Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban"

Transkript

1 Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Lösungsvorschlag studienbegleitende Klausur Finanzmathematik I Aufgabe (7 Punkte) Vorgelegt sei ein Wahrscheinlichkeitsraum (Ω, F, P) und darauf ein zweiperiodiger Finanzmarkt bestehend aus einem Bond B mit Startwert B 0 = und einer Verzinsung von r = 0% pro Periode sowie einer Aktie S mit folgender Kursentwicklung: S 0 S (ω) S (ω) a) Ist dieser Markt arbitragefrei? Ist er vollständig? Begründen Sie Ihre Antwort. b) Bewerten Sie die Europäische Option H, H(ω) := S max (ω) S min (ω), S max (ω) := max S 0, S (ω), S (ω)}, S min (ω) := min S 0, S (ω), S (ω)}, ω Ω. a) Modelliert man Ω = up, down}, ω = (ω, ω ) und schreibt den Aktienkurs als S t (ω) = S t (ω)y t (ω), t =,, ω Ω, mit S 0 (ω) S 0 ist die Arbitragefreiheit des Marktes äquivalent zu Y t (ω) ωt=down < + r < Y t (ω) ωt=up t, }, ω Ω. Das ist hier erfüllt, denn + r = 0 und Y (ω) ω =down = 6 0 < 0 < 0 = Y (ω) ω =up, Y (up,... ) ω =down = < < 0 60 = Y (up,... ) ω =up, Y (down,... ) ω =down = 0 60 < < = Y (down,... ) ω =up. Die Vollständigkeit folgt aus der Eindeutigkeit des äquivalenten Martingalmaßes Q. Diese stellen wir im Folgenden fest, indem wir zeigen, dass es nur eine eindeutige Lösung für Q gibt. Berechne für t = 0, die risikoneutralen Ein-Schritt-Wahrscheinlichkeiten q t (ω) = q t (ω,..., ω t ) := Q (ω t+ = up ω,..., ω t ), ω Ω.

2 Es gilt q t (ω) = woraus man direkt die Werte + r Y t+ (ω) ωt=down, t = 0,, ω Ω, Y t+ (ω) ωt=up Y t+ (ω) ωt=down q 0 = q (up) = q (down) = = = = abliest. Q ist Produktmaß und ergibt sich zu b) Werte H pfadweise aus: Q (up, up) = q 0 q (up) =, Q (up, down) = q 0 ( q (up)) = 3 4, Q (down, up) = ( q 0 ) q (down) = 70, Q (down, down) = ( q 0 ) ( q (down)) = 05. H (up, up) = 4 0 = 4, H (up, down) = 0 =, H (down, up) = 0 6 = 4, H (down, down) = 0 0 = 0. Der Markt ist vollständig, also gilt mit der risikoneutralen Bewertungsformel π(h) = E Q [ H ] = ( ) 0 ( ) = ,80. Aufgabe (7 Punkte) Gegeben sei folgender einperiodiger Finanzmarkt mit einem risiko- und zinslosen Bond B und zwei risikobehafteten Anlagen S und S. Die erste Anlage starte mit Wert S0 = x > 0, die zweite mit = 6. Nach einer Periode seien drei Szenarien möglich: S 0 ω Ω S (ω) S (ω) ω 4 0 ω 6 ω 3 8 a) Für welche Werte x ist der Markt arbitragefrei? Bestimmen Sie alle äquivalenten Martingalmaße. b) Sei x = 8. Ist der Markt vollständig?

3 a) Der Markt ist genau dann arbitragefrei, wenn ein äquivalentes Martingalmaß Q Q existiert. Hinreichend und notwendig erfüllt ein solches q i (0, ) für q i := Q(ω i }), i =,, 3, die Normiertheit q + q + q 3 = und die Martingaleigenschaft ] Wegen B 0 = B muss hier also E Q [ S d B = Sd 0 B 0, d =,. S d (ω )q + S d (ω )q + S d (ω 3 )q 3 = S d 0, d =,, gelten. Zusammen mit der Normiertheit löst man das lineare Gleichungssystem z.b. mit Gauß: 4 x x x x x x + 5 Wegen der bereits erfüllten Normiertheit genügt es auf q i > 0, i =,, 3, zu prüfen: q = x > 0 x >, q = 8 x + 5 q 3 = 4 x > 0 x < 0, > 0 x >. Damit ist der Markt arbitragefrei genau dann, wenn x (, 0), und die äquivalenten Martingalmaße sind charakterisiert durch } Q = (q, q, q 3 ) T q = x, q = 5 8 x, q 3 = 4 x, x (, 0). b) Für x = 8 ist } Q = (q, q, q 3 ) T q =, q = 4, q 3 =, 4 insbesondere Q =, und daher ist der Markt vollständig. Aufgabe 3 (7 Punkte) Betrachten Sie ein CRR-Modell mit zwei Perioden, Verzinsung r =, 5%, Startpreis S 0 = und Kursfaktoren d = 4 5 sowie u = 5 4. Es werde die Amerikanische Put-Option H t = (K S t ) +, t 0,, }, mit Strike K = 3 gehandelt. 3

4 a) Bestimmen Sie zur Zeit t = 0 einen fairen Preis für diese Option. b) Geben Sie eine optimale Ausübungsstrategie an. a) Der Bond folgt dem deterministischen Verlauf und der Put hat das Auszahlungsprofil B 0 =, B = 4 40, B = ( ) 4 40 H 0 = (K S 0 ) + = 3 =, H (up) = (K S (up)) + = = 7 4, H (down) = (K S (down)) + = = 5, H (up, up) = (K S (up, up)) + = = 3 6, H (up, down) = (K S (up, down)) + = 3 =, H (down, up) = H (up, down), H (down, down) = (K S (down, down)) + = = Die risikoneutrale Einschritt-Wahrscheinlichkeit ist hier q = + r d u d = = q. Das eindeutige äquivalente Martingalmaß Q erhält man als Produktmaß Q(ω}) = 4, ω Ω. Bestimme die Snell-Einhüllende Z = (Z t ) t=0,,. Zum Periodenende gilt Für alle anderen Zeitpunkt erhält man Z (up, up) = H (up, up) = 3 ( ) 40 B 6, 4 Z (up, down) = H ( ) (up, down) 40 =, B 4 Z (down, up) = Z (up, down), Z (down, down) = H (down, down) B = 59 5 Z t = max } Ht, E Q [Z t+ F t ], B t ( )

5 also mit den Ergebnissen von oben 7 Z (up) = max 4 40 ( ) ( ) } 4, } 870 = max 4, = 870 4, Z (down) = max 5 40 ( 4, + 59 ) ( ) } } = max 5 4, = , Z 0 = max, = max, ( } =. Nach Vorlesung ist π A (H) = Z 0 = der faire Preis der Option zur Zeit t = 0. b) Die optimale Stoppzeit ist τ = inf Z t = H } t. t 0,...,T } B t In Teil a) sind die jeweiligen Maximisatoren rot markiert. Man liest τ 0 ab, d.h. optimalerweise übt man die Option sofort aus. )} Aufgabe 4 (6 Punkte) In einem Markt seien genau drei risikobehaftete Anlagen handelbar. Ihre zufälligen Einperioden- Erträge R (T ), R (T ) und R 3 (T ) seien paarweise unkorreliert mit ( ) ( ) ( ) Var R (T ) = Var R (T ) = Var R3 (T ) = [( 0, mt := E R (T ), R (T ), R 3 (T ))] = 0 (,, 3). a) Angenommen, ein Investor darf beliebig Kredit aufnehmen und Leerverkäufe tätigen. Welchen Anteil seines Vermögens investiert er in die verschiedenen Anlagen, um mit minimaler Varianz einen vorgegebenen erwarteten Portfolio-Return m p R zu erreichen? b) Bestimmen Sie die erwartete Rendite und die Varianz des Minimum-Varianz-Portfolios (mvp). Aus den Angaben liest man die Covarianzmatrix Σ = 0 0 0, Σ = 0 0 0, der Einperioden-Erträge ab. Wir möchten das Markowitz-Problem lösen. a) Aus der Vorlesung ist bekannt, wie man zu vorgegebenem erwarteten Ertrag m p das zugehörige 5

6 varianzminimale Portfolio π p bestimmt. Es gilt mit den dortigen Bezeichnungen A := m T Σ = ( ) = 6, B := m T Σ m = ( ) = , C := T Σ = ( ) = 30, D = BC A = = 6, π p = Cm p A D Σ m + B Am p Σ = D 3 4 5m p. 5m p Um m p mit minimaler Varianz zu erreichen, sollte der Investor also stets 3 seines Vermögens in die erste Anlage investieren und abhängig von m p die Anteile 4 3 5m p bzw. 5m p 3 in die zweite, respektive die dritte Anlage. Ohne weitere Einschränkungen an m p liegen die letzten beiden allgemein in R, was ausdrücklich zugelassen wurde. b) Das Minimum-Varianz-Portfolio mvp erfüllt nach Vorlesung und mit obigen Bezeichnungen m mvp = A C = 5, σ mvp = C = 30. Aufgabe 5 (7 Punkte) Vorgelegt sei das Ein-Perioden CRR-Modell mit d = 4 5, u = 5 4 und Zinsrate i > 0. Für gegebenes Startvermögen x > 0 und eine strikt wachsende und strikt konkave Nutzenfunktion U : (0, ) R betrachte das Portfolio-Problem E [U (( + i)(x + ar))] max, (P ) a a R ( + i)(x + ar) > 0 P-f.s.} a) Für welche Zinsraten i besitzt (P ) eine Lösung? b) Sei i so gewählt, dass (P ) lösbar ist, und U(x) = γ xγ mit γ (0, ) der Power-Nutzen. Nehmen Sie weiter an, dass P = Q gilt, das Optimierungsproblem also bereits unter dem risikoneutralen Maß gestellt ist. Bestimmen Sie mit der Martingalmethode das optimale Endvermögen X und die zugehörige optimale Portfoliostrategie. a) Nach Vorlesung ist dieses Portfolio-Problem (P ) genau dann lösbar, wenn der Markt arbitragefrei ist. Das CRR-Modell ist arbitragefrei genau dann, wenn d = 4 5 < + i < 5 4 = u, also ist (P ) genau dann lösbar, wenn der Einperiodenzins i im Intervall (0, 4 ) liegt, denn nach Modellannahme ist i > 0 gefordert. b) Um das optimale Endvermögen mit Hilfe der Martingalmethode zu bestimmen, betrachte das statische Problem [ ] } (S) E [U(X)] max, X X : Ω R + X ist F T -messbar, E Q = x. XBT 6

7 X = ( + i)(x + ar) bezeichnet hier das zufällige Endvermögen bei Investition a. Da wir bereits risikoneutral sind, müssen wir das Maß nicht mehr wechseln, es gilt Z = dq dp. Sei I := (U ) = y y γ die umgekehrte erste Ableitung der Nutzenfunktion. Dann ist nach Vorlesung ( λ X ) ( ) Z λ = I I = ( λ ) γ das optimale Endvermögen. λ muss so gewählt werden, dass die Erreichbarkeitsnebenbedingung erfüllt ist, d.h. so dass [ ] [ ( Z x = E X = E λ ) ] ( ) γ = (λ ) γ + γ richtig ist. Das ist für λ = x γ B γ T X (ω) erfüllt, das zugehörige Endvermögen ist in diesem Fall ( x γ B γ T ) γ = xbt und dieses ist eindeutig. Weil ( St B t ) t=0, nach Voraussetzung bereits unter P ein Martingal ist, erwartet man bei Investition in die Aktie den gleichen Return wie bei Investition in den Bond. Konsequenterweise haben wir ein deterministisches Endvermögen ausgerechnet, das man erreicht, indem man schlicht alles in den Bond und nichts in die Aktie investiert: Mit a := 0 erhält man gerade das Endvermögen ( + i)(x + ar) = ( + i)x = x = X. Aufgabe 6 (6 Punkte) Es seien µ und µ Maße auf R mit endlichem Erwartungswert. a) Zeigen Sie: Sind µ und µ Exponentialverteilungen mit Parametern λ, λ > 0, gilt µ uni µ λ λ. Hinweis: Eine zum Parameter λ > 0 exponentialverteilte Zufallsvariable X besitzt die Dichte f X (x) = λe λx x 0. b) Es sei µ i die Verteilung einer Zufallsvariable X i, i =,. Y sei eine weitere, von X und X unabhängige Zufallsvariable. Mit ν i bezeichne die Verteilung von X i + Y, i =,. Zeigen Sie µ uni µ = ν uni ν. a) Sei X Exp(λ ), X Exp(λ ). = : Wegen µ uni µ gilt also λ λ. λ = E [X ] = = : Wegen λ λ ist für alle x R xµ (dx) xµ (dx) = E [X ] = λ, F X (x) = e λ x e λ x = F X (x). 7

8 Verteilungsfunktionen sind nichtnegativ. Für beliebige c R gilt folglich also µ uni µ. c F X (x)dx c F X (x)dx, b) Sei u : R R, x u(x), eine beliebige Nutzenfunktion. Für feste y R ist dann auch die Verschiebung x u(x + y) eine Nutzenfunktion. Aus µ uni µ können wir also ( ) E [u(x + y)] E [u(x + y)], y R, folgern. Damit gilt dann auch E [u(x + Y )] = ( ) E [u(x + y)] P Y (dy) E [u(x + y)] P Y (dy) und das bedeutet nach Definition ν uni ν. = E [u(x + Y )] 8

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Institut für Stochastik Prof. r. N. Bäuerle ipl.-math. S. Urban Lösungsvorschlag 3. Übungsblatt zur Vorlesung Finanzmathematik I Aufgabe as endnutzenoptimale Aktienportfolio bei Exp-Nutzen Wir betrachten

Mehr

Kapitel 6 Martingale

Kapitel 6 Martingale Kapitel 6 Martingale Martingale spielen eine große Rolle in der Finanzmathematik, und sind zudem ein wichtiges Hilfsmittel für die statistische Inferenz stochastischer Prozesse, insbesondere auch für Zählprozesse

Mehr

2 Zufallsvariable, Verteilungen, Erwartungswert

2 Zufallsvariable, Verteilungen, Erwartungswert 2 Zufallsvariable, Verteilungen, Erwartungswert Bisher: Zufallsexperimente beschrieben durch W-Räume (Ω, A, P) Häufig interessiert nur eine zufällige Größe X = X(ω), die vom Ergebnis ω des Zufallsexperiments

Mehr

Finanzmathematik - Wintersemester 2007/08. http://code.google.com/p/mitgetexed/

Finanzmathematik - Wintersemester 2007/08. http://code.google.com/p/mitgetexed/ Finanzmathematik - Wintersemester 2007/08 http://code.google.com/p/mitgetexed/ Stand: 4. November 2007 Inhaltsverzeichnis 1 Motivation und erste Begriffe 2 2 Endliche Finanzmärkte 4 3 Das Cox-Ross-Rubinstein-Modell

Mehr

Bewertung von amerikanischen Optionen im CRR Modell. Seminararbeit von Nadja Amedsin

Bewertung von amerikanischen Optionen im CRR Modell. Seminararbeit von Nadja Amedsin Bewertung von amerikanischen Optionen im CRR Modell Seminararbeit von Nadja Amedsin 22.05.10 i Inhaltsverzeichnis 1 Einführung 1 2 Amerikanischer Claim 1 2.1 Beispiele................................ 2

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Lösungsvorschlag 8. Übungsblatt zur Vorlesung Finanzmathematik I Aufgabe Hedging Amerikanischer Optionen Wir sind in einem arbitragefreien

Mehr

Vorlesung im SoSe 2010 Stochastische Analysis & Zeitstetige Finanzmathematik

Vorlesung im SoSe 2010 Stochastische Analysis & Zeitstetige Finanzmathematik Univ. Leipzig Mathematisches Institut Vertretung Professur Stochastische Prozesse Max v. Renesse email: mrenesse@math.tu-berlin.de Vorlesung im SoSe 2010 Stochastische Analysis & Zeitstetige Finanzmathematik

Mehr

Lösungen zur 1. Klausur Diskrete Stochastische Finanzmathematik ( , SoSe 2014) am , Zeit: 10-12, Raum: W

Lösungen zur 1. Klausur Diskrete Stochastische Finanzmathematik ( , SoSe 2014) am , Zeit: 10-12, Raum: W Prof. Dr. Dietmar Pfeifer Institut für Mathematik Lösungen zur. Klausur Diskrete Stochastische Finanzmathematik (5..862, SoSe 24 am 5.8.24, Zeit: - 2, Raum: W--6 Name:... Matr.-Nr.:... Geb.-Datum:... Studiengang:...

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung

4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung 4 Unabhängige Zufallsvariablen. Gemeinsame Verteilung Häufig werden mehrere Zufallsvariablen gleichzeitig betrachtet, z.b. Beispiel 4.1. Ein Computersystem bestehe aus n Teilsystemen. X i sei der Ausfallzeitpunkt

Mehr

Varianz und Kovarianz

Varianz und Kovarianz KAPITEL 9 Varianz und Kovarianz 9.1. Varianz Definition 9.1.1. Sei (Ω, F, P) ein Wahrscheinlichkeitsraum und X : Ω eine Zufallsvariable. Wir benutzen die Notation (1) X L 1, falls E[ X ]

Mehr

Beweis. Bauer (4. Auflage, 1991), S , Hoffmann-Jørgensen, Vol. I, S. 457.

Beweis. Bauer (4. Auflage, 1991), S , Hoffmann-Jørgensen, Vol. I, S. 457. Exkurs A: Bedingte Erwartungswerte, bedingte Verteilungen (Ω, A, P ) sei W-Raum, X : Ω IR P-quasiintegrierbar, F A Unter - σ- Algebra. E(X F) = E P (X F) (Version des) bedingter Erwartungswert von X unterf

Mehr

Lösung des Hedging-Problems mittels Stochastischer Dynamischer Optimierung

Lösung des Hedging-Problems mittels Stochastischer Dynamischer Optimierung Lösung des Hedging-Problems mittels Stochastischer Dynamischer Optimierung Ausarbeitung zum Vortrag im Seminar Stochastische Dynamische Optimierung vom 18.01.2008 Datum : 18.01.2008 Verfasser: Martin Schymalla

Mehr

2 Das Marktmodell C1(WS08/09) [2] 1

2 Das Marktmodell C1(WS08/09) [2] 1 2 Das Marktmodell 2.1 Ein allgemeines Finanzmarktmodell 2.2 Aufsteigende Systeme von σ-algebren und adaptierte Prozesse 2.3 Elementare Handelsstrategien im Finanzmarktmodell 2.4 Die σ-algebra der previsiblen

Mehr

Scheinklausur Stochastik 1 für Studierende des Lehramts und der Diplom-Pädagogik

Scheinklausur Stochastik 1 für Studierende des Lehramts und der Diplom-Pädagogik Universität Karlsruhe (TH) Institut für Stochastik Dr. Bernhard Klar Dipl.-Math. oec. Volker Baumstark Name Vorname Matr.-Nr.: Scheinklausur Stochastik für Studierende des Lehramts und der Diplom-Pädagogik

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

TU Darmstadt FB Mathematik, AG 9 WS 2004/2005 Jakob Creutzig (1 + ρ)

TU Darmstadt FB Mathematik, AG 9 WS 2004/2005 Jakob Creutzig (1 + ρ) TU Darmstadt FB Mathematik, AG 9 WS 2004/2005 Jakob Creutzig 9..04 Lösungsvorschläge zum 3. Aufgabenblatt der Vorlesung,,Einführung in die Finanzmathematik Gruppenübungen Aufgabe : Es sei Ω = {, +} n,

Mehr

Simulation von Zufallsvariablen und Punktprozessen

Simulation von Zufallsvariablen und Punktprozessen Simulation von Zufallsvariablen und Punktprozessen 09.11.2009 Inhaltsverzeichnis 1 Einleitung 2 Pseudozufallszahlen 3 Punktprozesse Zufallszahlen Definition (Duden): Eine Zufallszahl ist eine Zahl, die

Mehr

Einleitung. Das Ein-Perioden-Modell ist das einfachste. von derivaten Finanzinstrumenten (hier: Optionen) zu erklären.

Einleitung. Das Ein-Perioden-Modell ist das einfachste. von derivaten Finanzinstrumenten (hier: Optionen) zu erklären. Einleitung Das Ein-Perioden-Modell ist das einfachste Modell, um die Idee der Preisgebung von derivaten Finanzinstrumenten (hier: Optionen) zu erklären. naive Idee der Optionspreisbestimmung: Erwartungswertprinzip

Mehr

Was kosten Garantien?

Was kosten Garantien? Alternative Zinsgarantien in der Lebensversicherung, Köln, 1. Juni 2012 Was kosten Garantien? Prof. Dr. Ralf Korn Technische Universität Kaiserslautern, Fachbereich Mathematik EI-QFM und Fraunhofer ITWM

Mehr

Lösungen ausgewählter Übungsaufgaben zum Buch. Elementare Stochastik (Springer Spektrum, 2012) Teil 3: Aufgaben zu den Kapiteln 5 und 6

Lösungen ausgewählter Übungsaufgaben zum Buch. Elementare Stochastik (Springer Spektrum, 2012) Teil 3: Aufgaben zu den Kapiteln 5 und 6 1 Lösungen ausgewählter Übungsaufgaben zum Buch Elementare Stochastik (Springer Spektrum, 2012) Teil 3: Aufgaben zu den Kapiteln 5 und 6 Aufgaben zu Kapitel 5 Zu Abschnitt 5.1 Ü5.1.1 Finden Sie eine maximum-likelihood-schätzung

Mehr

Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik

Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik Francesca Biagini Mathematisches Institut, LMU biagini@math.lmu.de Münchner Wissenschaftstage im Jahr der Mathematik 21. Oktober 28

Mehr

Klausur Stochastik und Statistik 31. Juli 2012

Klausur Stochastik und Statistik 31. Juli 2012 Klausur Stochastik und Statistik 31. Juli 2012 Prof. Dr. Matthias Schmid Institut für Statistik, LMU München Wichtig: ˆ Überprüfen Sie, ob Ihr Klausurexemplar vollständig ist. Die Klausur besteht aus fünf

Mehr

K8 Stetige Zufallsvariablen Theorie und Praxis

K8 Stetige Zufallsvariablen Theorie und Praxis K8 Stetige Zufallsvariablen Theorie und Praxis 8.1 Theoretischer Hintergrund Wir haben (nicht abzählbare) Wahrscheinlichkeitsräume Meßbare Funktionen Zufallsvariablen Verteilungsfunktionen Dichten in R

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

Spezielle stetige Verteilungen

Spezielle stetige Verteilungen Spezielle stetige Verteilungen schon bekannt: Die Exponentialverteilung mit Parameter k R, k > 0 hat die Dichte f (x) = ke kx für x 0 und die Verteilungsfunktion F (x) = 1 e kx für x 0. Eigenschaften Für

Mehr

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

Diskrete Wahrscheinlichkeitstheorie - Probeklausur

Diskrete Wahrscheinlichkeitstheorie - Probeklausur Diskrete Wahrscheinlichkeitstheorie - robeklausur Sommersemester 2007 - Lösung Name: Vorname: Matrikelnr.: Studiengang: Hinweise Sie sollten insgesamt Blätter erhalten haben. Tragen Sie bitte Ihre Antworten

Mehr

Ü b u n g s b l a t t 13

Ü b u n g s b l a t t 13 Einführung in die Stochastik Sommersemester 06 Dr. Walter Oevel 5. 6. 006 Ü b u n g s b l a t t 3 Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten verwendet werden. Lösungen von -Aufgaben

Mehr

Dynamische Portfolio-Optimierung mit partieller Information und beschränktem Ausfallrisiko

Dynamische Portfolio-Optimierung mit partieller Information und beschränktem Ausfallrisiko 1 / 36 Dynamische Portfolio-Optimierung mit partieller Information und beschränktem Ausfallrisiko Ralf Wunderlich Brandenburgische Technische Universität Cottbus gemeinsam mit Jörn Sass (TU Kaiserslautern)

Mehr

8. Stetige Zufallsvariablen

8. Stetige Zufallsvariablen 8. Stetige Zufallsvariablen Idee: Eine Zufallsvariable X ist stetig, falls ihr Träger eine überabzählbare Teilmenge der reellen Zahlen R ist. Beispiel: Glücksrad mit stetigem Wertebereich [0, 2π] Von Interesse

Mehr

Gesetze der großen Zahlen

Gesetze der großen Zahlen Kapitel 0 Gesetze der großen Zahlen 0. Einführung Im ersten Kapitel wurde auf eine Erfahrungstatsache im Umgang mit zufälligen Erscheinungen aufmerksam gemacht, die man gewöhnlich als empirisches Gesetz

Mehr

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK)

Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK (STOCHASTIK) für Studierende des Maschinenbaus vom 7. Juli (Dauer: 8 Minuten) Übersicht über die

Mehr

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK

Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK Institut für Stochastik Dr. Steffen Winter Lösungen zur Klausur GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK vom 17. Juli 01 (Dauer: 90 Minuten) Übersicht über

Mehr

Klausur Stochastik und Statistik 18. September 2012

Klausur Stochastik und Statistik 18. September 2012 Klausur Stochastik und Statistik 18. September 2012 Prof. Dr. Matthias Schmid Institut für Statistik, LMU München Wichtig: ˆ Überprüfen Sie, ob Ihr Klausurexemplar vollständig ist. Die Klausur besteht

Mehr

Wir gehen wieder von einem allgemeinen (parametrischen) statistischen Modell aus, (

Wir gehen wieder von einem allgemeinen (parametrischen) statistischen Modell aus, ( Kapitel 4 Konfidenzbereiche Wir gehen wieder von einem allgemeinen parametrischen statistischen Modell aus, M, A, P ϑ ; sei eine Funktion des Parameters gegeben, die einen interessierenden Teil-Parameter

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne

Mehr

Stochastik für die Naturwissenschaften

Stochastik für die Naturwissenschaften Stochastik für die Naturwissenschaften Dr. C.J. Luchsinger 5. Erwartungswert E und Varianz V Literatur Kapitel 5 * Storrer: (37.9)-(37.12), (38.4), (40.6)-(40.9), (41.2) * Stahel: Kapitel 5 und 6 (nur

Mehr

Stochastische Analysis

Stochastische Analysis Stochastische Analysis SS1 von Steffen Dereich Fachbereich Mathematik und Informatik Philipps-Universität Marburg Version vom 6. Mai 21 Inhaltsverzeichnis 1 Motivation / Einführung 4 1.1 Motivation anhand

Mehr

Vorlesung 8a. Kovarianz und Korrelation

Vorlesung 8a. Kovarianz und Korrelation Vorlesung 8a Kovarianz und Korrelation 1 Wir erinnern an die Definition der Kovarianz Für reellwertige Zufallsvariable X, Y mit E[X 2 ] < und E[Y 2 ] < ist Cov[X, Y ] := E [ (X EX)(Y EY ) ] Insbesondere

Mehr

Risikoeinstellungen empirisch

Risikoeinstellungen empirisch Risikoeinstellungen empirisch Risk attitude and Investment Decisions across European Countries Are women more conservative investors than men? Oleg Badunenko, Nataliya Barasinska, Dorothea Schäfer http://www.diw.de/deutsch/soep/uebersicht_ueber_das_soep/27180.html#79569

Mehr

3.4 Asymptotische Evaluierung von Sch atzer Konsistenz Konsistenz Definition 3.4.1: konsistente Folge von Sch atzer

3.4 Asymptotische Evaluierung von Sch atzer Konsistenz Konsistenz Definition 3.4.1: konsistente Folge von Sch atzer 3.4 Asymptotische Evaluierung von Schätzer 3.4.1 Konsistenz Bis jetzt haben wir Kriterien basierend auf endlichen Stichproben betrachtet. Konsistenz ist ein asymptotisches Kriterium (n ) und bezieht sich

Mehr

2. Übung zur Vorlesung Statistik 2

2. Übung zur Vorlesung Statistik 2 2. Übung zur Vorlesung Statistik 2 Aufgabe 1 Welche der folgenden grafischen Darstellungen und Tabellen zeigen keine (Einzel-)Wahrscheinlichkeitsverteilung? Kreuzen Sie die richtigen Antworten an und begründen

Mehr

Bank I/II. (Deutsch) (Bank Management & Financial Intermediation) Hinweise:

Bank I/II. (Deutsch) (Bank Management & Financial Intermediation) Hinweise: Name: Matrikelnummer: Bank I/II (Deutsch) (Bank Management & Financial Intermediation) Hinweise: Schreiben Sie Ihren Namen und Ihre Matrikelnummer auf die Klausur und auf jeden Bogen. Als Hilfsmittel ist

Mehr

Amerikanischen Optionen

Amerikanischen Optionen Die Bewertung von Amerikanischen Optionen im Mehrperiodenmodell Universität-Gesamthochschule Paderborn Fachbereich 17 Seminar Finanzmathematik SS 2001 Referentin: Christiane Becker-Funke Dozent: Prof.

Mehr

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015

Serie 4. Analysis D-BAUG Dr. Cornelia Busch FS 2015 Analysis D-BAUG Dr. Cornelia Busch FS 05 Serie 4. Finden Sie die lokalen Extrema der Funktionen f : R R auf dem Einheitskreis S = {x, y R : x + y = } und geben Sie an, ob es sich um ein lokales Minimum

Mehr

Grundbegriffe der Wahrscheinlichkeitsrechnung

Grundbegriffe der Wahrscheinlichkeitsrechnung Algorithmen und Datenstrukturen 349 A Grundbegriffe der Wahrscheinlichkeitsrechnung Für Entwurf und Analyse randomisierter Algorithmen sind Hilfsmittel aus der Wahrscheinlichkeitsrechnung erforderlich.

Mehr

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt.

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Kapitel 3 Konvexität 3.1 Konvexe Mengen Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Definition 3.1 Konvexer Kegel. Eine Menge Ω R n heißt konvexer Kegel, wenn mit x

Mehr

Wahrscheinlichkeitsrechnung und Quantentheorie

Wahrscheinlichkeitsrechnung und Quantentheorie Physikalische Chemie II: Atombau und chemische Bindung Winter 2013/14 Wahrscheinlichkeitsrechnung und Quantentheorie Messergebnisse können in der Quantenmechanik ganz prinzipiell nur noch mit einer bestimmten

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

2 Die Dimension eines Vektorraums

2 Die Dimension eines Vektorraums 2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1

Mehr

7 KONVERGENTE FOLGEN 35. inf M = Infimum von M. bezeichnet haben. Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt.

7 KONVERGENTE FOLGEN 35. inf M = Infimum von M. bezeichnet haben. Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt. 7 KONVERGENTE FOLGEN 35 und die größe untere Schranke mit bezeichnet haben. inf M = Infimum von M Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt der Limes superior der Folge, und lim

Mehr

Allgemeine Wahrscheinlichkeitsräume

Allgemeine Wahrscheinlichkeitsräume Kapitel 3 Allgemeine Wahrscheinlichkeitsräume 3. Einleitung Wir hatten schon bemerkt, dass der Begriff des diskreten Wahrscheinlichkeitsraums nicht ausreicht, um das unendliche Wiederholen eines Zufallsexperiments

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

Die Kopplung von Markovketten und die Irrfahrt auf dem Torus

Die Kopplung von Markovketten und die Irrfahrt auf dem Torus Die Kopplung von Markovketten und die Irrfahrt auf dem Torus Verena Monschang Vortrag 20.05.20 Dieser Seminarvortrag thematisiert in erster Linie die Kopplung von Markovketten. Zu deren besseren Verständnis

Mehr

Stochastische Eingangsprüfung, 17.05.2008

Stochastische Eingangsprüfung, 17.05.2008 Stochastische Eingangsprüfung, 17.5.8 Wir gehen stets von einem Wahrscheinlichkeitsraum (Ω, A, P) aus. Aufgabe 1 ( Punkte) Sei X : Ω [, ) eine integrierbare Zufallsvariable mit XdP = 1. Sei Q : A R, Q(A)

Mehr

9 Die Normalverteilung

9 Die Normalverteilung 9 Die Normalverteilung Dichte: f(x) = 1 2πσ e (x µ)2 /2σ 2, µ R,σ > 0 9.1 Standard-Normalverteilung µ = 0, σ 2 = 1 ϕ(x) = 1 2π e x2 /2 Dichte Φ(x) = 1 x 2π e t2 /2 dt Verteilungsfunktion 331 W.Kössler,

Mehr

Copula Funktionen. Eine Einführung. Nils Friewald

Copula Funktionen. Eine Einführung. Nils Friewald Copula Funktionen Eine Einführung Nils Friewald Institut für Managementwissenschaften Abteilung Finanzwirtschaft und Controlling Favoritenstraße 9-11, 1040 Wien friewald@imw.tuwien.ac.at 13. Juni 2005

Mehr

Seminar Bewertungsmethoden in der Personenversicherungsmathematik

Seminar Bewertungsmethoden in der Personenversicherungsmathematik Seminar Bewertungsmethoden in der Personenversicherungsmathematik Bonus, das Binomial- und das Black-Scholes-Modell I Carolin Wilms 18.05.2010 Mathematisches Institut der Universität zu Köln Sommersemester

Mehr

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch 6 Stetige Verteilungen 1 Kapitel 6: Stetige Verteilungen A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch dargestellt. 0.2 6

Mehr

Vorlesung. Finanzmathematik I. Steffen Dereich und Marcel Ortgiese. Westfälische Wilhelms-Universität Münster WS2013/14. Version: 31.01.

Vorlesung. Finanzmathematik I. Steffen Dereich und Marcel Ortgiese. Westfälische Wilhelms-Universität Münster WS2013/14. Version: 31.01. Vorlesung Finanzmathematik I Steffen Dereich und Marcel Ortgiese Westfälische Wilhelms-Universität Münster WS2013/14 Version: 31.01.2014 Inhaltsverzeichnis 1. Einführung 1 1.1. Das Finanzmarktmodell...........................

Mehr

Weihnachtszettel zur Vorlesung. Stochastik I. Wintersemester 2011/2012

Weihnachtszettel zur Vorlesung. Stochastik I. Wintersemester 2011/2012 Weihnachtszettel zur Vorlesung Stochastik I Wintersemester 0/0 Aufgabe. Der Weihnachtsmann hat vergessen die Weihnachtsgeschenke mit Namen zu beschriften und muss sie daher zufällig verteilen. Dabei enthält

Mehr

Übungen zur Stochastik, Blatt Nr. 1

Übungen zur Stochastik, Blatt Nr. 1 Prof. Dr. A. Stoffel SS 202 Übungen zur Stochastik, Blatt Nr. ) Zwei Würfel werden gleichzeitig oder nacheinander geworfen. a) Schreiben Sie alle Elemente des Grundraums in Form einer Matrix auf. b) Wie

Mehr

Bericht zur Prüfung im Oktober 2004 über Finanzmathematik (Grundwissen)

Bericht zur Prüfung im Oktober 2004 über Finanzmathematik (Grundwissen) Bericht zur Prüfung im Oktober 2004 über Finanzmathematik (Grundwissen) Peter Albrecht (Mannheim) Die Prüfung des Jahres 2004 im Bereich Finanzmathematik (Grundwissen) wurde am 09. Oktober 2004 mit diesmal

Mehr

3. Kombinatorik und Wahrscheinlichkeit

3. Kombinatorik und Wahrscheinlichkeit 3. Kombinatorik und Wahrscheinlichkeit Es geht hier um die Bestimmung der Kardinalität endlicher Mengen. Erinnerung: Seien A, B, A 1,..., A n endliche Mengen. Dann gilt A = B ϕ: A B bijektiv Summenregel:

Mehr

Finanzwirtschaft. Foliensatz Vertiefungskurs aus ABWL: im Sommersemester Teil / 2 und 7 Univ. Ass. Dr. Matthias G.

Finanzwirtschaft. Foliensatz Vertiefungskurs aus ABWL: im Sommersemester Teil / 2 und 7 Univ. Ass. Dr. Matthias G. Universität Wien Institut für Betriebswirtschaftslehre ABWL IV: Finanzwirtschaft 400 026/2+7 Univ. Ass. Dr. M.G. Schuster Foliensatz Vertiefungskurs aus ABWL: Finanzwirtschaft im Sommersemester 2004 3.

Mehr

Themen des Bachelorseminars zur Finanz- und Versicherungsmathematik

Themen des Bachelorseminars zur Finanz- und Versicherungsmathematik Themen des Bachelorseminars zur Finanz- und Versicherungsmathematik 1. Das mehrdimensionale Cox-Ross-Rubinstein Modell Ein CRR Modell für d Aktien kann dadurch spezifiziert werden, dass der Preisprozeß

Mehr

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω 5. Hilberträume Definition 5.1. Sei H ein komplexer Vektorraum. Eine Abbildung, : H H C heißt Skalarprodukt (oder inneres Produkt) auf H, wenn für alle x, y, z H, α C 1) x, x 0 und x, x = 0 x = 0; ) x,

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR STOCHASTIK SS 2007 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Dipl.-Math. oec. W. Lao Klausur (Maschineningenieure) Wahrscheinlichkeitstheorie und Statistik vom 2.9.2007 Musterlösungen

Mehr

5 Optimale erwartungstreue Schätzer

5 Optimale erwartungstreue Schätzer 33 5 Optimale erwartungstreue Schätzer 5.1 Definition Seien X 1,..., X n reelle Zufallsvariablen, T T (X 1,..., X n ) reellwertige Statistik. T heißt linear : c 1,..., c n R mit T n c j X j 5.2 Satz Seien

Mehr

Adaptive Systeme. Sommersemester Prof. Dr. -Ing. Heinz-Georg Fehn. Prof. Dr. rer. nat. Nikolaus Wulff

Adaptive Systeme. Sommersemester Prof. Dr. -Ing. Heinz-Georg Fehn. Prof. Dr. rer. nat. Nikolaus Wulff Adaptive Systeme Sommersemester 2015 Prof. Dr. -Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Prof. Dr. H.-G. Fehn und Prof. Dr. N. Wulff 1 Adaptive Systeme Adaptives System: ein System, das

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 7

Technische Universität München Zentrum Mathematik. Übungsblatt 7 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 7 Hausaufgaben Aufgabe 7. Für n N ist die Matrix-Exponentialfunktion

Mehr

Lösungen zu den Hausaufgaben zur Analysis II

Lösungen zu den Hausaufgaben zur Analysis II Christian Fenske Lösungen zu den Hausaufgaben zur Analysis II Blatt 6 1. Seien 0 < b < a und (a) M = {(x, y, z) R 3 x 2 + y 4 + z 4 = 1}. (b) M = {(x, y, z) R 3 x 3 + y 3 + z 3 = 3}. (c) M = {((a+b sin

Mehr

Punktprozesse. Andreas Frommknecht Seminar Zufällige Felder Universität Ulm

Punktprozesse. Andreas Frommknecht Seminar Zufällige Felder Universität Ulm Einführung in Beispiele für Andreas Seminar Zufällige Felder Universität Ulm 20.01.2009 Inhalt Einführung in Beispiele für Definition Markierte 1 Einführung in Definition Markierte 2 Beispiele für Homogener

Mehr

Übung zu Kapitalmarkttheorie II

Übung zu Kapitalmarkttheorie II Übung zu Kapitalmarkttheorie II Marina Markheim Lehrstuhl für Theoretische Volkswirtschaftslehre Prof. Dr. Lutz Arnold Universität Regensburg Tel: +49-94-94-704 Raum RW(L)407 WS 05/06 WIEDERHOLUNG Aufgabe

Mehr

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen.

Dieses Quiz soll Ihnen helfen, Kapitel besser zu verstehen. Dieses Quiz soll Ihnen helfen, Kapitel 2.5-2. besser zu verstehen. Frage Wir betrachten ein Würfelspiel. Man wirft einen fairen, sechsseitigen Würfel. Wenn eine oder eine 2 oben liegt, muss man 2 SFr zahlen.

Mehr

Arbitrage Free Pricing

Arbitrage Free Pricing Beim CAPM wurde gezeigt, dass man Finanztitel basierend auf der Verteilung ihres künftigen Preises bewerten kann. Dabei haben wir [unter der Annahme gewisser Präferenzen des Es] den Preis eines Finanztitels

Mehr

Kapitel V - Erwartungstreue Schätzfunktionen

Kapitel V - Erwartungstreue Schätzfunktionen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel V - Erwartungstreue Schätzfunktionen Induktive Statistik Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh

Mehr

Klausur Entscheidungstheorie WS 2010/2011 S. 1 von 11

Klausur Entscheidungstheorie WS 2010/2011 S. 1 von 11 Klausur Entscheidungstheorie WS 2010/2011 S. 1 von 11 Fach: Prüfer: Veranstaltung: Finanzierung und Investition Prof. Dr. Dr. A. Löffler W2263 Entscheidungstheorie Name Vorname Matrikelnummer Punkte Beachten

Mehr

Faltung und Approximation von Funktionen

Faltung und Approximation von Funktionen Faltung und Approximation von Funktionen Lisa Bauer und Anja Moldenhauer 9. Juni 2008 1 Die Faltung von Funktionen 1.1 Die Faltung Eine kleine Widerholung mit einem Zusatz: Vergleiche den Vortrag von Benjamin

Mehr

Derivatebewertung im Binomialmodell

Derivatebewertung im Binomialmodell Derivatebewertung im Binomialmodell Roland Stamm 27. Juni 2013 Roland Stamm 1 / 24 Agenda 1 Einleitung 2 Binomialmodell mit einer Periode 3 Binomialmodell mit mehreren Perioden 4 Kritische Würdigung und

Mehr

Schätzer und Konfidenzintervalle

Schätzer und Konfidenzintervalle Kapitel 2 Schätzer und Konfidenzintervalle Bisher haben wir eine mathematische Theorie entwickelt, die es uns erlaubt, gewisse zufällige Phänomene zu modellieren. Zum Beispiel modellieren wir die Anzahl

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Das Markowitz Modell zur Bestimmung optimaler Aktienportfolios

Das Markowitz Modell zur Bestimmung optimaler Aktienportfolios Das Markowitz Modell zur Bestimmung optimaler Aktienportfolios Frank Oertel Departement T Mathematik und Physik Zürcher Hochschule Winterthur (ZHW) CH 840 Winterthur 8. Februar 200 Zielsetzung und Modellansätze

Mehr

die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen

die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen Kapitel 8 Schätzung von Parametern 8.1 Schätzmethoden Gegeben seien Beobachtungen Ü Ü ¾ Ü Ò die wir als Realisationen von unabhängig und identisch verteilten Zufallsvariablen ¾ Ò auffassen. Die Verteilung

Mehr

1 Dichte- und Verteilungsfunktion

1 Dichte- und Verteilungsfunktion Tutorium Yannick Schrör Klausurvorbereitungsaufgaben Statistik Lösungen Yannick.Schroer@rub.de 9.2.26 ID /455 Dichte- und Verteilungsfunktion Ein tüchtiger Professor lässt jährlich 2 Bücher drucken. Die

Mehr

5 Potenzreihenansatz und spezielle Funktionen

5 Potenzreihenansatz und spezielle Funktionen 5 Potenzreihenansatz und spezielle Funktionen In diesem Kapitel betrachten wir eine Methode zur Lösung linearer Differentialgleichungen höherer Ordnung, die sich anwenden läßt, wenn sich alle Koeffizienten

Mehr

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten

Zufallsgröße. Würfelwurf mit fairem Würfel. Wahrscheinlichkeitsverteilung einer diskreten Zufallsgrößen Ergebnisse von Zufallsexperimenten werden als Zahlen dargestellt 0 Einführung Wahrscheinlichkeitsrechnung 2 Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Hypothesentests

Mehr

Aufgabe 1: Asset Allocation

Aufgabe 1: Asset Allocation Aufgabe 1: Asset Allocation (40 Punkte) 2 1 2 Ein nutzenmaximierender Akteur mit der Präferenzfunktion (, ) a verfügt in 2 einer Zwei-Zeitpunkt-Welt über Eigenkapital in Höhe von 500 Yuan (Y), das er für

Mehr

Mathematik III. Produkt-Präringe

Mathematik III. Produkt-Präringe Prof. Dr. H. Brenner Osnabrück WS 2010/2011 Mathematik III Vorlesung 66 Es ist unser Ziel zu zeigen, dass auf der Produktmenge von Maßräumen unter recht allgemeinen Voraussetzungen ein Maß definiert ist,

Mehr

1 0 1, V 3 = M, und λ A = λa

1 0 1, V 3 = M, und λ A = λa Aufgabe 57. Magische Quadrate Eine reelle 3 3-Matrix A = a 11 a 12 a 13 a 21 a 22 a 23 heißt magisches Quadrat, falls alle Zeilensummen, alle Spaltensummen und die beiden Diagonalsummen a 11 + a 22 + a

Mehr

Doz. Dr. H.P. Scheffler Sommer 2000 Klausur zur Vorlesung Stochastik I

Doz. Dr. H.P. Scheffler Sommer 2000 Klausur zur Vorlesung Stochastik I Doz. Dr. H.P. Scheffler Sommer 2000 Klausur zur Vorlesung Stochastik I Wählen Sie aus den folgenden sechs Aufgaben fünf Aufgaben aus. Die maximal erreichbare Punktezahl finden Sie neben jeder Aufgabe.

Mehr

Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK. für Studierende der INFORMATIK

Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK. für Studierende der INFORMATIK Institut für Stochastik Prof. Dr. Daniel Hug Name: Vorname: Matr.-Nr.: Klausur zum Fach GRUNDLAGEN DER WAHRSCHEINLICHKEITSTHEORIE UND STATISTIK für Studierende der INFORMATIK Datum: 08. Februar 0 Dauer:

Mehr

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe Kapitel 4 Statistische Tests 4.1 Grundbegriffe Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe X 1,..., X n. Wir wollen nun die Beobachtung der X 1,...,

Mehr

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom

Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom Prof. Dr. M. Kaßmann Fakultät für Mathematik Wintersemester 2011/2012 Universität Bielefeld Übungsaufgaben zu Partielle Differentialgleichungen Blatt III vom 27.10.2011 Aufgabe III.1 (4 Punkte) Sei Ω R

Mehr

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge ÜBUNGSBLATT 0 LÖSUNGEN MAT/MAT3 ANALYSIS II FRÜHJAHRSSEMESTER 0 PROF DR CAMILLO DE LELLIS Aufgabe Finden Sie für folgende Funktionen jene Punkte im Bildraum, in welchen sie sich lokal umkehren lassen,

Mehr

DIPLOM. Abschlussklausur der Vorlesung Bank I, II:

DIPLOM. Abschlussklausur der Vorlesung Bank I, II: Seite 1 von 9 Name: Matrikelnummer: DIPLOM Abschlussklausur der Vorlesung Bank I, II: Bankmanagement und Theory of Banking Seite 2 von 9 DIPLOM Abschlussklausur der Vorlesung Bank I, II: Bankmanagement

Mehr

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013 Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013 Walter Sanddorf-Köhle Foliensatz Nr. 3 1 / 46 Ein Einperiodenmodell Beispiel 5 Betrachtet wird nun ein Wertpapiermarkt mit

Mehr

Übungsblatt 9. f(x) = e x, für 0 x

Übungsblatt 9. f(x) = e x, für 0 x Aufgabe 1: Übungsblatt 9 Basketball. Ein Profi wirft beim Training aus einer Entfernung von sieben Metern auf den Korb. Er trifft bei jedem Wurf mit einer Wahrscheinlichkeit von p = 1/2. Die Zufallsvariable

Mehr

1 A dp = P(A B). (1.3)

1 A dp = P(A B). (1.3) Markov-etten Seminar Stochastik vom 4-500 Version Oktober 00 Markus Penz Vorbemerkungen zu bedingten Wahrscheinlichkeiten Sei (Ω, F,P) ein Wahrscheinlichkeitsraum und X : Ω R eine F-messbare sowie integrierbare

Mehr