Individuelles Lernen fördern im Mathematikunterricht

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Individuelles Lernen fördern im Mathematikunterricht"

Transkript

1 Individuelles Lernen fördern im Mathematikunterricht von der Grundschule bis zum Abitur Klare Strukturen geben Orientierung (nach S. Prediger) Angestrebte Lernziele: Was kann ich in dieser Einheit lernen? (z.b. Checkliste) Erwartetes Arbeitsergebnis: Was muss ich dazu erstellen/ zeigen? (Checks oder Endprodukt) Arbeitsprozess: Was muss ich tun, um dorthin zu gelangen? (z.b. Arbeitsplan) Verfügbare Arbeitsmittel: Wo finde ich das, was ich zum Arbeiten brauche? Rückmeldung: Was kann ich schon, was noch nicht? (z.b. Lernberichte) Bsp. Für eine Checkliste Zertifikate Bsp. Matheforscherdiplom Bsp. Würfelbaumeisterprüfung (abgenommen durch Mitschüler) Rückblick über einen längeren Zeitraum Das haben wir gemacht (Selbsteinschätzung So habe ich gearbeitet durch Ankreuzen) Auflistung von Wünschen Rückmeldebogen für selbständiges Arbeiten 1

2 Gestufte Strategien beim Erkunden (nach St. Hußmann und S. Prediger) Experiment durchführen Beispiele untersuchen (zeichnerisch oder numerisch) Verschiedene Beispiele auf Gemeinsamkeiten und Unterschiede vergleichen Spezialfälle untersuchen Allgemeine Bedingungen formulieren Überprüfen, ob alle Fälle gefunden wurden Finde Möglichkeiten Finde (alle) Würfelnetze und zeichne sie auf. Finde Lineare Gleichungssysteme mit den Lösungen (2/3). Gestufte Impulse: Suche eine Möglichkeit Suche mehrere Möglichkeiten Suche alle Möglichkeiten Wie kannst du dir sicher sein, dass du alle Möglichkeiten gefunden hast? Differenzierte Lernziele am Beispiel Strategienlernen eine tragfähige Strategie sicher können wissen, dass es andere Strategien gibt Mehrere Strategien sicher beherrschen bewusst zwischen Strategien auswählen können Bsp. : halbschriftliches Rechnen, quadratische Gleichungen lösen, Abstandsberechnungen in der Vektorgeometrie Bilder aus ganzrationalen Funktionen Ihr Auftrag: Erstellen Sie mit geogebra ( ein kleines Bild, das durch mindestens 5 ganzrationale Funktionen entstanden ist (es dürfen zusätzlich auch Kreise verwendet werden). Schön wäre es auch, wenn Sie mit anderen zusammenarbeiten und aus Ihren Einzelteilen ein gemeinsames größeres Bild gestalten. 2

3 Bsp. einer Schülerlösung Neben dem Bild(ausschnitt) sollten Sie auch die Entstehungsgeschichte abgeben: Vorüberlegungen eine Aufstellung der verwendeten Funktionen mit den zugehörigen Intervallen nachvollziehbare Rechnungen zur Ermittlung der Funktionsterme was Sie im Laufe der Bearbeitung der Aufgabe für sich dazugelernt haben Sie sollten auch dazu in der Lage sein, Ihre Rechnungen ggf. mündlich zu erläutern und auf Nachfrage weitere Eigenschaften der verwendeten Funktionen zu erklären. Vorarbeit Einige Seiten eines Skripts über das Aufstellen von Funktionstermen durcharbeiten (mit Übungsaufgaben)! Dies war auch Teil des Stoffes der nachfolgenden Schulaufgabe. Diese Arbeit konnte in Gruppen- oder Einzelarbeit durchgeführt werden. Das Material enthielt zum Teil mehrere Wege zum gleichen Ziel und behandelte auch Spezialfälle, die nicht von allen durchgegangen werden mussten. Beobachtungen bei den Vorarbeiten Die meisten Schülerinnen und Schülern arbeiteten in 2er- oder 3er- Gruppen, die Gruppen wurde manchmal auch gewechselt. Viele begannen bei den Übungsaufgaben (verstanden als Checkliste, was zu können ist) und suchten dann im Text nach ähnlichen Aufgaben. 3

4 Beobachtungen bei den Bildern Bei schwächeren Schülern viel Trial-and-Error, aber auch sie können durch Aufschreiben der Beobachtungen dabei manches für sich dazu lernen. Strecken werden nicht immer mit Hilfe von Geradengleichungen bestimmt. Häufig werden nur Geraden und Parabeln verwendet. Die sehr guten Schülerinnen und Schüler rechnen die Funktionsterme aus. Sie setzen Stück an Stück und versuchen bewusst Funktionen höheren Grades unterzubringen (Wendepunkte, Wellen u.ä.) Expertenpuzzle als Mittel zur Differenzierung Es können Themen verschiedenen Schwierigkeitsgrades vergeben werden. Erfahrung von Selbstwirksamkeit auch für Schwächere. Betreuung durch die Lehrkraft eines sehr schwachen Experten ist u.u. möglich. Schafft Verantwortungsbewusstsein anderen gegenüber. Siehe: Material zum vorgestellten Expertenpuzzle xpertenpuzzle/ Lernumgebungen für Rechenschwache bis Hochbegabte: Natürliche Differenzierung im Mathematikunterricht siehe Das Projekt Lernumgebungen für Rechenschwache bis Hochbegabte ist anfangs 2001 von der Fachhochschule Pädagogik Aargau und von der Stabsstelle Bildung des Kantons Basel-Landschaft initiiert worden. Es schließt an das Vorgängerprojekt Standorte und Denkwege von Kindern im Mathematikunterricht ( ) an: Das Problem der Heterogenität hinsichtlich Vorwissen und Denkstrategien wird innerhalb des Klassenunterrichts durch Lernumgebungen zu lösen versucht. Das sind substanzielle und reichhaltige Aufgaben zu zentralen Themen der Primarschulmathematik. Sie sind für alle auch für die schwächeren zugänglich und enthalten Rampen für ein Bearbeiten auf höheren Niveaus. Die Kinder bestimmen individuell das Aktivitätsniveau, die Lösungswege und Darstellungsweisen und tauschen diese untereinander aus. An der Entwicklung und Erprobung von Lernumgebungen, welche eine natürliche Differenzierung durch die Kinder ermöglichen, sind außer den Projektleitern Lehrpersonen ganzer Schulgemeinden und Studierende von Lehrerbildungsinstituten beteiligt. Im Projekt stehen Entwicklungs- und Forschungsarbeiten auch im Dienste fachdidaktischer Qualifizierung. Das Projekt fördert einen individualisierenden Unterricht nach dem Konzept mathe 2000 der Universität Dortmund. Es wird durch die Kantone Aargau, Basel-Landschaft und Bern (ab 2002) finanziell unterstützt. 4

5 Bsp. Mit Würfelbauen Zahlenfolgen entdecken (3. 5. Kl.) 5

6 Bsp. Gleiche Basiszahl verschieden angeordnet 6

7 Vielen Dank für Ihre Aufmerksamkeit! Rückfragen an : 7

Lernumgebungen und substanzielle Aufgaben im Mathematikunterricht (Workshop)

Lernumgebungen und substanzielle Aufgaben im Mathematikunterricht (Workshop) Idee des Workshops Lernumgebungen und substanzielle Aufgaben im Mathematikunterricht (Workshop) Mathematik-Tagung Hamburg, 7. Mai 2010, Workshop Vorname Name Autor/-in ueli.hirt@phbern.ch Einen ergänzenden

Mehr

Mathematik ist mehr als Rechnen

Mathematik ist mehr als Rechnen Mathematik ist mehr als Rechnen mit produktiven Lernumgebungen zu einem kompetenzorientierten Unterricht Anforderungen an einen modernen Mathematikunterricht Lernumgebung zur Multiplikation Kriterien einer

Mehr

Dr. Daniela Götze Natürliche Differenzierung von Anfang an! Johannes Kühnel ( ) Anforderungsbereiche der Bildungsstandards

Dr. Daniela Götze Natürliche Differenzierung von Anfang an! Johannes Kühnel ( ) Anforderungsbereiche der Bildungsstandards Überblick über das Fortbildungsmaterial Dr. Daniela Götze Natürliche Differenzierung von Anfang an! Natürliche Differenzierung von Anfang an! Wie wird im Unterrichtsalltag auf die Heterogenität in den

Mehr

Heterogenität als Lernchance

Heterogenität als Lernchance Heterogenität als Lernchance Produktive Lernaktivitäten für den Mathematischen Anfangsunterricht Schulanfangstagung 29.08.06 Prof.Dr. Dagmar Bönig Universität Bremen Einleitende Beispiele Schreibe deinen

Mehr

Weniger ist mehr wie mit einer Lernumgebung unterschiedliche Ziele verwirklicht werden können

Weniger ist mehr wie mit einer Lernumgebung unterschiedliche Ziele verwirklicht werden können Weniger ist mehr wie mit einer Lernumgebung unterschiedliche Ziele verwirklicht werden können Überblick Einstieg: Infiziert vom Knobel-Virus? Problemstellung: Warum wehren manche Kolleginnen ab? Gute Aufgaben

Mehr

Differenzierung durch Individualisierung Anita Pfeng

Differenzierung durch Individualisierung Anita Pfeng Differenzierung durch Individualisierung Die Schüler kommen mit großen Unterschieden in die Schule. Diese Unterschiede verschwinden nicht einfach sondern ziehen sich durch alle Schuljahre. Gleiche Anforderung

Mehr

- 1 - Einführung und Übungen der neuen Inhalte Terme und Gleichungen erfolgen in gewohnter

- 1 - Einführung und Übungen der neuen Inhalte Terme und Gleichungen erfolgen in gewohnter - 1 - Individualisierte Förderung im Mathematikunterricht Beispiel: Terme und Gleichungen (Klasse 7) Anhand eines Beispiels aus dem Mathematikunterricht in Klasse 7 wird im Folgenden dargestellt, wie das

Mehr

M Kreissektoren und Bogenmaß. Kreissektor mit Mittelpunktswinkel? Kreissektors mit Mittelpunktswinkel? Was versteht man unter dem Bogenmaß?

M Kreissektoren und Bogenmaß. Kreissektor mit Mittelpunktswinkel? Kreissektors mit Mittelpunktswinkel? Was versteht man unter dem Bogenmaß? M 10.1 Kreissektoren und Bogenmaß Wie berechnet man in einem Kreis mit Radius Kreissektor mit Mittelpunktswinkel? die Länge des Kreisbogens für einen Wie berechnet man in einem Kreis mit Radius Kreissektors

Mehr

Gemeinsames Lernen im jahrgangsgemischten Mathematikunterricht

Gemeinsames Lernen im jahrgangsgemischten Mathematikunterricht 18. Symposium mathe 2000 Individuelle Förderung im Mathematikunterricht der Grundschule Gemeinsames Lernen im jahrgangsgemischten Mathematikunterricht Überblick über die nächsten ca. 70 Minuten: Tragfähige

Mehr

Selbsteinschätzungsbögen

Selbsteinschätzungsbögen Selbsteinschätzungsbögen für die Klassen 2/3/4 in den Fächern Deutsch und Mathematik für: Name: Lehrerin: Stand 2015.11 1 Das zählt in Deutsch Lernbericht für das 1. Halbjahr des 2. Schuljahres So habe

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lineare und quadratische Funktionen und Gleichungen Schritt für Schritt verstehen Das komplette Material finden Sie hier: School-Scout.de

Mehr

Lösen von linearen Gleichungssystemen in zwei Variablen

Lösen von linearen Gleichungssystemen in zwei Variablen für GeoGebraCAS Lösen von linearen Gleichungssystemen in zwei Variablen Letzte Änderung: 29/ März 2011 1 Überblick 1.1 Zusammenfassung Mit Hilfe dieses Unterrichtsmaterials sollen die Verfahren der Gleichsetzungs-,

Mehr

GeoGebra im Unterricht

GeoGebra im Unterricht GeoGebra im Unterricht Das dynamische Nebeneinander von Geometrie und Algebra in GeoGebra ermöglicht Ihren Schülern auf einfache Weise einen experimentellen Zugang zur Mathematik. Dadurch können Sie als

Mehr

Projekt Lernumgebungen für Langsame bis Hochbegabte: Natürliche Differenzierung im Mathematikunterricht

Projekt Lernumgebungen für Langsame bis Hochbegabte: Natürliche Differenzierung im Mathematikunterricht Projekt Lernumgebungen für Langsame bis Hochbegabte: Natürliche Differenzierung im Mathematikunterricht Das Projekt wurde im Studienjahr 1999-2000 an der Höheren Pädagogischen initiiert als eine konstruktive

Mehr

V2-2-4 Polynom vom Grad 3

V2-2-4 Polynom vom Grad 3 2.4 Polynom vom Grad 3 Titel V2-2-4 Polynom vom Grad 3 Version Mai 20 Themenbereich Von der Sekanten- zur Tangentensteigung Themen Verfeinerung der Intervalle zur Bestimmung der Steigung an mehreren Punkten

Mehr

Arbeitsplan Fachseminar Mathematik

Arbeitsplan Fachseminar Mathematik Arbeitsplan Fachseminar Mathematik Fachleiterin: Sonja Schneider Seminarort: Bürgermeister- Raiffeisen- Grundschule Weyerbusch Nr. Datum Zeit (Ort) 1-2 20.01.2015 Thema der Veranstaltung Angestrebte Kompetenzen

Mehr

1 Lineare Gleichungssysteme

1 Lineare Gleichungssysteme 1 Lineare Gleichungssysteme Didaktische Hinweise Diese Station ist ein Unterrichtsbeispiel zur Einführung von Linearen Gleichungssystemen. Auf vier sehr detaillierten Arbeitsblättern werden die Problemstellung

Mehr

Didaktik des Sachrechnens 4. Probleme von SuS beim Lösen von Sachaufgaben

Didaktik des Sachrechnens 4. Probleme von SuS beim Lösen von Sachaufgaben Didaktik des Sachrechnens 4. Probleme von SuS beim Lösen von Sachaufgaben 1 Probleme beim Lösen von Sachaufgaben Veröffentlicht in: MDMV 20, 2012, S. 235 2 4. Probleme von SuS beim Lösen von Sachaufgaben

Mehr

FUNKTIONEN. ein Leitprogramm für die Berufsmaturität

FUNKTIONEN. ein Leitprogramm für die Berufsmaturität FUNKTIONEN ein Leitprogramm für die Berufsmaturität von Johann Berger 2000 Inhaltsverzeichnis Einleitung 3 Arbeitsanleitung 3 1 Der Funktionsbegriff 3 2 Lineare 6 3 Quadratische 10 EINLEITUNG Dieses Leitprogramm

Mehr

Teil (C) Beweisen am Gymnasium

Teil (C) Beweisen am Gymnasium Teil (C) Beweisen am Gymnasium Mathematik ist die beweisende Wissenschaft. Der bekannte Mathematiker Albrecht Beutelspacher bemerkte gar einst, wer Mathematik sage, sage Beweis. Ohne Beweise ist Mathematik

Mehr

Individuelle Förderung und Differenzierung SINUS Bayern

Individuelle Förderung und Differenzierung SINUS Bayern Mathematik Gymnasium Jgst. 10 Individuelle Förderung und Differenzierung durch Computereinsatz - die allgemeine Sinusfunktion Die Bedeutungen der Parameter a, b und c bei der allgemeinen Sinusfunktion

Mehr

1.4 Sachrechnen in den Bildungsstandards

1.4 Sachrechnen in den Bildungsstandards 1.4 Sachrechnen in den Bildungsstandards http://www.kmk.org/fileadmin/veroe ffentlichungen_beschluesse/2004/20 04_10_15-Bildungsstandards-Mathe- Primar.pdf Mathematikunterricht in der Grundschule Allgemeine

Mehr

So rechne ich! Wie rechnest du? - Eigene Rechenwege mit Forschermitteln entwickeln und dokumentieren

So rechne ich! Wie rechnest du? - Eigene Rechenwege mit Forschermitteln entwickeln und dokumentieren Haus 5: Fortbildungsmaterial Individuelles und gemeinsames Lernen So rechne ich! Wie rechnest du? - Eigene Rechenwege mit Forschermitteln entwickeln und dokumentieren 21. Symposium mathe 2000 - Beate Sundermann

Mehr

Aufgabenpaket zum Crashkurs Mathematik

Aufgabenpaket zum Crashkurs Mathematik Wilhelm-Hausenstein-Gymnasium Sprachliches und Naturwissenschaftlich-technologisches Gymnasium Elektrastraße 61 8195 München Telefon (089) 999690 Fa (089) 9996939 Aufgabenpaket zum Crashkurs Mathematik

Mehr

Merksatz: Schreibe den Inhalt der Box ab und merke ihn dir.

Merksatz: Schreibe den Inhalt der Box ab und merke ihn dir. Mathematik Klasse 7 Lineare Gleichungssysteme Station 1 Einführung: Schlage das Buch auf Seite 195 auf und notiere dir Stichpunktartig deine Überlegungen zu dem Anfangsproblem "Wie oft haben die Kölner

Mehr

Mathematik 1 Sekundarstufe I DAS MATHEMATIK-LEHRMITTEL

Mathematik 1 Sekundarstufe I DAS MATHEMATIK-LEHRMITTEL Mathematik 1 Sekundarstufe I DAS MATHEMATIK-LEHRMITTEL Aufbau des Lehrmittels Moderner Mathematik- Unterricht im Kanton Zürich Wie unterrichten wir im PETERMOOS Fragen Aufbau des Lehrmittels 1. Das Themenbuch

Mehr

"MATHEMATISCHES MODELLIEREN THEORETISCHE HINTERGRÜNDE, AUFGABENENTWICKLUNG, ANALYSEN

MATHEMATISCHES MODELLIEREN THEORETISCHE HINTERGRÜNDE, AUFGABENENTWICKLUNG, ANALYSEN 1 "MATHEMATISCHES MODELLIEREN THEORETISCHE HINTERGRÜNDE, AUFGABENENTWICKLUNG, ANALYSEN UND ANSÄTZE ZUM EINFÜHREN UND UNTERRICHTEN" Dr. des. Katja Eilerts 2 Inhalte: Modellierungskompetenzen Gestufte Hilfen

Mehr

Bestandteile Ihres Vortrags: Fachlicher Hintergrund (Schulbücher, ) Aufgabenstellung

Bestandteile Ihres Vortrags: Fachlicher Hintergrund (Schulbücher, ) Aufgabenstellung Bestandteile Ihres Vortrags: Fachlicher Hintergrund (Schulbücher, ) Aufgabenstellung Lösungsvorschlag 2006/I,2: 1. Erläutern Sie die Beziehung zwischen gewöhnlichen Brüchen und Dezimalbrüchen. 2. Beschreiben

Mehr

Lernzeiten-Konzept. 1. Rechtsgrundlagen

Lernzeiten-Konzept. 1. Rechtsgrundlagen Lernzeiten-Konzept 1. Rechtsgrundlagen 42, 3 Schulgesetz: Schülerinnen und Schüler ( ) sind insbesondere verpflichtet, sich auf den Unterricht vorzubereiten, sich aktiv daran zu beteiligen, die erforderlichen

Mehr

Umgang mit Formeln Selbstlernmaterial

Umgang mit Formeln Selbstlernmaterial Umgang mit Formeln Selbstlernmaterial mit Schulbuch Dorn-Bader 2 (ISBN 978-3-507-86265-4) Wiederholung der Grundlagen S. 6 7 (Proportionalität) S. 28 29 (Rechnen mit Formeln) S. 108 109 (Formeln & Diagramme)

Mehr

Systematisierungen mit Mindmaps

Systematisierungen mit Mindmaps Systematisierungen mit Mindmaps Neupärtl, A./Bruder, R. TUD 2005 Systematisieren ist für das Lernen von Mathematik von besonderer Bedeutung. In den Unterrichtssituationen der Zielorientierung/Motivierung,

Mehr

Ziele beim Umformen von Gleichungen

Ziele beim Umformen von Gleichungen Ziele beim Umformen von Gleichungen für GeoGebraCAS Letzte Änderung: 29. März 2011 1 Überblick 1.1 Zusammenfassung Beim Lösen von Gleichungen ist besonders darauf zu achten, dass Schüler/innen den Äquivalenzumformungen

Mehr

Umsetzung dieser Kompetenzen im Unterricht:

Umsetzung dieser Kompetenzen im Unterricht: Jahrgang 8 Legende: Prozessbezogene Kompetenzbereiche Inhaltsbezogene Kompetenzbereiche (P1) Mathematisch argumentieren (I1) Zahlen und Operationen (P2) Probleme mathematisch lösen (I2) Größen und Messen

Mehr

GeoGebra dynamische Geometriesoftware gewinnbringend einsetzen. Verlauf Material LEK Glossar Lösungen

GeoGebra dynamische Geometriesoftware gewinnbringend einsetzen. Verlauf Material LEK Glossar Lösungen Reihe 19 S 1 Verlauf Material LEK Glossar Lösungen GeoGebra dynamische Geometriesoftware gewinnbringend einsetzen Marcel Schmengler, Emmelshausen Klasse: 7 bis 10 Dauer: Die Materialien sind in der Regel

Mehr

Binnendifferenzierung im Mathematikunterricht

Binnendifferenzierung im Mathematikunterricht Binnendifferenzierung im Mathematikunterricht Beispiele und Ansätze Veronika Kollmann Staatliches Seminar für Didaktik und Lehrerbildung (Gymnasien) Stuttgart Dimensionen von Heterogenität (nach SPIEGEL

Mehr

Gemeinsames Lernen. Individuelle Lernausgangslagen in einer dritten Klasse

Gemeinsames Lernen. Individuelle Lernausgangslagen in einer dritten Klasse Gemeinsames Lernen ein ständiger Spagat zwischen der Fachstruktur und den individuellen Lernvoraussetzungen Stephan Kern 25. Symposium Mathe 2000+ Dortmund, 25. April 2015 1 Individuelle Lernausgangslagen

Mehr

Wer oder was ist normal? Wer oder was ist normal? Wer oder was ist normal? Lernumgebungen zum Produktiven Üben

Wer oder was ist normal? Wer oder was ist normal? Wer oder was ist normal? Lernumgebungen zum Produktiven Üben Lernumgebungen zum Produktiven Üben Auch der Zufall ist nicht unergründlich, er hat eine Regelmäßigkeit (Novalis 1797) Lukas Der Fisch kann nicht klettern. Der Elefant kann auch nicht klettern. Der Lehrer

Mehr

Vergleichsklausur 2006 für Jahrgangsstufe 11

Vergleichsklausur 2006 für Jahrgangsstufe 11 Vergleichsklausur 2006 für Jahrgangsstufe Termin: 3.05.2006, 3. und 4. Stunde reine Arbeitszeit: 90 min Jeder Schüler muss drei Aufgaben bearbeiten. Die. Aufgabe und 2. Aufgabe (Analysis) sind verpflichtende

Mehr

Modul 5.3: Vom halbschriftlichen zum schriftlichen Rechnen! Teil 1: Aufgezeigt am Beispiel der Addition und Subtraktion

Modul 5.3: Vom halbschriftlichen zum schriftlichen Rechnen! Teil 1: Aufgezeigt am Beispiel der Addition und Subtraktion Haus 5: Fortbildungsmaterial Individuelles und gemeinsames Lernen Modul 5.3: Vom halbschriftlichen zum schriftlichen Rechnen! Teil 1: Aufgezeigt am Beispiel der Addition und Subtraktion September 2010

Mehr

Ablauf des Unterrichtsbeispiels

Ablauf des Unterrichtsbeispiels Methode: differenzierender Arbeitsplan mit Aufgaben auf verschiedenen Schwierigkeitsstufen Thema des Unterrichtsbeispiels: Schriftliches Multiplizieren und Dividieren Fach: Mathematik Klassenstufe: 5 Kompetenzbereich:

Mehr

Mathematik. Schuljahr 1

Mathematik. Schuljahr 1 Mathematik 1 Duales Berufskolleg Mathematik Schuljahr 1 Fachrichtung Soziales 2 Mathematik Vorbemerkungen Die Schülerinnen und Schüler lernen im Fach Mathematik einfache naturwissenschaftliche Sachverhalte

Mehr

2.5 Koordinaten. Schatzsuche im Koordinatensystem. Name:

2.5 Koordinaten. Schatzsuche im Koordinatensystem. Name: Name: Klasse: Datum: Schatzsuche im Koordinatensystem Öffne die Datei 2_5_Schatzsuche.ggb. 1 Käpt'n Cross hat vor langer Zeit einen Schatz auf der Insel Mysteria vergraben. Wie es in Piratenkreisen üblich

Mehr

Sie erhalten Informationen: - Für die Klausur KB3. - Die Fall-Klausur Modul 2, Sekumdarstufe I und Primarstufe

Sie erhalten Informationen: - Für die Klausur KB3. - Die Fall-Klausur Modul 2, Sekumdarstufe I und Primarstufe Sie erhalten Informationen: - Für die Klausur KB3. - Die Fall-Klausur Modul 2, Sekumdarstufe I und Primarstufe Klausur KB3: - Für die Klausur KB3. - Die Fall-Klausur Modul 2, Sekumdarstufe I und Primarstufe

Mehr

Elternbrief: Differenzierung im Mathematikunterricht mit dem Lehrwerk Fredo Seite 1

Elternbrief: Differenzierung im Mathematikunterricht mit dem Lehrwerk Fredo Seite 1 Elternbrief: Differenzierung im Mathematikunterricht mit dem Lehrwerk Fredo Seite 1 Liebe Eltern, wir Autorinnen möchten Ihnen zu Beginn des ersten Schuljahres auf wenigen Seiten erläutern, wie Ihre Kinder

Mehr

Mathematik im 3. Schuljahr. Kompetenzen und Inhalte

Mathematik im 3. Schuljahr. Kompetenzen und Inhalte Mathematik im 3. Schuljahr Kompetenzen und Inhalte Prozessbezogene Kompetenzen Problemlösen / kreativ sein Die S. bearbeiten Problemstellungen. Modellieren Die S. wenden Mathematik auf konkrete Aufgabenstellungen

Mehr

Haus 10: Beurteilen und Rückmelden. Selbstbeurteilungen

Haus 10: Beurteilen und Rückmelden. Selbstbeurteilungen Haus 10: Beurteilen und Rückmelden Selbstbeurteilungen Selbstbeurteilungen sollen Kindern ermöglichen, mehr Transparenz über den vergangenen und zukünftigen Lernprozess zu erhalten, sie dadurch stärker

Mehr

Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag,

Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag, Lineare Funktionen Aufgabe 1: Welche der folgenden Abbildungen stellen eine Funktion dar? Welche Abbildungen stellen eine lineare Funktion dar? Ermittle für die linearen Funktionen eine Funktionsgleichung.

Mehr

Leistungen feststellen, um Kinder zu fördern

Leistungen feststellen, um Kinder zu fördern www.mathematik.uni-dortmund.de/didaktik/_personelles/selter Leistungen feststellen, um Kinder zu fördern Sinus-Grundschule Färbe die Hälfte jeder Figur grau! Christoph Selter, Universität Dortmund, 27./28.03.06

Mehr

M104 Kompetenzraster Lernstrategien

M104 Kompetenzraster Lernstrategien M104 Kompetenzraster Lernstrategien Die vierstufigen Kompetenzraster orientieren sich an den empirisch belegten Entwicklungsständen der Beherrschung selbstgesteuerten Lernens und den Stufen der Selbstständigkeit

Mehr

Halbschriftliches und schriftliches Rechnen

Halbschriftliches und schriftliches Rechnen Haus 5: Individuelles und gemeinsames Lernen Sachinformationen Halbschriftliches und schriftliches Rechnen Informationen zur Strukturierung des Lernweges am Beispiel der Addition und Subtraktion Das nachstehend

Mehr

In Baden-Württemberg in Zusammenarbeit mit der. Unterstützt von

In Baden-Württemberg in Zusammenarbeit mit der. Unterstützt von Ethik & Leadership Bildung & Erziehung Kunst & Kultur Energie & Technik www.ksfn.de Bildung & Erziehung Unternehmerisches Denken und Handeln fördern Entrepreneur Nachwuchstalente entdecken und fördern

Mehr

Lernatelier. Auf den folgenden Seiten beschreiben wir den Weg, den wir als Lernbegleiter mit den Schülerinnen und Schülern gehen.

Lernatelier. Auf den folgenden Seiten beschreiben wir den Weg, den wir als Lernbegleiter mit den Schülerinnen und Schülern gehen. Lernatelier Auf den folgenden Seiten beschreiben wir den Weg, den wir als Lernbegleiter mit den Schülerinnen und Schülern gehen. Unser Ziel ist, die Schülerinnen und Schüler in ihrer Selbstorganisation,

Mehr

Wasser ist wertvoll Individuelle Seiten für ein Portfolio. Heimat- und Sachunterricht / Deutsch. Portfolio Wasser, Papier

Wasser ist wertvoll Individuelle Seiten für ein Portfolio. Heimat- und Sachunterricht / Deutsch. Portfolio Wasser, Papier Portfolio Das Instrument des Portfolios wird als eine gute Möglichkeit bewertet, verschiedene Aufträge der Flexiblen Grundschule zu vereinen: Die Schülerinnen und Schüler lernen individuell, aber im Rahmen

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: "Find someone who..." - Übungen zur analytischen Geometrie

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Find someone who... - Übungen zur analytischen Geometrie Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: "Find someone who..." - Übungen zur analytischen Geometrie Das komplette Material finden Sie hier: Download bei School-Scout.de S

Mehr

Rekursive Folgen. für GeoGebraCAS. 1 Überblick. Zusammenfassung. Kurzinformation. Letzte Änderung: 07. März 2010

Rekursive Folgen. für GeoGebraCAS. 1 Überblick. Zusammenfassung. Kurzinformation. Letzte Änderung: 07. März 2010 Rekursive Folgen für GeoGebraCAS Letzte Änderung: 07. März 2010 1 Überblick Zusammenfassung Innerhalb von zwei Unterrichtseinheiten sollen die Schüler/innen vier Arbeitsblätter mit GeoGebra erstellen,

Mehr

Schuleigener Arbeitsplan Fach: Mathematik Jahrgang: 5

Schuleigener Arbeitsplan Fach: Mathematik Jahrgang: 5 Stand:.0.206 Sommerferien Zahlen und Operationen» Zahlen sachangemessen runden» große Zahlen lesen und schreiben» konkrete Repräsentanten großer Zahlen nennen» Zahlen auf der Zahlengeraden und in der Stellenwerttafel

Mehr

Handlungsorientierter Mathematikunterricht. Schwerpunkt: Eigenständiges Arbeiten. Expertenmethoden. im Mathematikunterricht

Handlungsorientierter Mathematikunterricht. Schwerpunkt: Eigenständiges Arbeiten. Expertenmethoden. im Mathematikunterricht M U E D Handlungsorientierter Mathematikunterricht Schwerpunkt: Eigenständiges Arbeiten Heinz Böer Expertenmethoden im Mathematikunterricht Materialien für den Unterricht in Klasse 5 bis 11 zu den schüleraktivierenden

Mehr

Vergleichsklausur 2004

Vergleichsklausur 2004 Vergleichsklausur 00 Termin:.Juni 00,. und. Stunde reine Arbeitszeit: 90 min Die erste und zweite Aufgabe sind von allen Schülerinnen und Schülern zu bearbeiten. Von den Aufgaben -5 wird eine Aufgabe vom

Mehr

Erfolg im Mathe-Abi 2014

Erfolg im Mathe-Abi 2014 Gruber I Neumann Erfolg im Mathe-Abi 2014 Schleswig-Holstein Übungsbuch Prüfungsaufgaben mit Tipps und Lösungen Inhaltsverzeichnis 1. Aufgabensatz... 7 2. Aufgabensatz... 12 3. Aufgabensatz... 17 4. Aufgabensatz...

Mehr

Entwicklung eines Forschercamps für Grundschulkinder Angela Bezold, Universität Würzburg

Entwicklung eines Forschercamps für Grundschulkinder Angela Bezold, Universität Würzburg Entwicklung eines Forschercamps für Grundschulkinder Angela Bezold, Universität Würzburg An der Universität Würzburg besteht seit einigen Jahren ein Lehr-Lern-Labor für die Sekundarstufe. Diese Tradition

Mehr

Schulinterner Lehrplan des Gymnasiums Buxtehude Süd Klasse 8

Schulinterner Lehrplan des Gymnasiums Buxtehude Süd Klasse 8 1. Terme und mit Klammern Schwerpunkt: Beschreibung von Sachverhalten Schwerpunkt: Problemlösen 1.1 Auflösen und Setzen einer Klammer 1.2 Minuszeichen vor einer Klammer Subtrahieren einer Klammer 1.3 Ausklammern

Mehr

Aufstellen der Funktionsgleichung aus gegebenen Bedingungen

Aufstellen der Funktionsgleichung aus gegebenen Bedingungen R. Brinkmann http://brinkmann-du.de Seite.0.0 Aufstellen der Funktionsgleichung aus gegebenen Bedingungen Drei unterschiedliche Punkte, die alle auf einer Parabel liegen sollen sind gegeben. Daraus soll

Mehr

Um dem Kind im Lernen begegnen zu können ist es wichtig, dass

Um dem Kind im Lernen begegnen zu können ist es wichtig, dass Um dem Kind im Lernen begegnen zu können ist es wichtig, dass die Pädagogik vom Kind / vom Jugendlichen ausgeht, das Kind im Zentrum des pädagogischen Handelns steht, das Kind der Experte für sein Lernen

Mehr

Haus 5: Individuelles und gemeinsames Lernen. Modul 5.2 Rechnen auf eigenen Wegen am Beispiel der halbschriftlichen Subtraktion

Haus 5: Individuelles und gemeinsames Lernen. Modul 5.2 Rechnen auf eigenen Wegen am Beispiel der halbschriftlichen Subtraktion Haus 5: Individuelles und gemeinsames Lernen Modul 5.2 Rechnen auf eigenen Wegen am Beispiel der halbschriftlichen Subtraktion Annäherung an das Thema 2 Aufbau des Fortbildungsmoduls 5.2 1. Individuelle

Mehr

Stationenlernen Mathematik Steckbrief

Stationenlernen Mathematik Steckbrief Stationenlernen Mathematik Steckbrief Klasse: 9 R Thema: Lösen linearer Gleichungssysteme Phase: Übung Dauer: ca. 5 Stunden Anz. Stationen: 9 Stationentypen: 6 Pflichtstationen 3 Wahlstationen Stationenthemen:

Mehr

Individualisieren durch mathematische Lernumgebungen BEGABT LERNEN EXZELLENT LEHREN MONIKA KLAMECKER

Individualisieren durch mathematische Lernumgebungen BEGABT LERNEN EXZELLENT LEHREN MONIKA KLAMECKER Individualisieren durch mathematische Lernumgebungen BEGABT LERNEN EXZELLENT LEHREN 7.-9.11.2013 MONIKA KLAMECKER Überlegungen zum Individualisieren im Klassenverband Offene Konzepte steigern die Individualisierung

Mehr

Neue gymnasiale Oberstufe neue Chancen für CAS-Einsatz?

Neue gymnasiale Oberstufe neue Chancen für CAS-Einsatz? Neue gymnasiale Oberstufe neue Chancen für CAS-Einsatz? Beschluss der KMK vom 07.05.2009: Aufwertung der MINT-Bildung, u.a. CAS in allen MINT-Fächern verbindlich nutzen Die veränderte Unterrichtsstruktur

Mehr

Themenzuordnung. Sachaufgaben (1) Seite 1 von 5

Themenzuordnung. Sachaufgaben (1) Seite 1 von 5 GS Rethen Kompetenzorientierung Fach: Mathematik Zu erwerbende Kompetenzen am Ende von Jahrgang 3: Die Schülerinnen und Schüler - verwenden eingeführte mathematische Fachbegriffe sachgerecht. - beschreiben

Mehr

SINUS TransferProjekt 5 Instrumente zur Standardüberprüfung und zu Lernstandsdiagnosen. Jahrgangsstufe: 5/6

SINUS TransferProjekt 5 Instrumente zur Standardüberprüfung und zu Lernstandsdiagnosen. Jahrgangsstufe: 5/6 SINUS TransferProjekt 5 Instrumente zur Standardüberprüfung und zu Lernstandsdiagnosen Aufgabenbeispiel: Jahrgangsstufe: 5/6 Schuhgrößen Aus: Landesinstitut für Schule / Qualitätsagentur (Hrsg.) Kompetenzorientierte

Mehr

BILDUNGSSTANDARDS PRIMARBEREICH MATHEMATIK

BILDUNGSSTANDARDS PRIMARBEREICH MATHEMATIK BILDUNGSSTANDARDS PRIMARBEREICH MATHEMATIK 1. Allgemeine mathematische Kompetenzen Primarbereich Allgemeine mathematische Kompetenzen zeigen sich in der lebendigen Auseinandersetzung mit Mathematik und

Mehr

Erprobung von Rückmeldebögen und Förderplänen in der Unterund Mittelstufe

Erprobung von Rückmeldebögen und Förderplänen in der Unterund Mittelstufe Erprobung von Rückmeldebögen und Förderplänen in der Unterund Mittelstufe Verantwortlich Frau Kohs Jahrgangsstufe 5-7 Teilnahmevoraussetzungen Keine Inhalt Rückmelde- und Reflexionsbögen zu Klassenarbeiten

Mehr

Mathematik Einführungsphase Einführung. SelGo. SelGO am JKG. Selbstlernen in der Gymnasialen Oberstufe

Mathematik Einführungsphase Einführung. SelGo. SelGO am JKG. Selbstlernen in der Gymnasialen Oberstufe SelGo SelGO am JKG Selbstlernen in der Gymnasialen Oberstufe Hintergrund TIMSS & PISA Zentralabitur Basiswissen Mathematik Orientierungswissen Basisfertigkeiten Klagen der UNIs und Unternehmen Methoden

Mehr

Übungsaufgaben zum Aufstellen von ganzrationalen Funktionsgleichungen

Übungsaufgaben zum Aufstellen von ganzrationalen Funktionsgleichungen Übungsaufgaben zum Aufstellen von ganzrationalen Funktionsgleichungen Aufgabe : Eine zum Ursprung symmetrische ganzrationale Funktion.Ordnung hat im Ursprung die Tangente mit der Gleichung y = 7x und in

Mehr

M 10.1. Kreissektoren und Bogenmaß

M 10.1. Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß Wie berechnet man in einem Kreis mit Radius die Länge des Kreisbogens für einen Kreissektor mit Mittelpunktswinkel? Wie berechnet man in einem Kreis mit Radius den Flächeninhalt

Mehr

M 10.1. Kreissektoren und Bogenmaß

M 10.1. Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß Wie berechnet man in einem Kreis mit Radius die Länge des Kreisbogens für einen Kreissektor mit Mittelpunktswinkel? Wie berechnet man in einem Kreis mit Radius den Flächeninhalt

Mehr

Mathematik - Erleichterung des Übergangs

Mathematik - Erleichterung des Übergangs 04/2013 ÜBERGANG KLASSE 4 ZUR WEITERFÜHRENDEN SCHULE Mathematik - Erleichterung des Übergangs Herausgeber Netzwerk 2, Dortmund Netzwerkschulen Benninghofer Grundschule Funke-Grundschule Gesamtschule Gartenstadt

Mehr

Schulcurriculum Mathematik für die August-Dicke-Schule Qualifikationsphase Grundkurs

Schulcurriculum Mathematik für die August-Dicke-Schule Qualifikationsphase Grundkurs Stand 04.11.2016 Grundlage Kernlehrplan G8 für die Sekundarstufe II (2014) Seite 1 von 6 Die angegebenen Zeiträume sind nur Anhaltswerte. Bei einem Rahmen von 30 Wochen ergeben sich mögliche Freiräume.

Mehr

Werratalschule Heringen Gesamtschule mit gymnasialer Oberstufe. Aufgaben zur Wiederholung und Vertiefung

Werratalschule Heringen Gesamtschule mit gymnasialer Oberstufe. Aufgaben zur Wiederholung und Vertiefung Werratalschule Heringen Gesamtschule mit gymnasialer Oberstufe Aufgaben zur Wiederholung und Vertiefung Mathematik Einführungsphase gymnasiale Oberstufe Seite 1 Hinweise zum Umgang mit dem Aufgabenmaterial

Mehr

Veranstaltungen zum Projekt bis Ende 2004

Veranstaltungen zum Projekt bis Ende 2004 Veranstaltungen zum Projekt bis Ende 2004 Veranstalter: Lehrerinnen- und Lehrerweiterbildung des Kantons St.Gallen der Unterstufe 8. August 2003 St.Gallen St.Georgen E. Hengartner, G. Wieland Veranstalter:

Mehr

Mathematik im 2. Schuljahr. Kompetenzen und Inhalte

Mathematik im 2. Schuljahr. Kompetenzen und Inhalte Mathematik im 2. Schuljahr Kompetenzen und Inhalte Prozessbezogene Kompetenzen Problemlösen / kreativ sein Die S. bearbeiten Problemstellungen. Modellieren Die S. wenden Mathematik auf konkrete Aufgabenstellungen

Mehr

Grundwissensblatt 8. Klasse. IV. Lineare Gleichungen mit zwei Variablen 1. Eigenschaften von linearen Gleichungen mit zwei Variablen

Grundwissensblatt 8. Klasse. IV. Lineare Gleichungen mit zwei Variablen 1. Eigenschaften von linearen Gleichungen mit zwei Variablen Grundwissensblatt 8. Klasse IV. Lineare Gleichungen mit zwei Variablen. Eigenschaften von linearen Gleichungen mit zwei Variablen Alle linearen Gleichungen der Form a + by = c (oder auch y = m + t) erfüllen:

Mehr

Grafikfähige Taschenrechner (GTR) im Gemeinsamen Lernen mit blinden und sehbehinderten Schülern in der Oberstufe Fachtagung an der Irisschule Münster

Grafikfähige Taschenrechner (GTR) im Gemeinsamen Lernen mit blinden und sehbehinderten Schülern in der Oberstufe Fachtagung an der Irisschule Münster Grafikfähige Taschenrechner (GTR) im Gemeinsamen Lernen mit blinden und sehbehinderten Schülern in der Oberstufe Fachtagung an der risschule Münster im April 2015 Technische Universität Dortmund, Fakultät

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Nikolaus Rechnen für die 3. Klasse. Das komplette Material finden Sie hier:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Nikolaus Rechnen für die 3. Klasse. Das komplette Material finden Sie hier: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Nikolaus Rechnen für die 3. Klasse Das komplette Material finden Sie hier: School-Scout.de Titel: Nikolaus Rechnen 3. Klasse Bestellnummer:

Mehr

Ausbildung Primarstufe. Mathematik. Fachkonzept für Lehrerinnen- und Lehrerbildung. weitergehen.

Ausbildung Primarstufe. Mathematik. Fachkonzept für Lehrerinnen- und Lehrerbildung. weitergehen. Ausbildung Primarstufe PS Mathematik Fachkonzept für Lehrerinnen- und Lehrerbildung weitergehen. Mathematik (MA) Charakteristik des Fachs Für viele bedeutet Mathematik Rechnen mit Zahlen. Mathematik handelt

Mehr

Gruber I Neumann. Erfolg im Mathe-Abi. Prüfungsaufgaben Hessen GTR / CAS. Übungsbuch für den Grundkurs mit Tipps und Lösungen

Gruber I Neumann. Erfolg im Mathe-Abi. Prüfungsaufgaben Hessen GTR / CAS. Übungsbuch für den Grundkurs mit Tipps und Lösungen Gruber I Neumann Erfolg im Mathe-Abi Prüfungsaufgaben Hessen GTR / CAS Übungsbuch für den Grundkurs mit Tipps und Lösungen Vorwort Vorwort Dieses Übungsbuch ist speziell auf die Anforderungen des zentralen

Mehr

Wenn du über deine Schule und die Lehrerinnen und Lehrer nachdenkst: Wie sehr stimmst du den folgenden Aussagen zu?

Wenn du über deine Schule und die Lehrerinnen und Lehrer nachdenkst: Wie sehr stimmst du den folgenden Aussagen zu? Wenn du über deine Schule und die Lehrerinnen und Lehrer nachdenkst: Wie sehr stimmst du den folgenden Aussagen? 1. Die meisten meiner Lehrerinnen und Lehrer interessieren sich für das, was ich sagen habe.

Mehr

Aufgabeneinheit 4: In 3 Runden zum Erfolg! Ein Gruppenwettbewerb!

Aufgabeneinheit 4: In 3 Runden zum Erfolg! Ein Gruppenwettbewerb! Aufgabeneinheit 4: In 3 Runden zum Erfolg! Ein Gruppenwettbewerb! Franz-Josef Göbel / Ralf Nagel / Helga Schmidt / Armin Baeger Die im Folgenden beschriebene Unterrichtseinheit, die als Wettbewerb zwischen

Mehr

Entwicklung und Lernen junger Kinder

Entwicklung und Lernen junger Kinder Entwicklung und Lernen junger Kinder Tagung der Schweizerischen Gesellschaft für Lehrerinnen- und Lehrerbildung SGL 28. Januar 2009, St.Gallen Übersicht Vielfalt unterstützen und eigenes Denken stärken:

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Gleichungssysteme ohne Schwierigkeiten lösen

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Gleichungssysteme ohne Schwierigkeiten lösen Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Das komplette Material finden Sie hier: School-Scout.de S 1 Dr. Beate Bathe-Peters, Berlin Käseteller Muffins backen Fotos im gesamten

Mehr

Vorstellen und Darstellen Strategien zum Umgang mit Rechenschwächen in der Sek I

Vorstellen und Darstellen Strategien zum Umgang mit Rechenschwächen in der Sek I Vorstellen und Darstellen Strategien zum Umgang mit Rechenschwächen in der Sek I Didacta Forum Unterrichtspraxis 14.2.2012, 12-13 Uhr Prof. Dr. Susanne Prediger Abstract Eine bedrückend große Zahlen von

Mehr

Lernstand 5 und dann?

Lernstand 5 und dann? Lernstand 5 und dann? Individuell in Kleingruppen im Klassenverband? Fördermaterialien und Förderkonzepte Chancen und Grenzen Alexander Rieth 1 Das erwartet Sie heute (1) Lernstand 5 Grundlagen (Stufenmodel)

Mehr

Portfolio. Seite 1 von 5

Portfolio. Seite 1 von 5 Portfolio Das Instrument des Portfolios wird als eine gute Möglichkeit bewertet, verschiedene Aufträge der Flexiblen Grundschule zu vereinen: Die Schülerinnen und Schüler lernen individuell, aber im Rahmen

Mehr

Neue Wege Klasse 8. Schulcurriculum EGW. Zeiteinteilung/ Kommentar 1.4 Ungleichungen weglassen 1.5 Gleichungen mit Parametern weglassen

Neue Wege Klasse 8. Schulcurriculum EGW. Zeiteinteilung/ Kommentar 1.4 Ungleichungen weglassen 1.5 Gleichungen mit Parametern weglassen Neue Wege Klasse 8 Schulcurriculum EGW Inhalt Neue Wege 8 prozessbezogene Kompetenzen inhaltsbezogene Kompetenzen Kapitel 1 Die Sprache der Algebra Terme und Gleichungen 1.1 Rechnen mit Termen Summen und

Mehr

Selbstlernen im Ma-Unterricht der S II- Unterrichtszenarien, konkrete Beispiele für die Kl. 11

Selbstlernen im Ma-Unterricht der S II- Unterrichtszenarien, konkrete Beispiele für die Kl. 11 Selbstlernen im Ma-Unterricht der S II- Unterrichtszenarien, konkrete Beispiele für die Kl. 11 1. Der Modellversuch SelMa Vor einem Jahr hat in NRW der bis zum 1.2.2003 laufende BLK- Modellversuch SelMa-

Mehr

Themenerläuterung. Die wichtigsten benötigten Formeln 1. Der Umgang mit der Mitternachtsformel

Themenerläuterung. Die wichtigsten benötigten Formeln 1. Der Umgang mit der Mitternachtsformel Themenerläuterung In diesem Kapitel wirst du mit linearen Funktionen (=Gerade) und quadratischen Funktionen (=Parabel) konfrontiert. Du musst wissen, wie man eine Geradengleichung durch zwei vorgegebene

Mehr

Kompetenzorientierter Mathematikunterricht

Kompetenzorientierter Mathematikunterricht 1 Kompetenzorientierter Mathematikunterricht Prozessbezogene Kompetenzen fördern Christoph Selter, Karina Höveler, Maren Laferi & Lilo Verboom, 05.09.13 2 Themen»Kompetenzorientierter Mathematikunterricht«Förderung

Mehr

Haus 7: Gute Aufgaben. Modul 7.2 Rechenquadrate mit Ohren (Eren, 1. Klasse)

Haus 7: Gute Aufgaben. Modul 7.2 Rechenquadrate mit Ohren (Eren, 1. Klasse) Haus 7: Gute Aufgaben Modul 7.2 Rechenquadrate mit Ohren (Eren, 1. Klasse) Aufbau des Fortbildungsmoduls 7.2 Theoretische Einbettung: Übe-Verständnis im Wandel Charakteristika intelligenter Übe-Systeme

Mehr

Checklisten für Versuchsprotokolle

Checklisten für Versuchsprotokolle Universität Duisburg- Essen Modul Didaktik der Physik Seminar: Sprachförderung im Physikunterricht Checklisten für Versuchsprotokolle T. Michelbach, G. Yilma & M. Yildirim Fach: Physik Thema der Stunde:

Mehr

LERNPLAN. Kompetenzbereich: Mit symbolischen, formalen und technischen Elementen der Mathematik umgehen (K5)

LERNPLAN. Kompetenzbereich: Mit symbolischen, formalen und technischen Elementen der Mathematik umgehen (K5) LERNPLAN Methode: differenzierender Lernplan mit Aufgaben auf verschiedenen Schwierigkeitsstufen Thema des Unterrichtsbeispiels: Schriftliches Multiplizieren und Dividieren Fach: Mathematik Klassenstufe:

Mehr

Anleitung Diagnosebogen erstellen Ü

Anleitung Diagnosebogen erstellen Ü Einführung Mit Hilfe des Diagnosebogens können Schüler ihren Lernstand selbst einschätzen. Die erreichten bzw. nicht erreichten Kompetenzen werden dabei durch Ankreuzen auf dem Bogen durch die Schüler

Mehr