8. Kleinsche Geometrie I: Hyperbolische Geometrie. Das Erlanger Programm.

Größe: px
Ab Seite anzeigen:

Download "8. Kleinsche Geometrie I: Hyperbolische Geometrie. Das Erlanger Programm."

Transkript

1 8. Kleinsche Geometrie I: Hyperbolische Geometrie Nach den bisherigen Ergebnissen müssen wir uns nun um die Gruppe PSL 2 C kümmern. Das Studium dieser Gruppe wird uns in dieser Vorlesung zu einem neuen Typus von Geometrie führen - nämlich der Kleinschen Geometrie. Wir werden uns zunächst mit dem allgemeinen Ansatz der Kleinschen Geometrie vertraut machen, bevor wir - nach diesem Programm - eine konkrete Kleinsche Geometrie konstruieren werden. Es wird dann diese neu konstruierte Kleinsche Geometrie sein, die uns helfen wird, die uns interessierende Gruppe PSL 2 C zu verstehen. Das Erlanger Programm. Die Kleinsche Geometrie wurde zuerst von Felix Klein, einem Göttinger Mathematiker und Kollegen von David Hilbert, beschrieben und im sog. Erlanger Programm formuliert [Felix Klein, Das Erlanger Programm, Vergleichende Betrachtungen über neuere geometrische Forschungen, Ostwalds Klassiker der exakten Wissenschaften, Bd. 253, Verlag Harri Deutsch]. Unter dem Erlanger Programm versteht man genauer die folgende Formulierung aus dieser Arbeit: Es ist eine Mannigfaltigkeit und in derselben eine Transformationsgruppe gegeben; man soll die der Mannigfaltigkeit angehörigen Gebilde hinsichtlich solcher Eigenschaften untersuchen, die durch die Transformationen der Gruppe nicht geändert werden. Grundlage des Erlanger Programms ist also der Begriff der Gruppe. Unter einer Transformationsgruppe versteht man eine Gruppe, die auf einer Mannigfaltigkeit operiert. Es würde hier zu weit führen klären zu wollen, was unter einer Mannigfaltigkeit zu verstehen ist. Für unsere Zwecke genügt es unter einer Mannigfaltigkeit eine Menge zu verstehen, etwa die Räume R, R 2, R 3, R 4 oder C. Definition. Sei G eine Gruppe und M eine Menge. Unter einer Operation von G auf M versteht man eine Abbildung mit (1) ϕ(e,m) = m, und ϕ : G M M, ϕ(g,m) = g(m) (2) ϕ(g 2 g 1,m) = (g 2 g 1 )(m) = g 2 (g 1 (m)), für alle m M.

2 62. Geometrie Man sagt G operiert transitiv auf M, wenn, für je zwei m,n M, ein g G existiert mit g(m) = n. Ist G M M eine Gruppen Operation, dann setzt man, für alle m M: Stab m (G) := { g G g(m) = m }. Stab m (G) heißt der Stabilisator der Gruppe G im Punkt m. Satz. Sei G M M eine Gruppen Operation, dann gilt (1) Stab m (G) ist eine Untergruppe von G, und (2) Wenn G transitiv operiert, dann ist Stab m = Stabn (G), für je zwei Elemente m,n M. Beweis. ad (1): Seien g 1,g 2 Stab m (G). Dann ist (g 2 g 1 )(m) = g 2 (g 1 (m)) = g 2 (m) = m und somit g 2 g 1 Stab m (G). Weiter ist e = g 1 g(m) = g 1 (m), für alle g Stab m (G). Also g 1 Stab m (G), für alle g Stab m (G). ad (2): Da G transitiv operiert, gibt es ein h G mit h(m) = n. Die Zuordnung g hgh 1 definiert eine Abbildung ψ : Stab m (G) Stab n (G), denn, wegen ist ψ(g) Stab n (G). Weiter ist hgh 1 (n) = hgh 1 (h(m) = hg(m) = h(m), ψ(g 2 g 1 ) = hg 2 g 1 h 1 = hg 2 h 1 hg 1 h 1 = ψ(g 1 )ψ(g 2 Also ist ψ ein Homomorphismus. Sei g kern(ψ). Dann ist ψ(g) = hgh 1 = id. Also hg = h und so g = id. Also ist ψ injektiv. Schliesslich ist ψ(h 1 gh) = hh 1 ghh 1 = g und so ist ψ surjektiv. Die Operation von PSL 2 C. Betrachte die beiden Matrixgruppen SL 2 C = { A Mat 2 C det(a) = 1 }, PSL 2 C = SL 2 C/±I, d.h. in der zweiten Gruppe werden zwei Matrizen genau dann gleich gesetzt, wenn sie sich nur durch ihr Vorzeichen unterscheiden. Eine dieser Gruppen operiert treu und die andere nicht. vskip0.5cm Definition. Sei G M M eine Gruppen Operation. Diese Gruppen Operation heißt treue Operation, wenn g = h, falls g(m) = h(m), für alle m M.

3 Die Gruppe G = Sl 2 C operiert auf C durch 10 Kleinsche Geometrie I 63 G C C, (A,z) = az + b cz + d, [ ] a b wobei A =. Diese Operation ist aber nicht treu. Es ist nämlich c d Satz. Die Operation az + b cz + d = az b cz d. z az + b cz + d definiert eine treue und transitive Operation, für die Gruppe G = PSL 2 C. Sie heißt die Operation von PSL 2 C durch gebrochen lineare Transformationen. Beweis. Klar. Wir werden jetzt die Operation durch gebrochen lineare Transformationen etwas genauer untersuchen. Konforme Transformationen. Die für uns grundlegende Eigenschaft der gebrochen linearen Transformationen ist die im folgenden Satz bewiesene Tatsache, dass sie Kreise in Kreise abbilden. Abbildungen mit dieser Eigenschaft nennt man konforme Abbildungen. Satz. Die Abbildung ϕ(z) = az+b cz+d bildet Kreise in C auf Kreise in C ab. Bemerkung. In diesem Satz zählen Geraden auch als Kreise - es sind Kreise die durch durch den Punkt gehen. Beweis. Die allgemeine Gleichung für einen Kreis ist oder mit A,b 1,b 2,C R. Nun erhält man aus (x a) 2 + (y b) 2 = r 2 A(x 2 + y 2 ) + b 1 x + b 2 y + C = 0, z = x + iy, z = x iy die Ausdrücke x = 1 2 (z + z), y = i 2 ( z z), z z = x2 + y 2.

4 64. Geometrie Setzt man dies oben ein, dann erhält man Az z (b 1 ib 2 )z (b 1 + ib 2 ) z + C = 0. Setzt man weiter B = 1 2 (b 1 ib 2 ), dann ergibt sich folgende allgemeine Kreisformel: Az z + Bz + B z + C = 0 wobei A, C R. Um Mittelpunkt und Radius dieses Kreises zu finden, beachte man, dass man die obige Gleichung auch wie folgt umschreiben kann: ( z + B )( z + B ) = B B AC A A A 2, Also ist die obige Gleichung die Gleichung eines Kreises mit Mittelpunkt B A und Radius B B AC A. Wir können annehmen, dass B B > AC, da wir nur reelle Kreise betrachten. 2 Wir betrachten jetzt die Bilder unter ϕ von Kreisen. Dazu setzen wir die obigen Ausdrücke für z und z in die allgemeine Kreisgleichung ein und erhalten: A ( dw + b)( d w + b) (cw a)( c w ā) A ( dw + b)( d w + b) (cw a)( c w ā) (Ad d B cd Bc d + Cc c)w w + ( A bd + Bād + B bc Cāc)w + B dw + b cw a + B d w + b c w ā + C = 0 ( dw + b)( c w ā) + B (cw a)( c w ā) + B ( d w + b)(cw a) ( c w ā)(cw a) + C = 0 + ( Ab d + Bb c + Ba d Ca c)w + Ab b Bāb Ba b + Caā = 0 Hier ist w w R, da d d,c c R. Weiter ist B cd + Bc d R als Summe einer Zahl und ihrer Konjugierten. Aus dem gleichen Grund sind die konstanten Terme reell. Schließlich ist der Koeffizient von w das Konjugierte des Koeffizienten von w. Also hat der letzte der obigen Ausdrücke die Form der Gleichung des allgemeinen Kreises. Dies beweist den Satz. Kleinsche Geometrie für PSL 2 C. Man nutzt nun die Konformität der gebrochen linearen Transformationen aus, um für PSL 2 C eine Kleinsche Geometrie zu definieren. Definition. Eine Kleinsche Geometrie für PSL 2 C ist ein Tripel (P, G, E), wobei

5 10 Kleinsche Geometrie I 65 (1) Die Elemente von P sind Tripel von Kreisen in R 2, die paarweise nicht disjunkt sind, modulo der unten gegebenen Äquivalenzrelation. Die Elemente von P heißen Punkte. (2) Die Elemente von G sind Paare von nicht disjunkten Kreisen in R 2, modulo der unten gegebenen Äquivalenzrelation. Diese Element heißen Geraden. (3) Die Elemente von E sind Kreise in R 2. Diese Elemente heißen Ebenen. Punkt Gerade Ebene Definition. Zwei Paare von nicht disjunkten Kreisen heißen äquivalent, wenn sie dieselben Schnittpunkte haben. Also könnte man G mit der Menge der Punkte Paare von R 2 identifizieren. Um die Äquivalenzrelation zwischen Tripel von Kreisen zu erklären, bezeichne die Strecke, die die beiden Schnittpunkte von einem nicht disjunkten Paar von Kreisen verbindet, als Mittelstrecke des Kreispaares. Dann gilt: Satz. Sei (K 1,K 2,K 3 ) ein Tripel von paarweise nicht disjunkten Kreisen. Dann schneiden sich die Mittelstrecken der drei Mittelstrecken für (K 1,K 2 ),(K 1,K3),(K 2,K 3 ) in einem Punkt, dem Zentrum des Kreis Tripels. Das Zentrum zerlegt jede Mittellinie in zwei Strecken. Da Produkt dieser Strecken ist für alle Mittellinien gleich, es heißt der Modulos des Kreis Tripels. Beweis. Siehe unten. Definition. Zwei Tripel von paarweise nicht disjunkten Kreisen heißen äquivalent, wenn sowohl Zentrum als auch Modulos übereinstimmen.

6 66. Geometrie Zentrum und Mittelstrecken Mittelstrecke Wir haben die folgenden Relationen (im Hilbertschen Sinne): Ein Punkt ist zu einer Geraden inzident, wenn sein Zentrum auf der Mittelstrecke der Geraden liegt und diese Strecke in zwei Strecken so zerlegt, dass ihr Produkt gleich dem Modulos des Punktes ist. Eine Gerade ist zu einer Ebene Inzident, wenn ihre Endpunkte auf dem Kreis der Ebene liegen. Seien drei Punkte P 1,P 2,P 3 auf einer Geraden gegeben. Dann liegt P 2 zwischen P 1,P 2, wenn einer seiner Kreise zwischen Kreisen von P 1 und P 2 liegt. Q P g g R Ein Punkt, Q, zwischen zwei anderen Punkten, P.R, einer Geraden, g Zwei Strecken sind kongruent, wenn eine auf die andere durch ein Element von PSL 2 C abgebildet wird. Zwei Winkel sind kongruent, wenn einer auf den anderen durch ein Element von PSL 2 C abgebildet wird. Man überzeugt sich leicht, dass diese geometrischen Objekte alle Hilbertschen Axiome erfüllen - außer dem Parallelenaxion. Deswegen nennt man diese Geometrie eine nicht- Euklidische Geometrie.

7 Hyperbolische Geometrie. 10 Kleinsche Geometrie I 67 Um aus der obigen Kleinschen Geometrie (deren Grundelemente gewisse Mengen von Kreisen in R 2 bzw. C sind), die hyperbolische Geometrie zu machen, müssen wir eine Dimension borgen. Wir betrachten als jetzt R 2 R 3 als Koordinaten Unterraum von R 3. Sei R 3 + := { x = [x 1,x 2,x 3 ] R 3 x 3 > 0 } Jedem Kreis K R 2 ordnen wir die Halbkugel in R 3 + zu, deren Mittelpunkt in R 2 liegt und die R 2 in K trifft. Definition. Der obere Halbraum R 3 + heißt hyperbolischer Raum. Die hyperbolische Geometrie ist ein Tripel (P, G, E), wobei die Ebenen aus E die obigen Halbkugeln in R 3 +, die Geraden aus G die Punkte aus P die Schnitte von zwei Ebenen und die Schnitte von drei Ebenen sind. Jede Gerade ist Schnitt von zwei Ebenen Mit dieser Konvention können wir eine Operation G R 3 + R 3 + von G = PSL 2 C auf dem hyperbolischen Raum R 3 + angeben. Hierfür definieren wir das Bild g(p) eines Punktes P R 3 + unter dem Element g PSL 2 C wie folgt. Zunächst wähle drei hyperbolische Ebenen im hyperbolischen Raum, die sich in P schneiden. Die Bilder dieser Ebenen sind durch die Bilder der Randkreise unter der gebrochenen linearen Transformation von g auf R 2 gegeben. Also bildet g ein Tripel von hyperbolischen Ebenen auf ein Tripel von hyperbolischen Ebenen ab. Damit ist aber die Operation auf den Punkten des hyperbolischen Raumes definiert, da sich drei hyperbolische Ebenen in höchstem einen Punkt treffen. Aus dem folgenden Korollar zum Pythagoräischen Lehrsatz lässt sich dann schnell beweisen, dass die Äquivalenzrelationen in den Definitionen von Punkten und Geraden der Kleinschen Geometrie von PSL 2 C gerade den Punkten und Geraden der hyperbolischen Geometrie entsprechen.

8 68. Geometrie Satz. Sei ein rechtwinkliges Dreieck. Sei h seine Höhe. Seien p,q die Strecken in die die Hypothenuse von durch den Aufpunkt von h zerlegt wird. Dann ist h 2 = p q Beweis. a h b p q Der Höhensatz a 2 = h 2 + p 2 und b 2 = h 2 + q 2. Also (h 2 + p 2 ) + (h 2 + q 2 ) = a 2 + b 2 = (p + q) 2 = p 2 + 2pq + q 2 und so h 2 = p q. Dies beweist Satz. Die Kleinsche Geometrie von PSL 2 C ist der hyperbolischen Geometrie von PSL 2 C äquivalent. Beweis. Klar. Damit ist die Geometrie des hyperbolischen Raumes auf synthetische Weise gegeben. Man sieht tatsächlich leicht, dass alle Axiome der Hilbertschen Geometrie erfüllt sind - bis auf das Parallelaxiom. Wir können aber - wie in der Hilbertschen Geometrie - noch nicht messen. Es bleibt die Aufgabe aus der hyperbolischen Geometrie eine cartesische hyperbolische Geometrie zu machen in der man dann auch Längen und Winkel messen kann. Auf dieses Problem kommen wir in der übernächsten Vorlesung zurück. Zunächst müssen wir noch die orthogonalen Abbildungen, d.h. die Isometrien der hyperbolischen Geometrie studieren. Für diesen Abschnitt wurde das Buch [L. R. Ford, Automorphic Functions, Chelsea] herangezogen.

8 Die Riemannsche Zahlenkugel

8 Die Riemannsche Zahlenkugel 8 Die Riemannsche Zahlenkugel Wir untersuchen zunächst Geraden- und Kreisgleichungen in der komplexen Ebene C = R 2. Geradengleichungen Die Parameterdarstellung einer Geraden durch zwei Punkte z 1 z 2

Mehr

3 Topologische Gruppen

3 Topologische Gruppen $Id: topgr.tex,v 1.4 2010/05/31 08:41:53 hk Exp hk $ 3 Topologische Gruppen Nachdem wir jetzt gezeigt haben das Quotienten G/H topologischer Gruppen wieder topologische Gruppen sind, wollen wir das Ergebnis

Mehr

Musterlösung zur Klausur Grundwissen Schulmathematik am

Musterlösung zur Klausur Grundwissen Schulmathematik am Musterlösung zur Klausur Grundwissen Schulmathematik am 24.2.2012 Aufgabe 1 (10 Punkte) Zeigen Sie: Für alle n N ist n 3 3n 2 +2n durch 6 teilbar. svorschläge Beweis durch Induktion nach n n = 1. Es ist

Mehr

Im Bsp. vorher haben wir die Zahl 8 7

Im Bsp. vorher haben wir die Zahl 8 7 Im Bsp. vorher haben wir die Zahl 8 7 2 2 (1 + 2 2 ) 3 betrachtet. Die Zahl liegt in einer iterierten ( zweifachen ) quadratischen Erweiterung von Q, nämlich in Q( 2)( 3). Diese Erweiterung ist aber in

Mehr

1 Angeordnete Körper und Anordnung

1 Angeordnete Körper und Anordnung 1 ANGEORDNETE KÖRPER UND ANORDNUNG 1 1 Angeordnete Körper und Anordnung Die nächste Idee, die wir interpretieren müssen ist die Anordnung. Man kann zeigen, dass sie nicht über jeden Körper möglich ist.

Mehr

MAT746 Seminar über Euklidische Geometrie Philipp Becker

MAT746 Seminar über Euklidische Geometrie Philipp Becker MAT746 Seminar über Euklidische Geometrie Philipp Becker R David Hilbert (1862-1943) Den Begriffen aus der Anschauungswelt fehlt die notwendige mathematische Exaktheit. Gebäude der Geometrie soll nicht

Mehr

Drehung um einen Punkt um Winkel α.

Drehung um einen Punkt um Winkel α. Drehung um einen Punkt um Winkel α. Sei A R 2 und α R. Drehung um A um Winkel α ist eine Abbildung D A (α) : R 2 R 2 welche wie folgt definiert ist: D A (α) = T A D 0 (α) T ( A), wobei die Abbildung D

Mehr

Elementare Geometrie Vorlesung 19

Elementare Geometrie Vorlesung 19 Elementare Geometrie Vorlesung 19 Thomas Zink 28.6.2017 1.Gleichungen von Kreisen Es sei OAB ein kartesisches Koordinatensystem der Ebene E. Für einen Punkt P mit den Koordinaten (x, y) schreiben wir auch

Mehr

1 Liesche Gruppen: Grundlegendes und Beispiele

1 Liesche Gruppen: Grundlegendes und Beispiele 1 Liesche Gruppen: Grundlegendes und Beispiele In dieser Vorlesung verstehen wir unter einer differenzierbaren Mannigfaltigkeit einen Hausdorff- Raum mit abzählbarer Basis und mit einem maximalen C -Atlas.

Mehr

Kapitel V. Affine Geometrie

Kapitel V. Affine Geometrie Kapitel V Affine Geometrie 1 Affine Räume Betrachte ein lineares Gleichungssystem Γ : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1 + a m2 x 2 + + a mn x n = b

Mehr

Ebene und. Gerade, 2. Punkte A, B, C,..., die auf einer Geraden liegen, heißen kollinear.

Ebene und. Gerade, 2. Punkte A, B, C,..., die auf einer Geraden liegen, heißen kollinear. 16 3 Das Axiomensystem Motiviert von den Elementen des Euklid, wollen wir jetzt ein modernes Axiomensystem für die Ebene Geometrie aufstellen. Zum ersten Mal wurde das um 1900 von David Hilbert geleistet,

Mehr

Übungen zu Geometrie (LGy) Universität Regensburg, Sommersemester 2014 Dr. Raphael Zentner, Dr. Olaf Müller

Übungen zu Geometrie (LGy) Universität Regensburg, Sommersemester 2014 Dr. Raphael Zentner, Dr. Olaf Müller Übungen zu Geometrie (LGy) Universität Regensburg, Sommersemester 2014 Dr. Raphael Zentner, Dr. Olaf Müller Übungsblatt 13 Dieses Übungsblatt wird nicht mehr zur Abgabe vorgesehen. Es dient der Wiederholung

Mehr

eine O fixierende Bewegung.

eine O fixierende Bewegung. 1. Bewegungen der hyperbolischen Ebene Sei nun H eine hyperbolische Ebene. Dann erhält man dieselben Klassen von Bewegungen wie im Euklidischen Fall und eine weitere Klasse. Wir haben oben nur ein einziges

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 7 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 7 7. (Frühjahr 5, Thema, Aufgabe ) Sei V ein reeller Vektorraum. a) Wann nennt man eine Teilmenge U

Mehr

Grundwissen Abitur Geometrie 15. Juli 2012

Grundwissen Abitur Geometrie 15. Juli 2012 Grundwissen Abitur Geometrie 5. Juli 202. Erkläre die Begriffe (a) parallelgleiche Pfeile (b) Vektor (c) Repräsentant eines Vektors (d) Gegenvektor eines Vektors (e) Welcher geometrische Zusammenhang besteht

Mehr

5. Äquivalenzrelationen

5. Äquivalenzrelationen 5. Äquivalenzrelationen 35 5. Äquivalenzrelationen Wenn man eine große und komplizierte Menge (bzw. Gruppe) untersuchen will, so kann es sinnvoll sein, zunächst kleinere, einfachere Mengen (bzw. Gruppen)

Mehr

MAA = MAB + B AA = B CA + CAA BA A Nun sehen wir mit Proposition 10.7 aus dem Skript, dass A M AB gelten muss.

MAA = MAB + B AA = B CA + CAA BA A Nun sehen wir mit Proposition 10.7 aus dem Skript, dass A M AB gelten muss. 1. Konvexität in der absoluten Ebene In einem Dreieck in der Euklidischen Ebene hat die Strecke zwischen zwei Seitenmittelpunkten die halbe Länge der dritten Seite. In der absoluten Ebene hat man eine

Mehr

Affine Eigenschaften ( stets K = R)

Affine Eigenschaften ( stets K = R) Affine Eigenschaften ( stets K = R) Def. 15 Sei M eine Teilmenge eines affinen Raums A über V (über K). Eine Eigenschaft der Menge M heißt affin, wenn für jede Affinität F : A A 1 die Bildmenge {F(a)wobei

Mehr

4. Vortrag - Garben. Ling Lin, Kristijan Cule Datum: 26. April 2009

4. Vortrag - Garben. Ling Lin, Kristijan Cule Datum: 26. April 2009 4. Vortrag - Garben Datum: 26. April 2009 1 Graduierte Ringe Definition 4.1.1. Eine k-algebra R heißt graduiert, wenn sie dargestellt werden kann als eine direkte Summe R = R n, wobei die R n als k-unterräume

Mehr

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel Lösungen Übung 7 Aufgabe 1. Skizze (mit zusätzlichen Punkten): Die Figur F wird begrenzt durch die Strecken AB und BC und den Kreisbogen CA auf l. Wir werden die Bilder von AB, BC und CA unter der Inversion

Mehr

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { }

Lösungsmenge L I = {x R 3x + 5 = 9} = L II = {x R 3x = 4} = L III = { } Zur Einleitung: Lineare Gleichungssysteme Wir untersuchen zunächst mit Methoden, die Sie vermutlich aus der Schule kennen, explizit einige kleine lineare Gleichungssysteme. Das Gleichungssystem I wird

Mehr

ÜBUNGSBLATT 3 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS

ÜBUNGSBLATT 3 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS ÜBUNGSBLATT 3 LÖSUNGEN MAT121/MAT131 ANALYSIS I HERBSTSEMESTER 2010 PROF. DR. CAMILLO DE LELLIS Aufgabe 1. a) Beweisen Sie aus den Axiomen für komplexe Zahlen, dass für alle z, w C gilt: zw = z w; b) Schreiben

Mehr

Die Abbildung (x 1 ;x 2 ) 7! (x 1 ;x 2 ; 1) ist eine Einbettung von R 2 in P 2 (als Mengen). Punkte mit z 6= 0 sind endliche" Punkte mit inhomogenen K

Die Abbildung (x 1 ;x 2 ) 7! (x 1 ;x 2 ; 1) ist eine Einbettung von R 2 in P 2 (als Mengen). Punkte mit z 6= 0 sind endliche Punkte mit inhomogenen K Kapitel IV Projektive Geometrie In diesem Kapitel wird eine kurze Einführung in die projektive Geometrie gegeben. Es sollen unendlich ferne Punkte mit Hilfe von homogene Koordinaten eingeführt werden und

Mehr

Körper- und Galoistheorie

Körper- und Galoistheorie Prof. Dr. H. Brenner Osnabrück SS 2011 Körper- und Galoistheorie Vorlesung 5 In dieser Vorlesung diskutieren wir Normalteiler, das sind Untergruppen, für die Links- und Rechtsnebenklassen übereinstimmen.

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Sommersemester 2010 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax = b

Mehr

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel

Institut für Mathematik Geometrie und Lineare Algebra J. Schönenberger-Deuel Lösungen Übung 6 Aufgabe 1. a.) Idee: Gesucht sind p, q mit pq = 6 2 und p + q = 13. Dies entspricht genau der Situation im Höhensatz. Konstruktion: 1. Punkte A, B mit AB = 13 2. Gerade g AB mit dist(g,

Mehr

Komplexe Zahlen und konforme Abbildungen

Komplexe Zahlen und konforme Abbildungen Kapitel 1 Komplexe Zahlen und konforme Abbildungen 1.0 Geometrie der komplexen Zahlen Die Menge C der komplexen Zahlen, lässt sich mithilfe der bijektiven Abbildung C := {x + iy : x,y R}, C z = x + iy

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 9. November 2017 1/34 Beispiel 3.6 Wir können die rationalen Zahlen wie folgt konstruieren:

Mehr

Gleitspiegelung und Verkettungen von Spiegelung und Parallelverschiebung

Gleitspiegelung und Verkettungen von Spiegelung und Parallelverschiebung Gleitspiegelung und Verkettungen von Spiegelung und Parallelverschiebung Def. Eine Gleitspiegelung ist eine Spiegelung an einer Geraden (Spiegelachse) verknüpft mit einer Translation parallel zu dieser

Mehr

1 Anmerkungen zu den Korrekturen

1 Anmerkungen zu den Korrekturen 1 Anmerkungen zu den Korrekturen Bei folgenden Begriffen traten z.t. Schwierigkeiten auf: 1.1 Nebenklassen 1. Ist (G, ) eine Gruppe, so ist für Teilmengen A, B G die Menge A B definiert als A B := {ab

Mehr

8 1. GEOMETRIE DIFFERENZIERBARER MANNIGFALTIGKEITEN

8 1. GEOMETRIE DIFFERENZIERBARER MANNIGFALTIGKEITEN 8 1. GEOMETRIE DIFFERENZIERBARER MANNIGFALTIGKEITEN (vi) Konvergenz von Folgen ist in topologischen Räumen folgendermaßen definiert: Ist (a n ) M eine Folge, so heißt sie konvergent gegen a M, wenn es

Mehr

Lineare Algebra I Zusammenfassung

Lineare Algebra I Zusammenfassung Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE

Wiederholungsblatt Elementargeometrie LÖSUNGSSKIZZE Wiederholungsblatt Elementargeometrie im SS 01 bei Prof. Dr. S. Goette LÖSUNGSSKIZZE Die Lösungen unten enthalten teilweise keine vollständigen Rechnungen. Es sind aber alle wichtigen Zwischenergebnisse

Mehr

Definition 1.2. Eine kontinuierliche Gruppe mit einer endlichen Menge an Parametern heißt endliche kontinuierliche Gruppe. x cosξ sinξ y sinξ cosξ

Definition 1.2. Eine kontinuierliche Gruppe mit einer endlichen Menge an Parametern heißt endliche kontinuierliche Gruppe. x cosξ sinξ y sinξ cosξ 8 Gruppentheorie 1 Lie-Gruppen 1.1 Endliche kontinuierliche Gruppe Definition 1.1. Eine Menge G mit einer Verknüpfung m heißt Gruppe, falls folgende Axiome erfüllt sind: (i) Die Operation m, genannt Multiplikation,

Mehr

} Symmetrieachse von A und B.

} Symmetrieachse von A und B. 5 Symmetrieachsen Seite 1 von 6 5 Symmetrieachsen Gleicher Abstand von zwei Punkten Betrachtet man zwei fest vorgegebene Punkte A und B, drängt sich im Zusammenhang mit dem Abstandsbegriff eine Frage auf,

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Kapitel 2 Lineare Gleichungssysteme 21 Lineare Gleichungssysteme und Matrizen Lernziele 2 Lineare Gleichungssysteme definieren Matrizen, Matrizen definieren lineare Abbildungen, Lösen von linearen Gleichungssystemen

Mehr

Einführung in Algebra und Zahlentheorie Lösungsvorschläge zur Klausur vom Aufgabe 1 (6 Punkte)

Einführung in Algebra und Zahlentheorie Lösungsvorschläge zur Klausur vom Aufgabe 1 (6 Punkte) Aufgabe 1 (6 Punkte) Einführung in Algebra und Zahlentheorie svorschläge zur Klausur vom 23.09.2016 a) Bestimmen Sie das multiplikativ inverse Element zu 22 in Z/61Z. b) Finden Sie ein x Z mit folgenden

Mehr

Halbgruppen, Gruppen, Ringe

Halbgruppen, Gruppen, Ringe Halbgruppen-1 Elementare Zahlentheorie Einige Bezeichnungen Halbgruppen, Gruppen, Ringe Die Menge N 0 der natürlichen Zahlen 0, 1, 2, Die Menge N = N 1 der von Null verschiedenen natürlichen Zahlen Die

Mehr

Wir betrachten nun das Deformieren einer Abbildung in eine andere.

Wir betrachten nun das Deformieren einer Abbildung in eine andere. Abschnitt 1 Quotienten Homotopie, erste Definitionen Wir betrachten nun das Deformieren einer Abbildung in eine andere. 1.1 Definition. Seien X, Y topologische Räume und f 0, f 1 : X Y stetige Abbildungen.

Mehr

Karoline Grandy und Renate Schöfer

Karoline Grandy und Renate Schöfer Karoline Grandy und Renate Schöfer 1 Lemma 1 (Haruki) In einem Kreis seien zwei sich nicht schneidende Sehnen AB und CD gegeben. Außerdem wähle einen beliebiger Punkt P auf dem Kreisbogen zwischen A und

Mehr

3.6 Einführung in die Vektorrechnung

3.6 Einführung in die Vektorrechnung 3.6 Einführung in die Vektorrechnung Inhaltsverzeichnis Definition des Vektors 2 2 Skalare Multiplikation und Kehrvektor 4 3 Addition und Subtraktion von Vektoren 5 3. Addition von zwei Vektoren..................................

Mehr

9. Geometrische Konstruktionen und Geometrische Zahlen.

9. Geometrische Konstruktionen und Geometrische Zahlen. 9. Geometrische Konstruktionen und Geometrische Zahlen. Die Dreiteilungsgleichnung. Das Problem der Dreiteilung des Winkels wurde von Descartes vollständig gelöst. Dies ist in der Geometrie von Descartes

Mehr

f ist eine Funktion und für alle bis. auf endlich viele h H gilt f(h) = 0

f ist eine Funktion und für alle bis. auf endlich viele h H gilt f(h) = 0 14 KAPITEL 2. RINGE Für n = 12 schreiben wir k anstelle [k] 12 der Übersichtlichkeit halber: 0 1 2 3 4 5 6 7 8 9 10 11 0 0 0 0 0 0 0 0 0 0 0 0 12 1 0 1 2 3 4 5 6 7 8 9 10 11 2 0 2 4 6 8 10 0 2 4 6 8 10

Mehr

3. Übungszettel zur Vorlesung. Geometrische Gruppentheorie Musterlösung. Cora Welsch

3. Übungszettel zur Vorlesung. Geometrische Gruppentheorie Musterlösung. Cora Welsch 3. Übungszettel zur Vorlesung Geometrische Gruppentheorie Musterlösung WiSe 2015/16 WWU Münster Prof. Dr. Linus Kramer Nils Leder Cora Welsch Aufgabe 3.1 Sei I eine Indexmenge und A α für jedes α I eine

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Ebene Elementargeometrie

Ebene Elementargeometrie Ebene Elementargeometrie Im Folgenden unterscheiden wir neben Definitionen (Namensgebung) und Sätzen (nachweisbaren Aussagen) so genannte Axiome. Axiome stellen der Anschauung entnommene Aussagen dar,

Mehr

Einführung in Algebra und Zahlentheorie Übungsblatt 5

Einführung in Algebra und Zahlentheorie Übungsblatt 5 Einführung in Algebra und Zahlentheorie Übungsblatt 5 Aufgabe 1 4 Punkte a Eine Gruppe G mit #G = 55 operiere auf einer Menge M mit #M = 39. Zeige: Die Operation besitzt dann mindestens einen Fixpunkt.

Mehr

Übungen zur Vorlesung. Grundlagen der Geometrie. PD Dr. S. Sagave. Wintersemester 2014/15

Übungen zur Vorlesung. Grundlagen der Geometrie. PD Dr. S. Sagave.  Wintersemester 2014/15 Blatt 1, 13.10.2014 Aufgabe 1.1. Sei (E, G) eine Ebene, also eine Menge E zusammen mit einer Menge von Teilmengen G, so dass die Inzidenzaxiome (A1) bis (A4) erfüllt sind. Sei E E eine Teilmenge, die nicht

Mehr

Algebra I. Prof. Dr. M. Rost. Übungen Blatt 5 (WS 2015/16) 1. Abgabetermin: Donnerstag, 26. November.

Algebra I. Prof. Dr. M. Rost. Übungen Blatt 5 (WS 2015/16) 1. Abgabetermin: Donnerstag, 26. November. Algebra I Prof. Dr. M. Rost Übungen Blatt 5 (WS 2015/16) 1 Abgabetermin: Donnerstag, 26. November http://www.math.uni-bielefeld.de/~rost/a1 Erinnerungen an die Vorlesung: Im Folgenden werden manchmal einige

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Wintersemester 2014/15 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax

Mehr

1 Analytische Geometrie und Grundlagen

1 Analytische Geometrie und Grundlagen $Id: vektor.tex,v 1.22 2017/05/15 15:10:33 hk Exp $ 1 Analytische Geometrie und Grundlagen 1.5 Abstände und Winkel In der letzten Sitzung haben wir einen orientierten Winkelbegriff zwischen Strahlen mit

Mehr

Lösbarkeit linearer Gleichungssysteme

Lösbarkeit linearer Gleichungssysteme Lösbarkeit linearer Gleichungssysteme Lineares Gleichungssystem: Ax b, A R m n, x R n, b R m L R m R n Lx Ax Bemerkung b 0 R m Das Gleichungssystem heißt homogen a A0 0 Das LGS ist stets lösbar b Wenn

Mehr

Hauptachsentransformation: Eigenwerte und Eigenvektoren

Hauptachsentransformation: Eigenwerte und Eigenvektoren Hauptachsentransformation: Eigenwerte und Eigenvektoren die bisherigen Betrachtungen beziehen sich im Wesentlichen auf die Standardbasis des R n Nun soll aufgezeigt werden, wie man sich von dieser Einschränkung

Mehr

π und die Quadratur des Kreises

π und die Quadratur des Kreises π und die Quadratur des Kreises Schnupper-Uni für SchülerInnen 8. Februar 2006 Dr. Michael Welter http://www.math.uni-bonn.de/people/welter 1 Konstruktionen mit Zirkel und Lineal Gegeben sei eine Menge

Mehr

Konstruktion reeller Zahlen aus rationalen Zahlen

Konstruktion reeller Zahlen aus rationalen Zahlen Konstruktion reeller Zahlen aus rationalen Zahlen Wir nehmen an, daß der Körper der rationalen Zahlen bekannt ist. Genauer wollen wir annehmen: Gegeben ist eine Menge Q zusammen mit zwei Verknüpfungen

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlagen der Mathematik, WS 0/ Thomas Timmermann 8. Januar 0 Kardinalzahlen und die Mächtigkeit von Mengen Gleichmächtigkeit von Menge Zur Erinnerung: Wir wollen unendlich große Mengen hinsichtlich

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

Wiederholung: lineare Abbildungen

Wiederholung: lineare Abbildungen Wiederholung: lineare Abbildungen Def Es seien (V,+, ) und (U, +, ) zwei Vektorräume Eine Abbildung f : V U heißt linear, falls für alle Vektoren v 1, v 2 V und für jedes λ R gilt: (a) f (v 1 + v 2 ) =

Mehr

Homogene und inhomogene Koordinaten und das Hyperboloid

Homogene und inhomogene Koordinaten und das Hyperboloid Seminararbeit zum Seminar aus Reiner Mathematik Homogene und inhomogene Koordinaten und das Hyperboloid Gernot Holler 1010674 WS 2012/13 28.November 2012 1 Inhaltsverzeichnis 1 Einleitung 3 2 Homogene

Mehr

F B. Abbildung 2.1: Dreieck mit Transversalen

F B. Abbildung 2.1: Dreieck mit Transversalen 2 DS DREIECK 16 2 Das Dreieck 2.1 Ein einheitliches Beweisprinzip Def. Eine Gerade, die jede Trägergerade der Seiten eines Dreiecks (in genau einem Punkt) schneidet, heißt Transversale des Dreiecks. Eine

Mehr

Lernunterlagen Vektoren in R 2

Lernunterlagen Vektoren in R 2 Die Menge aller reellen Zahlen wird mit R bezeichnet, die Menge aller Paare a 1 a 2 reeller Zahlen wird mit R 2 bezeichnet. Definition der Menge R 2 : R 2 { a 1 a 2 a 1, a 2 R} Ein Zahlenpaar a 1 a 2 bezeichnet

Mehr

Klausur zur Einführung in die Geometrie im SS 2002

Klausur zur Einführung in die Geometrie im SS 2002 Klausur zur Einführung in die Geometrie im SS 2002 Name, Vorname... Matr.Nr.... Semester-Anzahl im SS 2002:... Studiengang GH/R/S Tutor/in:... Aufg.1 Aufg,2 Aufg.3 Aufg.4 Aufg.5 Aufg.6 Aufg.7 Aufg.8 Gesamt

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

Geometrie der Ebene. 1 Allgemeine Konventionen und Definitionen

Geometrie der Ebene. 1 Allgemeine Konventionen und Definitionen Vortrag im Rahmen des Proseminars zur Analysis, 7.06.006 Felix Bachmair Der Zugang zu der Geometrie der Ebene über die komplexen Zahlen ermöglicht einfache und sehr effektive Verfahren. Beispielhaft werden

Mehr

Ausgewählte Lösungen zu den Übungsblättern 9-10

Ausgewählte Lösungen zu den Übungsblättern 9-10 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Dezember Ausgewählte Lösungen zu den Übungsblättern 9- Übungsblatt

Mehr

Sphärische Zwei - und Dreiecke

Sphärische Zwei - und Dreiecke TECHNISCHE UNIVERSITÄT DORTMUND Sphärische Zwei - und Dreiecke Proseminar innerhalb des Lehramtsstudiums im Fach Mathematik Meryem Öcal Matrikelnummer 168833 Studiengang LABG 2009 Prüfer: Prof. Dr. Lorenz

Mehr

Logische Grundlagen der Mathematik, WS 2014/15

Logische Grundlagen der Mathematik, WS 2014/15 Logische Grundlagen der Mathematik, WS 2014/15 Thomas Timmermann 26. November 2014 Was kommt nach den natürlichen Zahlen? Mehr als die natürlichen Zahlen braucht man nicht, um einige der schwierigsten

Mehr

5 Analytische Geometrie

5 Analytische Geometrie 5 Analytische Geometrie Die Grundidee der analytischen Geometrie ist es, geometrische Objekte in Räumen mittels linearer Algebra zu beschreiben 51 Affine Räume Definition 511 Ein affiner Raum (AR) über

Mehr

Die Strahlensätze. Ben Hambrecht. 1 Zentrische Streckungen 2. 2 Der 1. Strahlensatz 7. 3 Der Streckfaktor Der 2.

Die Strahlensätze. Ben Hambrecht. 1 Zentrische Streckungen 2. 2 Der 1. Strahlensatz 7. 3 Der Streckfaktor Der 2. Die Strahlensätze Ben Hambrecht Inhaltsverzeichnis 1 Zentrische Streckungen 2 2 Der 1. Strahlensatz 7 3 Der Streckfaktor 11 4 Der 2. Strahlensatz 14 5 Der 3. Strahlensatz 18 6 Die Umkehrungen der Strahlensätze

Mehr

6.6 Normal- und Kompositionsreihen

6.6 Normal- und Kompositionsreihen 282 6.6 Normal- und Kompositionsreihen Es geht jetzt um die innere Struktur von Gruppen, soweit diese mit Ketten von ineinandergeschachtelten Normalteilern beschrieben werden kann. Erinnern wir uns deshalb

Mehr

Einführung in Algebra und Zahlentheorie Lösungsvorschlag zur Klausur am 16. Februar 2016

Einführung in Algebra und Zahlentheorie Lösungsvorschlag zur Klausur am 16. Februar 2016 Fakultät für Mathematik Institut für Algebra und Geometrie PD Dr. Stefan Kühnlein Dipl.-Math. oec. Anja Randecker Einführung in Algebra und Zahlentheorie Lösungsvorschlag zur Klausur am 16. Februar 016

Mehr

(a) Welche der folgenden Gruppen hat 24 Elemente? D 6 GL 2 (F 2 ) X Die Tetraedergruppe. (b) Welche der folgenden Aussagen ist wahr?

(a) Welche der folgenden Gruppen hat 24 Elemente? D 6 GL 2 (F 2 ) X Die Tetraedergruppe. (b) Welche der folgenden Aussagen ist wahr? Aufgabe 1. (10 Punkte) Bei den folgenden Teilaufgaben ist jeweils genau eine Antwort richtig; diese ist anzukreuzen. Beweise oder Begründungen sind nicht erforderlich. Für jede richtige Antwort erhalten

Mehr

G. Dobner/H.-J. Dobner: Lineare Algebra Elsevier Spektrum Akademischer Verlag

G. Dobner/H.-J. Dobner: Lineare Algebra Elsevier Spektrum Akademischer Verlag G. Dobner/H.-J. Dobner: Lineare Algebra Elsevier Spektrum Akademischer Verlag Beantwortung der Fragen und Lösungen der Aufgaben zu Kapitel Version V vom 3.. 28 2 Beantwortung der Fragen zu Kapitel TESTFRAGEN

Mehr

Algebra I, WS 04/05. i 0)

Algebra I, WS 04/05. i 0) G. Nebe, M. Künzer Algebra I, WS 04/05 Lösung 5 Aufgabe 20. 1 Wir haben einen Normalteiler C 3 = 1, 2, 3. Es ist mit C 2 := 1, 2 der Schnitt C 3 C 2 = 1, und folglich aus Ordnungsgründen S 3 = C 3 C 2.

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 5 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie Aufgabe. Skalarprodukt und Orthogonalität.a) Bezüglich des euklidischen

Mehr

13. Lineare Algebra und Koordinatenwechsel.

13. Lineare Algebra und Koordinatenwechsel. 3. Lineare Algebra und Koordinatenwechsel. In dieser Vorlesung behandeln wir die Vorzüge von Koordinatenwechseln. Insbesondere werden wir über geeignete Koordinatenwechsle zu einer Klassifikation der lineare

Mehr

Ergänzung zu komplexe Zahlen

Ergänzung zu komplexe Zahlen Juli 2015 Übersicht 1 Ortskurven 2 Wechselstromkreis mit ohmschem und kapazitivem Widerstand (Parallelschaltung) i(t) u(t) R C Bei festen Werten für den ohmschen Widerstand R und die Kapazität C ergibt

Mehr

Mathematik I. Vorlesung 16. Eigentheorie

Mathematik I. Vorlesung 16. Eigentheorie Prof Dr H Brenner Osnabrück WS 009/00 Mathematik I Vorlesung 6 Eigentheorie Unter einer Achsenspiegelung in der Ebene verhalten sich gewisse Vektoren besonders einfach Die Vektoren auf der Spiegelungsachse

Mehr

Bild, Faser, Kern. Stefan Ruzika. 23. Mai Mathematisches Institut Universität Koblenz-Landau Campus Koblenz

Bild, Faser, Kern. Stefan Ruzika. 23. Mai Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 23. Mai 2016 Stefan Ruzika 7: Bild, Faser, Kern 23. Mai 2016 1 / 11 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume 4 Basis

Mehr

2.9 Die komplexen Zahlen

2.9 Die komplexen Zahlen LinAlg II Version 1 3. April 2006 c Rudolf Scharlau 121 2.9 Die komplexen Zahlen Die komplexen Zahlen sind unverzichtbar für nahezu jede Art von höherer Mathematik. Systematisch gehören sie zum einen in

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I Wintersemester 3/ Aufgabenblatt 6. Januar Präsenzaufgaben

Mehr

Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS Grundlegende Definitionen (Wiederholung)

Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS Grundlegende Definitionen (Wiederholung) Inhalt der Vorlesung Elemente der Algebra und Zahlentheorie Prof. Dr. Arno Fehm TU Dresden SS2017 Kapitel I. Gruppen 1 Grundlegende Definitionen (Wiederholung) 1.1 Definition. Eine Gruppe ist ein Paar

Mehr

Die Quadratur des Kreises: Transzedenzbeweis von e

Die Quadratur des Kreises: Transzedenzbeweis von e Seminar Analysis III Universität Dortmund / Fachbereich Mathematik Die Quadratur des Kreises: Transzedenzbeweis von e Seminar vom 15.7.213 von Stephan Wolf (136425) Stephan Wolf: 1888s@web.de INHALTSVERZEICHNIS

Mehr

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $

Mathematische Probleme, SS 2013 Montag $Id: dreieck.tex,v /04/22 20:37:01 hk Exp hk $ $Id: dreieck.tex,v 1.7 013/04/ 0:37:01 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck In der letzten Sitzung hatten wir den sogenannten Inkreis eines Dreiecks eingeführt, dies ist der Kreis

Mehr

Lineare Algebra und analytische Geometrie II

Lineare Algebra und analytische Geometrie II Prof. Dr. H. Brenner Osnabrück SS 2016 Lineare Algebra und analytische Geometrie II Vorlesung 36 Dreiecke In dieser und der nächsten Vorlesung stehen Dreiecke im Mittelpunkt. Unter einem Dreieck verstehen

Mehr

Kapitel II. Vektoren und Matrizen

Kapitel II. Vektoren und Matrizen Kapitel II. Vektoren und Matrizen Vektorräume A Körper Auf der Menge R der reellen Zahlen hat man zwei Verknüpfungen: Addition: R R R(a, b) a + b Multiplikation: R R R(a, b) a b (Der Malpunkt wird oft

Mehr

Klausur zur Akademischen Teilprüfung, Modul 2,

Klausur zur Akademischen Teilprüfung, Modul 2, PH Heidelberg, Fach Mathematik Klausur zur Akademischen Teilprüfung, Modul, GHPO I vom.7.003, RPO vom 4.08.003 Einführung in die Geometrie Wintersemester 1/13, 1. Februar 013 Klausur zur ATP, Modul, Einführung

Mehr

Ein Fundamentalbereich der Modulgruppe. 1 Erzeugende

Ein Fundamentalbereich der Modulgruppe. 1 Erzeugende Ein Fundamentalbereich der Modulgruppe Vortrag zum Seminar zur Funktionentheorie,.04.009 Kerstin Küpper Im Vortrag wird die Modulgruppe und ihre Erzeuger untersucht und ein exakter Fundamentalbeich der

Mehr

Lineare Algebra I 5. Tutorium Die Restklassenringe /n

Lineare Algebra I 5. Tutorium Die Restklassenringe /n Lineare Algebra I 5. Tutorium Die Restklassenringe /n Fachbereich Mathematik WS 2010/2011 Prof. Dr. Kollross 19. November 2010 Dr. Le Roux Dipl.-Math. Susanne Kürsten Aufgaben In diesem Tutrorium soll

Mehr

(1.18) Def.: Eine Abbildung f : M N heißt

(1.18) Def.: Eine Abbildung f : M N heißt Zurück zur Mengenlehre: Abbildungen zwischen Mengen (1.17) Def.: Es seien M, N Mengen. Eine Abbildung f : M N von M nach N ist eine Vorschrift, die jedem x M genau ein Element f(x) N zuordnet. a) M = N

Mehr

Aufgaben Geometrie Lager

Aufgaben Geometrie Lager Schweizer Mathematik-Olympiade Aufgaben Geometrie Lager Aktualisiert: 26. Juni 2014 Starter 1. Zwei Städte A und B liegen auf verschiedenen Seiten eines Flusses. An welcher Stelle muss eine Brücke rechtwinklig

Mehr

Aufgaben zur Übung der Anwendung von GeoGebra

Aufgaben zur Übung der Anwendung von GeoGebra Aufgabe 1 Aufgaben zur Übung der Anwendung von GeoGebra Konstruieren Sie ein Quadrat ABCD mit der Seitenlänge AB = 6,4 cm. Aufgabe 2 Konstruieren Sie ein Dreieck ABC mit den Seitenlängen AB = c = 6,4 cm,

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/2018 11. Januar 2018 1/32 Erinnerung: Eine Gruppe ist eine algebraische Struktur (G, )

Mehr

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/18 15:03:29 hk Exp hk $

Mathematische Probleme, SS 2013 Donnerstag $Id: dreieck.tex,v /04/18 15:03:29 hk Exp hk $ $Id: dreieck.tex,v 1.6 2013/04/18 15:03:29 hk Exp hk $ 1 Dreiecke 1.5 Einige spezielle Punkte im Dreieck Wir hatten gerade begonnen uns mit den speziellen Punkten im Dreieck zu beschäftigen. Dabei beschränken

Mehr

13. Vorlesung. Lineare Algebra und Koordinatenwechsel.

13. Vorlesung. Lineare Algebra und Koordinatenwechsel. 3. Vorlesung. Lineare Algebra und Koordinatenwechsel. In dieser Vorlesung behandeln wir die Vorzüge von Koordinatenwechseln. Insbesondere werden wir über geeignete Koordinatenwechsle zu einer Klassifikation

Mehr

Geometrische Form des Additionstheorems

Geometrische Form des Additionstheorems Geometrische Form des Additionstheorems Jae Hee Lee 29. Mai 2006 Zusammenfassung Der Additionstheorem lässt sich mithilfe des Abelschen Theorems elegant beweisen. Dieser Beweis und die Isomorphie zwischen

Mehr

Konstruktion der reellen Zahlen

Konstruktion der reellen Zahlen Konstruktion der reellen Zahlen Zur Wiederholung: Eine Menge K (mit mindestens zwei Elementen) heißt Körper, wenn für beliebige Elemente x, y K eindeutig eine Summe x+y K und ein Produkt x y K definiert

Mehr

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau 312 LinAlg II Version 0 20. Juni 2006 c Rudolf Scharlau 4.3 Bilinearformen Bilinearformen wurden bereits im Abschnitt 2.8 eingeführt; siehe die Definition 2.8.1. Die dort behandelten Skalarprodukte sind

Mehr

Diplom Mathematiker Wolfgang Kinzner. 17. Oktober Technische Universität München. Die abc-formel. W. Kinzner. Problemstellung.

Diplom Mathematiker Wolfgang Kinzner. 17. Oktober Technische Universität München. Die abc-formel. W. Kinzner. Problemstellung. Diplom Mathematiker Wolfgang Kinzner Technische Universität München 17. Oktober 2013 1 / 9 Inhaltsverzeichnis 1 2 / 9 Inhaltsverzeichnis 1 2 2 / 9 Inhaltsverzeichnis 1 2 3 2 / 9 Inhaltsverzeichnis 1 2

Mehr