biomaterialen

Mehr

Vorlesung Biophysik I - Molekulare Biophysik Kalbitzer/Kremer/Ziegler

Vorlesung Biophysik I - Molekulare Biophysik Kalbitzer/Kremer/Ziegler Vorlesung Biophysik I - Molekulare Biophysik Kalbitzer/Kremer/Ziegler 23.10. Zelle 30.10. Biologische Makromoleküle I 06.11. Biologische Makromoleküle II 13.11. Nukleinsäuren-Origami (DNA, RNA) 20.11.

Mehr

Vorlesung Biophysik I - Molekulare Biophysik Kalbitzer/Kremer/Ziegler

Vorlesung Biophysik I - Molekulare Biophysik Kalbitzer/Kremer/Ziegler Vorlesung Biophysik I - Molekulare Biophysik Kalbitzer/Kremer/Ziegler 23.10. Zelle 30.10. Biologische Makromoleküle I 06.11. Biologische Makromoleküle II 13.11. Nukleinsäuren-Origami (DNA, RNA) 20.11.

Mehr

Methoden. Spektroskopische Verfahren. Mikroskopische Verfahren. Streuverfahren. Kalorimetrische Verfahren

Methoden. Spektroskopische Verfahren. Mikroskopische Verfahren. Streuverfahren. Kalorimetrische Verfahren Methoden Spektroskopische Verfahren Mikroskopische Verfahren Streuverfahren Kalorimetrische Verfahren Literatur D. Haarer, H.W. Spiess (Hrsg.): Spektroskopie amorpher und kristalliner Festkörper Steinkopf

Mehr

Alle Angaben sind ohne Gewähr!

Alle Angaben sind ohne Gewähr! Alle Angaben sind ohne Gewähr! Die Abbildungen sind hauptsächlich aus dem Buch: Van Holde/Johnson/Ho: Principles of physical biochemistry Buch nur zur Kristallographie: Crystallography Made Crystal Clear:

Mehr

Primärstruktur Proteinsequenzierung

Primärstruktur Proteinsequenzierung Proteinanalytik II Primärstruktur Proteinsequenzierung Hydrolyse der Peptidbindung Aminosäurenachweis Ninhydrin Aminosäurenachweis Fluorescamin Proteinhydrolysat Ionenaustauschchromatographie Polypeptidstruktur

Mehr

Strukturaufklärung (BSc-Chemie): Einführung

Strukturaufklärung (BSc-Chemie): Einführung Strukturaufklärung (BSc-Chemie): Einführung Prof. S. Grimme OC [TC] 13.10.2009 Prof. S. Grimme (OC [TC]) Strukturaufklärung (BSc-Chemie): Einführung 13.10.2009 1 / 25 Teil I Einführung Prof. S. Grimme

Mehr

Mathematischer Vorkurs zum Studium der Physik

Mathematischer Vorkurs zum Studium der Physik Universität Heidelberg Mathematischer Vorkurs zum Studium der Physik Übungen Aufgaben zu Kapitel 9 (Fortsetzung) (aus: K. Hefft, Mathematischer Vorkurs zum Studium der Physik, sowie Ergänzungen) Aufgabe

Mehr

I e Lambert Beer. Grundlagen der Streuung: Teil I Grundbegriffe. Streuung vs. Beugung. Typisches Streuexperiment. ) = Einfallende Intensität I t

I e Lambert Beer. Grundlagen der Streuung: Teil I Grundbegriffe. Streuung vs. Beugung. Typisches Streuexperiment. ) = Einfallende Intensität I t Grundlagen der Streuung: Teil I Grundbegriffe Streuung vs. Beugung Typisches Streuexperiment I (ω ) I t (ω ) I (ω ) = Einfallende Intensität I t (ω ) = transmittierte Intensität I s (ω,θ) = Streuintensität

Mehr

Fortgeschrittenen Praktikum, SS 2008

Fortgeschrittenen Praktikum, SS 2008 Röntgenbeugung (RBE) Fortgeschrittenen Praktikum, SS 2008 Alexander Seizinger, Michael Ziller, Philipp Buchegger, Tobias Müller Betreuer: Prof. Jörg Ihringer Tübingen, den 15. Juli 2008 1 Theorie 1.1 Erzeugung

Mehr

Thema heute: Das Bohr sche Atommodell

Thema heute: Das Bohr sche Atommodell Wiederholung der letzten Vorlesungsstunde: Radioaktive Zerfallsgeschwindigkeit, Altersbestimmungen, Ionisationszähler (Geiger-Müller-Zähler), Szintillationszähler, natürliche radioaktive Zerfallsreihen,

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde VL # 38,

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde VL # 38, Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde VL # 38, 23.07.2009 Vladimir Dyakonov Experimentelle Physik VI dyakonov@physik.uni-wuerzburg.de Professor Dr. Vladimir

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #46 am

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #46 am Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #46 am 19.07.2007 Vladimir Dyakonov Atome und Strahlung 1 Atomvorstellungen J.J. Thomson 1856-1940

Mehr

Mit Physik das Leben abbilden

Mit Physik das Leben abbilden Mit Physik das Leben abbilden Auf frischer Tat ertappt: die Beobachtung von Proteinen bei der Arbeit Ilme Schlichting Proteine Nanomaschinen Motoren Transportvehikel Schreder Pumpen Kanäle Katalysatoren

Mehr

PROBLEME AUS DER PHYSIK

PROBLEME AUS DER PHYSIK Helmut Vogel PROBLEME AUS DER PHYSIK Aufgaben und Lösungen zur 16. Auflage von Gerthsen Kneser Vogel Physik Mit über 1100 Aufgaben, 158 Abbildungen und 16 Tabellen Springer-Verlag Berlin Heidelberg New

Mehr

Grundlagen der Molekularen Biophysik WS 2011/12 (Bachelor)

Grundlagen der Molekularen Biophysik WS 2011/12 (Bachelor) Grundlagen der Molekularen Biophysik WS 2011/12 (Bachelor) Dozent: Prof Dr. Ulrike Alexiev (R.1.2.34, Tel. 55010/Sekretariat Frau Endrias Tel. 53337) Tutoren: Dr. Kristina Kirchberg Alex Boreham 6-stündig

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? Konstruktive Interferenz dsinθ = λ = 0, ± 1, ± 2... Destruktive Interferenz asinθ = λ = 0, ± 1, ± 2... Kohärent vs. inkohärent

Mehr

Strukturmethoden: Röntgenstrukturanalyse von Einkristallen. Sommersemester Christoph Wölper. Universität Duisburg-Essen

Strukturmethoden: Röntgenstrukturanalyse von Einkristallen. Sommersemester Christoph Wölper. Universität Duisburg-Essen Strukturmethoden: Röntgenstrukturanalyse von Einkristallen Sommersemester 2014 Christoph Wölper Universität Duisburg-Essen Christoph Wölper christoph.woelper@uni-due.de http://www.uni-due.de/~adb297b Vorlesungs-Skript

Mehr

Elektrische Schwingungen und Wellen

Elektrische Schwingungen und Wellen Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #4 am 0.07.2007 Vladimir Dyakonov Elektrische Schwingungen und Wellen Wechselströme Wechselstromgrößen

Mehr

Physik ea Klausur Nr Oktober 2013

Physik ea Klausur Nr Oktober 2013 Name: BE: / 77 = % Note: P. 1. Aufgabe: Röntgenstrahlung a. Skizziere den Aufbau einer Vorrichtung zur Herstellung eines gebündelten Röntgenstrahls, beschrifte ihre Bauteile und erläutere die Prozesse,

Mehr

Festkorperspektroskopie

Festkorperspektroskopie Hans Kuzmany Festkorperspektroskopie Eine Einführung Mit 222 Abbildungen Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong 1. Einleitung 1 2. Grundlagen der Festkörperphysik 4 2.1

Mehr

Anorganische Chemie VI Materialdesign. Heute: Röntgen-Einkristall-Strukturanalytik

Anorganische Chemie VI Materialdesign. Heute: Röntgen-Einkristall-Strukturanalytik Mathematisch-Naturwissenschaftliche Fakultät Institut für Chemie Abteilung Anorganische Festkörperchemie Prof. Dr. Martin Köckerling Vorlesung Anorganische Chemie VI Materialdesign Heute: Röntgen-Einkristall-Strukturanalytik

Mehr

2.1 Optische Grundlagen für Grenzflächen und Volumina von Festkörpern Transmissions- t und Reflexionskoeffizienten r Fresnelsche Gleichungen

2.1 Optische Grundlagen für Grenzflächen und Volumina von Festkörpern Transmissions- t und Reflexionskoeffizienten r Fresnelsche Gleichungen Theorie 2 2.1 Optische Grundlagen für Grenzflächen und Volumina von Festkörpern 2.1.1 Transmissions- t und Reflexionskoeffizienten r Fresnelsche Gleichungen Sonnenlicht ist physikalisch betrachtet eine

Mehr

Spektroskopische Methoden in der Biochemie

Spektroskopische Methoden in der Biochemie Spektroskopische Methoden in der Biochemie Von Hans-Joachim Galla unter Mitarbeit von Hans-Jürgen Müller 214 Abbildungen, 13 Tabellen 2008 AGI-Information Management Consultants May be used for personal

Mehr

Einführung in die Neutronenstreuung. Robert Georgii Forschungsneutronenquelle Hans Maier-Leibnitz TU München

Einführung in die Neutronenstreuung. Robert Georgii Forschungsneutronenquelle Hans Maier-Leibnitz TU München Einführung in die Neutronenstreuung Robert Georgii Forschungsneutronenquelle Hans Maier-Leibnitz TU München Literatur Sehr empfehlenswert: Neutron scattering: A Primer by Roger Pynn Los Alamos Science

Mehr

Die Bragg sche Beugungsbedingung. θ θ θ θ Ebene hkl

Die Bragg sche Beugungsbedingung. θ θ θ θ Ebene hkl Die Bragg sche Beugungsbedingung Eintr effender Strahl Austretender Str ahl Gebeugter Strahl θ θ θ θ Ebene hkl d hkl x x Ebene hkl Wegdifferenz: 2 x = 2 d hkl sin θ Konstruktive Interferenz: n λ = 2 d

Mehr

Röntgenkristallstrukturanalyse : Debye-Scherrer

Röntgenkristallstrukturanalyse : Debye-Scherrer 16.04.2009 Gliederung Bragg-Bedingung Bragg-Bedingung Bragg-Bedingung: 2d m m m h k l sin(ϑ) = nλ für kubisches Gitter: 2sin(ϑ) = λ h 2 + k 2 + l 2 a d m m m h k l...netzebenenabstand ϑ...braggwinkel n...

Mehr

Vorlesung "Molekülphysik/Festkörperphysik" Wintersemester 2011/2012. Das Spektrum der elektromagnetischen Wellen

Vorlesung Molekülphysik/Festkörperphysik Wintersemester 2011/2012. Das Spektrum der elektromagnetischen Wellen Vorlesung "Molekülphysik/Festkörperphysik" Wintersemester 011/01 Prof. Dr. F. Kremer Übersicht der Vorlesung am 9.1.01 Das Spektrum der elektromagnetischen Wellen Röntgenspektren UV-VIS-Spektroskopie Infrarot-Spektroskopie

Mehr

RÖNTGEN-DIFFRAKTOMETRIE (XRD) und RÖNTGEN-PULVERDIFFRAKTOMETRIE (XRPD)

RÖNTGEN-DIFFRAKTOMETRIE (XRD) und RÖNTGEN-PULVERDIFFRAKTOMETRIE (XRPD) RÖNTGEN-DIFFRAKTOMETRIE (XRD) und RÖNTGEN-PULVERDIFFRAKTOMETRIE (XRPD) Strukturbestimmung mittels Röntgenstrahlen Ortslagenbestimmung von Atomen Kristall- bzw. Röntgenstrukturanalyse Fingerprint, Substanzidentifizierung

Mehr

Typisch metallische Eigenschaften:

Typisch metallische Eigenschaften: Typisch metallische Eigenschaften: hohe elektrische Leitfähigkeit hohe thermische Leitfähigkeit bei Energiezufuhr (Wärme, elektromagnetische Strahlung) können Elektronen emittiert werden metallischer Glanz

Mehr

Strukturauflösung durch Synchrotronstrahlung

Strukturauflösung durch Synchrotronstrahlung Biophysik SS 01 Strukturauflösung durch Synchrotronstrahlung Vortrag am 18.07.01 von Mark Mozer 1. Einleitung Um die Funktion von Proteinen, bzw. Molekülen verstehen zu können, muß man die Struktur derer

Mehr

13 Röntgeninterferenzen an Einkristallen

13 Röntgeninterferenzen an Einkristallen 13 Röntgeninterferenzen an Einkristallen 13.1 Röntgenstreuung an Atomen Elastische Röntgenstreuung in Materie erfolgt hauptsächlich durch Wechselwirkung mit Elektronen; der Kernbeitrag ist vernachlässigbar.

Mehr

19.Juni Strukturbestimmung. Gruppe 36. Simon Honc Christian Hütter

19.Juni Strukturbestimmung. Gruppe 36. Simon Honc Christian Hütter 19.Juni 2005 Strukturbestimmung Gruppe 36 Simon Honc shonc@web.de Christian Hütter christian.huetter@gmx.de 1 I. Theoretische Grundlagen 1. Struktur idealer Kristalle Generell kann man bei Kristallen vom

Mehr

1.4 Elektromagnetische Wellen an Grenzflächen

1.4 Elektromagnetische Wellen an Grenzflächen 1.4 Elektromagnetische Wellen an Grenzflächen A Stetigkeitsbedingungen Zwei homogen isotrope optische Medien, die D εe, B µh und j σe mit skalaren Konstanten ε, µ, σ erfüllen, mögen sich an einer Grenzfläche

Mehr

Fortgeschrittenenpraktikum. 2. Praktikumsversuch aus Halbleiterphysik. Röntgenbeugung

Fortgeschrittenenpraktikum. 2. Praktikumsversuch aus Halbleiterphysik. Röntgenbeugung 2. Praktikumsversuch aus Halbleiterphysik Röntgenbeugung, 0555150 (Autor), 0555342 Gruppe I/1 1 Inhaltsverzeichnis 1 Theoretische Grundlagen 3 1.1 Bragg-Bedingung.............................................

Mehr

Einführung in die Spektroskopie für Studenten der Biologie

Einführung in die Spektroskopie für Studenten der Biologie Einführung in die Spektroskopie für Studenten der Biologie Jörg H. Kleinschmidt http://www.biologie.uni-konstanz.de/folding/home.html Literatur Banwell, C. N., Elaine M. McCash, Molekülspektroskopie. Ein

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 3. Matthias Golibrzuch,Daniel Jost Montag

Physik-Department. Ferienkurs zur Experimentalphysik 3. Matthias Golibrzuch,Daniel Jost Montag Physik-Department Ferienkurs zur Experimentalphysik 3 Matthias Golibrzuch,Daniel Jost Montag Inhaltsverzeichnis Technische Universität München 1 Elektromagnetische Wellen 1 1.1 Maxwell-Gleichungen im Medium......................

Mehr

Einführung in die Biophysik

Einführung in die Biophysik Einführung in die Biophysik Quellen Schünemann: Biophysik Cotterill: Biophysik www.biophysics.org www.biophysj.org Sackmann: Lehrbuch der Biophysik Versuch einer Annäherung Biophysics is that branch of

Mehr

Volker Schünemann. Biophysik. Eine Einführung. Mit 148 Abbildungen und 13 Tabellen. Springer

Volker Schünemann. Biophysik. Eine Einführung. Mit 148 Abbildungen und 13 Tabellen. Springer Volker Schünemann Biophysik Eine Einführung Mit 148 Abbildungen und 13 Tabellen Springer 1 Einführung: Physikalische Konzepte in der Biologie 1 Literatur 3 WWW 3 2 Aufbau von zellulären Strukturen: Biomoleküle,

Mehr

Physikalisches Praktikum für Fortgeschrittene im II. Physikalischen Institut. Versuch Nr. 24: Röntgenographische Methoden

Physikalisches Praktikum für Fortgeschrittene im II. Physikalischen Institut. Versuch Nr. 24: Röntgenographische Methoden Physikalisches Praktikum für Fortgeschrittene im II. Physikalischen Institut Versuch Nr. 24: Röntgenographische Methoden Betreuer: M. Cwik, Tel.: 470 3574, E-mail: cwik@ph2.uni-koeln.de November 2004 Im

Mehr

Anhang Häufig verwendete Symbole

Anhang Häufig verwendete Symbole 68 Anhang Häufig verwendete Symbole Anhang Häufig verwendete Symbole θ B exakter Braggwinkel θ B Abweichung vom Braggwinkel λ Wellenlänge d Netzebenenabstand π & σ Parallel- & Senkrechtkomponente der Polarisation

Mehr

Grundlagen der Röntgenpulverdiffraktometrie. Seminar zur Vorlesung Anorganische Chemie I und II

Grundlagen der Röntgenpulverdiffraktometrie. Seminar zur Vorlesung Anorganische Chemie I und II David Enseling und Thomas Jüstel Seminar zur Vorlesung Anorganische Chemie I und II Folie 1 Entdeckung + erste Anwendung der X-Strahlen Wilhelm Roentgen, December of 1895. The X-ray of Mrs. Roentgen's

Mehr

Spektroskopische Methoden

Spektroskopische Methoden Spektroskopische Methoden OCIfolie367 MS - Massenspektroskopie (Bestimmung von Molekulargewichten, charakteristischen Fragmentierungen von Molekülen) Absorptionsspektroskopische Methoden (Absorption =

Mehr

31. Lektion. Röntgenstrahlen. 40. Röntgenstrahlen und Laser

31. Lektion. Röntgenstrahlen. 40. Röntgenstrahlen und Laser 31. Lektion Röntgenstrahlen 40. Röntgenstrahlen und Laser Lerhnziel: Röntgenstrahlen entstehen durch Beschleunigung von Elektronen oder durch die Ionisation von inneren Elektronenschalen Begriffe Begriffe:

Mehr

Die Lage der Emissionsbanden der charakteristischen Röntgenstrahlung (anderer Name: Eigenstrahlung) wird bestimmt durch durch das Material der Kathode durch das Material der Anode die Größe der Anodenspannung

Mehr

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 28. Atomphysik, Röntgenstrahlung (Fortsetzung: Röntgenröhre, Röntgenabsorption) 29. Atomkerne, Radioaktivität (Nuklidkarte, α-, β-, γ-aktivität, Dosimetrie)

Mehr

Einführung in die Biophysik

Einführung in die Biophysik Einführung in die Biophysik Quellen Schünemann: Biophysik Cotterill: Biophysik www.biophysics.org www.biophysj.org Sackmann: Lehrbuch der Biophysik Versuch einer Annäherung Biophysics is that branch of

Mehr

Pulverdiffraktometrie

Pulverdiffraktometrie Pulverdiffraktometrie Polykristallines Material Fingerprintmethode Homogenität/ Phasenanalyse Kristallsystem + Gitterparameter + Laue-Symmetrie Raumgruppe?? Zusammensetzung - quantitativ! Textur Partikelgröße

Mehr

Röntgendiffraktometrie

Röntgendiffraktometrie Kapitel 3.4. Röntgendiffraktometrie Lothar Schwabe, Freie Universität Berlin 1. Einleitung Die Eigenschaft der Röntgenstrahlen, unterschiedliche Materialien zu durchdringen und dabei mehr oder weniger

Mehr

Elektronenspinresonanz-Spektroskopie

Elektronenspinresonanz-Spektroskopie Elektronenspinresonanz-Spektroskopie (ESR-Spektroskopie) engl.: Electron Paramagnetic Resonance Spectroscopy (EPR-Spectroscopy) Stephanie Dirksmeyer, 671197 Inhalt 1. Grundidee 2. physikalische Grundlagen

Mehr

FK Experimentalphysik 3, Lösung 3

FK Experimentalphysik 3, Lösung 3 1 Transmissionsgitter FK Experimentalphysik 3, Lösung 3 1 Transmissionsgitter Ein Spalt, der von einer Lichtquelle beleuchtet wird, befindet sich im Abstand von 10 cm vor einem Beugungsgitter (Strichzahl

Mehr

Röntgenbeugung. 1. Grundlagen, Messmethode

Röntgenbeugung. 1. Grundlagen, Messmethode Röntgenbeugung 1. Grundlagen, Messmethode Beim Aufprall schneller Elektronen auf ein metallisches Anodenmaterial (hier: Kupfer) entsteht Röntgenstrahlung. Diese wird nach der Drehkristallmethode spektral

Mehr

Kristallstrukturanalyse bzw. -bestimmung

Kristallstrukturanalyse bzw. -bestimmung Kristallstrukturanalyse bzw. -bestimmung Analyse bzw. Bestimmung der Kristall- und Molekülstruktur fester Stoffe heißt: Bestimmung der Geometrie (Gitterkonstanten a, b, c, α, β, γ) der Symmetrie (Raumgruppe)

Mehr

Masterstudiengang Chemie Vorlesung Struktur und Funktion (WS 2014/15) Struktur und Funktion: (Kap. 2)

Masterstudiengang Chemie Vorlesung Struktur und Funktion (WS 2014/15) Struktur und Funktion: (Kap. 2) Masterstudiengang Chemie Vorlesung Struktur und Funktion (WS 2014/15) Übersicht 2 Beugung von Röntgenstrahlen an Kristallen 2.1 Erzeugung von Röntgenstrahlen 2.2 Streuung an Elektronen 2.3 Streuung an

Mehr

Übungsblatt 04 Grundkurs IIIa für Physiker, Wirtschaftsphysiker und Physik Lehramt

Übungsblatt 04 Grundkurs IIIa für Physiker, Wirtschaftsphysiker und Physik Lehramt Übungsblatt 4 Grundkurs IIIa für Physiker, Wirtschaftsphysiker und Physik Lehramt Othmar Marti, (othmar.marti@physik.uni-ulm.de) 17., 23. und 24. 6. 23 1 Aufgaben Das Fermatsche Prinzip 1, Polarisation

Mehr

= 6,63 10 J s 8. (die Plancksche Konstante):

= 6,63 10 J s 8. (die Plancksche Konstante): 35 Photonen und Materiefelder 35.1 Das Photon: Teilchen des Lichts Die Quantenphysik: viele Größen treten nur in ganzzahligen Vielfachen von bestimmten kleinsten Beträgen (elementaren Einheiten) auf: diese

Mehr

Thema heute: Aufbau der Materie: Das Bohr sche Atommodell

Thema heute: Aufbau der Materie: Das Bohr sche Atommodell Wiederholung der letzten Vorlesungsstunde: Erste Atommodelle, Dalton Thomson, Rutherford, Atombau, Coulomb-Gesetz, Proton, Elektron, Neutron, weitere Elementarteilchen, atomare Masseneinheit u, 118 bekannte

Mehr

Pulverdiffraktometrie

Pulverdiffraktometrie Pulverdiffraktometrie Polykristallines Material Fingerprintmethode Homogenität/ Phasenanalyse/Zusammensetzung - quantitativ! Kristallsystem + Gitterparameter + Laue-Symmetrie Raumgruppe?? Textur Partikelgröße

Mehr

Versuch A8: Elektronenspinresonanz an paramagnetischen Molekülen (ESR)

Versuch A8: Elektronenspinresonanz an paramagnetischen Molekülen (ESR) Fortgeschrittenenpraktikum Physik, FU-Berlin Versuch A8: Elektronenspinresonanz an paramagnetischen Molekülen (ESR) Jonas Lähnemann Antonia Oelke 29. Mai 2006 Elektronenspinresonanz an paramagnetischen

Mehr

Vorlesung Allgemeine Chemie (CH01)

Vorlesung Allgemeine Chemie (CH01) Vorlesung Allgemeine Chemie (CH01) Für Studierende im B.Sc.-Studiengang Chemie Prof. Dr. Martin Köckerling Arbeitsgruppe Anorganische Festkörperchemie Mathematisch-Naturwissenschaftliche Fakultät, Institut

Mehr

Elektromagnetische Wellen

Elektromagnetische Wellen Elektromagnetische Wellen Im Gegensatz zu Schallwellen sind elektromagnetische Wellen nicht an ein materielles Medium gebunden -- sie können sich auch in einem perfekten Vakuum ausbreiten. Sie sind auch

Mehr

Medizinische Biophysik

Medizinische Biophysik P H Y S I K Physik in der Medizin Medizinische Biophysik Dr. Ferenc Tölgyesi ferenc.tolgyesi@eok.sote.hu Institut für Biophysik und Strahlenbiologie 0 Diagnostik Röntgendiagnostik Sonographie Optische

Mehr

Proteine. Claudia Schierbaum WS 04/05 Löffler / Petrides: Biochemie & Pathobiochemie, 7.Auflage, Springer-Verlag Berlin Kapitel 3.4 und 3.

Proteine. Claudia Schierbaum WS 04/05 Löffler / Petrides: Biochemie & Pathobiochemie, 7.Auflage, Springer-Verlag Berlin Kapitel 3.4 und 3. Proteine Claudia Schierbaum WS 04/05 Löffler / Petrides: Biochemie & Pathobiochemie, 7.Auflage, Springer-Verlag Berlin Kapitel 3.4 und 3.5 Faltung, Fehlfaltung und Denaturierung von Proteinen Denaturierung

Mehr

3. Einstein, de Broglie, Compton, Davisson, Germer und der Welle Teilchen-Dualismus

3. Einstein, de Broglie, Compton, Davisson, Germer und der Welle Teilchen-Dualismus 3. Einstein, de Broglie, Compton, Davisson, Germer und der Welle Teilchen-Dualismus Albert Einstein 1879-1955, im Jahr 1912 Einstein war der erste, der die Quanten Plancks und die Formel E = h ν für die

Mehr

8. Periodische Bewegungen

8. Periodische Bewegungen 8. Periodische Bewegungen 8.1 Schwingungen 8.1.1 Harmonische Schwingung 8.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 8.1.4 Erzwungene Schwingung 8. Periodische Bewegungen Schwingung Zustand y wiederholt

Mehr

Phasenmessung in der nichtlinearen Optik

Phasenmessung in der nichtlinearen Optik Phasenmessung in der nichtlinearen Optik Th. Lottermoser, t. Leute und M. Fiebig, D. Fröhlich, R.V. Pisarev Einleitung Prinzip der Phasenmessung Experimentelle Durchführung Ergebnisse YMnO 3 Einleitung

Mehr

Physikalische Chemie 1 Struktur und Materie Wintersemester 2016/17

Physikalische Chemie 1 Struktur und Materie Wintersemester 2016/17 Physikalische Chemie 1 Struktur und Materie Wintersemester 2016/17 Vorlesung: Hörsaal 10.01 Daran anschließend Physikalische Chemie 2 (Prof. Falcaro, TU): Materie im elektr./magn. Feld, Wechselwirkungen,

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker

PN 2 Einführung in die Experimentalphysik für Chemiker PN 2 Einführung in die Experimentalphysik für Chemiker 9. Vorlesung 13.6.08 Evelyn Plötz, Thomas Schmierer, Gunnar Spieß, Peter Gilch Lehrstuhl für BioMolekulare Optik Department für Physik Ludwig-Maximilians-Universität

Mehr

3.7 Elektronenspinresonanz, Bestimmung des g-faktors

3.7 Elektronenspinresonanz, Bestimmung des g-faktors 1 Einführung Physikalisches Praktikum für Anfänger - Teil 1 Gruppe 3 - Atomphysik 3.7 Elektronenspinresonanz, Bestimmung des g-faktors Die Elektronenspinresonanz (ESR) ist ein Verfahren, das in vielen

Mehr

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B

WELLEN im VAKUUM. Kapitel 10. B t E = 0 E = B = 0 B. E = 1 c 2 2 E. B = 1 c 2 2 B Kapitel 0 WELLE im VAKUUM In den Maxwell-Gleichungen erscheint eine Asymmetrie durch Ladungen, die Quellen des E-Feldes sind und durch freie Ströme, die Ursache für das B-Feld sind. Im Vakuum ist ρ und

Mehr

Mikrowellen (Mikrowelle, Satelliten) Infrarot (Fernsteuerung beim TV)

Mikrowellen (Mikrowelle, Satelliten) Infrarot (Fernsteuerung beim TV) TV 3km 300m 30m 3m 30cm Radiowellen (TV, Radio) 300cm 30cm 300µm 3µm 0.7µm 0.5µm 0.3µm 30nm 3mm 0.4µm Mikrowellen (Mikrowelle, Satelliten) Infrarot (Fernsteuerung beim TV) Sichtbares Licht UV-Strahlung

Mehr

TEP Strukturbestimmung von Einkristallen mit Hilfe der Laue-Methode

TEP Strukturbestimmung von Einkristallen mit Hilfe der Laue-Methode Strukturbestimmung von Einkristallen TEP Verwandte Themen Charakteristische Röntgenstrahlung, Bravais-Gitter, Reziproke Gitter, Millersche-Indizes, Atomfaktor, Strukturfaktor, Bragg- Streuung. Prinzip

Mehr

Optische Spektroskopie mit Lasern: Grundlagen und Anwendungen. Wann: Mi Fr Wo: P1 - O1-306

Optische Spektroskopie mit Lasern: Grundlagen und Anwendungen. Wann: Mi Fr Wo: P1 - O1-306 Laserspektroskopie Was: Optische Spektroskopie mit Lasern: Grundlagen und Anwendungen Wann: Mi 13 15-14 00 Fr 10 15-12 00 Wo: P1 - O1-306 Wer: Dieter Suter Raum P1-O1-216 Tel. 3512 Dieter.Suter@uni-dortmund.de

Mehr

Einführung in die Spektroskopie für Studenten der Biologie

Einführung in die Spektroskopie für Studenten der Biologie Einführung in die Spektroskopie für Studenten der Biologie Jörg H. Kleinschmidt http://www.biologie.uni-konstanz.de/folding/home.html Literatur Banwell, C. N., Elaine M. McCash, Molekülspektroskopie. Ein

Mehr

Lambert Beer. Grundlagen der Streuung: Teil I Grundbegriffe. Streuung vs. Beugung. Typisches Streuexperiment. ) = Einfallende Intensität I t

Lambert Beer. Grundlagen der Streuung: Teil I Grundbegriffe. Streuung vs. Beugung. Typisches Streuexperiment. ) = Einfallende Intensität I t Grundlagen der Streuung: Teil I Grundbegriffe Streuung vs. Beugung Typisches Streuexperiment I 0 ( 0 ) I t ( 0 ) I 0 ( 0 ) = Einfallende Intensität I t ( 0 ) = transmittierte Intensität I s (,) = Streuintensität

Mehr

Radiologie Modul I. Teil 1 Grundlagen Röntgen

Radiologie Modul I. Teil 1 Grundlagen Röntgen Radiologie Modul I Teil 1 Grundlagen Röntgen Teil 1 Inhalt Physikalische Grundlagen Röntgen Strahlenbiologie Technische Grundlagen Röntgen ROENTGENTECHNIK STRAHLENPHYSIK GRUNDLAGEN RADIOLOGIE STRAHLENBIOLOGIE

Mehr

Vorlesung Physik für Pharmazeuten PPh - 10a. Optik

Vorlesung Physik für Pharmazeuten PPh - 10a. Optik Vorlesung Physik für Pharmazeuten PPh - 10a Optik 15.01.2007 1 Licht als elektromagnetische Welle 2 E B Licht ist eine elektromagnetische Welle 3 Spektrum elektromagnetischer Wellen: 4 Polarisation Ein

Mehr

Skizzieren Sie den Verlauf der spezifische Wärme als Funktion der Temperatur. Wie ist der Verlauf bei tiefer, wie bei hoher Temperatur?

Skizzieren Sie den Verlauf der spezifische Wärme als Funktion der Temperatur. Wie ist der Verlauf bei tiefer, wie bei hoher Temperatur? Skizzieren Sie den Verlauf der spezifische Wärme als Funktion der Temperatur. Wie ist der Verlauf bei tiefer, wie bei hoher Temperatur? Wie berechnet man die innere Energie, wie die spezifische Wärme?

Mehr

Physik für Mediziner und Zahnmediziner

Physik für Mediziner und Zahnmediziner Physik für Mediziner und Zahnmediziner Vorlesung 19 Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 1 PET: Positronen-Emissions-Tomographie Kernphysik PET Atomphysik Röntgen

Mehr

2. Wellenoptik Interferenz

2. Wellenoptik Interferenz . Wellenoptik.1. Interferenz Überlagerung (Superposition) von Lichtwellen i mit gleicher Frequenz, E r, t Ei r, i gleicher Wellenlänge, gleicher Polarisation und gleicher Ausbreitungsrichtung aber unterschiedlicher

Mehr

Klassische Theoretische Physik III WS 2014/ Brewster-Winkel: (20 Punkte)

Klassische Theoretische Physik III WS 2014/ Brewster-Winkel: (20 Punkte) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Phsik III WS 204/205 Prof Dr A Shnirman Blatt 3 Dr B Narohn Lösung Brewster-Winkel: 20 Punkte

Mehr

Protein- Beispiel. Wie kann die Form eines Proteins mit Hilfe von Röntgenbeugung festgestellt werden?

Protein- Beispiel. Wie kann die Form eines Proteins mit Hilfe von Röntgenbeugung festgestellt werden? Protein- Beispiel Wie kann die Form eines Proteins mit Hilfe von Röntgenbeugung festgestellt werden? Vorgangsweise Proteine kristallisieren Röntgenanalyse Struktur raten Strukturfaktor berechnen und quadrieren

Mehr

Vorlesung "Molekülphysik/Festkörperphysik" Wintersemester 2012/2013. Das Spektrum der elektromagnetischen Wellen

Vorlesung Molekülphysik/Festkörperphysik Wintersemester 2012/2013. Das Spektrum der elektromagnetischen Wellen Vorlesung "Molekülphysik/Festkörperphysik" Wintersemester 01/013 Prof. Dr. F. Kremer Übersicht der Vorlesung am 18.1.01 Das Spektrum der elektromagnetischen Wellen Röntgen- und Strahlung Ultra Violettes

Mehr

Wechselwirkung von Strahlung mit Materie 1. Einleitung. 2. Dipolstrahlung KAPITEL H

Wechselwirkung von Strahlung mit Materie 1. Einleitung. 2. Dipolstrahlung KAPITEL H 104 KAPITEL H Wechselwirkung von Strahlung mit Materie 1. Einleitung In der Elektrodynamik wird der Einfluß der Materie auf die Strahlung mit Hilfe der Stoffkonstanten ε r und µ r berücksichtigt, wobei

Mehr

Physik IV - Schriftliche Sessionsprüfung Winter 2008/2009

Physik IV - Schriftliche Sessionsprüfung Winter 2008/2009 Physik IV - Schriftliche Sessionsprüfung Winter 2008/2009 9:00 11:00, Donnerstag, 29. Januar 2009, HG D 5.2 Bitte zur Kenntnis nehmen: Es befinden sich insgesamt 6 Aufgaben auf FÜNF Blättern. Es können

Mehr

2 Coulomb-Kraft Elektrisches Potential... 9

2 Coulomb-Kraft Elektrisches Potential... 9 Inhaltsverzeichnis I Strukturprinzipien 7 1 Konservative Kraft / Potential 7 2 Coulomb-Kraft 8 2.1 Elektrisches Potential....................... 9 3 Abstoßendes Potential 10 4 Bindungsarten 10 4.1 Ionische

Mehr

Ausbreitung von elektromagnetischer Strahlung

Ausbreitung von elektromagnetischer Strahlung Ausbreitung von elektromagnetischer Strahlung E! B Der elektrische Feldvektor und der magnetische Feldvektor stehen senkrecht aufeinander Die elektromagentische Welle ist beschrieben durch x x E = E 0

Mehr

Medizinische Biophysik 6

Medizinische Biophysik 6 Eigenschaften des Lichtes Medizinische Biophysik 6 Geradlinige Ausbreitung Energietransport Licht in der Medizin. 1 Geometrische Optik Wellennatur Teilchennatur III. Teilchencharakter des Lichtes a) Lichtelektrischer

Mehr

Kernmagnetische Resonanzspektroskopie. N Nuclear M Magnetic R Resonance Beobachtung magnetisch aktiver Kerne in einem äußeren Magnetfeld

Kernmagnetische Resonanzspektroskopie. N Nuclear M Magnetic R Resonance Beobachtung magnetisch aktiver Kerne in einem äußeren Magnetfeld NMR- SPEKTROSKOPIE Prüfungsfrage Radiospektroskopische Methode: NMR. Das Spin und magnetische Moment, die Bedingung der Resonanz, Spektralspaltung, chemische Verschiebung. Kernmagnetische Resonanzspektroskopie

Mehr

Aufgabe 2.1: Wiederholung: komplexer Brechungsindex

Aufgabe 2.1: Wiederholung: komplexer Brechungsindex Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Jens Repp / Eric Parzinger Kontakt: jens.repp@wsi.tum.de / eric.parzinger@wsi.tum.de Blatt 2, Besprechung: 23.04.2014 / 30.04.2014

Mehr

NeutronenStreuung. Grundlagen. Aufbau. Eigenschaften & Vorteile Messgrößen. Historie Erzeugung Präparation Detektoren. Diffraktometer.

NeutronenStreuung. Grundlagen. Aufbau. Eigenschaften & Vorteile Messgrößen. Historie Erzeugung Präparation Detektoren. Diffraktometer. NeutronenStreuung Grundlagen Eigenschaften & Vorteile Messgrößen Historie Erzeugung Präparation Detektoren Inhalt Diffraktometer 1 / 24 Einführung detaillierte Eigenschaften auf atomarer Ebene n- & Röntgen-Streuung

Mehr

Elektrodynamik (T3p)

Elektrodynamik (T3p) Zusatzaufgaben zur Vorlesung Elektrodynamik (T3p) SoSe 5 Beachten Sie, dass die nachfolgenden Aufgaben nur als zusätzliche Übung und nicht als potenzielle Klausuraufgaben angesehen werden sollten! Aufgabe

Mehr

2. Experimentelle Methoden

2. Experimentelle Methoden . Experimentelle Methoden.1 Eigenschaften von Röntgen- und Synchrotronstrahlung Strahlen X sind elektromagnetische Wellen, die sich im Vakuum mit der Lichtgeschwindigkeit verbreiten Wilhelm Conrad Röntgen

Mehr

Charakteristische Röntgenstrahlung von Kupfer

Charakteristische Röntgenstrahlung von Kupfer Charakteristische Röntgenstrahlung TEP Verwandte Begriffe Röntgenröhren, Bremsstrahlung, charakteristische Röntgenstrahlung, Energieniveaus, Kristallstrukturen, Gitterkonstante, Absorption von Röntgenstrahlung,

Mehr

2. Tertiärstruktur. Lernziele: 1) Verstehen wie Röntgenstrukturanalyse und NMR Spektroskopie gebraucht werden um Proteinstrukturen zu bestimmen.

2. Tertiärstruktur. Lernziele: 1) Verstehen wie Röntgenstrukturanalyse und NMR Spektroskopie gebraucht werden um Proteinstrukturen zu bestimmen. 2. Tertiärstruktur Lernziele: 1) Verstehen wie Röntgenstrukturanalyse und NMR Spektroskopie gebraucht werden um Proteinstrukturen zu bestimmen. 2) Verstehen warum nicht polare Reste im inneren eines Proteins

Mehr

Klausur -Informationen

Klausur -Informationen Klausur -Informationen Datum: 4.2.2009 Uhrzeit und Ort : 11 25 im großen Physikhörsaal (Tiermediziner) 12 25 ibidem Empore links (Nachzügler Tiermedizin, bitte bei Aufsichtsperson Ankunft melden) 11 25

Mehr

Aufgabenblatt zum Seminar 13 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik)

Aufgabenblatt zum Seminar 13 PHYS70357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Aufgabenblatt zum Seminar 3 PHYS7357 Elektrizitätslehre und Magnetismus (Physik, Wirtschaftsphysik, Physik Lehramt, Nebenfach Physik) Othmar Marti, (othmar.marti@uni-ulm.de) 5. 7. 9 Aufgaben. Zwei gleiche

Mehr

5. Elektronen- und Rotations- Spektren von Molekülen

5. Elektronen- und Rotations- Spektren von Molekülen 5. Elektronen- und Rotations- Spektren von Molekülen Absorptionsspektren Optische Dichte Elektronischer Übergang S 0 S von Benzol: In der Gasphase: Rotations-Schwingungsstruktur Im Kristall: Spektrale

Mehr

Protokoll in Physik. Datum:

Protokoll in Physik. Datum: Protokoll in Physik Datum: 04.11.2010 Protokollantin: Alrun-M. Seuwen Fachlehrer: Herr Heidinger Inhalt: h) Die Bragg-Reflexion 1) Die Wellenlänge des Röntgenlichts 2) Das Bragg-Kristall 3) Inteferenz

Mehr