13 Röntgeninterferenzen an Einkristallen

Größe: px
Ab Seite anzeigen:

Download "13 Röntgeninterferenzen an Einkristallen"

Transkript

1 13 Röntgeninterferenzen an Einkristallen 13.1 Röntgenstreuung an Atomen Elastische Röntgenstreuung in Materie erfolgt hauptsächlich durch Wechselwirkung mit Elektronen; der Kernbeitrag ist vernachlässigbar. Zwischen freien und gebundenen Elektronen besteht kein großer Unterschied, sofern die Energie der Röntgenphotonen nicht in der Nähe einer Absorptionskante der gebundenen Elektronen liegt. In der klassischen Vorstellung bewirken elektromagnetische Wellen eine erzwungene Schwingung der Elektronen in der Richtung des einfallenden elektrischen Feldes E o. Die mit der Frequenz der einfallenden Strahlung oszillierenden Dipole emittieren wieder elektromagnetische Strahlung der gleichen Energie (Hertzscher Dipol). Für kleine Beugungswinkel ist die Amplitude der an einem Atom (elastisch) gestreuten Röntgenstrahlung proportional zur Anzahl der Elektronen (Ordnungszahl); zu größeren Beugungswinkeln nimmt sie wegen Interferenzeffekten zwischen den Elektronen des Atoms monoton ab. Die Streuamplitude (Atomformfaktor; Symbol f o ) aller Elemente und der wichtigsten Ionen ist in den IT Vol. III (1962), Vol. IV (1974) und Vol. C (1992) tabelliert. Gebundene Elektronen zeigen Resonanzen bei ihren Eigenfrequenzen. Diese Resonanzen führen zu den bekannten Absorptionskanten und zu resonanter Röntgenstreuung, die oft (nicht ganz korrekt) als anomale Dispersion bezeichnet wird. Ganz im Gegensatz zu diesem Namen ist anomale Streuung eigentlich etwas ganz Normales für Röntgenphotonen im Energiebereich um 1 Å Wellenlänge. In der Nähe von K- und L-Absorptionskanten wird der Atomformfaktor deshalb komplex: f = f o + f + i f. (58) Die energieabhängigen Dispersionskorrekturen f und f bewirken eine zusätzliche Amplituden- und Phasenänderung beim Streuprozeß am Atom. Sie sind normalerweise relativ klein, zeigen aber an Röntgenabsorptionskanten sprunghafte Änderungen und liegen dort in der Größe einiger Elektronen. Sie sind für gängige Röntgenwellenlängen ebenfalls in den IT tabelliert Geometrie der Röntgeninterferenzen an Kristallen Eine Kristallstruktur besteht aus einer 3-dimensional periodisch gitterhaften Atomanordnung. Mit Röntgenstrahlung beobachtet man Interferenzeffekte ähnlich wie die an einem optischen Strichgitter. Es seien s o und s Einheitsvektoren in Richtung des einfallenden und des gestreuten Strahls. Dann ist die Wegdifferenz zwischen Strahlen, die am Ursprung bzw. am Ort r in Richtung s gestreut werden g = (s s o ) r, d.h. gleich der Differenz der Projektionen von s und s o auf den Ortsvektor r. Das entspricht einem Gangunterschied g/λ bzw. einer Phasendifferenz φ = 2πg/λ = 2π s s o λ r = 2πSr S = (s s o )/λ ist der sog. Streuvektor (der Länge 2 sin θ/λ), der den Impulsübertrag zwischen einfallendem (Richtung s o ) und gestreutem Strahl (Richtung s) beschreibt. 52

2 Wenn es in einem Kristall ein Atom mit dem Ortsvektor r o gibt, dann gibt es identische Atome an den Orten r = r o + ua + vb + wc, u, v, w G, die sich um Gittertranslationen t = ua + vb + wc, u, v, w G, unterscheiden. Die Summe über alle Atome im Kristall wird daher zu einer Summe über alle Atome in der Elementarzelle, verschoben um alle Gittervektoren t = ua + vb + wc: E = E th f j exp[ 2πiSr j ] exp[ 2πiS(ua + vb + wc)] (59) u v w Der Faktor j = E Th F(S) G(S) (60) E Th = r e E o R cos2θ (61) (r e = cm; R: Abstand zum Detektor; 2θ: Streuwinkel) beschreibt das an einem punktförmigen Elektron (sog. Thomsonstreuer) unter dem Winkl 2θ elastisch gestreute elektrische Feld. Der zweite Term F(S) = j f j exp[2πisr j ] (62) ist der sog. Strukturfaktor der Elementarzelle (s.u.). Der dritte Term (der sog. Gitterfaktor) G(S) = u exp[ 2πiuSa ] v exp[ 2πivSb] w exp[ 2πiwSc ] (63) verschwindet wegen der Orthogonalität der komplexen exp-funktionen nur dann nicht, wenn die S a = h (s s o ) a = h λ Laue-Bedingungen: S b = k bzw. (s s o ) b = k λ S c = l (s s o ) c = l λ erfüllt sind. Diese drei Gleichungen mit den ganzen Zahlen h, k, l beschreiben drei Ebenenscharen senkrecht zu a, b und c, in denen erlaubte Streuvektoren S enden. Diese drei Ebenenscharen schneiden sich in einem dreidimensionalen Gitter, dem reziproken Gitter der Kristallstruktur. Folglich bedeuten die Laue-Bedingungen, daß in den Interferenzmaxima der Streuvektor S zu einem reziproken Gittervektor H wird. Konstruktive Interferenz tritt nur dann auf, wenn der Streuvektor (Impulsübertrag) S = s s o λ, s = s o = 1 zwischen der Richtung des einfallenden Strahls s o und der Richtung des gebeugten Strahls s mit einem reziproken Gittervektor H = ha + kb + lc zusammenfällt. Für alle anderen Streuvektoren wird F(S) = 0. Die ganzen Zahlen h, k, l sind die (Millerschen) Indizes von Netzebenen des Abstands d = n/ H, wobei n die Beugungsordnung ist. 53

3 s s o = S H = ha + kb + lc (64) λ Die Länge und Orientierung der reziproken Basisvektoren a, b und c ist im Einklang mit den Laue-Bedingungen: a a = b b = c c = 1 a b = a c = b a = b c = c a = c b = 0 Aus H = S = 2 sinθ/λ und H = n/d folgt sofort die Braggsche Gleichung n λ = 2d sin θ, (65) die als skalare Form der Laue-Gleichungen anzusehen ist. Mit ihr läßt sich in der kinematischen Theorie die Beugung und Interferenz einer ebenen Röntgenwelle an einer gitterförmigen Struktur formal als Reflexion der Röntgenstrahlung an Netzebenenscharen (genauer: an Scharen paralleler Atomebenen) interpretieren (Bragg, 1912). Die an den Atomen einer solchen Ebene (mit dem Normalenvektor H) gestreuten Wellen addieren sich genau dann phasengleich, wenn für den in der Richtung s o einfallenden Strahl und den in der Richtung s reflektierten Strahl die Reflexionsbedingung: s s o = λ H erfüllt ist, wobei H in Richtung der Netzebenennormalen zur Netzebenenschar (hkl) zeigt. Die genaue Verteilung der Atome innerhalb der reflektierenden Ebenen senkrecht zu H spielt keine Rolle; die Reflexionsbedingung reagiert nur auf die Periodizität (den sog. d-wert ) der Kristallstruktur parallel zum Normalenvektor H. Mit den Wellenvektoren K = 2πs/λ und K o = 2πs o /λ wird daraus die Laue-Gleichung: K K o = 2πH. Geometrisch wird die Laue-Gleichung in der sog. Ewald-Konstruktion dargestellt, die bei gegebenem reziproken Gitter für eine passende Primärstrahlrichtung die Konstruktion der Richtung des Interferenzstrahls erlaubt. Der Wegunterschied g der an zwei benachbarten identischen Atomebenen gebeugten Strahlen ist g = 2d sin θ, wobei θ der Winkel zwischen einfallendem Strahl und Netzebenenschar ist (sog. Glanzwinkel). Ist nun g = nλ ein ganzzahliges Vielfaches der Wellenlänge λ, dann addieren sich die an allen Netzebenen (eigentlich identischen Atomebenen) gestreuten Strahlen in Phase; es tritt dann in der betreffenden Richtung ein Interferenzmaximum auf. Die Bedingung dafür ist die schon oben gefundene Braggsche Gleichung: n λ = 2d sin θ. Die ganze Zahl n heißt Ordnung der Interferenz, λ ist die Röntgenwellenlänge, d der Netzebenenabstand und θ der Glanzwinkel. Die Geometrie der Röntgeninterferenzen an Kristallen hängt vom Kristallgitter ab. Die Kristallstruktur beeinflußt die Intensität der einzelnen Röntgenreflexe. 54

4 Das schon in der Einleitung vorgestellte und in Teil I weiter entwickelte Modell der Kristallstruktur als periodische Stapelung von (identischen) Atomebenenscharen eignet sich hervorragend zur geometrischen Interpretation der Röntgeninterferenzen in Kristallen. Das Braggsche Gesetz beschreibt eine konstruktive Interferenz der an den einzelnen Atomebenen der Periode d reflektierten Röntgenstrahlen mit Gangunterschied 2d sin θ. Die Laue-Bedingungen betonen stärker die auf diesen Atomebenen senkrecht stehenden reziproken Gittervektoren H der Länge 2 sin θ/λ. Die Ewald-Konstruktion kombiniert eigentlich beide Bilder. Sie wird aber (leider) oft nur im Sinne der Laue-Gleichung K K o = 2πH interpretiert Strukturfaktor der Elementarzelle Der Gitterfaktor G(H) (s. Abschnitt (13.2)) beschreibt die Form der Interferenzmaxima. Der Strukturfaktor F(H) = j f j exp[2πihr j ] = j f j exp[2πi(hx j + ky j + lz j )] (66) enthält die Überlagerung der an allen N Atomen (mit Ortskoordinaten r j und Formfaktor f j ) der Elementarzelle gestreuten Elementarwellen in Form einer Fourierreihe. Er ist im allgemeinen eine komplexe Zahl F = A + ib, und durch Amplitude F(H) und Phase φ(h) eindeutig beschrieben. F(H) = A(H) + ib(h) tan(φ) = B(H)/A(H) A(H) = j B(H) = j f j cos[2πir j H] f j sin[2πir j H] 13.4 Elektronendichte der Elementarzelle Auch die Elektronendichte ρ(r) der Elementarzelle lässt sich in Form einer Fourierreihe schreiben (das ist naheliegend, weil die Elektronendichte eines Kristalls periodisch ist). Fourierkoeffizienten sind die Strukturfaktoren F(H)/V (V ist das Elementarzellvolumen): ρ(r) = ρ(r) = 1 V 1 V F(H) exp[ 2πirH] (67) H Wenn ρ(r) reell ist, gilt F (H) = F( H). Daraus folgt der hkl F(hkl)exp[ 2πi(hx + ky + lz)] (68) Satz von Friedel: F(H) = F( H). Der reziproke Raum hat folglich immer ein Inversionszentrum und ist zentrosymmetrisch. Ist auch die Kristallstruktur zentrosymmetrisch und legt man den Ursprung in eines der Inversionszentren, dann kann man die Atome bei r und r in der obigen Summation paarweise zusammenfassen und F(H) wird reell. 55

5 13.5 Intensität der Röntgeninterferenzen an Kristallen Die Intensität der Röntgenreflexe ist proportional zum Strukturfaktorquadrat. Da wir nur Intensitäten I(H) FF = F(H) 2 (69) messen, erhalten wir direkt nur die Strukturamplitude F(H). Die Phase φ(h) des Strukturfaktors ist (zunächst) unbekannt (Phasenproblem). Weil sie komplexe Größen sind, lassen sich Strukturfaktoren grundsätzlich nicht messen; beobachtbar sind nur ihre Beträge (Strukturamplituden F(H) ; I(H) F(H) 2 ), nicht jedoch die Phasen φ(h). Deshalb kann die Elektronendichte ρ(r) der Elementarzelle nicht direkt mit Gl. (67) gewonnen werden, weil dazu nach ρ(r) = 1 F(H) exp[iφ H ] exp[ 2πirH] V H die Phasen der Strukturfaktoren erforderlich sind. Das ist das sog. Phasenproblem der Kristallstrukturbestimmung. Für zentrosymmetische Strukturen vereinfacht sich das Phasenproblem zum einfacheren Vorzeichenproblem. Zur Strukturbestimmung an Einkristallen werden verschiedene Techniken verwendet, darunter Pattersonsynthesen und direkte Methoden. Die daraus erhaltenen Strukturmodelle werden anschließend in einem weiteren Schritt durch Anpassung eines Strukturmodells und Strukturverfeinerung optimiert. Pulverdiagramme dienen im wesentlichen zur qualitativen und quantitativen Phasenanalyse sowie zur Verfeinerung nicht zu komplexer Kristallstrukturen mit der Rietveld-Technik, bei der dem gemessenen Pulverdiagramm gemeinsam mit Geräteparametern ein Strukturmodell angepaßt wird Beugungsverfahren Eine fest vorgegebene Richtung s o ergibt mit monochromatischer Röntgenstrahlung bei unbewegtem Kristall eher nur zufällig Richtungen s, die die Laue-Gleichung erfüllen. In der Praxis verwendet man folgende Meßverfahren: Monochromatische Röntgenstrahlung mit bewegtem Kristall (s o variabel, λ fest): Drehkristall-, Weißenberg- und Präzessions-Verfahren. Anwendung zur Untersuchung der Kristallqualität, zur Kristalljustierung und zur Intensitätsmessung (früher mit Röntgenfilm, heute mit Flächendetektoren). Einstellung jedes einzelnen Reflexes in der Braggposition (s o variabel, λ fest): Diffraktometerverfahren. Anwendung hauptsächlich zur Intensitätsmessung für Kristallstrukturbestimmungen und zur Probencharakterisierung. Monochromatische Röntgenstrahlung mit feststehender oder beweglicher Pulverprobe (s o fest oder variabel, λ fest): Debye-Scherrer-, Guinier- und Goniometer- Verfahren. Anwendung zur Identifikation und zur Chakterisierung von Pulverproben; Strukturverfeinerung nach der Rietveld-Methode. Alternativ kann man weiße (polychromatische) Röntgenstrahlung verwenden, aus der sich der Kristall sozusagen die jeweils passende Wellenlänge aussucht : 56

6 Weiße Röntgenstrahlung mit feststehendem Kristall (s o fest, λ variabel): Laue- Verfahren. Die Ewaldsche Konstruktion erfolgt entweder nach (s s o )/λ = H oder besser nach s s o = λ H. Anwendung zur Kristalljustierung, zur Symmetriebestimmung und zur Intensitätsmessung an Proteinkristallen. Zur praktischen Durchführung sind verschiedene Röntgenkameras und Diffraktometer entwickelt worden. Der Trend geht heute zu rechnergesteuerten vollautomatischen Goniometern mit Flächendetektorsystemen, die in kurzer Zeit große Datenmengen produzieren können Beispiel: Strukturfaktor und Elektronendichte des Kupfertyps (a) Kupfer kristallisiert bei Raumtemperatur in der kubisch dichtesten Kugelpackung mit Raumgruppe Fm 3m. Cu besetzt die Punktlage 4a und bildet ein [F]-Baumuster mit den Lagekoordinaten: 0, 0, 0; 0, 1 2, 1 2 ; 1 2, 0, 1 2 ; 1 2, 1 2, 0. Der Strukturfaktor dieser gitterhaften Kristallstruktur lautet F(hkl) = f Cu {1 + exp[iπ(k + l)] + exp[iπ(h + l)] + exp[iπ(h + k)]} = f Cu {1 + ( 1) k+l + ( 1) h+l + ( 1) h+k } Dieser Ausdruck hängt von der Paritätsklasse der Indizes h, k, l ab: { 0 : h, k, l gemischt (ggu, uug) F(hkl) = : h, k, l nicht gemischt (ggg, uuu) 4f Cu Reflexe der Klassen ggu und uug (g: gerade, u: ungerade) sind systematisch ausgelöscht. (b) Zur Berechnung der Elektronendichte des Kupfertyps reicht eine eindimensionale Projektion der Elementarzelle auf eine der Achsen aus. Nehmen wir die Projektion auf die a-achse: ρ(x) = 1 a = 2 a F(h00) exp[ 2πihx] h h>0 F(h00) cos(2πhx) Der Reflex 200 ist wesentlich stärker als alle anderen h00-reflexe und dominiert deshalb diese Fourierreihe. Daher ist ρ(x) 2 F(200) cos[2π(2x)] a eine gute Approximation für die Projektion der Elektronendichte auf die a-achse. Diese cos- Welle der Periode a/2 hat Maxima bei x = 0 und x = 1/2. Diese Elektronendichtemaxima entsprechen den mit Cu besetzten Atomebenen in x = 0 und x = 1/2 (Anmerkung: die Projektion auf [100] hat eine halbierte Translationsperiode a/2). 57

Die Bragg sche Beugungsbedingung. θ θ θ θ Ebene hkl

Die Bragg sche Beugungsbedingung. θ θ θ θ Ebene hkl Die Bragg sche Beugungsbedingung Eintr effender Strahl Austretender Str ahl Gebeugter Strahl θ θ θ θ Ebene hkl d hkl x x Ebene hkl Wegdifferenz: 2 x = 2 d hkl sin θ Konstruktive Interferenz: n λ = 2 d

Mehr

Masterstudiengang Chemie Vorlesung Struktur und Funktion (WS 2014/15) Struktur und Funktion: (Kap. 2)

Masterstudiengang Chemie Vorlesung Struktur und Funktion (WS 2014/15) Struktur und Funktion: (Kap. 2) Masterstudiengang Chemie Vorlesung Struktur und Funktion (WS 2014/15) Übersicht 2 Beugung von Röntgenstrahlen an Kristallen 2.1 Erzeugung von Röntgenstrahlen 2.2 Streuung an Elektronen 2.3 Streuung an

Mehr

Methoden der Chemie III Teil 1 Modul M.Che.1101 WS 2010/11 12 Moderne Methoden der Anorganischen Chemie Mi 10:15-12:00, Hörsaal II George Sheldrick

Methoden der Chemie III Teil 1 Modul M.Che.1101 WS 2010/11 12 Moderne Methoden der Anorganischen Chemie Mi 10:15-12:00, Hörsaal II George Sheldrick Methoden der Chemie III Teil 1 Modul M.Che.1101 WS 2010/11 12 Moderne Methoden der Anorganischen Chemie Mi 10:15-12:00, Hörsaal II George Sheldrick gsheldr@shelx.uni-ac.gwdg.de Röntgenbeugung an Pulvern

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung 3 Beugung und Interferenz Aufgabe 1: Seifenblasen a) Erklären Sie, warum Seifenblasen in bunten Farben schillern.

Mehr

Röntgenkristallstrukturanalyse : Debye-Scherrer

Röntgenkristallstrukturanalyse : Debye-Scherrer 16.04.2009 Gliederung Bragg-Bedingung Bragg-Bedingung Bragg-Bedingung: 2d m m m h k l sin(ϑ) = nλ für kubisches Gitter: 2sin(ϑ) = λ h 2 + k 2 + l 2 a d m m m h k l...netzebenenabstand ϑ...braggwinkel n...

Mehr

RÖNTGEN-DIFFRAKTOMETRIE (XRD) und RÖNTGEN-PULVERDIFFRAKTOMETRIE (XRPD)

RÖNTGEN-DIFFRAKTOMETRIE (XRD) und RÖNTGEN-PULVERDIFFRAKTOMETRIE (XRPD) RÖNTGEN-DIFFRAKTOMETRIE (XRD) und RÖNTGEN-PULVERDIFFRAKTOMETRIE (XRPD) Strukturbestimmung mittels Röntgenstrahlen Ortslagenbestimmung von Atomen Kristall- bzw. Röntgenstrukturanalyse Fingerprint, Substanzidentifizierung

Mehr

ISP-Methodenkurs. Pulverdiffraktometrie. Prof. Dr. Michael Fröba, AC Raum 114, Tel: 040 /

ISP-Methodenkurs. Pulverdiffraktometrie. Prof. Dr. Michael Fröba, AC Raum 114, Tel: 040 / ISP-Methodenkurs Pulverdiffraktometrie Prof. Dr. Michael Fröba, AC Raum 4, Tel: 4 / 4838-337 www.chemie.uni-hamburg.de/ac/froeba/ Röntgenstrahlung (I) Wilhelm Conrad Röntgen (845-93) 879-888 Professor

Mehr

5. Oberflächen-und Dünnschichtanalytik. Prof. Dr. Paul Seidel VL Vakuum- und Dünnschichtphysik WS 2014/15

5. Oberflächen-und Dünnschichtanalytik. Prof. Dr. Paul Seidel VL Vakuum- und Dünnschichtphysik WS 2014/15 5. Oberflächen-und Dünnschichtanalytik 1 5.1 Übersicht Schichtanalytik - Schichtmorphologie: - Oberflächeneigenschaften - Lichtmikroskop - Rasterelektronenmikroskop - Transmissionselektronenmikroskop -(STM,

Mehr

Vorlesung Biophysik I - Molekulare Biophysik W. Kremer

Vorlesung Biophysik I - Molekulare Biophysik W. Kremer Vorlesung Biophysik I - Molekulare Biophysik W. Kremer 24.10. Zelle 31.10. Biologische Makromoleküle I 07.11. Biologische Makromoleküle II 14.11. Nukleinsäuren-Origami (DNA, RNA) 21.11. Aminosäuren-Origami

Mehr

Physikalisches Praktikum für Fortgeschrittene im II. Physikalischen Institut. Versuch Nr. 24: Röntgenographische Methoden

Physikalisches Praktikum für Fortgeschrittene im II. Physikalischen Institut. Versuch Nr. 24: Röntgenographische Methoden Physikalisches Praktikum für Fortgeschrittene im II. Physikalischen Institut Versuch Nr. 24: Röntgenographische Methoden Betreuer: M. Cwik, Tel.: 470 3574, E-mail: cwik@ph2.uni-koeln.de November 2004 Im

Mehr

TEP Strukturbestimmung von NaCl-Einkristallen verschiedener Orientierungen

TEP Strukturbestimmung von NaCl-Einkristallen verschiedener Orientierungen Strukturbestimmung von NaCl-Einkristallen TEP Verwandte Begriffe Charakteristische Röntgenstrahlung, Energieniveaus, Kristallstrukturen, Reziproke Gitter, Millersche- Indizes, Atomfaktor, Strukturfaktor,

Mehr

FK Experimentalphysik 3, Lösung 3

FK Experimentalphysik 3, Lösung 3 1 Transmissionsgitter FK Experimentalphysik 3, Lösung 3 1 Transmissionsgitter Ein Spalt, der von einer Lichtquelle beleuchtet wird, befindet sich im Abstand von 10 cm vor einem Beugungsgitter (Strichzahl

Mehr

Übungen zur Physik des Lichts

Übungen zur Physik des Lichts ) Monochromatisches Licht (λ = 500 nm) wird an einem optischen Gitter (000 Striche pro cm) gebeugt. a) Berechnen Sie die Beugungswinkel der Intensitätsmaxima bis zur 5. Ordnung. b) Jeder einzelne Gitterstrich

Mehr

Zentralabitur 2012 Physik Schülermaterial Aufgabe I ga Bearbeitungszeit: 220 min

Zentralabitur 2012 Physik Schülermaterial Aufgabe I ga Bearbeitungszeit: 220 min Thema: Wellen und Quanten Interferenzphänomene werden an unterschiedlichen Strukturen untersucht. In Aufgabe 1 wird zuerst der Spurabstand einer CD bestimmt. Thema der Aufgabe 2 ist eine Strukturuntersuchung

Mehr

Physikalisches Fortgeschrittenenpraktikum Strukturbestimmung. Vorbereitung. 1 Kristallstrukturen. 1.1 Gittertranslationsvektoren

Physikalisches Fortgeschrittenenpraktikum Strukturbestimmung. Vorbereitung. 1 Kristallstrukturen. 1.1 Gittertranslationsvektoren Physikalisches Fortgeschrittenenpraktikum Strukturbestimmung Vorbereitung Armin Burgmeier Robert Schittny Wir wollen uns in diesem Versuch mit der Bestimmung der Kristallstruktur einer Pulverprobe aus

Mehr

Typisch metallische Eigenschaften:

Typisch metallische Eigenschaften: Typisch metallische Eigenschaften: hohe elektrische Leitfähigkeit hohe thermische Leitfähigkeit bei Energiezufuhr (Wärme, elektromagnetische Strahlung) können Elektronen emittiert werden metallischer Glanz

Mehr

Protokoll zum Versuch Debye - Scherrer - Verfahren. Tina Clauß, Jan Steinhoff Betreuer: Dr. Uschmann

Protokoll zum Versuch Debye - Scherrer - Verfahren. Tina Clauß, Jan Steinhoff Betreuer: Dr. Uschmann Protokoll zum Versuch Debye - Scherrer - Verfahren Tina Clauß, Jan Steinhoff Betreuer: Dr. Uschmann 6. März 2005 3 Inhaltsverzeichnis 1 Aufgabenstellung 4 2 Theoretische Grundlagen 4 2.1 Röntgenstrahlung.................................

Mehr

Protokoll in Physik. Datum:

Protokoll in Physik. Datum: Protokoll in Physik Datum: 04.11.2010 Protokollantin: Alrun-M. Seuwen Fachlehrer: Herr Heidinger Inhalt: h) Die Bragg-Reflexion 1) Die Wellenlänge des Röntgenlichts 2) Das Bragg-Kristall 3) Inteferenz

Mehr

TEP Strukturbestimmung von Einkristallen mit Hilfe der Laue-Methode

TEP Strukturbestimmung von Einkristallen mit Hilfe der Laue-Methode Strukturbestimmung von Einkristallen TEP Verwandte Themen Charakteristische Röntgenstrahlung, Bravais-Gitter, Reziproke Gitter, Millersche-Indizes, Atomfaktor, Strukturfaktor, Bragg- Streuung. Prinzip

Mehr

= 6,63 10 J s 8. (die Plancksche Konstante):

= 6,63 10 J s 8. (die Plancksche Konstante): 35 Photonen und Materiefelder 35.1 Das Photon: Teilchen des Lichts Die Quantenphysik: viele Größen treten nur in ganzzahligen Vielfachen von bestimmten kleinsten Beträgen (elementaren Einheiten) auf: diese

Mehr

Grundlagen der Röntgenpulverdiffraktometrie. Seminar zur Vorlesung Anorganische Chemie I und II

Grundlagen der Röntgenpulverdiffraktometrie. Seminar zur Vorlesung Anorganische Chemie I und II David Enseling und Thomas Jüstel Seminar zur Vorlesung Anorganische Chemie I und II Folie 1 Entdeckung + erste Anwendung der X-Strahlen Wilhelm Roentgen, December of 1895. The X-ray of Mrs. Roentgen's

Mehr

Lösungen der Übungsaufgaben zum Experimentalphysik III Ferienkurs

Lösungen der Übungsaufgaben zum Experimentalphysik III Ferienkurs 1 Lösungen der Übungsaufgaben zum Experimentalphysik III Ferienkurs Max v. Vopelius, Matthias Brasse 25.02.2009 Aufgabe 1: Dreifachspalt Abbildung 1: Spalt Gegeben ist ein Dreifachspalt 1. Alle Spaltbreiten

Mehr

Vorlesung 2: Größe der Atome Massenspektroskopie Atomstruktur aus Rutherfordstreuung

Vorlesung 2: Größe der Atome Massenspektroskopie Atomstruktur aus Rutherfordstreuung Vorlesung 2: Roter Faden: Größe der Atome Massenspektroskopie Atomstruktur aus Rutherfordstreuung Skripte und Folien auf dem Web: http://www-ekp.physik.uni-karlsruhe.de/~deboer/ April 14, 2005 Atomphysik

Mehr

[c] = 1 m s. Erfolgt die Bewegung der Teilchen senkrecht zur Ausbreitungsrichtung der Welle, dann liegt liegt Transversalwelle vor0.

[c] = 1 m s. Erfolgt die Bewegung der Teilchen senkrecht zur Ausbreitungsrichtung der Welle, dann liegt liegt Transversalwelle vor0. Wellen ================================================================== 1. Transversal- und Longitudinalwellen ------------------------------------------------------------------------------------------------------------------

Mehr

Mathematischer Vorkurs zum Studium der Physik

Mathematischer Vorkurs zum Studium der Physik Universität Heidelberg Mathematischer Vorkurs zum Studium der Physik Übungen Aufgaben zu Kapitel 9 (Fortsetzung) (aus: K. Hefft, Mathematischer Vorkurs zum Studium der Physik, sowie Ergänzungen) Aufgabe

Mehr

Materialkundliches Praktikum Phasenanalytik und Röntgendiffraktometrie Verantwortlicher Mitarbeiter: Dr. Matthias Müller

Materialkundliches Praktikum Phasenanalytik und Röntgendiffraktometrie Verantwortlicher Mitarbeiter: Dr. Matthias Müller Materialkundliches Praktikum Phasenanalytik und Röntgendiffraktometrie Verantwortlicher Mitarbeiter: Dr. Matthias Müller Inhalt: 1. Physikalische Grundlagen der Röntgenbeugung. Struktur von Festkörpern,

Mehr

2. Strukturbestimmung durch Streuung Strukturbestimmung durch Streuung

2. Strukturbestimmung durch Streuung Strukturbestimmung durch Streuung 2. Strukturbestimmung durch Streuung 2.0 2. Strukturbestimmung durch Streuung 2 STRUKTURBESTIMMUNG DURCH STREUUNG 2.1 2 Strukturbestimmung durch Streuung 2.1 Einleitung Verwendete Strahlen 1. Röntgenstrahlen

Mehr

Es sollen jedoch mehratomige Kristalle betrachtet werden, NaCl und CsCl.

Es sollen jedoch mehratomige Kristalle betrachtet werden, NaCl und CsCl. 1. Einleitung In diesem Versuch werden die Gittertypen und Gitterkonstanten von NaCl und CsCl mit Hile des Debye-Scherrer-Verahrens überprüt bzw. bestimmt. 2. Theoretische Grundlagen 2.1 Kristallgittertypen

Mehr

Physik IV Einführung in die Atomistik und die Struktur der Materie

Physik IV Einführung in die Atomistik und die Struktur der Materie Physik IV Einführung in die Atomistik und die Struktur der Materie Sommersemester 2011 Vorlesung 21 30.06.2011 Physik IV - Einführung in die Atomistik Vorlesung 21 Prof. Thorsten Kröll 30.06.2011 1 H 2

Mehr

Kristallographie I. Inhalt von Kapitel 5

Kristallographie I. Inhalt von Kapitel 5 88 Inhalt von Kapitel 5 5 Untersuchung von Kristallen... 89 5.1 Lichtoptik... 89 5.2 Röntgenographische Untersuchung von Kristallen... 93 5.2.1 Beugung von Röntgenstrahlung am Kristallgitter... 94 5.2.2

Mehr

Vorbereitung. Strukturfaktoren als Vektoren in der komplexen Zahlenebene

Vorbereitung. Strukturfaktoren als Vektoren in der komplexen Zahlenebene Vorbereitung Strukturfaktoren als Vektoren in der komplexen Zahlenebene Das Ziel Rezept zur Berechnung der Elektronendichte Benötigt die Strukturfaktoren, F hkl Jeder Strukturfaktor, F hkl, ist eine komplette

Mehr

1 Versuchsbeschreibung Versuchsvorbereitung Versuch: Wellennatur des Elektrons... 3

1 Versuchsbeschreibung Versuchsvorbereitung Versuch: Wellennatur des Elektrons... 3 Versuch: EB Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: M. Kreller i.a. Dr. Escher Bearbeitet: A. Otto Aktualisiert: am 24. 02. 2011 Elektronenbeugung Inhaltsverzeichnis 1 Versuchsbeschreibung

Mehr

Röntgenstrukturanalyse nach Debye-Scherrer

Röntgenstrukturanalyse nach Debye-Scherrer Röntgenstrukturanalyse nach Debye-Scherrer Ilja Homm und Thorsten Bitsch Betreuer: Haiko Didzoleit 02.05.2012 Fortgeschrittenen-Praktikum Abteilung B Inhalt 1 Einführung 2 1.1 Kristallstrukturen und Grundlagen

Mehr

Physikalisch-Chemisches Praktikum für Fortgeschrittene V 13. X-rays. Röntgenbeugung

Physikalisch-Chemisches Praktikum für Fortgeschrittene V 13. X-rays. Röntgenbeugung Physikalisch-Chemisches Praktikum für Fortgeschrittene V 13 X-rays Röntgenbeugung Überarbeitetes Versuchsskript, Mai 008 Stichwörter zum Kolloquium Röntgenstrahlung und ihre Wechselwirkung mit Materie

Mehr

Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002

Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002 Fortgeschrittenenpraktikum: Ausarbeitung - Versuch 14 Optische Absorption Durchgeführt am 13. Juni 2002 30. Juli 2002 Gruppe 17 Christoph Moder 2234849 Michael Wack 2234088 Sebastian Mühlbauer 2218723

Mehr

Interferenz und Beugung

Interferenz und Beugung Interferenz und Beugung In diesem Kapitel werden die Eigenschaften von elektromagnetischen Wellen behandelt, die aus der Wellennatur des Lichtes resultieren. Bei der Überlagerung zweier Wellen ergeben

Mehr

1 Aufgabenstellung 2. 2 Theoretische Grundlagen Das Röntgenspektrum Analyse mit Einkristallen... 4

1 Aufgabenstellung 2. 2 Theoretische Grundlagen Das Röntgenspektrum Analyse mit Einkristallen... 4 Röntgenstrahlung Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: Jakob Krämer Aktualisiert: am 12. 04. 2013 Röntgenstrahlung Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Theoretische Grundlagen

Mehr

9 Periodische Bewegungen

9 Periodische Bewegungen Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen Mit Schwingungsdauer (Periode, Periodendauer) T Welle Schwingung breitet sich im Raum aus Zustand y wiederholt sich in Raum

Mehr

UNIVERSITÄT BIELEFELD

UNIVERSITÄT BIELEFELD UNIVERSITÄT BIELEFELD 5. Schwingungen und Wellen 5.6 - Beugung von Ultraschall Durchgeführt am 3.0.06 Dozent: Praktikanten (Gruppe ): Dr. Udo Werner Marcus Boettiger Daniel Fetting Marius Schirmer E3-463

Mehr

UNIVERSITÄT BIELEFELD. Optik. GV Interferenz und Beugung. Durchgeführt am

UNIVERSITÄT BIELEFELD. Optik. GV Interferenz und Beugung. Durchgeführt am UNIVERSITÄT BIELEFELD Optik GV Interferenz und Beugung Durchgeführt am 10.05.06 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger Daniel Fetting Marius Schirmer Inhaltsverzeichnis 1 Ziel

Mehr

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung

Erfüllt eine Funktion f für eine feste positive Zahl p und sämtliche Werte t des Definitionsbereichs die Gleichung 34 Schwingungen Im Zusammenhang mit Polardarstellungen trifft man häufig auf Funktionen, die Schwingungen beschreiben und deshalb für den Ingenieur von besonderer Wichtigkeit sind Fast alle in der Praxis

Mehr

A6: Strukturanalyse mittels Röntgenstrahlung

A6: Strukturanalyse mittels Röntgenstrahlung - A 6. 1 - A6: Strukturanalyse mittels Röntgenstrahlung 1. Übersicht zum Thema und Zusammenfassung der Ziele Ziel dieses Versuchs ist es, Sie mit einer grundlegenden Struktur der Festkörper (dem kristallinen

Mehr

Praktikum GI Gitterspektren

Praktikum GI Gitterspektren Praktikum GI Gitterspektren Florian Jessen, Hanno Rein betreut durch Christoph von Cube 9. Januar 2004 Vorwort Oft lassen sich optische Effekte mit der geometrischen Optik beschreiben. Dringt man allerdings

Mehr

Experimentalphysik II Elektromagnetische Schwingungen und Wellen

Experimentalphysik II Elektromagnetische Schwingungen und Wellen Experimentalphysik II Elektromagnetische Schwingungen und Wellen Ferienkurs Sommersemester 2009 Martina Stadlmeier 10.09.2009 Inhaltsverzeichnis 1 Elektromagnetische Schwingungen 2 1.1 Energieumwandlung

Mehr

TEP Monochromatisierung von charakteristischer Molybdän-Röntgenstrahlung

TEP Monochromatisierung von charakteristischer Molybdän-Röntgenstrahlung Monochromatisierung von charakteristischer TEP Verwandte Begriffe Bremsstrahlung, charakteristische Röntgenstrahlung, Energieniveaus, Absorption von Röntgenstrahlung, Absorptionskanten, Interferenz, Bragg-Streuung.

Mehr

1. Ermitteln Sie die Gitterkonstante eines LiF-Kristalls aus der Messung des -2 -Spektrums unter Verwendung einer Wolframkathode.

1. Ermitteln Sie die Gitterkonstante eines LiF-Kristalls aus der Messung des -2 -Spektrums unter Verwendung einer Wolframkathode. Fakultät für Physik und Geowissenschaften Physikalisches Grundpraktikum O 21 Röntgenstrahlung Aufgaben 1. Ermitteln Sie die Gitterkonstante eines LiF-Kristalls aus der Messung des -2-Spektrums unter Verwendung

Mehr

00. Einiges zum Vektorraum R n

00. Einiges zum Vektorraum R n 00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen

Mehr

Die Lage der Emissionsbanden der charakteristischen Röntgenstrahlung (anderer Name: Eigenstrahlung) wird bestimmt durch durch das Material der Kathode durch das Material der Anode die Größe der Anodenspannung

Mehr

V. Optik. V.2 Wellenoptik. Physik für Mediziner 1

V. Optik. V.2 Wellenoptik. Physik für Mediziner 1 V. Optik V. Wellenoptik Physik für Mediziner 1 Beschreibungen des Lichts Geometrische Optik charakteristische Längen >> Wellenlänge (μm) Licht als Strahl Licht Quantenoptik mikroskopische Wechselwirkung

Mehr

Charakteristische Röntgenstrahlung von Wolfram

Charakteristische Röntgenstrahlung von Wolfram Charakteristische Röntgenstrahlung TEP Verwandte Begriffe Röntgenröhren, Bremsstrahlung, charakteristische Röntgenstrahlung, Energieniveaus, Kristallstrukturen, Gitterkonstante, Absorption von Röntgenstrahlung,

Mehr

Kristallographie und Röntgenuntersuchung

Kristallographie und Röntgenuntersuchung Deckblatt 1 Kristallographie und Röntgenuntersuchung an Kristallen Inhalt: Geschichtliches Was sind Kristalle Kristallbau Koordinatensystem und Basis Netzebenen, Millersche- und Laue- Indizes Raumgitter,

Mehr

Werner Massa. Kristallstrukturbestimmung

Werner Massa. Kristallstrukturbestimmung Werner Massa Kristallstrukturbestimmung Studienbücher Chemie Herausgegeben von Prof. Dr. rer. nat. Christoph Elschenbroich, Marburg Prof. Dr. rer. nat. Dr. h.c. Friedrich Hensel, Marburg Prof. Dr. phil.

Mehr

6. Diffraktometrie. Michael Bolte. Institut für Organische Chemie. der Universität Frankfurt. Max-von-Laue-Straße 7.

6. Diffraktometrie. Michael Bolte. Institut für Organische Chemie. der Universität Frankfurt. Max-von-Laue-Straße 7. 6. Diffraktometrie Michael Bolte Institut für Organische Chemie der Universität Frankfurt Max-von-Laue-Straße 7 60438 Frankfurt E-Mail: bolte@chemie.uni-frankfurt.de I. Meßmethoden mit Diffraktometern

Mehr

Röntgendiffraktometrie

Röntgendiffraktometrie Kapitel 3.4. Röntgendiffraktometrie Lothar Schwabe, Freie Universität Berlin 1. Einleitung Die Eigenschaft der Röntgenstrahlen, unterschiedliche Materialien zu durchdringen und dabei mehr oder weniger

Mehr

Aufgabenstellung: Bestimmen Sie die AVOGADRO-Konstante mittels Röntgenbeugung. Führen Sie eine Größtfehlerberechnung durch.

Aufgabenstellung: Bestimmen Sie die AVOGADRO-Konstante mittels Röntgenbeugung. Führen Sie eine Größtfehlerberechnung durch. Aufgabenstellung: Bestimmen Sie die AVOGADRO-Konstante mittels Röntgenbeugung. Führen Sie eine Größtfehlerberechnung durch. Stichworte zur Vorbereitung: AVOGADRO-Konstante, Röntgenstrahlung, Röntgenröhre,

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens SS2013 Inhalt Fourier Reihen Sehen wir in 2 Wochen Lösung der lin. Dgln.

Mehr

SCHWINGUNGEN WELLEN. Schwingungen Resonanz Wellen elektrischer Schwingkreis elektromagnetische Wellen

SCHWINGUNGEN WELLEN. Schwingungen Resonanz Wellen elektrischer Schwingkreis elektromagnetische Wellen Physik für Pharmazeuten SCHWINGUNGEN WELLEN Schwingungen Resonanz elektrischer Schwingkreis elektromagnetische 51 5.1 Schwingungen Federpendel Auslenkung x, Masse m, Federkonstante k H d xt ( ) Bewegungsgleichung:

Mehr

Photonische Kristalle

Photonische Kristalle Kapitel 2 Photonische Kristalle 2.1 Einführung In den letzten 20 Jahren entwickelten sich die Photonischen Kristalle zu einem bevorzugten Gegenstand der Grundlagenforschung aber auch der angewandten Forschung

Mehr

Physikalisches Grundpraktikum Technische Universität Chemnitz

Physikalisches Grundpraktikum Technische Universität Chemnitz Physikalisches Grundpraktikum Technische Universität Chemnitz Protokoll «A10 - AVOGADRO-Konstante» Martin Wolf Betreuer: Herr Decker Mitarbeiter: Martin Helfrich Datum:

Mehr

Allgemeine Chemie I Herbstsemester 2012

Allgemeine Chemie I Herbstsemester 2012 Lösung 4 Allgemeine Chemie I Herbstsemester 2012 1. Aufgabe Im Vorlesungsskript sind für Xenon die Werte σ(xe) = 406 pm und ε = 236 kjmol 1 tabelliert. ( ) 12 ( ) 6 σ σ E i j = 4ε (1) r i j r i j r i j

Mehr

Versuch: Röntgenbeugung an Kristallen

Versuch: Röntgenbeugung an Kristallen C:\DOCUME~\AG\LOCALS~\TEMP\VP_Debye_Scherrer.DOC Versuch: Röntgenbeugung an Kristallen Aufgabe J. Ihringer 4.04.04 Aus den Beugungsbildern von Wolfram, Kupfer und Eisen wird der Gittertyp und die Gitterkonstante

Mehr

Aufgabe 2.1: Wiederholung: komplexer Brechungsindex

Aufgabe 2.1: Wiederholung: komplexer Brechungsindex Übungen zu Materialwissenschaften II Prof. Alexander Holleitner Übungsleiter: Jens Repp / Eric Parzinger Kontakt: jens.repp@wsi.tum.de / eric.parzinger@wsi.tum.de Blatt 2, Besprechung: 23.04.2014 / 30.04.2014

Mehr

Einführung in die Festkörperphysik I Prof. Peter Böni, E21

Einführung in die Festkörperphysik I Prof. Peter Böni, E21 Einführung in die Festkörperphysik I Prof. Peter Böni, E1 Lösung zum 9. Übungsblatt (Besprechung: 18. - 0. Dezember 006) P. Niklowitz, E1 Aufgabe 9.1: Neutronenstreuung an Phononen (a) Geben Sie die Dispersionsrelation

Mehr

5.8.8 Michelson-Interferometer ******

5.8.8 Michelson-Interferometer ****** 5.8.8 ****** Motiation Ein wird mit Laser- bzw. mit Glühlampenlicht betrieben. Durch Verschieben eines der beiden Spiegel werden Intensitätsmaxima beobachtet. Experiment S 0 L S S G Abbildung : Aufsicht

Mehr

Physikalische Chemie 1 Struktur und Materie Wintersemester 2016/17

Physikalische Chemie 1 Struktur und Materie Wintersemester 2016/17 Physikalische Chemie 1 Struktur und Materie Wintersemester 2016/17 Vorlesung: Hörsaal 10.01 Daran anschließend Physikalische Chemie 2 (Prof. Falcaro, TU): Materie im elektr./magn. Feld, Wechselwirkungen,

Mehr

A10 - AVOGADRO - Konstante

A10 - AVOGADRO - Konstante A10 - AVOGADRO - Konstante Aufgabenstellung: Bestimmen Sie die AVOGADRO-Konstante mittels Röntgenbeugung. Führen Sie eine Größtfehlerberechnung durch. Stichworte zur Vorbereitung: AVOGADRO-Konstante, Röntgenstrahlung,

Mehr

Wellen als Naturerscheinung

Wellen als Naturerscheinung Wellen als Naturerscheinung Mechanische Wellen Definition: Eine (mechanische) Welle ist die Ausbreitung einer (mechanischen) Schwingung im Raum, wobei Energie und Impuls transportiert wird, aber kein Stoff.

Mehr

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1

Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 TU München Prof. P. Vogl Mathematischer Vorkurs für Physiker WS 2012/13: Vorlesung 1 Komplexe Zahlen Das Auffinden aller Nullstellen von algebraischen Gleichungen ist ein Grundproblem, das in der Physik

Mehr

Crystal Diffraction. Günter Krois Markus Kurz

Crystal Diffraction. Günter Krois Markus Kurz Günter Krois Markus Kurz Inhalt 1. Einleitung... 3 2. Doppelspalt Experiment... 3 2.1. Das Experiment... 3 2.2. Der Detektor... 3 2.3. Welle Teilchen Terminologie... 4 3. Beugung am Kristallgitter... 4

Mehr

Protein- Beispiel. Wie kann die Form eines Proteins mit Hilfe von Röntgenbeugung festgestellt werden?

Protein- Beispiel. Wie kann die Form eines Proteins mit Hilfe von Röntgenbeugung festgestellt werden? Protein- Beispiel Wie kann die Form eines Proteins mit Hilfe von Röntgenbeugung festgestellt werden? Vorgangsweise Proteine kristallisieren Röntgenanalyse Struktur raten Strukturfaktor berechnen und quadrieren

Mehr

Beugung am Spalt und Gitter

Beugung am Spalt und Gitter Demonstrationspraktikum für Lehramtskandidaten Versuch O1 Beugung am Spalt und Gitter Sommersemester 2006 Name: Daniel Scholz Mitarbeiter: Steffen Ravekes EMail: daniel@mehr-davon.de Gruppe: 4 Durchgeführt

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein korrigierter Übungszettel aus dem Modul physik411. Dieser Übungszettel wurde von einem Tutor korrigiert. Dies bedeutet jedoch nicht, dass es sich um eine Musterlösung handelt.

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

Ferienkurs Experimentalphysik III - Optik

Ferienkurs Experimentalphysik III - Optik Ferienkurs Experimentalphysik III - Optik Max v. Vopelius, Matthias Brasse 25.02.09 Inhaltsverzeichnis 1 Welleneigenschaften von Licht 1 2 Lichtbeugung 1 2.1 Beugung am Einfachspalt...............................

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 3. Matthias Golibrzuch 16/03/16

Physik-Department. Ferienkurs zur Experimentalphysik 3. Matthias Golibrzuch 16/03/16 Physik-Department Ferienkurs zur Experimentalphysik 3 Matthias Golibrzuch 16/03/16 Inhaltsverzeichnis Technische Universität München 1 Kohärenz 1 2 Beugung 1 2.1 Huygenssches Prinzip.............................

Mehr

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat.

1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. 1. Vektoralgebra 1.0 Einführung Vektoren Ein Vektor ist eine Größe, welche sowohl einen Zahlenwert (Betrag) als auch eine Richtung hat. übliche Beispiele: Ort r = r( x; y; z; t ) Kraft F Geschwindigkeit

Mehr

= 8.28 10 23 g = 50u. n = 1 a 3 = = 2.02 10 8 = 2.02Å. 2 a. k G = Die Dispersionsfunktion hat an der Brillouinzonengrenze ein Maximum; dort gilt also

= 8.28 10 23 g = 50u. n = 1 a 3 = = 2.02 10 8 = 2.02Å. 2 a. k G = Die Dispersionsfunktion hat an der Brillouinzonengrenze ein Maximum; dort gilt also Aufgabe 1 Ein reines Material habe sc-struktur und eine Dichte von 10 g/cm ; in (1,1,1) Richtung messen Sie eine Schallgeschwindigkeit (für große Wellenlängen) von 000 m/s. Außerdem messen Sie bei nicht

Mehr

Physik. Schuljahr 2003/2004 & 2004/2005. Michael S. Walz & Christopher R. Nerz

Physik. Schuljahr 2003/2004 & 2004/2005. Michael S. Walz & Christopher R. Nerz Physik Michael S. Walz Christopher R. Nerz Schuljahr 2003/2004 & 2004/2005 c 2003, 2004, 2005 Michael S. Walz & Christopher R. Nerz INHALTSVERZEICHNIS INHALTSVERZEICHNIS Inhaltsverzeichnis 1 Elektromagn.

Mehr

Praktikumsversuch B2.1 Zwei röntgenografische Verfahren der Festkörperphysik

Praktikumsversuch B2.1 Zwei röntgenografische Verfahren der Festkörperphysik Praktikumsversuch B2.1 Zwei röntgenografische Verfahren der Festkörperphysik Alexander Komarek, Sebastian Bleikamp, Martin Valldor Raum 326 im II. Physikalischen Institut der Universität zu Köln 1 Einleitung

Mehr

Aufgabe I. 1.1 Betrachten Sie die Bewegung des Federpendels vor dem Eindringen des Geschosses.

Aufgabe I. 1.1 Betrachten Sie die Bewegung des Federpendels vor dem Eindringen des Geschosses. Schriftliche Abiturprüfung 2005 Seite 1 Hinweise: Zugelassene Hilfsmittel: Taschenrechner Die Aufgaben umfassen 5 Seiten. Die Zahlenwerte benötigter Konstanten sind nach der Aufgabe III zusammengefasst.

Mehr

Phasenmessung in der nichtlinearen Optik

Phasenmessung in der nichtlinearen Optik Phasenmessung in der nichtlinearen Optik Th. Lottermoser, t. Leute und M. Fiebig, D. Fröhlich, R.V. Pisarev Einleitung Prinzip der Phasenmessung Experimentelle Durchführung Ergebnisse YMnO 3 Einleitung

Mehr

2 Blatt - Festkörperphysik 2-2D Gitter

2 Blatt - Festkörperphysik 2-2D Gitter Heiko Dumlich April 9, Bltt - Festkörperphysik - D Gitter. (Oberflächen kubisch rumzentrierter Kristlle) ) In Abbildung () befinden sich die drei Drufsichten der (), () und () Ebenen des kubisch-rumzentrierten

Mehr

9.3 Der Compton Effekt

9.3 Der Compton Effekt 9.3 Der Compton Effekt Im Kapitel Photoelektrischer Effekt wurde die Wechselwirkung von Licht mit Materie untersucht. Dabei wird Licht einer bestimmten Wellenlänge beim Auftreffen auf eine lichtempfindliche

Mehr

WECHSELWIRKUNG STRAHLUNG-STOFF

WECHSELWIRKUNG STRAHLUNG-STOFF Jürgen Henniger Arbeitsgruppe Strahlungsphysik (ASP) des Instituts für Kern- und Teilchenphysik (IKTP) Andreas-Schubert-Bau 409A henniger@asp.tu-dresden.de 0351 463 32479 / 0173 6864000 WECHSELWIRKUNG

Mehr

Physik 2 (GPh2) am

Physik 2 (GPh2) am Name: Matrikelnummer: Studienfach: Physik 2 (GPh2) am 17.09.2013 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel zu dieser Klausur: Beiblätter

Mehr

Die Aufzeichnung dreidimensionaler Bilder. Caroline Girmen, Leon Pernak

Die Aufzeichnung dreidimensionaler Bilder. Caroline Girmen, Leon Pernak Die Aufzeichnung dreidimensionaler Bilder Caroline Girmen, Leon Pernak Ablauf Einführung Allgemeine Definition Geschichte Aufnahme Wiedergabe Besondere Hologrammtypen Dicke Hologramme Echtfarbige Hologramme

Mehr

Einführung in die Gitterbeugung

Einführung in die Gitterbeugung Einführung in die Gitterbeugung Methoden der Physik SS2006 Prof. Szymanski Seibold Elisabeth Leitner Andreas Krieger Tobias EINLEITUNG 3 DAS HUYGENSSCHE PRINZIP 3 DIE BEUGUNG 3 BEUGUNG AM EINZELSPALT 3

Mehr

Aufgabe 1: Interferenz von Teilchen und Wellen

Aufgabe 1: Interferenz von Teilchen und Wellen Lösungsvorschlag Übung 6 Aufgabe 1: Interferenz von Teilchen un Wellen a) Konstruktive bzw. estruktive Interferenz beschreibt ie Tatsache, ass sich überlagerne Wellen gegenseitig verstärken bzw. auslöschen

Mehr

Orientierungsbestimmung von Metalleinkristallen mit der Laue-Kamera

Orientierungsbestimmung von Metalleinkristallen mit der Laue-Kamera 1 Orientierungsbestimmung von Metalleinkristallen mit der Laue-Kamera Organisatorisches Durchführung: Michael Hill, Thomas Link Treffpunkt BH 248 Aufgaben Laue-Aufnahme eines Einkristalls mit unbekannter

Mehr

Mechanische Schwingungen und Wellen

Mechanische Schwingungen und Wellen Mechanische und Wellen Inhalt 1. 2.Überlagerung von 3.Entstehung und Ausbreitung von Wellen 4.Wechselwirkungen von Wellen 2 Voraussetzungen Schwingfähige Teilchen Energiezufuhr Auslenkung Rücktreibende

Mehr

Abiturprüfung Physik, Grundkurs. Aufgabe 1: Kräfte auf bewegte Ladungen in Leitern im Magnetfeld

Abiturprüfung Physik, Grundkurs. Aufgabe 1: Kräfte auf bewegte Ladungen in Leitern im Magnetfeld Seite 1 von 10 Abiturprüfung 2009 Physik, Grundkurs Aufgabenstellung: Aufgabe 1: Kräfte auf bewegte Ladungen in Leitern im Magnetfeld Eine bewegte elektrische Ladung erfährt in Magnetfeldern bei geeigneten

Mehr

Übungsblatt 1 zur Vorlesung Atom- und Molekülphysik

Übungsblatt 1 zur Vorlesung Atom- und Molekülphysik Übungsblatt 1 zur Vorlesung Atom- und Molekülphysik Kapitel 1 bis inklusive 2.3 1. Zu Kapitel 1 Wie viele Atome enthält eine Kupfermünze mit einer Masse von 3,4g benutzen Sie eine Masse von 63,5 atomaren

Mehr

3. Kapitel Der Compton Effekt

3. Kapitel Der Compton Effekt 3. Kapitel Der Compton Effekt 3.1 Lernziele Sie können erklären, wie die Streuung von Röntgenstrahlen an Graphit funktioniert. Sie kennen die physikalisch theoretischen Voraussetzungen, die es zum Verstehen

Mehr

Klausur -Informationen

Klausur -Informationen Klausur -Informationen Datum: 4.2.2009 Uhrzeit und Ort : 11 25 im großen Physikhörsaal (Tiermediziner) 12 25 ibidem Empore links (Nachzügler Tiermedizin, bitte bei Aufsichtsperson Ankunft melden) 11 25

Mehr

Geometrische Objekte im 3-dimensionalen affinen Raum oder,... wie nützlich ist ein zugehöriger Vektorraum der Verschiebungen

Geometrische Objekte im 3-dimensionalen affinen Raum oder,... wie nützlich ist ein zugehöriger Vektorraum der Verschiebungen Geometrische Objekte im -dimensionalen affinen Raum Bekanntlich versteht man unter geometrischen Objekten Punktmengen, auf die man die üblichen Mengenoperationen wie z.b.: Schnittmenge bilden: - aussagenlogisch:

Mehr

1.2 Grenzen der klassischen Physik Michael Buballa 1

1.2 Grenzen der klassischen Physik Michael Buballa 1 1.2 Grenzen der klassischen Physik 23.04.2013 Michael Buballa 1 1.2 Grenzen der klassischen Physik Die Konzepte klassischer Teilchen und Wellen haben ihren Ursprung in unserer Alltagserfahrung, z.b. Teilchen:

Mehr

3. Einstein, de Broglie, Compton, Davisson, Germer und der Welle Teilchen-Dualismus

3. Einstein, de Broglie, Compton, Davisson, Germer und der Welle Teilchen-Dualismus 3. Einstein, de Broglie, Compton, Davisson, Germer und der Welle Teilchen-Dualismus Albert Einstein 1879-1955, im Jahr 1912 Einstein war der erste, der die Quanten Plancks und die Formel E = h ν für die

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 10. Übungsblatt - 10. Januar 2011 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (6 Punkte) a)

Mehr

Protokoll zum Versuch: Interferenz und Beugung

Protokoll zum Versuch: Interferenz und Beugung Protokoll zum Versuch: Interferenz und Beugung Fabian Schmid-Michels Nils Brüdigam Universität Bielefeld Wintersemester 2006/2007 Grundpraktikum I 30.11.2006 Inhaltsverzeichnis 1 Ziel 2 2 Theorie 2 2.1

Mehr