Differenzierung durch Individualisierung Anita Pfeng

Größe: px
Ab Seite anzeigen:

Download "Differenzierung durch Individualisierung Anita Pfeng"

Transkript

1 Differenzierung durch Individualisierung

2 Die Schüler kommen mit großen Unterschieden in die Schule. Diese Unterschiede verschwinden nicht einfach sondern ziehen sich durch alle Schuljahre.

3 Gleiche Anforderung an alle Schüler fiktiver mittlerer Schüler leistungsschwache leistungsstarke Schüler Schüler permanente Überforderung dauernde Unterforderung - fortwährend Misserfolge - kann seine Leistungsfähigkeit nicht - gibt irgendwann frustriert auf entfalten, - negative Verstärkung - langweilt sich - Mehrarbeit

4 Differenzierung von oben durch die Lehrkraft: - unterschiedliche Arbeitsaufträge für verschiedene Leistungsniveaus (nach Nührenbörger, Modul G 8, BLK-Programm Sinus-Transfer-Grundschule)

5 Individualisierung von unten durch den Schüler selbst, denn sie haben oft mehr oder andere Kenntnisse und Fähigkeiten als erwartet, sie denken anders, sie lernen besser, wenn sie eigene Wege gehen können Mathematiklernen funktioniert nur durch Weiterlernen, denn nur durch das Anknüpfen an die individuellen Vorkenntnisse erfolgt ein wirklicher Wissenszuwachs.

6 Forderungen an die Aufgabe: Lernen in Sinnzusammenhängen Eigenständiges Denken ermöglichen Diskussionsanlass bieten Über eine niedrige Eingangsschwelle verfügen Entdeckungen auf verschiedenen Niveaus ermöglichen Über so genannte Rampen (nach Hengartner) für die leistungsstärkeren Schüler verfügen Soziale Prozesse fördern Eventuell Standortbestimmung ermöglichen Mit verträglichen Aufwand im Schulalltag leistbar sein.

7 Individualisierung durch Offene Aufgaben Aufgabengeneratoren Forscheraufgaben

8 Offene Aufgabe: Finde Aufgaben mit dem Ergebnis 9:

9

10

11 Finde Aufgaben mit dem Ergebnis 7:

12 Finde Aufgaben mit dem Ergebnis 8:

13 Alle Kinder finden Aufgaben mit dem entsprechenden Ergebnis. Es gibt beträchtliche Unterschiede im Vorgehen und im Vorwissen Es reicht bei den meisten Schülern über den Zahlenraum bis 20 hinaus bei einigen Schülern bis in den Zahlenraum bis 1000 Standortbestimmung (für den Lehrer) Was können Kinder bereits? Über welche Denk- und Lösungsstrategien verfügen sie bereits? Das weitere Vorgehen im Unterricht kann geplant werden. Dem Schüler wird ein individuelles Auseinandersetzen mit seinem eigenen Zahlenwissen und ein Austausch mit den anderen ermöglicht.

14 Beispiele für Offene Aufgaben (nach Renate Rasch): Schreibe alle Zahlen auf, die dir wichtig sind. Schreibe Aufgaben zu deiner Lieblingszahl. Bilde Aufgaben mit dem Ergebnis Bilde alle Malaufgaben, die du schon kennst. Multipliziere große Zahlen mit einstelligen Zahlen. Suche leichte und schwere Aufgaben. Schreibe eine Sachaufgabe zum Teilen.

15 Schreibe alle Brüche auf die du schon kennst. Finde Zahlen, die sich durch viele andere teilen lassen. Schreibe die Teiler dazu. Wähle zwei Dezimalzahlen addiere, subtrahiere, multipliziere und dividiere diese Zahlen.

16 Aufgabengeneratoren: + - : Wähle selbst Zahlen und Rechenzeichen aus. Bilde damit Aufgaben und rechne sie aus. 2. Welche Aufgaben findest du leicht? 3. Welche Aufgaben findest du schwer? 4. Bei welchen Aufgaben hast du dir etwas besonderes überlegt? (aus: Nührenbörger, Verboom: Modul G8, BLK-Projekt Sinus-Transfer-Grundschule)

17 Forscheraufgaben Hier werden Zahl- bzw. Aufgabenbeziehungen untersucht. Auffälligkeiten und Zusammenhänge entdeckt, beschrieben und unter Umständen auch erklärt. z.b. Strukturierte Aufgaben

18 Unstrukturierte Aufgaben 1. Rechne aus = = = = = Die Aufgaben stehen in keinem Zusammenhang zueinander. Wenn überhaupt sind sie nach Schwierigkeitsgrad geordnet.

19 Strukturierte Aufgaben (nach Hengartner) = = = = 5. Es wird nicht nur gerechnet. Es können auch Muster und Strukturen entdeckt werden. 1. Rechne aus. 2. Was fällt dir auf? 3. Führe das Päckchen um einige Zeilen weiter. 4. Wie lautet die 7./ die10./ die 20. Zeile? 5. Erfinde ein ähnliches Päckchen. 6. Erfinde ein Päckchen, bei dem die Summen von Zeile zu Zeile um 3 größer werden.

20 Fazit: Alle Schüler rechnen die Aufgaben aus Alle Schülern können Muster und Strukturen innerhalb dieses Päckchens entdecken, fortsetzen und selber erzeugen. Bei Aufgabe 4 gibt es eine Individualisierung der Lösungswege Aufgabe 5 ermöglicht Individualisierung durch die Anzahl und den Schwierigkeitsgrad Die Aufgaben 6-9 stellen teilweise Rampen dar

21 Inhaltliche Kompetenzen: Addition zweistelliger Zahlen im Zahlenraum bis 100 Allgemeine Kompetenzen: Problemlösen Kommunizieren Argumentieren

22 Forscheraufgaben als Lernumgebung: Das Pascal sche Dreieck und so weiter...

23 (nach: Die Grundschulzeitschrift/SB Mathematiklernen auf eigenen Wegen)

24 Wie könnte man vorgehen? Folie mit dem Anfang des Pascal schen Dreiecks. Die Schüler erhalten entsprechende Arbeitsbögen und tragen die fehlenden Zahlen ein. In der 2. Aufgabe hat jeder Schüler individuell die Möglichkeit Auffälligkeiten (Muster) zu entdecken. In anschließender Reflexion stellen die Schüler ihre Muster vor. Im weiteren Verlauf bearbeiten die Schüler die Forscheraufgaben bzw. erstellen ein eigenes Dreieck.

25 Jedes Kind findet individuelle Muster und erklärt deren Struktur: Der äußerste Schenkel hat nur Einsen. Bei jeder 2. Reihe kommt jede Zahl doppelt.

26 In dieser Spalte erhöht sich der Summand immer um 1.

27

28

29

30

31 Wie kann es weitergehen? Das 2er-Dreieck bietet eine Variation des Pascal schen Dreiecks. Die fehlenden Zahlen wurden von den Schülern ergänzt, dann konnten die Muster notiert werden. (aus: Die Grundschulzeitschrift/SB Mathematiklernen auf eigenen Wegen)

32

33 Besonders motivierend war die Möglichkeit ein eigenes Dreieck zu entwerfen.

34 Fazit: Alle Schülerinnen und Schüler waren hoch motiviert. Die Aufgabe ermöglichte eigenständiges Denken und Lernen in Sinnzusammenhängen. bot allen Kindern einen Einstieg. ermöglichte Entdeckungen auf verschiedenen Niveaus. ermöglichte eine argumentative Auseinandersetzung mit anderen Sicht- und Vorgehensweisen, da die individuellen Entdeckungen Diskussionsbedarf gaben. hatte Herausforderungen für die leistungsstärkeren Schüler eignete sich nicht zuletzt zum Produktiven Üben. Es wurde nebenbei viel Kopfrechnen geübt.

35 Allgemeine Kompetenzen Problemlösen: Es mussten Zahlenzusammenhänge erkannt und genutzt werden. Kommunizieren: Auffälligkeiten wurden beschrieben, Auffälligkeiten anderer mussten verstanden und reflektiert werden, wobei auch gezielt auf mathematische Fachbegriffe geachtet wurde. Argumentieren: Die entdeckten mathematischen Strukturen wurden hinterfragt. Es wurden mathematische Zusammenhänge erkannt, Vermutungen entwickelt und teilweise Begründungen gesucht.

36

37 Lernumgebung Gleich weit weg von Hengartner

38

39

40

41 In all den genannten Beispielen ist das Tätigkeitsfeld wirklich offen, d.h. während die einen schon Muster und Strukturen finden und erforschen, sind andere noch mit dem Berechnen und Suchen von Beispielen beschäftigt.

42 Stolpersteine: Schüler, die Mathematik hauptsächlich mit Fleiß bewältigen, sind anfangs manchmal überfordert. Die Lehrkraft muss sich vermehrt mit mathematischen Hintergründen auseinander setzen. Leistungsbewertung ist schwieriger Nicht hinter jeder einzelnen Rechnung kann eine Korrektur stehen. Es müssen nicht alle Fehler verbessert werden, wenn klar ist, dass die Denkwege verstanden worden sind.

43 Vorteile: Kein zusätzliches Material für begabte und/oder schnelle Schüler Eine gemeinsame Aufgabe wirkt ausgleichend, alle arbeiten am gleichen Thema (Motivation für die rechenschwachen Schüler) Wir lernen neue Denk- und Lernwege kennen, vermeintlich rechenschwache Schüler liefern manchmal erstaunliche Lösungen Das mathematische Denken, die Kreativität (unterschiedlichen Darstellungen), soziales Lernen wird gefördert.

44 Wenn man die individuellen Unterschiede und vielfältigen Lösungsstrategien der Schüler entdeckt und ernst nehmen will, muss man einen Mathematikunterricht betreiben, der diese Individualität ernst nimmt, einplant und damit umgeht. Offene Aufgaben, Aufgabengeneratoren, Forscheraufgaben und Lernumgebungen helfen dabei. Nur auf diese Weise kann mit der Heterogenität der Schüler angemessen umgegangen werden und jedem Schüler ein individuelles Lernen ermöglicht werden.

45 Vielen Dank!

46 Literatur: Büchter, A./Leuders T.: Mathematikaufgaben selbst entwickeln. Cornelsen- Scriptor Gerdiken, K.: Das Pascal sche Dreieck. In: Die Grundschulzeitschrift 133/2000 Hengartner, E./Ueli H./ Wälti, B.: Lernumgebungen für Rechenschwache bis Hochbegabte. Klett und Balmer Verlag. Zug 2006 Nührenbörger, M./Verboom L.: Eigenständig lernen-gemeinsam lernen. Modul G 8. Kiel 2005 Rasch, R.: Offene Aufgaben für individuelles Lernen im Mathematikunterricht der Grundschule ½. Kallmeyer. Seelze 2007 Rasch, R.: Offene Aufgaben für individuelles Lernen im Mathematikunterricht der Grundschule ¾. Kallmeyer. Seelze 2007 Wittmann, E. Ch. und Müller, G.N.: Handbuch produktiver Rechenübungen. Bd. 1 und Bd. 2. Klett. Stuttgart 1990/92

Mathematik ist mehr als Rechnen

Mathematik ist mehr als Rechnen Mathematik ist mehr als Rechnen mit produktiven Lernumgebungen zu einem kompetenzorientierten Unterricht Anforderungen an einen modernen Mathematikunterricht Lernumgebung zur Multiplikation Kriterien einer

Mehr

Mathematikunterricht in jahrgangsgemischten Eingangsklassen 1/2. Beschreibung einer erprobten Konzeption

Mathematikunterricht in jahrgangsgemischten Eingangsklassen 1/2. Beschreibung einer erprobten Konzeption Mathematikunterricht in jahrgangsgemischten Eingangsklassen 1/2 Beschreibung einer erprobten Konzeption Agenda Inhaltliche Überlegungen Organisatorische Überlegungen Beschreibung der Arbeit Gemeinsame

Mehr

Charlotte Rechtsteiner-Merz 1

Charlotte Rechtsteiner-Merz 1 Agenda im Mathematikunterricht der Grundschule Fachtag SINUS an Grundschulen LS Stuttgart, 11. Dezember 2013 Charlotte Rechtsteiner-Merz vor welchem Hintergrund? Blick auf die Mathematik Blick auf das

Mehr

will die Bildungsstandards umsetzen.

will die Bildungsstandards umsetzen. Aufgabenstellungen für die Klassen 1 bis 4 1 will die Bildungsstandards umsetzen. Grafik entnommen aus Bildungsstandards für die Grundschule: Mathematik konkret, Cornelsen Scriptor 2009 2 1 Raum und Form

Mehr

Lernumgebungen und substanzielle Aufgaben im Mathematikunterricht (Workshop)

Lernumgebungen und substanzielle Aufgaben im Mathematikunterricht (Workshop) Idee des Workshops Lernumgebungen und substanzielle Aufgaben im Mathematikunterricht (Workshop) Mathematik-Tagung Hamburg, 7. Mai 2010, Workshop Vorname Name Autor/-in ueli.hirt@phbern.ch Einen ergänzenden

Mehr

Zauberquadrate entdecken

Zauberquadrate entdecken Haus 7: Gute Aufgaben Zauberquadrate entdecken Von Mathematik kann man natürlich erst auf den höheren Stufen sprechen. In der Grundschule wird ja nur gerechnet (Moderator der Sendung Kulturzeit im 3sat,

Mehr

Individualisieren durch mathematische Lernumgebungen BEGABT LERNEN EXZELLENT LEHREN MONIKA KLAMECKER

Individualisieren durch mathematische Lernumgebungen BEGABT LERNEN EXZELLENT LEHREN MONIKA KLAMECKER Individualisieren durch mathematische Lernumgebungen BEGABT LERNEN EXZELLENT LEHREN 7.-9.11.2013 MONIKA KLAMECKER Überlegungen zum Individualisieren im Klassenverband Offene Konzepte steigern die Individualisierung

Mehr

Aufgabenvariationen für einen kompetenzorientierten Unterricht zu VERA3 Mathematik Testaufgaben

Aufgabenvariationen für einen kompetenzorientierten Unterricht zu VERA3 Mathematik Testaufgaben Aufgabenvariationen für einen kompetenzorientierten Unterricht zu VERA3 Mathematik Testaufgaben Leitidee: Muster und Strukturen (MS) Beispiel: Variationen zu Testaufgabe 25/ 2011 ähnliche Aufgaben: - Zahlenfolgen:

Mehr

Entwicklung eines Forschercamps für Grundschulkinder Angela Bezold, Universität Würzburg

Entwicklung eines Forschercamps für Grundschulkinder Angela Bezold, Universität Würzburg Entwicklung eines Forschercamps für Grundschulkinder Angela Bezold, Universität Würzburg An der Universität Würzburg besteht seit einigen Jahren ein Lehr-Lern-Labor für die Sekundarstufe. Diese Tradition

Mehr

Das Zahlenbuch. Liebe Zahlenbuch-Profis! Kennen Sie schon Streichquadrate?

Das Zahlenbuch. Liebe Zahlenbuch-Profis! Kennen Sie schon Streichquadrate? Liebe Zahlenbuch-Profis! Kennen Sie schon Streichquadrate? 9 0 9 5 6 8 7 9 5 Zu diesem Thema erhalten Sie hier ein beziehungsreiches Angebot. Es eignet sich zur Differenzierung in Jahrgangsklassen, für

Mehr

Die Hälfte färben. Darum geht es: LP NRW S. 64 Raum und Form Symmetrie Schuleingangsphase

Die Hälfte färben. Darum geht es: LP NRW S. 64 Raum und Form Symmetrie Schuleingangsphase Die Hälfte färben Darum geht es: Der Auftrag, die Hälfte eines Zahlenfeldes geschickt zu färben, erfordert die Beschäftigung mit geometrischen Mustern. Dabei kann die Symmetrie als Mittel zur Problemlösung

Mehr

Dr. Daniela Götze Natürliche Differenzierung von Anfang an! Johannes Kühnel ( ) Anforderungsbereiche der Bildungsstandards

Dr. Daniela Götze Natürliche Differenzierung von Anfang an! Johannes Kühnel ( ) Anforderungsbereiche der Bildungsstandards Überblick über das Fortbildungsmaterial Dr. Daniela Götze Natürliche Differenzierung von Anfang an! Natürliche Differenzierung von Anfang an! Wie wird im Unterrichtsalltag auf die Heterogenität in den

Mehr

Fachspezifische Themenvorschläge für das Quartalspraktikum

Fachspezifische Themenvorschläge für das Quartalspraktikum Fachspezifische Themenvorschläge für das Quartalspraktikum Liste zuhanden der Praxislehrpersonen mit Vorschlägen zur Auftragserteilung an die Studierenden Mathematik (1. Klasse) A. Addition und Subtraktion

Mehr

Entdecken, vertiefen und differenzieren

Entdecken, vertiefen und differenzieren Entdecken, vertiefen und differenzieren Produktive Übungsaufgaben im Mathematikunterricht der Grundschule Impulsreferat Stuttgart, den 05.06.2014 Graue Päckchen Welche Ziele werden damit verfolgt? Welches

Mehr

Binnendifferenzierung im Mathematikunterricht

Binnendifferenzierung im Mathematikunterricht Binnendifferenzierung im Mathematikunterricht Beispiele und Ansätze Veronika Kollmann Staatliches Seminar für Didaktik und Lehrerbildung (Gymnasien) Stuttgart Dimensionen von Heterogenität (nach SPIEGEL

Mehr

Zaubern im Mathematikunterricht

Zaubern im Mathematikunterricht Zaubern im Mathematikunterricht 0011 0010 1010 1101 0001 0100 1011 Die Mathematik als Fachgebiet ist so ernst, dass man keine Gelegenheit versäumen sollte, dieses Fachgebiet unterhaltsamer zu gestalten.

Mehr

Veränderte Aufgabenkultur im Mathematikunterricht. Veränderte Aufgaben/? Oder veränderte Kultur? Ihre Erwartungen?

Veränderte Aufgabenkultur im Mathematikunterricht. Veränderte Aufgaben/? Oder veränderte Kultur? Ihre Erwartungen? Veränderte Aufgabenkultur im Mathematikunterricht Veränderte Aufgaben/? Oder veränderte Kultur? Ihre Erwartungen? Auf einem Schiff sind 19 Erwachsene und 14 Kinder. Wie alt ist der Kapitän?! Aufgabenstellung

Mehr

Feedback-Idee: Beurteilen und Selbstbeurteilen. Präsentation von

Feedback-Idee: Beurteilen und Selbstbeurteilen. Präsentation von Zahlenmauern Feedback-Idee: Beurteilen und Selbstbeurteilen Präsentation von zum Thema 1. Vorbereitung der Präsentation Bewertung - gut informiert - gute Beispiele heraus gesucht - Präsentationstext vorbereitet

Mehr

Individuelle Förderung und Differenzierung SINUS Bayern

Individuelle Förderung und Differenzierung SINUS Bayern Individuelle Förderung und Differenzierung SINUS Bayern Mathematik Realschule Jgst. /6 Aufgaben zur individuellen Förderung Übungsaufgaben mit unterschiedlichen Anforderungsstufen geben den Schülerinnen

Mehr

Die Hälfte färben. Darum geht es: LP NRW S. 64 Raum und Form Symmetrie Schuleingangsphase

Die Hälfte färben. Darum geht es: LP NRW S. 64 Raum und Form Symmetrie Schuleingangsphase Symmetrien an Zahlenfeldern: Die Hälfte färben Lehrplanbezug / eigene Notizen Die Hälfte färben Darum geht es: Der Auftrag, die Hälfte eines Zahlenfeldes geschickt zu färben, erfordert die Beschäftigung

Mehr

Schatzsuche statt Fehlerfahndung Forum individuelle Förderung in Schulen

Schatzsuche statt Fehlerfahndung Forum individuelle Förderung in Schulen Schatzsuche statt Fehlerfahndung Forum individuelle Förderung in Schulen am Oberstufenkolleg Bielefeld am 9.2.07 Aufgaben für eine kompetenzorientierte Diagnose Mathematik Ergebnisse der Arbeit im Sinus

Mehr

Heterogenität gerecht werden Freiräume schaffen durch Lernumgebungen

Heterogenität gerecht werden Freiräume schaffen durch Lernumgebungen Haus 6: Heterogene Lerngruppen Heterogenität gerecht werden Freiräume schaffen durch Lernumgebungen Kinder sind unterschiedlich. Ebenso wie sie unterschiedliche Charaktereigenschaften haben, lernen sie

Mehr

Das Geobrett. Fachkonferenz Mathematik

Das Geobrett. Fachkonferenz Mathematik Das Geobrett Fachkonferenz Mathematik 01.11.2011 Das Geo-Brett stammt aus dem angelsächsischen Sprachraum. Didaktisch vielseitig einsetzbares Material, welches von Klasse 1 bis zur Klasse 7 benutzt

Mehr

SINUS an Grundschulen Saarland Offene Aufgaben zur Leitidee Muster und Strukturen / Zahlen und Operationen

SINUS an Grundschulen Saarland Offene Aufgaben zur Leitidee Muster und Strukturen / Zahlen und Operationen Aufgabe 3.3 Idee und Aufgabenentwurf Günther Gerstner, Grundschule Eppelborn, Klassenstufe 3 (November 2012) 1. Lege einen Streifen auf die Hundertertafel und addiere die verdeckten Zahlen. 2. Verschiebe

Mehr

Kompetenzorientierte Unterrichtsentwicklung im inklusiven Kontext

Kompetenzorientierte Unterrichtsentwicklung im inklusiven Kontext Kompetenzorientierte Unterrichtsentwicklung im inklusiven Kontext Differenzierung durch veränderte (offene) Aufgabenformate am Beispiel Deutsch und Mathematik in der Grundschule 1 www.dyrda.de dyrda+partner

Mehr

Verlauf Material LEK Glossar Lösungen. Das Pascal sche Dreieck Übungen zu arithmetischen Beziehungen und Zahlenmustern. Anne Forell, Paderborn

Verlauf Material LEK Glossar Lösungen. Das Pascal sche Dreieck Übungen zu arithmetischen Beziehungen und Zahlenmustern. Anne Forell, Paderborn Reihe 6 S Verlauf Material LEK Glossar Lösungen Das Pascal sche Dreieck Übungen zu arithmetischen Beziehungen und Zahlenmustern Anne Forell, Paderborn Ein interessantes Gebilde: akg / De Agostini Pict.

Mehr

Allen Kindern recht getan, ist eine Kunst, die keiner kann -Möglichkeiten und Grenzen der Differenzierung im Mathematikunterricht der Grundschule

Allen Kindern recht getan, ist eine Kunst, die keiner kann -Möglichkeiten und Grenzen der Differenzierung im Mathematikunterricht der Grundschule Allen Kindern recht getan, ist eine Kunst, die keiner kann -Möglichkeiten und Grenzen der Differenzierung im Mathematikunterricht der Grundschule Prof. Dr. Marianne Grassmann 14.11.2011 Gliederung Einleitung;

Mehr

Werkstatt Mathematik Rechnen im ZR Million Zahlraumerfassung bis

Werkstatt Mathematik Rechnen im ZR Million Zahlraumerfassung bis Werkstatt Mathematik Rechnen im ZR Million Zahlraumerfassung bis 1 000 000 Diese Lernwerkstatt für das 4. Schuljahr enthält vielfältige, motivierende Angebote, die den Schülern eine intensive Auseinandersetzung

Mehr

Allgemeine Ziele des Mathematikunterrichts in der Sek 1

Allgemeine Ziele des Mathematikunterrichts in der Sek 1 Allgemeine Ziele des Mathematikunterrichts in der Sek 1 Nach Heinrich WINTER, 1996: 1) Erscheinungen der Welt um uns, die uns alle angehen, aus Natur, Gesellschaft und Kultur in einer spezifischen Art

Mehr

SINUS-Box 1: Triff die 50

SINUS-Box 1: Triff die 50 Darstellen Modellieren Problemlösen Argumentieren BP 2016 Kommunizieren Zahlen und Operationen Raum und Form Größen und Messen SINUS PROFIL MATHEMATIK AN GRUNDSCHULEN Daten, Häufigkeit und W ahrscheinlichkeit

Mehr

BILDUNGSSTANDARDS PRIMARBEREICH MATHEMATIK

BILDUNGSSTANDARDS PRIMARBEREICH MATHEMATIK BILDUNGSSTANDARDS PRIMARBEREICH MATHEMATIK 1. Allgemeine mathematische Kompetenzen Primarbereich Allgemeine mathematische Kompetenzen zeigen sich in der lebendigen Auseinandersetzung mit Mathematik und

Mehr

Basiswissen WADI Basiswissen und Sicherung des Basiswissens durch WADI

Basiswissen WADI Basiswissen und Sicherung des Basiswissens durch WADI Basiswissen und Sicherung des Basiswissens durch WADI Manfred Zinser 2009 1 Lernen als Aufbauen einer Mauer Stein um Stein Reihe um Reihe Fehlende Steine können die Mauer zum Einsturz bringen. Knüpfen

Mehr

Denke dir mit deiner Gruppe ein Würfelspiel aus, bei dem möglichst viel gerechnet werden muss.

Denke dir mit deiner Gruppe ein Würfelspiel aus, bei dem möglichst viel gerechnet werden muss. Aufgabe 1.5 Idee und Aufgabenentwurf: Vera Laase, Nikolaus-Groß-Schule, Lebach, Klasse 3 (Dezember 2012) Denke dir mit deiner Gruppe ein Würfelspiel aus, bei dem möglichst viel gerechnet werden muss. o

Mehr

Haus 7: Gute Aufgaben. Modul 7.2 Rechenquadrate mit Ohren (Eren, 1. Klasse)

Haus 7: Gute Aufgaben. Modul 7.2 Rechenquadrate mit Ohren (Eren, 1. Klasse) Haus 7: Gute Aufgaben Modul 7.2 Rechenquadrate mit Ohren (Eren, 1. Klasse) Aufbau des Fortbildungsmoduls 7.2 Theoretische Einbettung: Übe-Verständnis im Wandel Charakteristika intelligenter Übe-Systeme

Mehr

Fachspezifische Themenvorschläge für das Quartalspraktikum

Fachspezifische Themenvorschläge für das Quartalspraktikum Fachspezifische Themenvorschläge für das Quartalspraktikum Liste zuhanden der Praxislehrpersonen mit Vorschlägen zur Auftragserteilung an die Studierenden Mathematik (4. Klasse) A. Rechenstrategien Subtraktion

Mehr

Schuleigener Arbeitsplan im Fach Mathematik 2. Schuljahr Unterrichtswerk: Welt der Zahl Schroedel Stand:

Schuleigener Arbeitsplan im Fach Mathematik 2. Schuljahr Unterrichtswerk: Welt der Zahl Schroedel Stand: Schuleigener Arbeitsplan im Fach Mathematik 2. Schuljahr Unterrichtswerk: Welt der Zahl Schroedel Stand: 10.11.2010 Inhalte des Schulbuches Wiederholung und Vertiefung Seiten Prozessbezogene Kompetenzen

Mehr

Schweizer Zahlenbuch. Klett und Balmer Verlag Präsentation Weinfelden,

Schweizer Zahlenbuch. Klett und Balmer Verlag Präsentation Weinfelden, Schweizer Zahlenbuch Klett und Balmer Verlag Präsentation Weinfelden, 15.2.2017 Überblick 1. Allgemeine Informationen zum Schweizer Zahlenbuch Schweizer Zahlenbuch und Lehrplan 21 Aufbau des Schweizer

Mehr

Lernumgebung Handy-Abos. Wiederholung der Einheit Geld aus den vorangegangenen Jahrgangsstufen Arbeit an Sachsituationen

Lernumgebung Handy-Abos. Wiederholung der Einheit Geld aus den vorangegangenen Jahrgangsstufen Arbeit an Sachsituationen Lernumgebung Handy-Abos Thema: Medien: Lehrplan: Bildungsstandards: 2. Sachrechnen, Rechnen mit Geld, Tabellen Arbeitsblätter, evtl. Originalprospekte zu Handy-Abos 4.4 Sachbezogene Mathematik 4.4.1 Größen

Mehr

EINMALEINS BEZIEHUNGSREICH

EINMALEINS BEZIEHUNGSREICH EINMALEINS BEZIEHUNGSREICH Thema: Übung des kleinen Einmaleins; operative Beziehungen erkunden Stufe: ab 2. Schuljahr Dauer: 2 bis 3 Lektionen Materialien: Kleine Einmaleinstafeln (ohne Farben), Punktefelder

Mehr

Zahlenmuster beschreiben

Zahlenmuster beschreiben Zahlenmuster beschreiben Zwischen individuellen Ausdrucksweisen und normierter Fachsprache Michael Link Übersicht A. Zahlenmuster was ist das? B. Was macht eine gute Beschreibung aus? A. Zahlenmuster was

Mehr

Schuleigener Arbeitsplan im Fach Mathematik 4. Schuljahr Unterrichtswerk: Welt der Zahl Schroedel Stand:

Schuleigener Arbeitsplan im Fach Mathematik 4. Schuljahr Unterrichtswerk: Welt der Zahl Schroedel Stand: Schuleigener Arbeitsplan im Fach Mathematik 4. Schuljahr Unterrichtswerk: Welt der Zahl Schroedel Stand: 10.11.2010 Inhalte des Schulbuches Wiederholung und Vertiefung Seiten Prozessbezogene Kompetenzen

Mehr

Schuleigener Arbeitsplan im Fach Mathematik 3. Schuljahr Unterrichtswerk: Welt der Zahl Schroedel

Schuleigener Arbeitsplan im Fach Mathematik 3. Schuljahr Unterrichtswerk: Welt der Zahl Schroedel Schuleigener Arbeitsplan im Fach Mathematik 3. Schuljahr Unterrichtswerk: Welt der Zahl Schroedel Stand 10.11.2010 Inhalte des Schulbuches Wiederholung und Vertiefung Seiten Prozessbezogene Kompetenzen

Mehr

Fachspezifische Themenvorschläge für das Quartalspraktikum

Fachspezifische Themenvorschläge für das Quartalspraktikum Fachspezifische Themenvorschläge für das Quartalspraktikum Liste zuhanden der Praxislehrpersonen mit Vorschlägen zur Auftragserteilung an die Studierenden Mathematik (3. Klasse) A. Rechenstrategien Addition

Mehr

Mathematik - Jahrgangsstufe 5

Mathematik - Jahrgangsstufe 5 Mathematik - Jahrgangsstufe 5 1. Natürliche Zahlen und Größen (Stochastik, Arithmetik/Algebra) Strichlisten, Tabellen und Diagramme Die Stellenwerttafel im Dezimalsystem & Runden Grundrechenarten: Summe,

Mehr

Gemeinsames Lernen im jahrgangsgemischten Mathematikunterricht

Gemeinsames Lernen im jahrgangsgemischten Mathematikunterricht 18. Symposium mathe 2000 Individuelle Förderung im Mathematikunterricht der Grundschule Gemeinsames Lernen im jahrgangsgemischten Mathematikunterricht Überblick über die nächsten ca. 70 Minuten: Tragfähige

Mehr

Sie sehen: Diese beiden Mauern sind das 8-fache bzw. 6-fache der Ausgangsmauer, die Steine enthalten nur Zahlen der 8er- bzw. der 6er-Reihe.

Sie sehen: Diese beiden Mauern sind das 8-fache bzw. 6-fache der Ausgangsmauer, die Steine enthalten nur Zahlen der 8er- bzw. der 6er-Reihe. Liebe Zahlenbuch-Profis! Muster bilden bekanntlich einen hervorragenden Nährboden für das aktiv-entdeckende Lernen, denn dahinter verbergen sich immer reichhaltige mathematische Strukturen. Man kann nämlich

Mehr

Rechenkwadrate mit Ohren

Rechenkwadrate mit Ohren Haus 7: Fortbildungsmaterial Herausfordernde Lernangebote Gute Aufgaben Rechenkwadrate mit Ohren (Eren, 1. Klasse) 1 Theoretische Einbettung: Überblick Übe-Verständnis im Wandel Charakteristika intelligenter

Mehr

Schuleigener Arbeitsplan im Fach Mathematik 1. Schuljahr Unterrichtswerk: Welt der Zahl, Schroedel Stand:

Schuleigener Arbeitsplan im Fach Mathematik 1. Schuljahr Unterrichtswerk: Welt der Zahl, Schroedel Stand: Schuleigener Arbeitsplan im Fach Mathematik 1. Schuljahr Unterrichtswerk: Welt der Zahl, Schroedel Stand: 10.11.2010 Inhalte des Schulbuches Zahlen überall 4-19 Seiten Prozessbezogene Kompetenzen Zahlen

Mehr

Selbstbestimmtes Lernen im jahrgangsübergreifenden Unterricht und verbindliche Anforderungen

Selbstbestimmtes Lernen im jahrgangsübergreifenden Unterricht und verbindliche Anforderungen Selbstbestimmtes Lernen im jahrgangsübergreifenden Unterricht und verbindliche Anforderungen Ein Beitrag von Olaf Schemionneck, Andrea Hennecke und Heike Ditzhaus, OGGS Haarhausen, Wuppertal Individuelle

Mehr

1. Aufgaben und Ziele des Mathematikunterrichts in der Grundschule

1. Aufgaben und Ziele des Mathematikunterrichts in der Grundschule 1. Aufgaben und Ziele des Mathematikunterrichts in der Grundschule Aufgaben und Ziele des Mathematikunterrichts Forderungen zu mathematischer Grundbildung (Winter 1995) Erscheinungen der Welt um uns, die

Mehr

Beurteilung offener Aufgaben und prozessbezogener Kompetenzen im Mathematikunterricht

Beurteilung offener Aufgaben und prozessbezogener Kompetenzen im Mathematikunterricht Beurteilung offener Aufgaben und prozessbezogener Kompetenzen im Mathematikunterricht Tagung beurteilen bewerten fördern Netzwerk heterogenlernen 26. Oktober 2013 Tanja Jud Tanja Jud Beurteilung offener

Mehr

Fachspezifische Themenvorschläge für das Quartalspraktikum

Fachspezifische Themenvorschläge für das Quartalspraktikum Fachspezifische Themenvorschläge für das Quartalspraktikum Liste zuhanden der Praxislehrpersonen mit Vorschlägen zur Auftragserteilung an die Studierenden Mathematik 2. Klasse A: Rechenstrategien Addition

Mehr

Aufgaben aus dem Klassenzimmer

Aufgaben aus dem Klassenzimmer Susanne Meßmer, 78532 Tuttlingen, Universität Dortmund 1 Aufgaben aus dem Klassenzimmer Blitzblick Rate meine Zahl 0 100 Universität Dortmund Universität Dortmund 2 1 Zähle geschickt! Tempel Treppe Universität

Mehr

Mathetraining in 3 Kompetenzstufen. Bergedorfer Unterrichtsideen. 5./6. Klasse. Band 2: Brüche, Dezimalzahlen, Terme und Gleichungen

Mathetraining in 3 Kompetenzstufen. Bergedorfer Unterrichtsideen. 5./6. Klasse. Band 2: Brüche, Dezimalzahlen, Terme und Gleichungen Bergedorfer Unterrichtsideen Brigitte Penzenstadler Mathetraining in Kompetenzstufen./6. Klasse Band 2: Brüche, Dezimalzahlen, Terme und Gleichungen Brigitte Penzenstadler Mathetraining in Kompetenzstufen

Mehr

Rechenkwadrate mit Ohren

Rechenkwadrate mit Ohren Haus 7: Fortbildungsmaterial Herausfordernde Lernangebote Gute Aufgaben Rechenkwadrate mit Ohren (Eren, 1. Klasse) 1 Theoretische Einbettung: Übe-Verständnis im Wandel Überblick Charakteristika intelligenter

Mehr

Die Hälfte färben. So kann man vorgehen:

Die Hälfte färben. So kann man vorgehen: Die Hälfte färben Gut geeignet: für die 2. und 3. Jahrgangsstufe (mit dem 20er- Feld auch für die 1. Klasse und dem Tausenderbuch für die 4. Klasse geeignet) Darum geht es: Die Kinder müssen auf der Hundertertafel

Mehr

Literaturtipps in den PIK-Häusern

Literaturtipps in den PIK-Häusern Literaturtipps in den PIK-Häusern Die folgende Auflistung enthält sämtliche Literaturtipps, die sich im Informationsmaterial der PIK-Häuser befinden. Haus 1: Entdecken, Beschreiben, Begründen Walther,

Mehr

Begriffe, die auf eine Multiplikation oder Division hinweisen

Begriffe, die auf eine Multiplikation oder Division hinweisen Fachbegriffe der Addition und Subtraktion Bei der Addition werden Zahlen zusammengezählt: 2 + 4 = 6 1. Summand 2. Summand Summe Bei der Subtraktion wird eine Zahl von einer anderen abgezogen. 7 2 = 5 Minuend

Mehr

Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens

Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens Inhalt Arithmetische Vorkenntnisse am Schulanfang Zahlaspekte, Zählen, Zahlzeichen Zum Gleichheitszeichen Materialien im Anfangsunterricht

Mehr

R e i n h o l d H a u g. Bewerten im Mathematikunterricht. Impulsreferat. Stuttgart, Reinhold Haug

R e i n h o l d H a u g. Bewerten im Mathematikunterricht. Impulsreferat. Stuttgart, Reinhold Haug Bewerten im Mathematikunterricht Impulsreferat Stuttgart, 17.06.2015 Reinhold Haug Verschiedene Funktionen einer Leistungsbewertung Autonome Funktion: Rückmeldefunktion über Leistungsfähigkeit und Lernprozesse

Mehr

Orientierung im Hunderterraum

Orientierung im Hunderterraum Orientierung im Hunderterraum Um sich in einem neuen Zahlenraum sicher bewegen und rechnen zu können, müssen Kinder eine Reihe von Kompetenzen beherrschen. Dabei werden nicht nur Vorkenntnisse und Schwierigkeiten,

Mehr

Entdeckendes Lernen im Mathematikunterricht

Entdeckendes Lernen im Mathematikunterricht Entdeckendes Lernen im Mathematikunterricht Zum Nachdenken Dieser unserer Didaktik Hauptplan sei folgender: Eine Anweisung zu suchen und zu finden, wie die Lehrenden weniger lehren, die Lernenden aber

Mehr

Wo liegt der Fehler? Kopiervorlage 3-0

Wo liegt der Fehler? Kopiervorlage 3-0 Kopiervorlage 3-0 Wo liegt der Fehler? Schülerinnen und Schüler analysieren fehlerhafte Lösungswege beim Rechnen mit Brüchen und Dezimalzahlen Kathrin Winter, Gerald Wittmann Online-Ergänzungen zu dem

Mehr

Arbeitsplan Mathe, 3. Schuljahr

Arbeitsplan Mathe, 3. Schuljahr : 1.-10.Woche Lernvoraussetzungen erfassen Wiederholung des in Klasse 2 Gelernten Lerninhalte des 2. Schuljahres beherrschen Eingangsdiagnostik Wiederholung mit abgewandelten Übungen Diagnosebögen zum

Mehr

2.Schuljahr. Schuleigener Arbeitsplan für das Fach Mathematik

2.Schuljahr. Schuleigener Arbeitsplan für das Fach Mathematik V e r l ä s s l i c h e G r u n d s c h u l e Hauptstraße 5 30952 Ronnenberg-Weetzen 05109-52980 Fax 05109-529822 2.Schuljahr Schuleigener Arbeitsplan für das Fach Mathematik Kompetenzbereiche, erwartete

Mehr

Halbschriftliches und schriftliches Rechnen

Halbschriftliches und schriftliches Rechnen Haus 5: Individuelles und gemeinsames Lernen Sachinformationen Halbschriftliches und schriftliches Rechnen Informationen zur Strukturierung des Lernweges am Beispiel der Addition und Subtraktion Das nachstehend

Mehr

Mathematiklernen in der jahrgangsübergreifenden Eingangsstufe - Gemeinsam, aber nicht im Gleichschritt

Mathematiklernen in der jahrgangsübergreifenden Eingangsstufe - Gemeinsam, aber nicht im Gleichschritt Agenda Hintergründe Pädagogische Aspekte Mathematikdidaktische Aspekte Entwicklungen Anforderungen an einen guten Mathematikunterricht Herausforderungen für den jahrgangsgemischten Unterricht Mathematiklernen

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Mathetraining in 3 Kompetenzstufen - 7./8. Klasse

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Mathetraining in 3 Kompetenzstufen - 7./8. Klasse Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Mathetraining in 3 Kompetenzstufen - 7./8. Klasse Das komplette Material finden Sie hier: School-Scout.de Brigitte Penzenstadler Brigitte

Mehr

Mathematik im 3. Schuljahr. Kompetenzen und Inhalte

Mathematik im 3. Schuljahr. Kompetenzen und Inhalte Mathematik im 3. Schuljahr Kompetenzen und Inhalte Prozessbezogene Kompetenzen Problemlösen / kreativ sein Die S. bearbeiten Problemstellungen. Modellieren Die S. wenden Mathematik auf konkrete Aufgabenstellungen

Mehr

Kurzbericht Schulbegleitforschungsnetzwerk Mathematische Lernumgebungen für heterogene Kindergruppen

Kurzbericht Schulbegleitforschungsnetzwerk Mathematische Lernumgebungen für heterogene Kindergruppen Dagmar Bönig, Waltraud Manschke, Lioudmila Tabat, Gundel Timm Kurzbericht Schulbegleitforschungsnetzwerk 2007 2010 Mathematische Lernumgebungen für heterogene Kindergruppen Zahlreiche Studien belegen inzwischen,

Mehr

3.3 Lösungsstrategien für mündliches und halbschriftliches Rechnen Halbschriftliche Addition und Subtraktion

3.3 Lösungsstrategien für mündliches und halbschriftliches Rechnen Halbschriftliche Addition und Subtraktion 3.3 Lösungsstrategien für mündliches und halbschriftliches Rechnen 3.3.1 Halbschriftliche Addition und Subtraktion 3.3.2 Halbschriftliche Multiplikation und Division Rahmenplan Rahmenplan Hessen S. 154:

Mehr

ZEIT 1-2 Unterrichtsstunden

ZEIT 1-2 Unterrichtsstunden ZIELE Die Schüler und Schülerinnen schätzen en, erweitern ihren Zahlensinn entwickeln Schätzstrategien und begründen ihre Schätzungen bewerten ihre eigenen Schätzungen anhand einer Smiley-Skala ZEIT 1-2

Mehr

Kompetenzorientierter Mathematikunterricht

Kompetenzorientierter Mathematikunterricht 1 Kompetenzorientierter Mathematikunterricht Prozessbezogene Kompetenzen fördern Christoph Selter, Karina Höveler, Maren Laferi & Lilo Verboom, 05.09.13 2 Themen»Kompetenzorientierter Mathematikunterricht«Förderung

Mehr

SINUS an Grundschule Saarland Offene Aufgaben zur Leitidee Größen und Messen

SINUS an Grundschule Saarland Offene Aufgaben zur Leitidee Größen und Messen Aufgabe 5 Idee und Aufgabenentwurf: Nicole Mai, Mellin-Schule, Sulzbach, Klasse 3 (Januar 2013) Dein Kinderzimmer ist mit Spielsachen überfüllt. Deine Mutter macht dir einen Vorschlag, die Spielsachen,

Mehr

INTELLIGENTES ÜBEN TERME

INTELLIGENTES ÜBEN TERME INTELLIGENTES ÜBEN TERME Gliederung Lernvoraussetzungen Einordnung in den Lehrgang Stundenreihe Intelligentes Üben Arbeitsauftrag Quellen Lernvoraussetzungen Die Schülerinnen und Schüler...... kennen Variablen...

Mehr

Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens

Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens Didaktik der Arithmetik Klasse 1-3 SS 2009 Hans-Dieter Rinkens Inhalt Lehrplan Mathematik für die Grundschule des Landes NRW Arithmetische Vorkenntnisse am Schulanfang Zahlaspekte, Zählen, Zahlzeichen

Mehr

Lernzirkel Grundrechenarten und Terme Mathematik Nikolaus-von-Kues-Gymnasium Fachlehrer : W. Zimmer Blatt 1 /18. a + b = c

Lernzirkel Grundrechenarten und Terme Mathematik Nikolaus-von-Kues-Gymnasium Fachlehrer : W. Zimmer Blatt 1 /18. a + b = c Mathematik Nikolaus-von-Kues-Gymnasium Fachlehrer : W. Zimmer Blatt 1 /18 Station 1 Addition (lat. addere = dazutun) 1.1 Wie lauten die korrekten Bezeichnungen? a + b = c 1.2 Addiere schriftlich 3 5 6

Mehr

Mathematikunterricht. Volksschule. in der. Maria Koth

Mathematikunterricht. Volksschule. in der. Maria Koth Mathematikunterricht in der Volksschule Maria Koth Herzlich Willkommen! Mathematiklehrplan der Volksschule Mathematiklehrplan der Volksschule Gegliedert in: Grundstufe I: 1. + 2. Schulstufe Grundstufe

Mehr

Nina Berlinger & Timo Dexel Natürliche Differenzierung

Nina Berlinger & Timo Dexel Natürliche Differenzierung Nina Berlinger & Timo Dexel Natürliche Differenzierung Kurzdefinition Natürliche Differenzierung bezeichnet im schulischen Kontext ein Konzept für Aufgabenstellungen im Fach Mathematik. Konstitutiv ist,

Mehr

Basismodul G 1: Gute Aufgaben... 13

Basismodul G 1: Gute Aufgaben... 13 Einleitung... 11 Basismodul G 1: Gute Aufgaben... 13 Gerd Walther Die Entwicklung allgemeiner mathematischer Kompetenzen fördern... 15 Traditionelle Aufgabenstellung kontra Gute Aufgabe... 15 Bildungsstandards

Mehr

Den Lernenden mit offenen Aufgaben entgegen gehen

Den Lernenden mit offenen Aufgaben entgegen gehen Den Lernenden mit offenen Aufgaben entgegen gehen Prof. Dr. Renate Rasch, Universität Koblenz-Landau, Campus Landau, Institut für Mathematik Offene Aufgaben stehen im Zusammenhang mit den Bemühungen der

Mehr

Arbeiten mit Kompetenzraster und Checklisten im Mathematikunterricht der Grundschule

Arbeiten mit Kompetenzraster und Checklisten im Mathematikunterricht der Grundschule Arbeiten mit Kompetenzraster und Checklisten im Mathematikunterricht der Grundschule Willi Heinsohn, Landesinstitut für Lehrerbildung und Schulentwicklung in Hamburg 18. Symposium, Uni Dortmund, 20. Sept.

Mehr

Schulleistungsstudien / Bildungsstandards

Schulleistungsstudien / Bildungsstandards Schulleistungsstudien / Bildungsstandards Schulleistungsstudien zentrale Ergebnisse von TIMSS, PISA Schlussfolgerungen für Bildungsplanung Bildungsstandards im Fach Mathematik Bildungsstandards im Fach

Mehr

Wie kommen die Zahlen und das Rechnen in den Kopf?

Wie kommen die Zahlen und das Rechnen in den Kopf? Wie kommen die Zahlen und das Rechnen in den Kopf? Voraussetzungen: konkrete Handlungen Handlungen erzeugen Vorstellungsbilder 1 Veranschaulichungsmittel Materialien, die als zentrale Hilfsmittel den Kindern

Mehr

Lernzirkel Grundrechenarten und Terme Mathematik Cusanus-Gymnasium Wittlich Fachlehrer : W. Zimmer Blatt 1 /21

Lernzirkel Grundrechenarten und Terme Mathematik Cusanus-Gymnasium Wittlich Fachlehrer : W. Zimmer Blatt 1 /21 Mathematik Cusanus-Gymnasium Wittlich Fachlehrer : W. Zimmer Blatt 1 /21 Station 1 Addition (lat. addere = dazutun) 1.1 Wie lauten die korrekten Bezeichnungen? a + b = c 1.2 Addiere schriftlich 3 5 6 8

Mehr

Schriftliche Standortbestimmungen im Mathematikunterricht der Grundschule

Schriftliche Standortbestimmungen im Mathematikunterricht der Grundschule Schriftliche Standortbestimmungen im Mathematikunterricht der Grundschule Was sind Standortbestimmungen? Standortbestimmungen dienen dem Ermitteln bereits erworbener Kenntnisse und Fähigkeiten in einem

Mehr

Kompetenzorientiert unterrichten: -Argumentieren -Kommunizieren -Problemlösen -Modellieren -Darstellen

Kompetenzorientiert unterrichten: -Argumentieren -Kommunizieren -Problemlösen -Modellieren -Darstellen Sommersemester 2016 Didaktik der Grundschulmathematik Di, 12-14 Uhr, HS 1 I Zahlen und Operationen V 1 12.04. Arithmetik in der Grundschule V 2 19.04. Die Entwicklung mathematischer Kompetenzen V 3 26.04.

Mehr

Prozess- und inhaltsbezogene Kompetenzen fördern Wie geht das?

Prozess- und inhaltsbezogene Kompetenzen fördern Wie geht das? Prozess- und inhaltsbezogene Kompetenzen fördern Wie geht das? DARUM GEHT ES - SACHINFORMATIONEN Die sog. Entdecker-Päckchen oder schönen Päckchen stellen ein vergleichsweise leicht zugängliches Aufgabenformat

Mehr

Mathematik Jahrgangsstufe 1

Mathematik Jahrgangsstufe 1 Grundschule Bad Münder Stand: 26.02.2015 Schuleigener Arbeitsplan Mathematik Jahrgangsstufe 1 Zeitraum Kompetenzen Verbindliche Sommerferien bis Herbstferien Zahlen und auffassen: Aufbau erster Vorstellungsbilder

Mehr

Musterlösung zur 3. Hausaufgabe - Unterrichtsanalyse -

Musterlösung zur 3. Hausaufgabe - Unterrichtsanalyse - 1) Vorkenntnisse: Musterlösung zur 3. Hausaufgabe - Unterrichtsanalyse - Im Rahmen der aktuellen Einheit wurden die folgenden Themen im Unterricht behandelt. Grundkonstruktionen mit Zirkel und Lineal;

Mehr

Möglichkeiten der Begabtenförderung im Mathematik-Unterricht durch natürliche Differenzierung

Möglichkeiten der Begabtenförderung im Mathematik-Unterricht durch natürliche Differenzierung Möglichkeiten der Begabtenförderung im Mathematik-Unterricht durch natürliche Differenzierung Frank Förster & Wolfgang Grohmann Technische Universität Braunschweig Lessing-Grundschule Braunsbedra Zur Einstimmung

Mehr

Intelligentes Üben im kompetenzorientierten Mathematikunterricht der Mittelschule 26. Schwäbischer Lehrertag

Intelligentes Üben im kompetenzorientierten Mathematikunterricht der Mittelschule 26. Schwäbischer Lehrertag Intelligentes Üben im kompetenzorientierten Mathematikunterricht der Mittelschule Heute ist der 23.04.2016 Berechnen Sie nun aus diesen Zahlen 23 0 4 2 0 1 6 durch Einsetzen Ihnen bekannter mathematischer

Mehr

Mathematische Strukturen entdecken, darstellen und erörtern

Mathematische Strukturen entdecken, darstellen und erörtern Mathematisches Denken hört nicht beim Ergebnis auf Mathematische Strukturen entdecken, darstellen und erörtern ein Thema für alle Kinder von Anfang an Marcus Nührenbörger Mathematische Strukturen entdecken,

Mehr

GS Rethen. Themenzuordnung. Zu erwerbende Kompetenzen am Ende von Jahrgang 4: Die Schülerinnen und Schüler

GS Rethen. Themenzuordnung. Zu erwerbende Kompetenzen am Ende von Jahrgang 4: Die Schülerinnen und Schüler GS Rethen Kompetenzorientierung Fach: Mathematik Zu erwerbende Kompetenzen am Ende von Jahrgang 4: Die Schülerinnen und Schüler - verwenden eingeführte mathematische Fachbegriffe sachgerecht. - erläutern

Mehr

Übephasen produktiv gestalten

Übephasen produktiv gestalten Institut für Mathematische Bildung Freiburg www.ph-freiburg.de/imbf Übephasen produktiv gestalten Prof. Dr. Lars Holzäpfel René Schelldorfer Norbert Hungerbuehler Zürich 5. November 2012 Programm für den

Mehr

Teilbarkeitsbetrachtungen in den unteren Klassenstufen - Umsetzung mit dem Abakus

Teilbarkeitsbetrachtungen in den unteren Klassenstufen - Umsetzung mit dem Abakus Naturwissenschaft Melanie Teege Teilbarkeitsbetrachtungen in den unteren Klassenstufen - Umsetzung mit dem Abakus Examensarbeit Inhaltsverzeichnis Abkürzungsverzeichnis... 2 1 Einleitung... 3 2 Anliegen

Mehr

Vorbereitung auf den Hauptschulabschluss Mathematik

Vorbereitung auf den Hauptschulabschluss Mathematik Katrin Hiemer/Elisabeth Vogt Vorbereitung auf den Hauptschulabschluss Mathematik MANZ VERLAG Das Werk und seine Teile sind urheberrechtlich geschützt. Jede Nutzung in anderen als den gesetzlich zugelassenen

Mehr

Fördern und Diagnose mit dem Blitzrechenkurs 25. Symposium Mathe TU Dortmund

Fördern und Diagnose mit dem Blitzrechenkurs 25. Symposium Mathe TU Dortmund Fördern und Diagnose mit dem Blitzrechenkurs 25. Symposium Mathe 2000+ TU Dortmund 25.04.2015 Referent: Günther Röpert Entwicklungsstand siebenjähriger Kinder 8 7 6 5 4 3 2 1 0 1 2 4 6 4 2 1 5,5 6,0 6,5

Mehr

Lernumgebung 3 Zahlen 4 Aufgaben (Zahlenzauber S. 48/49)

Lernumgebung 3 Zahlen 4 Aufgaben (Zahlenzauber S. 48/49) Claudia Hauke Lernumgebung 3 Zahlen 4 Aufgaben (Zahlenzauber S. 48/49) Klassenstufe: 1 Bezug zum Lehrplan: Umkehroperation zur Addition und Subtraktion bilden Einspluseinssätze mit Ergebnis bis 10 und

Mehr