TU Darmstadt FB Mathematik, AG 9 WS 2004/2005 Jakob Creutzig (1 + ρ)

Größe: px
Ab Seite anzeigen:

Download "TU Darmstadt FB Mathematik, AG 9 WS 2004/2005 Jakob Creutzig (1 + ρ)"

Transkript

1 TU Darmstadt FB Mathematik, AG 9 WS 2004/2005 Jakob Creutzig Lösungsvorschläge zum 3. Aufgabenblatt der Vorlesung,,Einführung in die Finanzmathematik Gruppenübungen Aufgabe : Es sei Ω = {, +} n, A = P(Ω), P die Gleichverteilung auf Ω und X t : Ω R gegeben durch X t ((ω,... ω n )) = 2 ωt und ρ >. Wir betrachten das n Periodenmodell (S i ) n i=0 definiert durch ( ) ( ) ( + ρ) t S 0 =, S t = t s= X. s a) Skizzieren Sie die möglichen Trajektorien des stochastischen Prozesses Y t = s t X s. Entfällt für s erste. b) Bestimmen Sie die kanonische Filtration ÃY von Y t. Wir betrachten die Projektionen π t : Ω {, +}, ω = (ω,..., ω n ) ω t. Dann behaupten wir, daß { } A Y t = σ(π,..., π t ) = A {, } n t : A P({, +} t ) ( ). Hierzu zeigen wir zunächst, daß σ(y,..., Y t ) = σ(x,..., X t ) ist: Einerseits ist jedes Y s eine meßbare Funktion der X,..., X t, also σ(x,..., X t ) meßbar, und also ist σ(y,..., Y t ) σ(x,..., X t ). Andererseits ist X s = Y s /Y s, und daraus folgt analog σ(x,..., X t ) σ(y,..., Y t ). Nun sind wiederum π t und X t mittels der meßbaren Funktionen exp und log ineinander umrechenbar, und daher ist σ(x,..., X t ) = σ(π,..., π t ), was das erste Gleichheitszeichen in (*) beweist. Das Mengensystem rechts in (*) ist offenbar eine σ Algebra, und die Abbildungen π s sind meßbar bezüglich derselben, was die Relation impliziert. Für die umgekehrte Relation bemerken wir, daß für alle ε i {, +} offenbar gilt {(ε,..., ε t )} {, +} n t = s t π s (ε s ) σ(π,..., π t ). Da aber Mengen dieser Form ein Erzeugendensystem für die σ Algebra rechts in (*) bilden, folgt die zweite Gleichheit in (*). Dann sind X t unabhängig und P (X t = 2) = P (X t = /2) = /2.

2 c) ( ) Gilt A Y t = σ(y t )? Nein, denn z.b. nimmt Y 2 drei mögliche Werte an (/4,, 4), also hat die von Y 2 erzeugte σ Algebra drei Atome und ist daher achtelementig, wohingegen σ(y, Y 2 ) nach dem Ergebnis von Teil b) vier Atome besitzt und daher 5 Elemente hat. d) Bestimmen Sie diejenigen ρ, für die alle reduzierten Perioden Modelle (S 0, S t ) arbitragefrei sind. Notwendig hierfür ist sicherlich, daß d < +ρ < u (betrachte den Fall t = ), wir behaupten, daß dies auch hinreichend ist. Hierzu nehmen wir an daß d < + ρ < u, und daß es trotzdem in einem Modell (S 0, S t ) eine Arbitrage x = (x 0, x ) gäbe mit x S 0 = 0, also x = x 0, und 0 x S = x 0 [( + ρ) t s t X s ] sowie P (x S > 0) > 0. Die möglichen Werte, die das hintere Produkt annehmen kann, sind d t, d t u,..., du t, u t. Falls nun x 0 > 0 ist, so folgte daher insbesondere ( + ρ) t u t 0, also + ρ u, im Widerspruch zur Voraussetzung. Analog folgte im Falle x 0 < 0, daß +ρ u, ebenfalls ein Widerspruch. Also kann im Falle d < +ρ < u keine Arbitrage auftreten. Aufgabe 2: Im Modell aus Aufgabe (mit ρ = /4) wollen wir nun folgende Strategie betrachten: Wir starten mit einer Aktie und verkaufen diese, sobald sie viermal soviel wert ist wie am Anfang, spätestens jedoch am Endzeitpunkt; dann wird der Ertrag in Bonds angelegt bis zum Endzeitpunkt. a) Geben Sie eine passende Stopzeit τ an und weisen Sie nach, daß dies tatsächlich eine Stopzeit bezüglich der kanonischen Filtration ist. Wir setzen τ := inf{{t : Y t = 4} {n}}. Dann ist {τ > t} = s t{y s 4} A Y t, und also auch das Komplement {τ t}. b) Bestimmen Sie den hierbei erzielten (zufälligen) Gewinn (Hinweis: Arbeiten Sie mit Y τ ). ( + ρ) n τ Y τ. 2

3 c) Berechnen Sie im Falle n = 3 den zu erwartenden Gewinn. Vergleichen Sie dies mit der Strategie, einen Bond zu kaufen. Was erwarten Sie im allgemeinen Fall? Es läßt sich relativ leicht am Graphen aus Ga) ablesen, daß hier τ < 3 gilt genau dann, wenn X = X 2 = 2, und ansonsten τ = 3. Man erhält somit E( +ρ) 3 τ Y τ = 4( +ρ) /4 + 2 /4 + /2 3/8 + /4 /8 = 25/64. Der Bond erbringt in der gleichen Zeit (5/4) 3 = 25/64 Gewinn, also genau denselben Ertrag. Da E(Y i ) = 5/4 = ( + ρ), könnte man optimistisch vermuten, daß dies allgemein für jdes n gilt. Aufgabe 3: (Das St. Petersburg Paradoxon). Wir betrachten folgendes Spiel: Eine faire Münze wird so oft geworfen, bis das erste Mal Kopf fällt; geschieht dies im i ten Wurf, so erhält der Spieler von Spielanbieter 2 i Euro. a) Geben Sie einen stochastischen Prozeß Ỹ über T = N an sowie eine Stopzeit τ bezüglich der kanonischen Filtration, sodaß der Gewinn gleich Y τ ist. (Sie können das Beispiel 3G hierzu erweitern.) Es sei ε i eine Folge unabhängiger Zufallsvariablen mit P (ε i = ) = /2 = P (ε i = 0); setze Y i = 2 i ε i (Y 0 = 0) und τ = inf{i : X i > 0}. b) Berechnen Sie EY τ. Da P (τ = i) = 2 i, folgt EY τ = n i= P (τ = i)2 i = i =. c) Wenn man das Spiel realen Personen anbietet und sie nach dem maximalen Einsatz fragt, den sie wagen würden, so bieten diese üblicherweise Einsätze zwischen 2 und 5 Euro. Dies widerspricht der naiven Gleichsetzung vom fairen Einsatz als erwarteten Gewinn. Diskutieren Sie mögliche Erklärungen für dies Paradoxon. Eine mögliche Erklärung hierfur ist, daß Menschen intuitiv die Kreditwürdigkeit des Gegenübers als obere Grenze für den möglichen Gewinn ansetzen; beträgt diese zb 2 n, so erhält man als durchschnittlichen Gewinn in diesem Falle (also mit τ n = min{n, τ}) n E(X τn ) = + 2 n+ 2 n = n +. i= 3

4 Umgekehrt hieße also ein Einsatz von 5 Euro, daß dem Spielanbieter eine Kreditwürdigkeit von ca Euro zugetraut würde, was eine recht vernünftige Annahme sein kann. Hausübungen: Aufgabe : Es seien σ und τ zwei Stopzeiten auf T bezüglich der Filtration Ã. Zeigen Sie: a) Die Abbildung σ τ : Ω T, ω min{σ(ω), τ(ω)} ist eine Stopzeit. {σ τ t} = {σ t} {τ t} A t. b) Die Abbildung σ τ : Ω T, ω max{σ(ω), τ(ω)} ist eine Stopzeit. {σ τ t} = {σ t} {τ t} A t. c) (*) Falls T eine additive Halbgruppe ist (also mit t, s auch t + s T gilt), so ist auch σ + τ eine Stopzeit. {σ + τ t} = t {σ = s} {τ t s} A t. s=0 Aufgabe 2: Es seien wieder τ, σ zwei Stopzeiten auf T bezüglich beweise: Ã. Man a) Falls τ konstant gleich t ist, so ist A τ = A t. In diesem Falle ist A {τ s} = für s < t und gleich A für s t, also lautet die Bedingung für A A τ s < t A s, s t A A s, und das ist dasselbe wie die Forderung A A t. b) Falls für alle ω Ω gilt, daß σ(ω) τ(ω), so ist A σ A τ. Sei A A σ, dann ist A {τ t} = A {τ t} {σ t} = (A {σ t}) }{{} A t {τ t} A t. 4

5 c) Eine A meßbare Abbildung X : Ω R ist A τ meßbar genau dann, wenn für jedes t T die Abbildung X {τ t} : Ω R A t meßbar ist. Für B B(R) mit 0 / B und t > 0 gilt {X B} {τ t} = { {τ t} X B}. Nun ist X meßbar genau dann, wenn für alle Mengen B B(R) mit 0 / B die Menge {X B} in A τ ; und wegen obiger Gleichheit ist dies genau dann der Fall, wenn für jedes t und jedes solche B die Menge {X τ t } in A t liegt. Dies aber ist genau dann der Fall, wenn X τ t A t meßbar ist. Aufgabe 3(**): Zeigen Sie, daß für den in Aufgabe 3G eingeführten Prozeß Y (mit ρ = /4) gilt: a) Für jede Stopzeit τ ist E(Y τ /( + ρ) τ ) =. (Hinweis: Arbeiten Sie mit Induktion; führen Sie eine zweite Stopzeit τ n = min{τ, n } ein und zerlegen Sie den Erwartungswert in Erwartungswerte über die Ereignisse τ = τ n, τ τ n. Benutzen Sie ferner τ τ n τ n = n.) Wir betrachten die Stopzeiten und behaupten, daß stets τ i = min{τ, i} E(Y τ i/( + ρ) τ i ) =. Hierfür nutzen wir Induktion: Für i = 0 ist dies offenbar richtig, und nun schreiben wir E(Y τ i+/( + ρ) τ i+ ) = E( {τ i =τ i+ }Y τ i/( + ρ) τ i ) + E( {τ i τ i+ }Y τ i+/( + ρ) τ i+ ). Da aber {τ i τ i+ } = {τ > i} A i, X i+ aber unabhängig von A i ist, und im Falle τ i τ i+ auch sicher τ i+ = τ i + ist, erhalten wir ( ) E( {τ i τ i+ }Y τ i+/( + ρ) τ i+ ) = E [X i+ /( + ρ)] [ {τ i τ i+ } Y τ i/( + ρ) τ i ] = [E(X i+ /( + ρ))] [E( {τ i τ i+ } Y τ i/( + ρ) τ i )] = E( {τ i τ i+ } Y τ i/( + ρ) τ i )). Setzt man dies in die obige Summe ein, ergibt sich E(Y τ i+/( + ρ) τ i+ ) = E(Y τ i/( + ρ) τ i ). b) Die in 3G diskutierte Strategie liefert stets den gleichen erwarteten Gewinn wie die Festanlage, genauso wie jede andere Strategie, die zu einer beliebigen Stopzeit die Aktie verkauft und in Bonds investiert. Die ist eine simple Folgerung aus Teil a). 5

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 4

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 4 TUM, Zentrum Mathematik Lehrstuhl für Mathematische Physik WS 3/4 Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weidner Tutoraufgaben: Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 112 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

TU DORTMUND Sommersemester 2018

TU DORTMUND Sommersemester 2018 Fakultät Statistik. April 08 Blatt Aufgabe.: Wir betrachten das Zufallsexperiment gleichzeitiges Werfen zweier nicht unterscheidbarer Würfel. Sei A das Ereignis, dass die Augensumme beider Würfel ungerade

Mehr

Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik

Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik Lineare Algebra Analytische Geometrie I* Übungsaufgaben, Blatt Musterlösungen Aufgabe. Es seien A, B, C Teilmengen einer Menge X. Zeige: i A B C =

Mehr

KAPITEL 1. Martingale

KAPITEL 1. Martingale KAPITEL 1 Martingale 1.1. Stochastische Prozesse Sei (Ω, F, P) ein Wahrscheinlichkeitsraum. Das heißt, Ω ist eine Menge, F ist eine σ-algebra auf Ω, und P ein Wahrscheinlichkeitsmaß auf (Ω, F ). Zuerst

Mehr

3 Bedingte Erwartungswerte

3 Bedingte Erwartungswerte 3 Bedingte Erwartungswerte 3.3 Existenz und Eindeutigkeit des bedingten Erwartungswertes E A 0(X) 3.6 Konvexitätsungleichung für bedingte Erwartungswerte 3.9 Konvergenzsätze von Levi, Fatou und Lebesgue

Mehr

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 3

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 3 TUM, Zentrum Mathematik Lehrstuhl für Mathematische Physik WS 2013/14 Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weidner Einführung in die Wahrscheinlichkeitstheorie svorschläge zu Übungsblatt

Mehr

Diskrete Strukturen I

Diskrete Strukturen I Universität Kassel Fachbereich 10/1 PD Dr. Sebastian Petersen 14.09.2017 Klausur zur Vorlesung Diskrete Strukturen I Es können maximal 40 Punkte erreicht werden. Version mit Lösungsskizze Zur Notation:

Mehr

Übungen zur Wahrscheinlichkeitstheorie und Statistik

Übungen zur Wahrscheinlichkeitstheorie und Statistik Übungen zur Wahrscheinlichkeitstheorie und Statistik Prof. Dr. C. Löh/M. Blank Blatt 0 vom 16. April 2012 Aufgabe 1 (Wahrscheinlichkeitsräume). Welche der folgenden Aussagen sind wahr? Begründen Sie jeweils

Mehr

2 Zufallsvariable und Verteilungsfunktionen

2 Zufallsvariable und Verteilungsfunktionen 8 2 Zufallsvariable und Verteilungsfunktionen Häufig ist es so, dass den Ausgängen eines Zufallexperiments, d.h. den Elementen der Ereignisalgebra, eine Zahl zugeordnet wird. Das wollen wir etwas mathematischer

Mehr

(X Y )(a) = X (a) Y (a).

(X Y )(a) = X (a) Y (a). Aufgabe Teilaufgabe a) Seien X, Y zwei Zufallsvariablen, so definieren wir das Produkt dieser Zufallsvariablen X Y wie folgt: (X Y )(a) = X (a) Y (a). Teilaufgabe b) Gegenbeispiel: Betrachten wir uns folgenden

Mehr

Messbare Vektorräume

Messbare Vektorräume Messbare Vektorräume Hans-Jörg Starkloff TU Bergakademie Freiberg Westsächsische Hochschule Zwickau Dezember 2010 / Januar 2011 Hans-Jörg Starkloff Messbare Vektorräume 1 1. Definition Geg. X linearer

Mehr

Stochastik I. Vorlesungsmitschrift

Stochastik I. Vorlesungsmitschrift Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................

Mehr

Stoppzeiten und Charakteristische Funktionen. Tutorium Stochastische Prozesse 15. November 2016

Stoppzeiten und Charakteristische Funktionen. Tutorium Stochastische Prozesse 15. November 2016 Stoppzeiten und Charakteristische Funktionen Tutorium Stochastische Prozesse 15. November 2016 Inhalte des heutigen Tutoriums Im heutigen Tutorium besprechen wir: (1) Eindeutigkeit von Maßen ohne schnittstabilen

Mehr

Aufgaben zur Verbandstheorie

Aufgaben zur Verbandstheorie TU Bergakademie Freiberg WS 2005/06 Institut für Diskrete Mathematik & Algebra Prof. Dr. Udo Hebisch Aufgaben zur Verbandstheorie 1. Für ein beliebiges n IN sei X n die Menge aller Teiler von n. Definiert

Mehr

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal

Beispiel 37. Wir werfen eine Münze so lange, bis zum ersten Mal Beispiel 37 Wir werfen eine Münze so lange, bis zum ersten Mal Kopf erscheint. Dies geschehe in jedem Wurf unabhängig mit Wahrscheinlichkeit p. Wir definieren dazu die Zufallsvariable X := Anzahl der Würfe.

Mehr

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 1

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 1 TUM, Zentrum Mathematik Lehrstuhl für Mathematische Physik WS 2013/ Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weidner Tutoraufgaben: Einführung in die Wahrscheinlichkeitstheorie svorschläge zu

Mehr

Mathematik für Naturwissenschaften, Teil 2

Mathematik für Naturwissenschaften, Teil 2 Lösungsvorschläge für die Aufgaben zur Vorlesung Mathematik für Naturwissenschaften, Teil Zusatzblatt SS 09 Dr. J. Schürmann keine Abgabe Aufgabe : Eine Familie habe fünf Kinder. Wir nehmen an, dass die

Mehr

Kapitel 6 Martingale

Kapitel 6 Martingale Kapitel 6 Martingale Martingale spielen eine große Rolle in der Finanzmathematik, und sind zudem ein wichtiges Hilfsmittel für die statistische Inferenz stochastischer Prozesse, insbesondere auch für Zählprozesse

Mehr

3 Markov-Eigenschaft der Brownschen Bewegung

3 Markov-Eigenschaft der Brownschen Bewegung Man verifiziert 2.) für P n = Q n, und somit gilt: jede Teilfolge von (P n ) n N besitzt eine konvergente Teilfolge. Betrachte nun die endlich-dimensionalen Randverteilungen der Maße P n. Dazu sei π t1,...,t

Mehr

Übungen zur Analysis 3

Übungen zur Analysis 3 Mathematisches Institut der Universität München Prof. Dr. Franz Merkl Wintersemester 013/01 Blatt 17.10.013 Übungen zur Analysis 3.1ε σ-subadditivität. a Es sei µ ein Inhalt auf einer Mengenalgebra A.

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

4 Gleichgradige Integrierbarkeit, Stoppzeiten und Martingale

4 Gleichgradige Integrierbarkeit, Stoppzeiten und Martingale 4 Gleichgradige Integrierbarkeit, Stoppzeiten und Martingale 4.2 Filtrationen und kanonische Filtrationen 4.3 Supermartingale, Martingale bzw. Submartingale bzgl. der Filtrationen (A t ) t I 4.4 Gleichgradig

Mehr

Klausur zur Einführung in die Wahrscheinlichkeitstheorie und Statistik

Klausur zur Einführung in die Wahrscheinlichkeitstheorie und Statistik Klausur zur Einführung in die Wahrscheinlichkeitstheorie und Statistik Prof. Dr. C. Löh/M. Blank 27. Juli 2012 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen

Mehr

MafI I: Logik & Diskrete Mathematik (Autor: Gerrit (-Arthur) Gruben)

MafI I: Logik & Diskrete Mathematik (Autor: Gerrit (-Arthur) Gruben) Musterlösung zum. Aufgabenblatt zur Vorlesung MafI I: Logik & Diskrete Mathematik (Autor: Gerrit (-Arthur Gruben. Wahrscheinlichkeiten I ( Punkte Die Seiten von zwei Würfeln sind mit den folgenden Zahlen

Mehr

67 Zufallsvariable, Erwartungswert, Varianz

67 Zufallsvariable, Erwartungswert, Varianz 67 Zufallsvariable, Erwartungswert, Varianz 67.1 Motivation Oft möchte man dem Resultat eines Zufallsexperiments eine reelle Zahl zuordnen. Der Gewinn bei einem Glücksspiel ist ein Beispiel hierfür. In

Mehr

Ü b u n g s b l a t t 7

Ü b u n g s b l a t t 7 Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel 21. 5. 2007 Ü b u n g s b l a t t 7 Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten verwendet werden. Lösungen von -Aufgaben

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

Paarweise Unabhängigkeit vs. Unabhängigkeit

Paarweise Unabhängigkeit vs. Unabhängigkeit Paarweise Unabhängigkeit vs. Unabhängigkeit Beispiel: Wir betrachten das Szenario von zuvor. Wissen bereits, dass A 1, A 2 und A 1, B unabhängig sind. Analog folgt, dass A 2 und B unabhängige Ereignisse

Mehr

Kapitel 6. Irrfahrten und Bernoullischemata

Kapitel 6. Irrfahrten und Bernoullischemata Kapitel 6 Irrfahrten und Bernoullischemata Ausgangspunkt dieses Kapitels ist das in den Abschnitten 2.5 und 3.3 vorgestellte mathematische Modell des mehrmals Werfens einer Münze. Die dort definierten

Mehr

Lineare Algebra 6. Übungsblatt

Lineare Algebra 6. Übungsblatt Lineare Algebra 6. Übungsblatt Fachbereich Mathematik M. Schneider 16.05.01 Konstantin Pertschik, Daniel Körnlein Gruppenübung Aufgabe G19 Berechnen Sie das inverse Element bzgl. Multiplikation in der

Mehr

Übungen zur Vorlesung Finanzmathematik. Wintersemester 2014/15

Übungen zur Vorlesung Finanzmathematik. Wintersemester 2014/15 Übungen zur Vorlesung Finanzmathematik Wintersemester 2014/15 PD Dr. V. Paulsen Blatt 7 25.11.2014 Aufgabe 1: Ruinwahrscheinlichkeit beim Roulette Sei S n = n X i, n N 0 eine Irrfahrt in Z, die aus dem

Mehr

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5

0 für t < für 1 t < für 2 t < für 3 t < für 4 t < 5 1 für t 5 4 Verteilungen und ihre Kennzahlen 1 Kapitel 4: Verteilungen und ihre Kennzahlen A: Beispiele Beispiel 1: Eine diskrete Zufallsvariable X, die nur die Werte 1,, 3, 4, 5 mit positiver Wahrscheinlichkeit

Mehr

Unabhängige Zufallsvariablen

Unabhängige Zufallsvariablen Kapitel 9 Unabhängige Zufallsvariablen Die Unabhängigkeit von Zufallsvariablen wird auf die Unabhängigkeit von Ereignissen zurückgeführt. Im Folgenden sei Ω, A, P ) ein Wahrscheinlichkeitsraum. Definition

Mehr

Klausur: Diskrete Strukturen I

Klausur: Diskrete Strukturen I Universität Kassel Fachbereich 0/ 5.03.0 Dr. Sebastian Petersen Klausur: Diskrete Strukturen I Aufgabe. (8 Punkte) a) Sei X = {0, }. Geben Sie die Potenzmenge P (X) (durch Auflisten ihrer Elemente) an.

Mehr

Kapitel 4. Stochastische Grundlagen. 4.1 Filtrationen und Stoppzeiten

Kapitel 4. Stochastische Grundlagen. 4.1 Filtrationen und Stoppzeiten Kapitel 4 Stochastische Grundlagen An dieser Stelle möchte ich auf einige stochastische Grundlagen eingehen, die bisher im Kapitel 3 Anwendung gefunden haben und im Folgenden Anwendung finden werden. Grundproblem

Mehr

Finanzmathematik I Lösung der übriggebliebenen Aufgaben

Finanzmathematik I Lösung der übriggebliebenen Aufgaben Prof Dr T Meyer-Brandis H Hoffmann Winter term 05/6 Lösung des letzten Teils von 83: Finanzmathemati I Lösung der übriggebliebenen Aufgaben iv log S log S 0 + R R }{{} :Y +RG R 8 Da der mittlere Teil eine

Mehr

Klausur zur Vorlesung Stochastik II

Klausur zur Vorlesung Stochastik II Institut für Stochastik WS 007/008 Universität Karlsruhe. 0. 008 r. B. Klar Klausur zur Vorlesung Stochastik II Muster-Lösung auer: 90 Minuten Name: Vorname: Matrikelnummer: iese Klausur hat bestanden,

Mehr

Kapitel II Kontinuierliche Wahrscheinlichkeitsräume

Kapitel II Kontinuierliche Wahrscheinlichkeitsräume Kapitel II Kontinuierliche Wahrscheinlichkeitsräume 1. Einführung 1.1 Motivation Interpretation der Poisson-Verteilung als Grenzwert der Binomialverteilung. DWT 1.1 Motivation 211/476 Beispiel 85 Wir betrachten

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Lösungsvorschlag studienbegleitende Klausur Finanzmathematik I Aufgabe (7 Punkte) Vorgelegt sei ein Wahrscheinlichkeitsraum (Ω, F, P) und

Mehr

9 Erwartungswert, Varianz und Standardabweichung einer Zufallsgröÿe

9 Erwartungswert, Varianz und Standardabweichung einer Zufallsgröÿe Übungsmaterial 9 Erwartungswert, Varianz und Standardabweichung einer Zufallsgröÿe 9. Erwartungswert Fragt man nach dem mittleren Wert einer Zufallsgröÿe X pro Versuch, so berechnet man den Erwartungswert

Mehr

Sammlung alter Klausuraufgaben zur Stochastik keine Abgabe keine Besprechung in den Tutorien

Sammlung alter Klausuraufgaben zur Stochastik keine Abgabe keine Besprechung in den Tutorien Sammlung alter Klausuraufgaben zur Stochastik keine Abgabe keine Besprechung in den Tutorien Prof. F. Merkl 23. Mai 2016 Zu Ihrer Information und als zusätzliches Übungsmaterial sind hier die Aufgaben

Mehr

Schwache Konvergenz. Ivan Lecei. 18. Juni Institut für Stochastik

Schwache Konvergenz. Ivan Lecei. 18. Juni Institut für Stochastik Institut für Stochastik 18. Juni 2013 Inhalt 1 2 3 4 5 Nach ZGWS konvergiert für n F n (x) = P{ X 1+...+X n np npq x} gegen F(x) = 1 2π x e 1 2 u2 du, wenn die X i unabhängig und bernoulliverteilt sind

Mehr

Satz 61 (Chebyshev-Ungleichung)

Satz 61 (Chebyshev-Ungleichung) Die folgende Abschätzung ist nach Pavnuty Lvovich Chebyshev (1821 1894) benannt, der ebenfalls an der Staatl. Universität in St. Petersburg wirkte. Satz 61 (Chebyshev-Ungleichung) Sei X eine Zufallsvariable,

Mehr

8. Formelsammlung. Pr[ ] = 0. 0 Pr[A] 1. Pr[Ā] = 1 Pr[A] A B = Pr[A] Pr[B] DWT 8.1 Gesetze zum Rechnen mit Ereignissen 203/467 Ernst W.

8. Formelsammlung. Pr[ ] = 0. 0 Pr[A] 1. Pr[Ā] = 1 Pr[A] A B = Pr[A] Pr[B] DWT 8.1 Gesetze zum Rechnen mit Ereignissen 203/467 Ernst W. 8. Formelsammlung 8.1 Gesetze zum Rechnen mit Ereignissen Im Folgenden seien A und B, sowie A 1,..., A n Ereignisse. Die Notation A B steht für A B und zugleich A B = (disjunkte Vereinigung). A 1... A

Mehr

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen

Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen Einführung in die Stochastik für Informatiker Übungsaufgaben mit Lösungen David Geier und Sven Middelberg RWTH Aachen, Sommersemester 27 Inhaltsverzeichnis Information 2 Aufgabe 4 Aufgabe 2 6 4 Aufgabe

Mehr

Lösungsskizzen zur Präsenzübung 09

Lösungsskizzen zur Präsenzübung 09 Lösungsskizzen zur Präsenzübung 09 Hilfestellung zur Vorlesung Anwendungen der Mathematik im Wintersemester 2015/2016 Fakultät für Mathematik Universität Bielefeld Veröffentlicht am 07. Februar 2016 von:

Mehr

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt

Universität Basel Wirtschaftswissenschaftliches Zentrum. Zufallsvariablen. Dr. Thomas Zehrt Universität Basel Wirtschaftswissenschaftliches Zentrum Zufallsvariablen Dr. Thomas Zehrt Inhalt: 1. Einführung 2. Zufallsvariablen 3. Diskrete Zufallsvariablen 4. Stetige Zufallsvariablen 5. Erwartungswert

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. D. Castrigiano Dr. M. Prähofer Zentralübung 38. Einschränkung eines Maßes TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Mathematik für Physiker 4 (Analysis 3) http://www.ma.tum.de/hm/ma9204

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

Erwartungswert und Varianz von Zufallsvariablen

Erwartungswert und Varianz von Zufallsvariablen Kapitel 7 Erwartungswert und Varianz von Zufallsvariablen Im Folgenden sei (Ω, A, P ) ein Wahrscheinlichkeitsraum. Der Erwartungswert von X ist ein Lebesgue-Integral (allerdings allgemeiner als in Analysis

Mehr

Unabhängigkeit KAPITEL 4

Unabhängigkeit KAPITEL 4 KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht

Mehr

Universität Leipzig, SoSo 2013

Universität Leipzig, SoSo 2013 Vorlesung Wahrscheinlichkeitstheorie I Universität Leipzig, SoSo 2013 Prof. Dr. Max v. Renesse renesse@uni-leipzig.de Sprechstunde: Di 13.15-14.45, A 337 Übungen: Mo 11.15 -- 12.45 A 314 K. Zimmermann

Mehr

Stochastik Wiederholung von Teil 1

Stochastik Wiederholung von Teil 1 Stochastik Wiederholung von Teil 1 Andrej Depperschmidt Sommersemester 2016 Wahrscheinlichkeitsraum Definition Das Tripple (Ω, A, P) heißt Wahrscheinlichkeitsraum, falls gilt: (i) A ist eine σ-algebra,

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 8. Vorlesung - 2017 Bemerkung: Sei X = (X 1,..., X n ) Zufallsvektor. Der n dimensionale Vektor ( ) E(X ) = E(X 1 ),..., E(X n ) ist der Erwartungswert des Zufallsvektors X. Beispiel: Seien X, Y N (0,

Mehr

5. Äquivalenzrelationen

5. Äquivalenzrelationen 36 Andreas Gathmann 5. Äquivalenzrelationen Wenn man eine große und komplizierte Menge (bzw. Gruppe) untersuchen will so kann es sinnvoll sein zunächst kleinere einfachere Mengen (bzw. Gruppen) zu betrachten

Mehr

2 Halbgruppen von Übergangswahrscheinlichkeiten. Markov-Prozesse

2 Halbgruppen von Übergangswahrscheinlichkeiten. Markov-Prozesse 2 Halbgruppen von Übergangswahrscheinlichkeiten Markov-Prozesse Im Folgenden sei (X, B) ein (polnischer) Messraum und T = [0, ) oder T = N 0 Definition 21 Eine Familie (P t ) t T von (X, B) mit Übergangswahrscheinlichkeiten

Mehr

DWT 6.1 Die Ungleichungen von Markov und Chebyshev 157/467 Ernst W. Mayr

DWT 6.1 Die Ungleichungen von Markov und Chebyshev 157/467 Ernst W. Mayr Die Markov-Ungleichung ist nach Andrey Andreyevich Markov (1856 1922) benannt, der an der Universität von St. Petersburg bei Chebyshev studierte und später dort arbeitete. Neben seiner mathematischen Tätigkeit

Mehr

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren

13 Mehrdimensionale Zufallsvariablen Zufallsvektoren 3 Mehrdimensionale Zufallsvariablen Zufallsvektoren Bisher haben wir uns ausschließlich mit Zufallsexperimenten beschäftigt, bei denen die Beobachtung eines einzigen Merkmals im Vordergrund stand. In diesem

Mehr

Vergleich und Erzeugung von Topologien und topologischen

Vergleich und Erzeugung von Topologien und topologischen KAPITEL 3 Vergleich und Erzeugung von Topologien und topologischen Räumen 3.1. Definition. Auf einer Menge X seien zwei Topologien τ und σ gegeben. Ist jede bezüglich σ offene Menge auch bezüglich τ offen,

Mehr

Abgabetermin: 5. Mai 2017, Uhr

Abgabetermin: 5. Mai 2017, Uhr Übungsblatt Nr. 1 26. April 2017 1. Sei F k, k K, eine Familie von σ-algebren, wobei K eine beliebige Menge ist. Zeigen Sie, daß F d = k K F k ebenfalls eine σ-algebra ist! Beweisen Sie, daß die Vereinigung

Mehr

Grundbegrie der Wahrscheinlichkeitsrechnung

Grundbegrie der Wahrscheinlichkeitsrechnung Die Benutzung dieser Materialien ist auf Herbst 2017 beschränkt. Diese Hilfsmaterialien sind nur für unseren Studenten gemeint, dürfen also nicht weiterverteilt werden. Grundbegrie der Wahrscheinlichkeitsrechnung

Mehr

Probestudium Übungsblatt 1 -

Probestudium Übungsblatt 1 - Probestudium 018 - Übungsblatt 1 - Prof Dr Werner Bley Dominik Bullach Martin Hofer Pascal Stucky Aufgabe 1 (mittel) Sei m Z Wir definieren für zwei ganze Zahlen a und b a b mod m : m ( a b) Seien a, b,

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 12.02.2010 Fakultät für Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

4 Diskrete Wahrscheinlichkeitsverteilungen

4 Diskrete Wahrscheinlichkeitsverteilungen 4 Diskrete Wahrscheinlichkeitsverteilungen 4.1 Wahrscheinlichkeitsräume, Ereignisse und Unabhängigkeit Definition: Ein diskreter Wahrscheinlichkeitsraum ist ein Paar (Ω, Pr), wobei Ω eine endliche oder

Mehr

8 Martingale und Stoppzeiten

8 Martingale und Stoppzeiten 8 Martingale und Stozeiten Definition Sei I eine beliebige Indexmenge und (Ω, A, P ) ein Wahrscheinlichkeitsraum. a) Eine Familie von Zufallsvariablen (X t ) t I auf (Ω, A, P ) heißt stochastischer Prozess

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 15.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Klausur Grundlagen der Algebra und Computeralgebra

Klausur Grundlagen der Algebra und Computeralgebra Prof. Werner M. Seiler, Ph.D. FB 10 Mathematik und Naturwissenschaften Institut für Mathematik Klausur Grundlagen der Algebra und Computeralgebra 21.02.2012 Name: Vorname: Geburtsdatum: Matrikelnummer:

Mehr

Scheinklausur zur Vorlesung Stochastik II

Scheinklausur zur Vorlesung Stochastik II Institut für Mathematische Stochastik WS 2007/2008 Universität Karlsruhe 25. 02. 2008 Dr. B. Klar Scheinklausur zur Vorlesung Stochastik II Muster-Lösung Dauer: 90 Minuten Name: Vorname: Matrikelnummer:

Mehr

Motivation. Benötigtes Schulwissen. Übungsaufgaben. Wirtschaftswissenschaftliches Zentrum 10 Universität Basel. Statistik

Motivation. Benötigtes Schulwissen. Übungsaufgaben. Wirtschaftswissenschaftliches Zentrum 10 Universität Basel. Statistik Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Statistik Dr. Thomas Zehrt Ausblick Motivation Wir werfen einen Würfel 000-mal und wir möchten die Wahrscheinlichkeit P bestimmen, dass zwischen

Mehr

Klausur zu,,einführung in die Wahrscheinlichkeitstheorie

Klausur zu,,einführung in die Wahrscheinlichkeitstheorie Institut für angewandte Mathematik Wintersemester 2009/10 Andreas Eberle, Matthias Erbar, Bernhard Hader Klausur zu,,einführung in die Wahrscheinlichkeitstheorie Bitte diese Felder in Druckschrift ausfüllen

Mehr

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s

Zufallsgröße X : Ω R X : ω Anzahl der geworfenen K`s X. Zufallsgrößen ================================================================= 10.1 Zufallsgrößen und ihr Erwartungswert --------------------------------------------------------------------------------------------------------------

Mehr

3. Kombinatorik und Wahrscheinlichkeit

3. Kombinatorik und Wahrscheinlichkeit 3. Kombinatorik und Wahrscheinlichkeit Es geht hier um die Bestimmung der Kardinalität endlicher Mengen. Erinnerung: Seien A, B, A 1,..., A n endliche Mengen. Dann gilt A = B ϕ: A B bijektiv Summenregel:

Mehr

Bearbeiten Sie vier der fünf Aufgaben A1-A5 und zwei der drei Aufgaben B1-B3!

Bearbeiten Sie vier der fünf Aufgaben A1-A5 und zwei der drei Aufgaben B1-B3! Master-Kursprüfung Kapitalmarkttheorie 2 Schwerpunktmodul Finanzmärkte 6 Kreditpunkte Bearbeitungsdauer: 90 Minuten WS 2015/16 29.2.2016 Prof. Dr. Lutz Arnold Bitte gut leserlich ausfüllen: Name: Vorname:

Mehr

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 11. d(x, y) := n 0. 2 n d n (x n, y n ),

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 11. d(x, y) := n 0. 2 n d n (x n, y n ), D-MATH Topologie FS 15 Theo Bühler Musterlösung 11 1. a) Da (C n, d n ) kompakt ist, nimmt die stetige Funktion d n : C n C n [0, ), (x, y) d(x, y) ihr Maximum diam C n an. Ersetzen wir d n durch d n =

Mehr

Klausur,,Einführung in die W theorie

Klausur,,Einführung in die W theorie Institut für angewandte Mathematik Wintersemester 017/18 Andreas Eberle, Maximilian Fels Klausur,,Einführung in die W theorie Bitte diese Felder in Druckschrift ausfüllen Name: Matrikelnr.: Vorname: Studiengang:

Mehr

Stochastik im SoSe 2018 Hausaufgabenblatt 1

Stochastik im SoSe 2018 Hausaufgabenblatt 1 Stochastik im SoSe 208 Hausaufgabenblatt K. Panagiotou/ L. Ramzews / S. Reisser Lösungen zu den Aufgaben. Aufgabe Seien n N 0, x, y, z R. Zeigen Sie, dass (x + y + z) n i+j+kn i,j,k N 0 ( ) n x i y j z

Mehr

Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK. für Studierende der INFORMATIK

Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK. für Studierende der INFORMATIK Institut für Stochastik Prof. Dr. Daniel Hug Name: Vorname: Matr.-Nr.: Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK Datum: 08. Februar 0 Dauer:

Mehr

Stochastik Aufgaben zum Üben: Teil 2

Stochastik Aufgaben zum Üben: Teil 2 Prof. Dr. Z. Kabluchko Wintersemester 205/206 Hendrik Flasche Januar 206 Aufgabe Stochastik Aufgaben zum Üben: Teil 2 Es sei X eine Zufallsvariable mit Dichte f X (y) = cy 5 I y>. Bestimmen Sie c, P[2

Mehr

Dynamische Risikomaße

Dynamische Risikomaße Dynamische Risikomaße in der Unternehmenssteuerung Jochen Wolf FH Koblenz Ulm, 24.01.2012 Wolf FH Koblenz Dynamische Risikomaße Ulm, 24.01.2012 1 / 31 statische Risikomaße Agenda 1 statische Risikomaße

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Wintersemester 2014/15 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax

Mehr

Analysis III, WS 2011/2012 Montag $Id: masse.tex,v /10/31 15:48:07 hk Exp $

Analysis III, WS 2011/2012 Montag $Id: masse.tex,v /10/31 15:48:07 hk Exp $ $Id: masse.tex,v 1.8 2011/10/31 15:48:07 hk Exp $ 2 Maßräume 2.2 Meßbare Abbildungen Der nächste Grundbegriff sind die meßbaren Abbildungen. Erinnern Sie sich daran das wir eigentlich einen Integralbegriff

Mehr

Vorlesung 7a. Unabhängigkeit

Vorlesung 7a. Unabhängigkeit Vorlesung 7a Unabhängigkeit 1 Wir erinnern an die Definition der Unabhängigkeit von zwei Zufallsvariablen (Buch S. 61): Zufallsvariable X 1,X 2 heißen (stochastisch) unabhängig, falls für alle Ereignisse

Mehr

7 Poisson-Punktprozesse

7 Poisson-Punktprozesse Poisson-Punktprozesse sind natürliche Modelle für zufällige Konfigurationen von Punkten im Raum Wie der Name sagt, spielt die Poisson-Verteilung eine entscheidende Rolle Wir werden also mit der Definition

Mehr

Aufgabe 1 Wir werfen einen fairen Würfel einmal und ordnen den Augenzahlen Zufallsgrössen X und Y wie folgt zu:

Aufgabe 1 Wir werfen einen fairen Würfel einmal und ordnen den Augenzahlen Zufallsgrössen X und Y wie folgt zu: Mathematik II für Naturwissenschaften Dr. Christine Zehrt 21.03.19 Übung 4 (für Pharma/Geo/Bio/Stat) Uni Basel Besprechung der Lösungen: 26./27. März 2019 in den Übungsstunden Die Geo-Übungsstunde von

Mehr

Weihnachtszettel zur Vorlesung. Stochastik I. Wintersemester 2011/2012

Weihnachtszettel zur Vorlesung. Stochastik I. Wintersemester 2011/2012 Weihnachtszettel zur Vorlesung Stochastik I Wintersemester 0/0 Aufgabe. Der Weihnachtsmann hat vergessen die Weihnachtsgeschenke mit Namen zu beschriften und muss sie daher zufällig verteilen. Dabei enthält

Mehr

σ-algebren, Definition des Maßraums

σ-algebren, Definition des Maßraums σ-algebren, Definition des Maßraums Ziel der Maßtheorie ist es, Teilmengen einer Grundmenge X auf sinnvolle Weise einen Inhalt zuzuordnen. Diese Zuordnung soll so beschaffen sein, dass dabei die intuitiven

Mehr

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 2

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 2 TUM, Zentrum Mathematik Lehrstuhl für Mathematische Physik WS 2013/14 Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weidner Tutoraufgaben: Einführung in die Wahrscheinlichkeitstheorie svorschläge

Mehr

Denition 57 Eine geometrisch verteilte Zufallsvariable X mit Parameter (Erfolgswahrscheinlichkeit) p 2 (0; 1] und q := 1 p hat die Dichte

Denition 57 Eine geometrisch verteilte Zufallsvariable X mit Parameter (Erfolgswahrscheinlichkeit) p 2 (0; 1] und q := 1 p hat die Dichte 5.3 Geometrische Verteilung Man betrachte ein Experiment, das so lange wiederholt wird, bis Erfolg eintritt. Gelingt ein einzelner Versuch mit Wahrscheinlichkeit p, so ist die Anzahl der Versuche bis zum

Mehr

Brownsche Bewegung: Eine Einführung

Brownsche Bewegung: Eine Einführung Brownsche Bewegung: Eine Einführung Batu Güneysu Institut für Mathematik Humboldt-Universität zu Berlin Greifswald, 18.04.2018 Batu Güneysu Brownsche Bewegung: Eine Einführung 1 / 14 Wir fixieren m N und

Mehr

KAPITEL 5. Erwartungswert

KAPITEL 5. Erwartungswert KAPITEL 5 Erwartungswert Wir betrachten einen diskreten Wahrscheinlichkeitsraum (Ω, P) und eine Zufallsvariable X : Ω R auf diesem Wahrscheinlichkeitsraum. Die Grundmenge Ω hat also nur endlich oder abzählbar

Mehr

Klausur zur Vorlesung Stochastik II

Klausur zur Vorlesung Stochastik II Institut für Mathematische Stochastik WS 003/004 Universität Karlsruhe 05. 04. 004 Prof. Dr. G. Last Klausur zur Vorlesung Stochastik II Dauer: 90 Minuten Name: Vorname: Matrikelnummer: Diese Klausur hat

Mehr

Vierte Schularbeit Mathematik Klasse 7A G am xx

Vierte Schularbeit Mathematik Klasse 7A G am xx Vierte Schularbeit Mathematik Klasse 7A G am xx.05.2016 SCHÜLERNAME: Punkte im ersten Teil: Punkte im zweiten Teil: Davon Kompensationspunkte: Note: Notenschlüssel: Falls die Summe der erzielten Kompensationspunkte

Mehr

Lösungen zur Klausur zur Vorlesung. Mathematik für Informatiker I. (Dr. Frank Hoffmann) Wintersemester 2011/ Februar 2012

Lösungen zur Klausur zur Vorlesung. Mathematik für Informatiker I. (Dr. Frank Hoffmann) Wintersemester 2011/ Februar 2012 Lösungen zur Klausur zur Vorlesung Mathematik für Informatiker I (Dr. Frank Hoffmann) Wintersemester 2011/2012 22. Februar 2012 Aufgabe 1 Logisches und Grundsätzliches /4+4+2 (a) Testen Sie mit dem Resolutionskalkül,

Mehr

Mathematik III. Produkt-Präringe

Mathematik III. Produkt-Präringe Prof. Dr. H. Brenner Osnabrück WS 2010/2011 Mathematik III Vorlesung 66 Es ist unser Ziel zu zeigen, dass auf der Produktmenge von Maßräumen unter recht allgemeinen Voraussetzungen ein Maß definiert ist,

Mehr

1.5 Erwartungswert und Varianz

1.5 Erwartungswert und Varianz Ziel: Charakterisiere Verteilungen von Zufallsvariablen durch Kenngrößen (in Analogie zu Lage- und Streuungsmaßen der deskriptiven Statistik). Insbesondere: a) durchschnittlicher Wert Erwartungswert, z.b.

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Lineare Algebra 1 Prof. Dr. F. Roesler

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Lineare Algebra 1 Prof. Dr. F. Roesler ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 Unterschrift der Kandidatin/des Kandidaten 3 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr