Block-Schema eines einfachen Lock-In s

Größe: px
Ab Seite anzeigen:

Download "Block-Schema eines einfachen Lock-In s"

Transkript

1 Block-Schema eines einfachen Lock-In s Mixer Input AC-Amplifier u u 3 Low-Pass Filter Output u Referenz Der Mixer u u = U sin( πf ) u = U sin( πf t + Φ) t = u u = UU sin( πft + Φ)sin(πf t + ) 3 Φ Gemäss Additionstheorem: UU u3 = cos π ( f f) t + ( Φ Φ ) UU cos[ π ( f + f) t + ( Φ + Φ ) ] [ ] Differenzfrequenzkomponente Summenfrequenzkomponente

2 Low-Pass Filter 00%( 0dB) 70.7%( -3dB) 0%( -0dB) f c log(f) Signalbandbreite f c : Frequenz, bei der der Gain auf 70.7% (-3dB) fällt Äquivalente Rauschbandbreite f N (equivalent noise bandwidth) Entspricht idealem Rechteckfilter mit gleichem maximalen Gain, welches den gleichen RMS-output erzeugt Roll off Logarithmischer Abfall des Gains Typisch: -6dB/octave ; -db/octave oder 8dB/octave Mixer und Lowpass f =0Hz f =Hz Φ=90º f L =7Hz Butterworth

3 Standard-Lock-In-Anwendung Verwende Referenzsignal mit der Frequenz f und messe Antwortsignal des Systems mit der gleichen Frequenz f =f =f Benutze Mixer plus Low-Passfilter, um Summenfrequenz wegzufiltern. UU u3 = cos UU cos [( Φ Φ )] [ π ( f ) t + ( Φ + Φ )] UU u3 = cos U Φ [( Φ Φ )] cos( ) Es lässt sich Amplitude bzw. Phasenverschiebung messen Mixer und Lowpass f =f =0Hz Φ=0º f L =7Hz Butterworth 3

4 Mixer und Lowpass f =f =0Hz Φ=90º f L =7Hz Butterworth Mixer und Lowpass f =f =0Hz Φ=60º f L =7Hz Butterworth 4

5 Switching Mixer Bei kommerziellen Lock-In s wird das Referenzsignal in ein Rechtecksignal umgewandelt Bzw. bereits als Rechtecksignal eingespiesen. u 4 [( n + )( πf t + φ )] = sin π n= 0 n + Damit ergibt sich ein phasensensitiver Output für f =(n+)f u U u [ π ( f ( n + ) f ) t + Φ (n + Φ ] 3 = cos ) n= 0 (n + ) π n= 0 U cos (n + ) π [ π ( f + ( n + ) f ) t + Φ + (n + Φ ] ) Durch geeignete Filterwahl wird die entsprechende Komponente gemessen. Da U =const. hängt u 3 nur von der Phase bzw. Frequenz und Amplitude ab Block-Schema eines Lock-In Verstärkers Front-End Phase-Sensitive Detector (PSD) Input Signal AC Filter Broad or narrow Low-Pass Filter DC Output Signal Reference- Input PLL Phase- Shifter 5

6 PSD-Frequenz Antwort Ein einfacher Lock-In mit Sinusförmiger Referenz ist ein extrem schmalbandiges Filter um die Referenzfrequenz f. Die Breite des Bandpassfilters ist durch f N des Low-Pass-Filters gegeben. PSD-gain f N f f PSD-Frequenz Antwort mit Switching Mixer Mit Rechteckfunktion als Referenzsignal: PSD-gain Harmonic responses /3 /5 u U f 3f 5f f [ Φ (n + Φ ] 3 = cos ) n= 0 (n + ) π Für (n+)φ = Φ : U u3 = = (n + ) π z.b.: U u3 = n= 0 π n 0 für f u3 = n= 0 U 3π für 3f 6

7 Heterodyne Lock-In Verstärker Heterodyne Lock-In Verstärker benutzen einen zusätzlichen Mixer, um das Eingangssignal der Frequenz f auf eine andere Frequenz umzuwandeln. Entweder werden Summenfrequenz (f i =f +f 3 ) oder Differenzfrequenz (f i =f -f 3 ) benutzt. Der heterodyne Mixer wird verwendet um die Frequenz noch oben oder unten zu konvertieren (up convert f i >f or down convert. f i <f ) Vorteile: Elektronik des Lock-In s kann auf bestimmten Frequenzbereich unabhängig von der Anwendung optimiert werden. -Phasen/ Vektor Lock-In-Verstärker Input u u 3 Low-Pass Filter In-Phase U cos(φ -φ ) φ φ +90º u 3 Low-Pass Filter Out of Phase (Quadratur- Komponente) U sin(φ -φ ) Referenz Idealerweise: φ =φ 7

8 -Phasen Lock-In Verstärker Es werden PSDs verwendet, wobei eine Phasenverschiebung von 90º zwischen den beiden Referenzsignalen besteht. Im Vektormodus wird die Quadraturkomponente sin(φ -φ ) zu null geregelt. Dann ist U cos(φ -φ )=U phaseninsensitiv und wird auch Vektorlänge (vector magnitude) genannt. Das Reglersignal ist proportional zu φ. r sin(φ ) r cos(φ ) Signalmessung mittels Lock-In Input Noise Power [V/sqrt(Hz)] /f-noise 50(60)Hz white noise f N f R log(f) B N 50Hz oder /f werden reduziert durch geschicktes Wählen der Referenzfrequenz. Durch weisses Rauschen wird die Messung band-limitiert. Angenommen das Instrument hat eine Bandbreite B N =00kHz. Die Rauschbandbreite des Lock-In s f N kann auf /000Hz reduziert werden, d.h. eine Messung dauert etwa 500Sekunden. Das SNR (signal to noise ratio) wird um Faktor 0 4 verbessert. BN f N 5 0 = 3 =

9 f and more See An Example: Model EG&G Princeton Applied Research 50 High Performance Dual Phase Analog Lock-in Amplifier Others: ITHACO, Stanford... 9

10 Spezifikationen Sensitivity Voltage0 nv to 3 V (with output expand) Current0-6 A/V, 0-8 A/V conversion Impedance Voltage00 MΩ // 5 pf Current5 Ω (0-6 A/V) Noise Voltage5 nv/ Hz at khz Current3 fa/ Hz (0-8 A/V) at khz C.M.R.R.0 db at khz Frequency Response0.5 Hz to 0 khz Dynamic Reserve30 db (max) DetectionPhases ModesF, F Output ModesX,Y, (%): X,Y, (V): R,θ, NoiseTime constant00 µs, ms to 3000 s Roll-off6 or db/octavevoltage 0 V FS Impedance kω Oscillator Voltage0 to V rms ( mv steps) 0 to 5 V rms (software only) Frequency0.5 Hz to 0 khz Impedance kω Ein Lock-In Experiment Eine Grösse p wird langsam verändert und gleichzeitig moduliert mit der Referenzfrequenz ω=πf: p(t, ω) = p(t) + a cos(ωt) Die Antwort des Systems wird mittels eines Sensors gemessen: f f g( t) = f ( p( t)...) = f ( p( t)) + a cos( ωt) + ( a cos( ωt)) +... p p p( t) p( t) In erster Näherung misst ein Lock-In die erste Ableitung der Antwortfunktion und die. Ableitung im f-modus. Gilt nur für kleine Amplituden. D.h. die ursprüngliche Antwortfunktion kann durch Integration bestimmt werden. Die Antwortfunktion wird auch Systemfunktion oder Suszeptibilität des Systems genannt. 0

11 Physikalische Beispiele Methode Anregung p Antwort g ESR/NMR Magnetfeld RF-Frequenz Magnetisierung Auger Energie/Spannung Anzahl Elektronen STM-Spektroskopie Distanz Spitze-Probe Tunnel-Strom Magnetometer Position Probe Magnetisierung Eine etwas andere Betrachtungsweise Korrelationsfunktion: R( δ ) = lim f ( t) g( t + δ ) dt τ τ Verzögerung oder Delay δ. Falls f(t) und g(t) korreliert sind, so ist R(δ) 0. Falls g(t) stark verrauscht ist, wird f(t) als Referenz benutzt, um eine Korrelation zu finden. Im einfachsten Fall f(t)=a sin(ωt) als Referenz und g(t)=bsin (ωt+ δ) als Antwort. Somit erhält man die Autokorrelationsfunktion nt ab R( δ ) = t t dt nt sin( ω )sin( ω + δ ) 0 Die Integration ist ein Zeitmittel: 0 s ( t) s( t + δ ) Der Lock-In misst also eine Art Autokorrelationsfunktion. nt

12 Rauschen oder Signal? Falls es sich um unkorreliertes Rauschen handelt: R( δ ) = s( t) s( t + δ ) = 0 Bei einem signifikanten, korrelierten Signal erhält man von Null verschiedene Werte. Beachte, dass die Autokorrelationsfunktion die inverse Fouriertransformierte der power spectral density S(ω) (W/Hz ) ist. (Eine Grösse welche mit einem Spektrumanalyzer gemessen werden kann.): 0 R( δ ) = S( ω)exp( iωδ ) dω π Respektiv: 0 S( ω) = R( δ )exp( iωδ ) dδ Typische Autokorrelationsfunktion sin( Δω δ ) R( δ ) cos( ωδ ) Δω δ Wobei Δω die Bandbreite der Messung ist. Ein typische sin(x)/x Abhängigkeit.

Harmonische Schwingung

Harmonische Schwingung Harmonische Schwingung Eine harmonische Schwingung mit Amplitude c 0, Phasenverschiebung δ und Frequenz ω bzw. Periode T = 2π/ω hat die Form x x(t) = c cos(ωt δ). δ/ω c t T=2π/ω Harmonische Schwingung

Mehr

Physikalisches Grundpraktikum II Oszilloskop II

Physikalisches Grundpraktikum II Oszilloskop II Oszilloskop II () (Autor) Raphael Hobbiger(0555094) 8. März 2007 1 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Ziel des Versuches............................................ 2 1.2 Versuchszubehör.............................................

Mehr

Störungen von elektrischen Signalen

Störungen von elektrischen Signalen Überblick Grundlagen: Spannung, Strom, Widerstand, IV-Kennlinien Elektronische Messgeräte im Elektronikpraktikum Passive Filter Signaltransport im Kabel Transistor Operationsverstärker PID-Regler Sensorik

Mehr

Operationsverstärker. Sascha Reinhardt. 17. Juli 2001

Operationsverstärker. Sascha Reinhardt. 17. Juli 2001 Operationsverstärker Sascha Reinhardt 17. Juli 2001 1 1 Einführung Es gibt zwei gundlegende Operationsverstärkerschaltungen. Einmal den invertierenden Verstärker und einmal den nichtinvertierenden Verstärker.

Mehr

Normierte Detektivitäten verschiedener Strahlungsempfänger

Normierte Detektivitäten verschiedener Strahlungsempfänger Normierte Detektivitäten verschiedener Strahlungsempfänger D* = D A f 300 K, ------- 77 K,... 4,2 K FL Photoleiter, PD Photodiode. D* ideal bestimmt durch das Schrotrauschen des Photostroms, erzeugt durch

Mehr

Vortrag der Diplomarbeit

Vortrag der Diplomarbeit Vortrag der Diplomarbeit Entwicklung eines Continuous-Time Delta- Sigma Modulators für den Einsatz in der Positronen-Emissions-Tomographie von 07.09.2009 Überblick und Gliedergung: Teil 1: CT ΔΣ Modulator

Mehr

ADC und DAC Analyse mit high end Audio Analyzer von Audio Precision

ADC und DAC Analyse mit high end Audio Analyzer von Audio Precision ADC und DAC Analyse mit high end Audio Analyzer von Audio Precision Anforderungen des Standards AES17 an die Messtechnik und Auswertetools Tameq Schweiz GmbH Peter Wilhelm Agenda Analyse von Audio Analog-Digital

Mehr

Der ideale Op-Amp 2. Roland Küng, 2009

Der ideale Op-Amp 2. Roland Küng, 2009 Der ideale Op-Amp 2 Roland Küng, 2009 Reiew Reiew o f(, 2 ) L: o /2 + 2 Strom-Spannungswandler Photodiode liefert Strom proportional zur Lichtmenge Einfachstes Ersatzbild: Stromquelle V out -R 2 i in Anwendung:

Mehr

(t - t ) (t - t ) bzw. δ ε. θ ε. (t - t ) Theorie A (WS2005/06) Musterlösung Übungsblatt ε= 0.1 ε= t ) = lim.

(t - t ) (t - t ) bzw. δ ε. θ ε. (t - t ) Theorie A (WS2005/06) Musterlösung Übungsblatt ε= 0.1 ε= t ) = lim. Theorie A (WS5/6) Musterlösung Übungsblatt 7 6..5 Θ(t t [ t t ) = lim arctan( ) + π ] ε π ε ( ) d dt Θ(t t ) = lim ε π vergleiche Blatt 6, Aufg. b). + (t t ) ε ε = lim ε π ε ε + (t t ) = δ(t t ) Plot von

Mehr

Grundlagen der Signalverarbeitung

Grundlagen der Signalverarbeitung Grundlagen der Signalverarbeitung Digitale und analoge Filter Wintersemester 6/7 Wiederholung Übertragung eines sinusförmigen Signals u t = U sin(ω t) y t = Y sin ω t + φ ω G(ω) Amplitude: Y = G ω U Phase:

Mehr

Messen elektrischer Leistung Marco Scheck Product Manager Yokogawa

Messen elektrischer Leistung Marco Scheck Product Manager Yokogawa Messen elektrischer Leistung Marco Scheck Product Manager Yokogawa Leistung in seinen Grundzügen 2 Jeder Elektrische Stromkreis welcher an Wechselspannung liegt: Wirkleistung P (Vom Motor wirklich umgesetzte

Mehr

Verzerrungen. Purple Haze. Roland Küng, 2012

Verzerrungen. Purple Haze. Roland Küng, 2012 Verzerrungen Purple Haze Roland Küng, 2012 1 Motivation Was passiert wenn. Netzwerke nur Phase im Spektrum verzerren? Quelle: http://falstad.com/fourier/ Beispiele: Kabel Laufzeiten, Allpässe 2 Motivation

Mehr

Signale, Transformationen

Signale, Transformationen Signale, Transformationen Signal: Funktion s(t), t reell (meist t die Zeit, s eine Messgröße) bzw Zahlenfolge s k = s[k], k ganzzahlig s reell oder komplex s[k] aus s(t): Abtastung mit t = kt s, s[k] =

Mehr

Skriptum zur 2. Laborübung. Transiente Vorgänge und Frequenzverhalten

Skriptum zur 2. Laborübung. Transiente Vorgänge und Frequenzverhalten Elektrotechnische Grundlagen (LU 182.692) Skriptum zur 2. Laborübung Transiente Vorgänge und Frequenzverhalten Martin Delvai Wolfgang Huber Andreas Steininger Thomas Handl Bernhard Huber Christof Pitter

Mehr

1.2) Bestimmen Sie die Leistung, welche in Abhängigkeit der Frequenz ω am Widerstand abfällt und stellen Sie diesen Zusammenhang graphisch dar.

1.2) Bestimmen Sie die Leistung, welche in Abhängigkeit der Frequenz ω am Widerstand abfällt und stellen Sie diesen Zusammenhang graphisch dar. Übung /Grundgebiete der Elektrotechnik 3 (WS7/8 Frequenzabhängiges Übertragungsverhalten Dr. Alexander Schaum, Lehrstuhl für vernetzte elektronische Systeme Christian-Albrechts-Universität zu Kiel Aufgabe

Mehr

Übung 3: Fouriertransformation

Übung 3: Fouriertransformation ZHAW, SiSy HS202, Rumc, Übung 3: Fouriertransformation Aufgabe Fouriertransformation Dirac-Impuls. a) Bestimmen Sie die Fouriertransformierte S(f) des Dirac-Impulses s(t) = δ(t) und interpretieren Sie

Mehr

Digitale Signalverarbeitung Bernd Edler

Digitale Signalverarbeitung Bernd Edler Digitale Signalverarbeitung Bernd Edler Wintersemester 2008/2009 Wesentliche Inhalte der Vorlesung Abtastung z-transformation Lineare zeitinvariante Systeme Diskrete Fouriertransformation Systeme bei stochastischer

Mehr

4.Operationsverstärker

4.Operationsverstärker 4.Operationsverstärker Christoph Mahnke 4.5.2006 1 Eigenschaften Operationsverstärkern. 1.1 Osetspannung. Bei idealen Operationsverstärkern herrscht zwischen den beiden Eingängen die Potentialdierenz Null.

Mehr

Serie 12 Musterlösung

Serie 12 Musterlösung Serie 2 Musterlösung ineare Algebra www.adams-science.org Klasse: Ea, Eb, Sb Datum: HS 7 In dieser Serie werden alle echnungen in der Basis und in SI-Einheiten durchgeführt. e ˆ cos(ω t) und e 2 ˆ sin(ω

Mehr

Datenverarbeitung in der Geophysik. Digitalisierung, Diskretisierung

Datenverarbeitung in der Geophysik. Digitalisierung, Diskretisierung Datenverarbeitung in der Geophysik Digitalisierung, Diskretisierung Seismische Zeitreihen -> Seismogramme Samplingrate, Taktfrequenz Nyquistfrequenz zeitliche, räumliche Frequenzen Binäre Zahlendarstellung

Mehr

Charakterisierung ultrakurzer Lichtimpulse (I)

Charakterisierung ultrakurzer Lichtimpulse (I) Charakterisierung ultrakurzer Lichtimpulse (I) D. von der Linde Institut für Experimentelle Physik Universität Duisburg-Essen Gruppenseminar AG Bovensiepen, 9. Juni 010 Überblick Mathematische Darstellung

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre (c) Ulm University p. 1/ Grundlagen der Physik Schwingungen und Wärmelehre 3. 04. 006 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. / Physikalisches Pendel

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Erzwungene & gekoppelte Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 10. Jan. 016 Gedämpfte Schwingungen m d x dt +

Mehr

Datenaquisition. Verstärker Filter. Sensor ADC. Objekt. Rechner

Datenaquisition. Verstärker Filter. Sensor ADC. Objekt. Rechner Datenaquisition Sensor Verstärker Filter ADC Objekt Rechner Datenaquisition Verstärker: - linearer Arbeitsbereich - linearer Frequenzgang - Vorkehrungen gegen Übersteuerung (trends, shot noise) - Verstärkerrauschen

Mehr

Digitale Signalverarbeitung Bernd Edler

Digitale Signalverarbeitung Bernd Edler Digitale Signalverarbeitung Bernd Edler Wintersemester 2010/2011 Wesentliche Inhalte der Vorlesung Abtastung z-transformation Lineare zeitinvariante Systeme Diskrete Fouriertransformation Filterentwurf

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Bachelor Elektronik-Praktikum Universität Göttingen. Rauschen und Lock-In-Verstärkung

Bachelor Elektronik-Praktikum Universität Göttingen. Rauschen und Lock-In-Verstärkung Bachelor Elektronik-Praktikum Universität Göttingen Anleitung zum Versuch Nr. 5 Rauschen und Lock-In-Verstärkung Fakultät für Physik Version 1 - Stand 24. August 2009 Betreuer: Dr. Thomas Kurz tkurz@dpi.physik.uni-goettingen.de

Mehr

Proportional Magnetventil BFW PROPORTIONAL MAGNETVENTILE BFW. Proportional Solenoid Valve BFW. Technische Daten l Technical Data

Proportional Magnetventil BFW PROPORTIONAL MAGNETVENTILE BFW. Proportional Solenoid Valve BFW. Technische Daten l Technical Data Proportional Magnetventil BFW Erhältlich in CETOP und CETOP Durchflussmenge CETOP :, oder 7 l/min Durchflussmenge CETOP :, 7 oder l/min Inkl. Befestigungsschrauben und Ventilstecker Grundplatten zu den

Mehr

White Paper No. 2 Spannung oder Strom verstärken

White Paper No. 2 Spannung oder Strom verstärken White Paper No. 2 Spannung oder Strom verstärken Einleitung Die Aufgabe eines Verstärkers ist es, ein Kleinsignal am Eingang in ein Großsignal am Ausgang zu wandeln. In den meisten Fällen handelt sich

Mehr

2.5.3 Innenwiderstand der Stromquelle

2.5.3 Innenwiderstand der Stromquelle 6 V UA(UE) 0. 1. 2. U E Abbildung 2.4: Kennlinie zu den Messwerten in Tabelle 2.1. 2.5.3 Innenwiderstand der Stromquelle Die LED des Optokopplers wird mittels Jumper kurzgeschlossen. Dadurch muss der Phototransistor

Mehr

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 4: Fourier-Transformation Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 4 Fourier-Transformation 3

Mehr

System Simulation of a 79 GHz UWB-Pulse Radar

System Simulation of a 79 GHz UWB-Pulse Radar Lehrstuhl Technische Elektronik www.lfte.de Universität Erlangen-Nürnberg Lehrstuhl Technische Elektronik Prof. Dr.-Ing. Dr.-Ing. habil R. Weigel System Simulation of a 79 GHz UWB-Pulse Radar VDE / ITG

Mehr

Produktübersicht Universalkalibratoren Serie 3000

Produktübersicht Universalkalibratoren Serie 3000 Produktübersicht Universalkalibratoren Serie 3000 CompuMess Auszug aus unserem Hauptkatalog. Alle technischen Spezifikationen können ohne vorherige Mitteilung geändert werden. Irrtümer sind vorbehalten.

Mehr

IKA IKA. Zeitsignale. Analoge, zeitdiskrete, und digitale Signale

IKA IKA. Zeitsignale. Analoge, zeitdiskrete, und digitale Signale Zeitsignale Je nach Zeitbasis und Wertemenge des Signals unterscheidet man zeit- und wertkontinuierliche Signale (analoge Signale); zeitdiskrete, aber wertkontinuierliche Signale (zeitdiskrete Signale);

Mehr

Vorlesung 10+11: Roter Faden:

Vorlesung 10+11: Roter Faden: Vorlesung 10+11: Roter Faden: Heute: Harmonische Schwingungen Erzwungene Schwingungen Resonanzen Gekoppelte Schwingungen Schwebungen, Interferenzen Versuche: Computersimulation, Pohlsches Rad, Film Brücke,

Mehr

Rauschen. Received power W. UHF 556 MHz Transmitted power W. Roland Küng, 2014

Rauschen. Received power W. UHF 556 MHz Transmitted power W. Roland Küng, 2014 Rauschen UHF 556 MHz Transmitted power 15 000 W Received power 0.00000000000001 W Roland Küng, 2014 1 Motivation Fluoreszenz Mikroskopie: Rauschen durch CCD Element begrenzt Bildqualität Rauschen ist stark

Mehr

3. Leistungsdichtespektren

3. Leistungsdichtespektren Stochastische Prozesse: 3. Leistungsdichtespektren Wird das gleiche Geräusch mehrmals gemessen, so ergeben sich in der Regel unterschiedliche zeitliche Verläufe des Schalldrucks. Bei Geräuschen handelt

Mehr

Anwendungen der Fourier-Entwicklung in der Elektrotechnik 1 / 22

Anwendungen der Fourier-Entwicklung in der Elektrotechnik 1 / 22 Anwendungen der Fourier-Entwicklung in der Elektrotechnik 1 / Unser heutiges Ziel Reaktion eines Netzwerks auf ein periodisches Eingangssignal oder speziell Wie reagiert ein RC-Glied auf periodische Erregung?

Mehr

Drehprüfung. Biophysikalische Grundlagen. Stefan Langenberg

Drehprüfung. Biophysikalische Grundlagen. Stefan Langenberg Drehprüfung Biophysikalische Grundlagen Stefan Langenberg Optokinetik Ermittlung der GLP (Geschwindigkeit der langsamen Phase) Projektion eines Streifenmusters auf einen Schirm, videonystagmographische

Mehr

Grundlagen der Nachrichtentechnik

Grundlagen der Nachrichtentechnik Universität Bremen Arbeitsbereich Nachrichtentechnik Prof. Dr.-Ing. A. Dekorsy Schriftliche Prüfung im Fach Grundlagen der Nachrichtentechnik Name: Vorname: Mat.-Nr.: BSc./Dipl.: Zeit: Ort: Umfang: 07.

Mehr

P1-53,54,55: Vierpole und Leitungen

P1-53,54,55: Vierpole und Leitungen Physikalisches Anfängerpraktikum (P1 P1-53,54,55: Vierpole und Leitungen Matthias Ernst (Gruppe Mo-24 Ziel des Versuchs ist die Durchführung mehrerer Messungen an einem bzw. mehreren Vierpolen (Drosselkette

Mehr

Praktikum EE2 Grundlagen der Elektrotechnik. Name: Testat : Einführung

Praktikum EE2 Grundlagen der Elektrotechnik. Name: Testat : Einführung Fachbereich Elektrotechnik Ortskurven Seite 1 Name: Testat : Einführung 1. Definitionen und Begriffe 1.1 Ortskurven für den Strom I und für den Scheinleistung S Aus den Ortskurven für die Impedanz Z(f)

Mehr

Aktivelektronik VP 150

Aktivelektronik VP 150 Leistungsmerkmale der VP 150 Die VP 150 ist eine Einplatinenlösung, die aufgrund des Platinendesigns für den Einsatz als Subwoofer Aktiv-Modul gedacht ist. Verstärkerelektronik inkl. Aktivweiche zum Betrieb

Mehr

DC/DC-Wandler 37,5-75 W DC/DC Converter 37,5-75 W. Merkmale / Features

DC/DC-Wandler 37,5-75 W DC/DC Converter 37,5-75 W. Merkmale / Features DC/DC-Wandler 37,5-75 W PMD75WHB Merkmale / Features Eingangsbereich 2 : 1 / Input Range 2 : 1 Wirkungsgrad bis 89 % / Efficiency up to 89 % Half Brick Gehäuse / Half Brick Case Hohe Schaltfrequenz / High

Mehr

1. Beschaltung der Platine mit Operationsverstärkern (OP)

1. Beschaltung der Platine mit Operationsverstärkern (OP) Elektronikpraktikum SS 2015 5. Serie: Versuche mit Operationsverstärkern (Teil 1) U. Schäfer, A. Brogna, Q. Weitzel und Assistenten Ausgabe: 16.06.2015, Durchführung: Di. 23.06.15 13:00-17:00 Uhr Ort:

Mehr

Modul SiSy: Einleitung

Modul SiSy: Einleitung Modul SiSy: Einleitung SiSy, Einleitung, 1 Grobe Signaleinteilung Signale können Information tragen Hilfreich ist die Unterscheidung nach der Informationsquelle: Nachrichtensignal, Mess-/Sensorsignal,

Mehr

Prof. Dr. Stefan Weinzierl Aufgabe: Amplitudenstatistik analoger Audiosignale. Abb. 1: WDF eines Audiosignals. p X.

Prof. Dr. Stefan Weinzierl Aufgabe: Amplitudenstatistik analoger Audiosignale. Abb. 1: WDF eines Audiosignals. p X. Audiotechnik II 1.Übungstermin Prof. Dr. Stefan Weinzierl 21.1.21 1. Aufgabe: Amplitudenstatistik analoger Audiosignale a. Ein Signal x(t) hat die durch Abb. 1 gegebene Wahrscheinlichkeitsdichtefunktion

Mehr

ẋ = v 0 (t t 1 ). x(t) = x 1 + v 0 (t t 1 ). t 1 t 2 (x 2 x 1 ) 2 (t 2 t 1 ) 2. m (x 2 x 1 ) 2. dtl = = m x 2 x 1

ẋ = v 0 (t t 1 ). x(t) = x 1 + v 0 (t t 1 ). t 1 t 2 (x 2 x 1 ) 2 (t 2 t 1 ) 2. m (x 2 x 1 ) 2. dtl = = m x 2 x 1 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 1 Prof Dr Alexander Shnirman Blatt 7 Dr Boris Narozhny, Dr Holger Schmi 25521 1 Die

Mehr

Muster zu Kurztest Nr. 2 Fach EK 2

Muster zu Kurztest Nr. 2 Fach EK 2 Muster zu Kurztest Nr. Fach EK Auswahl von Aufgaben Prüfung Thema: OpAmp Nichtidealitäten und Filter, 3 Aufgaben, 45 Min. Aufgabe : Einfluss von Offset-Spannung und Biasstrom 9 Punkte Ein Opamp mit I Bias

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre (c) Ulm University p 1/2 Grundlagen der Physik 2 Schwingungen und Wärmelehre 30 04 2007 Othmar Marti othmarmarti@uni-ulmde Experimentelle Physik Universität Ulm (c) Ulm University p 2/2 Gedämpfter Oszillator

Mehr

Reale OpAmps. Roland Küng, 2010

Reale OpAmps. Roland Küng, 2010 Reale OpAmps Roland Küng, 2010 1 Analyze Circuit Function: The Golden Rules Bezeichnung: Open Loop Verstärkung A ol = A 0 V 741: A = 200 000 TL081: A = 100 000 OP177: A = 10 000 000 AD711: A = 400 000

Mehr

AC-DC Transfer Normale für kleine Stromstärken

AC-DC Transfer Normale für kleine Stromstärken Physikalisch-Technische Bundesanstalt Braunschweig und Berlin Nationales Metrologieinstitut AC-DC Transfer Normale für kleine Stromstärken Torsten Funck Arbeitsgruppe 2.13 Wechselstrom-Gleichstrom Transfer,

Mehr

Lösungen 4.1 Analoge Übertragung mit PCM

Lösungen 4.1 Analoge Übertragung mit PCM J. Lindner: Informationsübertragung Lösungen Kapitel 4 Lösungen 4. Analoge Übertragung mit PCM 4. a) Blockbild einer Übertragung mit PCM: q(t) A D 8 bit linear f Amin = 8kHz q(i) digitales ˆq(i) Übertragungs-

Mehr

Spektrum und Bandbreite

Spektrum und Bandbreite Spektrum und Bandbreite 0.0 0 1f 2f 3f 4f 5f 6f Spektrum: Bandbreite: Grundlagen der Rechnernetze Physikalische Schicht 12 Aperiodische Signale in der Frequenzdomäne Bildquelle: de.wikipedia.org/wiki/frequenzspektrum

Mehr

Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung

Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung 28. September 2016 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung Aufgabe 1. Die nachfolgende Grafik stellt das Oszillogramm zweier sinusförmiger Spannungen

Mehr

3. Fourieranalyse und Amplitudenspektren

3. Fourieranalyse und Amplitudenspektren 3.1 Fourieranalyse 3.1.1 Einleitung Laut dem französischen Mathematiker Fourier (1768-1830) kann jedes periodische Signal in eine Summe von sinusförmigen Signalen mit unterschiedlichen Amplituden, Frequenzen

Mehr

19. Frequenzgangkorrektur am Operationsverstärker

19. Frequenzgangkorrektur am Operationsverstärker 9. Frequenzgangkorrektur am Operationsverstärker Aufgabe: Die Wirkung komplexer Koppelfaktoren auf den Frequenzgang eines Verstärkers ist zu untersuchen. Gegeben: Eine Schaltung für einen nichtinvertierenden

Mehr

Systeme II 8. Die physikalische Schicht (Teil 4)

Systeme II 8. Die physikalische Schicht (Teil 4) Systeme II 8. Die physikalische Schicht (Teil 4) Thomas Janson, Kristof Van Laerhoven*, Christian Ortolf Folien: Christian Schindelhauer Technische Fakultät : Rechnernetze und Telematik, *: Eingebettete

Mehr

LORENZ MESSTECHNIK GmbH

LORENZ MESSTECHNIK GmbH DMS- Messverstärker - SG Measuring Amplifier / 2S Zum Anschluss von bis zu 4 350 Ω- Wägezellen 4- oder 6- Leitertechnik ±10 Vdc oder 0-10 Vdc und 4-20 ma Analogausgang Kontrollsignal für die Kalibrierung

Mehr

Rauschen. Received power W. UHF 556 MHz Transmitted power W. Roland Küng, 2012

Rauschen. Received power W. UHF 556 MHz Transmitted power W. Roland Küng, 2012 Rauschen UHF 556 MHz Transmitted power 15 000 W Received power 0.00000000000001 W Roland Küng, 2012 1 Motivation Fluoreszenz Mikroskopie: Rauschen durch CCD Element begrenzt Bildqualität Rauschen ist stark

Mehr

Empfindlichkeit und Rauschmaß eines DVB T Sticks

Empfindlichkeit und Rauschmaß eines DVB T Sticks Empfindlichkeit und Rauschmaß eines DVB T Sticks Messung kritischer Spezifikationen eines Salcar Stick DVB T RTL 2832U&R820T SDR Salcar Stick, oder ähnlich Blockschaltbild des R820T Tuners Aufbau für Empfindlichkeitsmessung:

Mehr

Protokollbuch. Friedrich-Schiller-Universität Jena. Physikalisch-Astronomische Fakultät SS Messtechnikpraktikum

Protokollbuch. Friedrich-Schiller-Universität Jena. Physikalisch-Astronomische Fakultät SS Messtechnikpraktikum Friedrich-Schiller-Universität Jena Physikalisch-Astronomische Fakultät SS 2008 Protokollbuch Messtechnikpraktikum Erstellt von: Christian Vetter (894) Helena Kämmer (92376) Christian.Vetter@Uni-Jena.de

Mehr

Elektronikpraktikum SS Serie O.Borodina, D. Krambrich, W. Lauth, T. Saito. Versuche mit Operationsverstärkern

Elektronikpraktikum SS Serie O.Borodina, D. Krambrich, W. Lauth, T. Saito. Versuche mit Operationsverstärkern Elektronikpraktikum SS 2010 2.Serie 26.04.2010 O.Borodina, D. Krambrich, W. Lauth, T. Saito. Mi. 28.04.10 13:00-16:00 Uhr, oder Do. 29.04.10 13:00-16:00 Uhr Ort: Gebäude 02-413 (Anfängerpraktikum) 1. Stock,

Mehr

Humboldt-Universität zu Berlin Institut für Physik Elektronik-Praktikum. Versuch 6. Lock-in-Verstärker

Humboldt-Universität zu Berlin Institut für Physik Elektronik-Praktikum. Versuch 6. Lock-in-Verstärker 1. Einleitung Versuch 6 Lock-in-Verstärker Lock-in-Verstärker werden sehr häufig in Laborexperimenten bei der Detektion und Verarbeitung sehr schwacher Analogsignale (Wechselspannungen bzw. -ströme auf

Mehr

Coherent Receiver Design for Optical Inter-satellite Links

Coherent Receiver Design for Optical Inter-satellite Links Coherent Receiver Design for Optical Inter-satellite Links Semjon Schaefer Future Photonics 17. September 2015 Hamburg Technische Fakultät Christian-Albrechts-Universität zu Kiel Motivation Advantages

Mehr

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge

,Faltung. Heavisidefunktion σ (t), Diracimpuls δ (t) Anwendungen. 1) Rechteckimpuls. 2) Sprungfunktionen. 3) Schaltvorgänge Heavisidefunktion σ (t), Diracimpuls δ (t),faltung Definition Heavisidefunktion, t > 0 σ ( t) = 0, t < 0 Anwendungen ) Rechteckimpuls, t < T r( t) = = σ ( t + T ) σ ( t T ) 0, t > T 2) Sprungfunktionen,

Mehr

Aufgabe 1: Aufgabe 2: Berechnen Sie für den unten abgebildeten periodischen Spannungsverlauf. 1. den arithmetischen Mittelwert, 2.

Aufgabe 1: Aufgabe 2: Berechnen Sie für den unten abgebildeten periodischen Spannungsverlauf. 1. den arithmetischen Mittelwert, 2. Aufgabe 1: Berechnen Sie für den unten abgebildeten periodischen Spannungsverlauf 1. den arithmetischen Mittelwert, 2. den Effektivwert, 3. den Scheitelfaktor, 4. den Formfaktor. ū=5v, U = 6,45V, k s =

Mehr

Lineare zeitinvariante Systeme

Lineare zeitinvariante Systeme Lineare zeitinvariante Systeme Signalflussgraphen Filter-Strukturen Fouriertransformation für zeitdiskrete Signale Diskrete Fouriertransformation (DFT) 1 Signalflussgraphen Nach z-transformation ist Verzögerung

Mehr

Technische Universität Ilmenau Ilmenau, Fakultät EI FG Elektronische Messtechnik. zum S e m i n a r Elektrische Messtechnik

Technische Universität Ilmenau Ilmenau, Fakultät EI FG Elektronische Messtechnik. zum S e m i n a r Elektrische Messtechnik Technische niversität Ilmenau Ilmenau,.9.9 Fakultät EI FG Elektronische Messtechnik zum S e m i n a r Elektrische Messtechnik . AFGABE a) Definieren Sie eine komplexe Zahl anhand ihrer beiden Schreibweisen,

Mehr

MAC XTREME 4000 PACKAGE 04/10

MAC XTREME 4000 PACKAGE 04/10 1 2 3 MP 16.2 Hochbelastbare Schaumstoffsicke fu r hohen Wirkungsgrad Resonanzarmer Stahlkorb 13 mm Neodymhochtöner Design-Schutzgitter MPX BOX 112 Gehäuse: Bassreflex-Subwoofer Strömungsoptimierte Bassreflexrohre

Mehr

Digitale Signalverarbeitung Bernd Edler

Digitale Signalverarbeitung Bernd Edler Digitale Signalverarbeitung Bernd Edler Wintersemester 2007/2008 Wesentliche Inhalte der Vorlesung Abtastung z-transformation Lineare zeitinvariante Systeme Diskrete Fouriertransformation Systeme bei stochastischer

Mehr

Bildgebende Verfahren in der Medizin Bildgebung in der Medizin mit Ultraschall

Bildgebende Verfahren in der Medizin Bildgebung in der Medizin mit Ultraschall Bildgebende Verfahren in der Medizin Bildgebung in der Medizin mit Ultraschall INSTITUT FÜR BIOMEDIZINISCHE TECHNIK 2008 Google - Imagery 2008 Digital Globe, GeoContent, AeroWest, Stadt Karlsruhe VLW,

Mehr

Elektrische Schwingungen und Wellen

Elektrische Schwingungen und Wellen Elektrische Schwingungen und Wellen. Wechselströme. Elektrischer Schwingkreis i. Wiederholung Schwingung ii. Freie Schwingung iii. Erzwungene Schwingung iv. Tesla Transformator 3. Elektromagnetische Wellen

Mehr

Dreiphasen Leistung- und Energie Kalibrator OCM133C und OCM133C-i

Dreiphasen Leistung- und Energie Kalibrator OCM133C und OCM133C-i Dreiphasen Leistung- und Energie Kalibrator OCM133C und OCM133C-i Dreiphasen Kalibration 1V bis 280VDC und 1V bis 600VAC Ströme 30ADC/AC, bis 90A DC/AC in Einphasenkonfiguration Harmonische und interharmonische

Mehr

Kalibrierschein / Calibration Certificate Nr. / No. xxxxx-x

Kalibrierschein / Calibration Certificate Nr. / No. xxxxx-x Kalibrierschein / Calibration Certificate Nr. / No., garantiert - sofern nicht anders vermerkt - dass das unten angegebene Gerät auf die vom Hersteller veröffentlichten Spezifikationen geprüft wurde und

Mehr

Übungen zur Modernen Theoretischen Physik I SS 14

Übungen zur Modernen Theoretischen Physik I SS 14 Karlsruher Institut für Technologie Übungen zur Modernen Theoretischen Physik I SS 4 Institut für Theoretische Festkörperphysik Prof. Dr. Gerd Schön Blatt 8 Andreas Heimes, Dr. Andreas Poenicke Besprechung

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Gedämpfte & erzwungene Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 16. Dez. 16 Harmonische Schwingungen Auslenkung

Mehr

Übung 9: Aufgaben zu RC- und SC- Filter

Übung 9: Aufgaben zu RC- und SC- Filter ZHAW, ASV, FS05 Übung 9: Aufgaben zu C- und SC- Filter Aufgabe : Kontaktloses Skipass System Bei einem berührungsfreien, induktiven Zutrittssystem in die Ski-Arena wird vom Lesegerät ein starkes Trägersignal

Mehr

Laborpraktikum 2 Kondensator und Kapazität

Laborpraktikum 2 Kondensator und Kapazität 18. Januar 2017 Elektrizitätslehre II Martin Loeser Laborpraktikum 2 Kondensator und Kapazität 1 Lernziele Bei diesem Versuch wird das elektrische Verhalten von Kondensatoren untersucht und quantitativ

Mehr

Air-Sea Gas Transfer: Schmidt Number Dependency and Intermittency

Air-Sea Gas Transfer: Schmidt Number Dependency and Intermittency Air-Sea Gas Transfer: Schmidt Number Dependency and Intermittency Bernd Jähne, Reinhard Nielsen, Christopher Pop, Uwe Schimpf, and Christoph Garbe Interdisziplinäres Zentrum für Wissenschaftliches Rechnen

Mehr

Übungsblatt 13 Physik für Ingenieure 1

Übungsblatt 13 Physik für Ingenieure 1 Übungsblatt 13 Physik für Ingenieure 1 Othmar Marti, (othmarmarti@physikuni-ulmde 1 00 1 Aufgaben für die Übungsstunden Schwingungen 1 Zuerst nachdenken, dann in Ihrer Vorlesungsmitschrift nachschauen

Mehr

Laplace-Transformation

Laplace-Transformation Laplace-Transformation Gegeben: Funktion mit beschränktem Wachstum: x(t) Ke ct t [, ) Definition: Laplace-Transformation: X(s) = e st x(t) dt = L{x(t)} s C Re(s) >c Definition: Inverse Laplace-Transformation:

Mehr

Certificate of conformity Generating unit, NS-protection

Certificate of conformity Generating unit, NS-protection Certificate of conformity Generating unit, NS-protection Applicant: Product: Schneider Electric Solar Inverters USA, Inc. 250 South Vasco Road Livermore, California 94551 USA Photovoltaic Inverter with

Mehr

6.1.2 Summe von drei Variablen Lösung eines linearen Gleichungssystemes mit zwei Unbekannten

6.1.2 Summe von drei Variablen Lösung eines linearen Gleichungssystemes mit zwei Unbekannten 6. Rechenbeispiele Die nachfolgenden einfachen Demonstrationsbeispiele aus dem Gebiet der Analog-Rechentechnik zeigen die Funktion dieses kleinen Analogrechners, der nur mit einer minimalen Anzahl von

Mehr

PMD200WFB DC/DC-Wandler Watt DC/DC Converter Watts. Wirkungsgrad bis 85 % Efficiency up to 85 % Eingangsbereich 2:1 Input Range 2:1

PMD200WFB DC/DC-Wandler Watt DC/DC Converter Watts. Wirkungsgrad bis 85 % Efficiency up to 85 % Eingangsbereich 2:1 Input Range 2:1 MTM Power Messtechnik Mellenbach GmbH Fürstenbergerstr. 143 D-60322 Frankfurt/Main Tel.: +49-(0)69-1426 0 Fax: +49-(0)69-1426 10 www.mtm-power.com info@mtm-power.com Eingangsbereich 2:1 Input Range 2:1

Mehr

All Digital Transceiver

All Digital Transceiver All Digital Transceiver Prinzip Digital-Empfänger ADC, Analog Digital Converter ( Analog-Digital-Wandler ) DDC, Digital Down Converter ( Digitaler Abwärtsmischer ) DSP, Digital Signal Processor SDR-14

Mehr

6.1 Direktempfang. Blockschaltbild eines OOK-Empfängers. Photodiode

6.1 Direktempfang. Blockschaltbild eines OOK-Empfängers. Photodiode Blockschaltbild eines OOK-Empfängers rauschfreier opt. Verstärker s(t) g(t) w(t) Photodiode 2 R y k n(t) optisches Filter incl. Polfilter das Verhalten wird im äquivalenten Tiefpass-Bereich analysiert

Mehr

Test = 28 Punkte. 1: 2: 3: 4: 5: Punkte: Note:

Test = 28 Punkte. 1: 2: 3: 4: 5: Punkte: Note: ZHAW, DSV1, FS2010, Rumc, 1 Test 1 5 + 5 + 5 + 8 + 5 = 28 Punkte Name: Vorname: 1: 2: : 4: 5: Punkte: Note: Aufgabe 1: AD-DA-System. + 1 + 1 = 5 Punkte Das analoge Signal x a (t) = cos(2πf 0 t), f 0 =750

Mehr

Leistung bei Wechselströmen

Leistung bei Wechselströmen Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 27 VL #4 am 6.7.27 Vladimir Dyakonov Leistung bei Wechselströmen I(t) I(t) Wechselspannung U Gleichspannung

Mehr

Musterlösung Übung 4

Musterlösung Übung 4 Musterlösung Übung 4 Aufgabe : Laplace-Transformation und Schaltkreise: Bandpass a) Verwenden von Gl. 5.4, 5.5 und 5.8 aus dem Skript liefern: u in t) u L t) + u C t) + u R t).) C it ) dt + u) + L dit)

Mehr

(2 π f C ) I eff Z = 25 V

(2 π f C ) I eff Z = 25 V Physik Induktion, Selbstinduktion, Wechselstrom, mechanische Schwingung ösungen 1. Eine Spule mit der Induktivität = 0,20 mh und ein Kondensator der Kapazität C = 30 µf werden in Reihe an eine Wechselspannung

Mehr

Multiformat Video-Matrix Switcher

Multiformat Video-Matrix Switcher Multiformat Video-Matrix Switcher Die BetaTouch Matrix ist nicht einfach eine Matrix! Sie vereint auch die Möglichkeiten der Format- und Auflösungswandlung. Folgende Rahmengrößen sind verfügbar: 4er Matrix

Mehr

TA1800 DIGITAL MONOBLOCK

TA1800 DIGITAL MONOBLOCK TRANS AM AMPLIFIERS TA1800 DIGITAL MONOBLOCK 1 OHM STABLE MASTER/SLAVE BASS REMOTE SUBSONIC FILTER PHASE SHIFT Mono Class D Amplifier 1 x 400/600/800 Watts RMS @ 4/2/1 Ohms 1 x 800/1200/1600 Watts MAX

Mehr

Aperturverluste; wellenlängenabhängig; Die endliche Schichtdicke d bewirkt Entmagnetisierung

Aperturverluste; wellenlängenabhängig; Die endliche Schichtdicke d bewirkt Entmagnetisierung Speicherkanal primär immer kontinuierlich Es gibt aber betont analoge und betont digitale Speicher eigentlicher Speicher Anwendung betont analog betont digital analog Kassettenrecorder CD, MD digital R-DAT-Streamer

Mehr

Strom durch Bewegung

Strom durch Bewegung 5 Induktion 1 Strom durch ewegung Stromimpuls ei ewegung des Stabmagneten wird eine Spannung erzeugt kein Stromimpuls Ohne ewegung des Stabmagneten wird keine Spannung erzeugt Stromimpuls ei ewegung des

Mehr

Lösungen. Lösungen Teil I. Lösungen zum Kapitel 3. u(t) 2mV. t/s. u(t) 2mV 1mV. t/ms. u(t) t/ms -2V. x(t) 1. a) u(t) = 2mV3 (t 2ms)

Lösungen. Lösungen Teil I. Lösungen zum Kapitel 3. u(t) 2mV. t/s. u(t) 2mV 1mV. t/ms. u(t) t/ms -2V. x(t) 1. a) u(t) = 2mV3 (t 2ms) Lösungen Lösungen eil I Lösungen zum Kapitel 3. a ut = mv3 t ms ut mv t/ms b ut = mv3t mv3 t ms mv3 t ms mv mv ut t/ms p c ut = V3 t ms sin ms t V ut -V 3 4 5 6 t/ms d xt = 4 s r t s 4 s r t s 4 s r t

Mehr

Modul SiSy: Einleitung

Modul SiSy: Einleitung Modul SiSy: Einleitung SiSy, Einleitung, 1 Grobe Signaleinteilung Signale können Information tragen visuelle «Signale» Hilfreich ist die Unterscheidung nach der Informationsquelle: Nachrichtensignal, Mess-/Sensorsignal,

Mehr