PRAKTIKUMSVERSUCH M/S 2

Größe: px
Ab Seite anzeigen:

Download "PRAKTIKUMSVERSUCH M/S 2"

Transkript

1 Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme PRAKTIKUMSVERSUCH M/S 2 Betreuer: Dipl.-Ing. Burkhard Hensel Dr.-Ing. Alexander Dementjev ALLGEMEINE BEMERKUNGEN Sollten Sie Verbesserungsvorschläge, Fragen oder Probleme haben, so wenden Sie sich am besten persönlich an Ihre Betreuer oder schreiben ihnen (bitte immer beiden) eine (vorname.nachname@tu-dresden.de).

2 Untersuchung digitaler Filter mit MATLAB/Simulink UNTERSUCHUNG DIGITALER FILTER MIT MATLAB/SIMULINK ALLGEMEINES Digitale Filter sind ein wichtiger Bestandteil aller digitalen Geräte, die Signalmanipulationen durchführen, wie z. B.: Sperren oder Durchlassen eines bestimmten Frequenzbereiches, Störungsbeseitigung oder Glättung des Signals. Digitale Filter haben eine ähnliche Funktionalität wie analoge Filter, werden aber durch digitale Logikbausteine implementiert und können nur zeitdiskrete Signale verarbeiten. Die allgemeine Struktur eines digitalen Filters ist in Abbildung 1 dargestellt. Ein Sensor nimmt ein analoges (zeitkontinuierliches) Signal x(t) auf, das durch einen Rechner mittels ADU (Analog-Digital-Umwandler) in eine zeitdiskrete Folge x[i] umgewandelt und auch gefiltert wird. Ein DAU (Digital-Analog-Umwandler) leitet das geglättete Signal an den Prozess weiter. Abbildung 1: Struktur eines digitalen Filters. Anhand der Impulsantwort (Reaktion des Filters auf einen Impuls) lassen sich digitale Filter in FIR- (Filter mit endlich langer Impulsantwort) und IIR- (Filter mit unendlich langer Impulsantwort) unterscheiden. In den folgenden Praktikumsaufgaben sollen die Eigenschaften von FIR- und IIR-Filtern mit Hilfe von MATLAB/SIMULINK untersucht werden. 2

3 AUFGABE 1: FIR-FILTER Untersuchen Sie das Verhalten des folgenden FIR-Filters: n 1 j= 0 Untersuchung digitaler Filter mit MATLAB/Simulink 1 y [ i] = x[ i j] (i>n-1); n=2, 4, 8 (1) n Dieses Filter soll die vom Sensor gelieferten Signale ungehindert übertragen und (additive) Störungen, z.b. durch die Netzfrequenz, unterdrücken. Für die Untersuchung mittels MATLAB/Simulink ist das Simulink-Modell digitales_fir_2_4_8_filter.mdl zu verwenden. Sie erhalten das Modell bei Ihren Betreuern oder finden es alternativ im voreingestellten Verzeichnis auf dem Hochleistungsrechner. Vor dem jeweiligen Experiment müssen die Einstellungen aus Tabelle 1 im MATLAB Command Window folgendermaßen vorgenommen werden: >> st = >> ipkt = 0.01 Der Filtertyp n ist durch Doppelklick auf die Schalterelemente des Simulink-Modells einzustellen. Der Faktor K wird durch Doppelklick auf das Verstärkerelement und anschließende Eingabe im Feld Gain eingestellt. Die Kreisfrequenz lässt sich nach Doppelklick auf den Block f in dessen Eigenschaften einstellen. FIR-Typ n Abtastzeit st (T) Faktor K Max. Kreisfrequenz ω max Interpolationspunkt ipkt s s s s s s s s s Tabelle 1: Einstellungen für den FIR-Filter in MATLAB. Hinweis: Es kann sinnvoll sein, die Simulationsdauer an die jeweilige Aufgabenstellung anzupassen. Sie lässt sich in der Symbolleiste oder im Menü unter Simulation Configuration Parameters Stop Time anpassen. Wenn Sie relativ lange Simulink-Simulationen durchführen, kann es passieren, dass nur die letzten Signalabschnitte in den Scopes angezeigt werden, weil der Speicher in Simulink standardmäßig begrenzt ist. Sie können dies ändern, indem Sie in den Scopes auf das Symbol Parameters klicken und dann im Register History den Punkt Limit data points to last deaktivieren. a) Beschreiben Sie kurz, welche inhaltliche Bedeutung die neun in den Scopes 1-4 dargestellten Signale haben. b) Beschreiben Sie kurz die durch Gleichung (1) definierte Wirkungsweise des Filters und Ihre Erwartung bezüglich der Wirkung des Filters auf ein Signal. 3

4 Untersuchung digitaler Filter mit MATLAB/Simulink c) Experimentieren Sie mit der Filterdurchlasskurve F = f(ω), indem Sie die Kreisfrequenz ω des Signals x(t) = sin(ωt) (Simulink-Block f) variieren, entsprechende Amplituden des Ausgangssignals y[i] von den Scopes ablesen (Scope 1) und in einem Diagramm gegen ω auftragen. Die Signale f nutz und f stör sind für diese Untersuchung durch Setzen des Amplitudenwertes auf 0 auszuschalten. Die Kreisfrequenz ω muss, angefangen mit Wert ω min =0.25 s -1, mit Schrittweite 0.25 s -1 bis zur maximalen Frequenz ω max entsprechend Tabelle 1 erhöht werden (0.25 s -1, 0.5 s -1,, ω max ). Vernachlässigen Sie bei der Angabe der Amplitude den Einschwingvorgang, d. h. geben Sie die Amplitude für den Zeitbereich an, in dem das Signal gleichmäßig schwingt. Zeichnen Sie parallel die Filterdurchlasskurve des analogen Filters vom Typ T 1 -Tiefpass auf (Scope 3). d) Diskutieren Sie den Einfluss der Phasenverschiebung des Signals f auf die Amplitude des Ausgangssignals. Bei welchen Verhältnissen zwischen Periodendauer des Signals und Abtastperiode ist der Einfluss der Phasenverschiebung besonders groß und warum? Die Phasenverschiebung ist in den Eigenschaften des Simulink-Blocks f unter Phase einstellbar. e) Leiten Sie aus den Untersuchungen eine begründete Aussage über das Verhältnis der Periodendauer eines sinusförmigen Nutzsignals T nutz = 1/f nutz zur Abtastperiode T ab. Überlegen Sie, wann Aliasing einsetzt. Kennzeichnen Sie diese Kurvenabschnitte in der Filterdurchlasskurve von Teilaufgabe a) durch eine andere Linienart oder -farbe. f) Vergleichen Sie die Filterdurchlasskurven miteinander. g) Schalten Sie das Signal f ab (Amplitude = 0) und dafür die Signale f nutz (Amplitude = 1, Kreisfrequenz = 0.1 s -1 ) und f stör (Amplitude = 0.1, Kreisfrequenz = 1 s -1 ) zu. Interpretieren Sie das Ergebnis durch Vergleich der Scopes 1, 3 und 4 für alle drei in Tabelle 1 genannten Filtertypen. h) Schalten Sie die Signale f nutz und f stör wieder ab (Amplitude = 0) und das Signal f wieder an (Amplitude = 1, Kreisfrequenz = 1 s -1 ). Untersuchen Sie das Verhalten des Filters mit n=2 bei konstanter Frequenz des Eingangssignals als Funktion der Abtastperiode mit T = st = 0.1 s, 1 s und s. Beobachten Sie insbesondere Scope 4 und erklären Sie das dort auftretende Verhalten. i) Wozu können die untersuchten FIR-Filteralgorithmen verwendet werden? 4

5 AUFGABE 2: IIR-FILTER Untersuchen Sie das Verhalten des folgenden IIR-Filters: Untersuchung digitaler Filter mit MATLAB/Simulink T1 y[ i] = α y[ i 1] + (1 α) x[ i] mit α =. (2) T + T Auch dieses Filter soll die vom Sensor gelieferten Signale ungehindert übertragen und Störungen, z. B. durch die Netzfrequenz, unterdrücken. Für die Untersuchung mittels MATLAB/Simulink ist das Simulink-Modell 1 digitales_iir_1_filter.mdl zu verwenden. Vor dem jeweiligen Experiment müssen wie in Aufgabe 1 die Einstellungen aus Tabelle 2 im MATLAB Command Window vorgenommen werden. Der Filterkoeffizient α (alpha) soll für jeweilige T 1 und st berechnet und eingegeben werden. Zeitkonstante T 1 Abtastzeit st (T) alpha Max. Kreisfrequenz ω max Intepolationspunkt ipkt s 0.17 s 3 s s s s 3 s s s s 3 s s Tabelle 2: Einstellungen für den IIR-Filter in MATLAB. Viele Teilaufgaben sind analog zu Aufgabe 1 (FIR-Filter). Achtung: Deshalb werden hier die Hinweise zu Umgang mit Matlab/Simulink nicht neu gegeben. a) Beschreiben Sie kurz, welche inhaltliche Bedeutung die fünf in den Scopes 1, 3 und 4 dargestellten Signale haben. b) Beschreiben Sie kurz die durch Gleichung (2) definierte Wirkungsweise des Filters und Ihre Erwartung bezüglich der Wirkung des Filters auf ein Signal. c) Experimentieren Sie mit der Filterdurchlasskurve F=f(ω) durch Variation der Kreisfrequenz ω des Signals x(t) = sin(ωt) (Signal f). Die Schrittweite soll 0.25 s -1 betragen, die maximale Kreisfrequenz ist in Tabelle 2 gegeben. Die Signale f nutz und f stör sind für diese Untersuchung auszuschalten (Amplitudenwert 0 ist einzustellen). Vernachlässigen Sie bei der Angabe der Amplitude den Einschwingvorgang, d. h. geben Sie die Amplitude für den Zeitbereich an, in dem das Signal gleichmäßig schwingt. Zeichnen Sie parallel die Filterdurchlasskurve des analogen Filters vom Typ T 1 -Tiefpass auf (Scope 3). d) Leiten Sie aus den Untersuchungen eine begründete Aussage über das Verhältnis der Periodendauer eines sinusförmigen Nutzsignals T nutz = 1/f nutz zur Abtastperiode T ab. Überlegen Sie, wann Aliasing einsetzt. Kennzeichnen Sie diese Kurvenabschnitte in der Filterdurchlasskurve von Teilaufgabe a) durch eine andere Linienart oder -farbe. e) Vergleichen Sie die Filterdurchlasskurven miteinander. 5

6 Untersuchung digitaler Filter mit MATLAB/Simulink f) Vergleichen Sie die Arbeitsweise und den charakteristischen Verlauf der Filterdurchlasskurven des IIR- und des FIR-Filters. Erklären Sie dabei auch die Wahl der Bezeichnungen FIR und IIR. Für welche Anwendungen ist welche Filterklasse besser geeignet? g) Welche Filterklasse würden Sie verwenden, um gezielt die störende Netzfrequenz (Frequenz [nicht Kreisfrequenz!] ist 50 Hz) aus einem Nutzsignal, welches Signalanteile bis zu einer maximalen Frequenz f Gr [nicht Kreisfrequenz!] enthält, herauszufiltern? Welchen Filterparameter (n bzw. α) und welche Abtastfrequenz f a würden Sie empfehlen? Gibt es für diesen Zweck besser geeignete Filterklassen als die in den Gleichungen (1) und (2) genannten? 6

Übung 5 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN

Übung 5 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme Übung 5 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN Übungsleiter: Dr.-Ing. H.-D. Ribbecke

Mehr

Übung 8 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN

Übung 8 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme Übung 8 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN Übungsleiter: Dr.-Ing. H.-D. Ribbecke

Mehr

Übung 6 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-,SW-CODESIGN

Übung 6 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-,SW-CODESIGN Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme Übung 6 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-,SW-CODESIGN Übungsleiter: Dr.-Ing. Heinz-Dieter

Mehr

ÜBUNG 2 ZUR VORLESUNG PROZESSSTEUERUNG (ERSATZLEHRVERANSTALTUNG FÜR SYSTEMORIENTIERTE INFORMATIK )

ÜBUNG 2 ZUR VORLESUNG PROZESSSTEUERUNG (ERSATZLEHRVERANSTALTUNG FÜR SYSTEMORIENTIERTE INFORMATIK ) Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme ÜBUNG 2 ZUR VORLESUNG PROZESSSTEUERUNG (ERSATZLEHRVERANSTALTUNG FÜR SYSTEMORIENTIERTE INFORMATIK ) Übungsleiter:

Mehr

Übung 5 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN

Übung 5 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme Übung 5 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN BEDEUTUNG DER GEWICHTSFUNKTION UND

Mehr

Übung 11 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN

Übung 11 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme Übung 11 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN Übungsleiter: Dr. Ing. H. D. Ribbecke

Mehr

Zusatzmaterialien zu Übung 5 zur Vorlesung Informatik II für Verkehrsingenieurwesen: Systemeigenschaften und Gewichtsfunktion/folge

Zusatzmaterialien zu Übung 5 zur Vorlesung Informatik II für Verkehrsingenieurwesen: Systemeigenschaften und Gewichtsfunktion/folge Fakultät Informatik Institut für Angewandte Informatik, Professur für Technische Informationssysteme Zusatzmaterialien zu Übung 5 zur Vorlesung Informatik II für Verkehrsingenieurwesen: Systemeigenschaften

Mehr

Übungseinheit 3. FIR und IIR Filter

Übungseinheit 3. FIR und IIR Filter Übungseinheit 3 FIR und IIR Filter In dieser Übungseinheit sollen verschiedene Effekte mittels FIR (finite impulse response) und IIR (infinite impulse response) Filter implementiert werden. FIR Filter

Mehr

Fahrzeugmechatronik Masterstudiengang M 3.2 Sensoren und Aktoren Labor für Automatisierung und Dynamik AuD FB 03MB

Fahrzeugmechatronik Masterstudiengang M 3.2 Sensoren und Aktoren Labor für Automatisierung und Dynamik AuD FB 03MB Abb. 6 Dreidimensionale Darstellung des Frequenzgangs G ATP () s, Achsteilungen s 2 π in Hz Prof. Dr. Höcht 1/29 18.06.2006 11:13 Z_ Abb. 7 Einfluß des Pols bei s imaginären Achse, Achsteilungen in Hz

Mehr

Digitale Signalverarbeitungssysteme II: Praktikum 1

Digitale Signalverarbeitungssysteme II: Praktikum 1 Digitale Signalverarbeitungssysteme II: Praktikum 1 Emil Matus 18. November 2010 Technische Universität Dresden Mobile Communications Systems Chair Tel.: +49 351 463 41021 Fax : +49 351 463 41099 Mail:

Mehr

Übungen zu Transformationen. im Bachelor ET oder EW. Version 2.0 für das Wintersemester 2014/2015 Stand:

Übungen zu Transformationen. im Bachelor ET oder EW. Version 2.0 für das Wintersemester 2014/2015 Stand: Fachhochschule Dortmund University of Applied Sciences and Arts Institut für Informationstechnik Software-Engineering Signalverarbeitung Regelungstechnik IfIT Übungen zu Transformationen im Bachelor ET

Mehr

Regelungstechnik 1 Praktikum Versuch 5.1

Regelungstechnik 1 Praktikum Versuch 5.1 Regelungstechnik 1 Praktikum Versuch 5.1 1 Reglereinstellung mit Rechnersimulation 1.1 Allgemeines In diesem Versuch sollen ausgehend von einer optimalen Reglereinstellung die Einflüsse der Reglerparameter

Mehr

Übung 9 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN

Übung 9 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme Übung 9 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN Übungsleiter: Dr.-Ing. H.-D. Ribbecke

Mehr

3. Informationsverarbeitung in Objekten

3. Informationsverarbeitung in Objekten 3. Informationsverarbeitung in Objekten 1 3.1. Abtastung von Signalen an der Schnittstelle 2 Falls System an einen Rechner angeschlossen ist wert- und zeit-diskrete Signale x * (t k ) = abstrakte Zahlen

Mehr

5. Beispiele - Filter Seite 15

5. Beispiele - Filter Seite 15 5. Beispiele - Filter Seite 15 5.2 Entwurf digitaler Filter Zur Demonstration eines rekursiv implementierten Tiefpasses (FIR Finite Impulse Response bzw. IIR Infinite Impulse Response) soll dieses Beispiel

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d + d z + c d z + c uk d + + yk z d + c d z + c Systemtheorie eil B - Zeitdiskrete Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt Musterlösungen - Signalabtastung und Rekonstruktion...

Mehr

Kontinuierliche und diskrete Systeme

Kontinuierliche und diskrete Systeme Kontinuierliche und diskrete Systeme Analoge Signale existieren zu jedem Zeitpunkt. Um ein analoges (kontinuierliches) Signal zu erzeugen, verwendet man entweder eine rein kontinuierliche Quelle ( Signal

Mehr

Signalprozessoren. Digital Signal Processors VO [2h] , LU 2 [2h]

Signalprozessoren. Digital Signal Processors VO [2h] , LU 2 [2h] Signalprozessoren Digital Signal Processors VO [2h] 182.082, LU 2 [2h] 182.084 http://ti.tuwien.ac.at/rts/teaching/courses/sigproz Herbert Grünbacher Institut für Technische Informatik (E182) Herbert.Gruenbacher@tuwien.ac.at

Mehr

Theorie digitaler Systeme

Theorie digitaler Systeme Theorie digitaler Systeme Vorlesung 2: Fakultät für Elektro- und Informationstechnik, anfred Strohrmann Einführung Frequenzgang zeitkontinuierlicher Systeme beschreibt die Änderung eines Spektrums bei

Mehr

Skriptum zur 2. Laborübung. Transiente Vorgänge und Frequenzverhalten

Skriptum zur 2. Laborübung. Transiente Vorgänge und Frequenzverhalten Elektrotechnische Grundlagen (LU 182.692) Skriptum zur 2. Laborübung Transiente Vorgänge und Frequenzverhalten Martin Delvai Wolfgang Huber Andreas Steininger Thomas Handl Bernhard Huber Christof Pitter

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR THEORETISCHE NACHRICHTENTECHNIK UND INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum:.08.00 Uhrzeit: 09:00

Mehr

1. Laboreinheit - Hardwarepraktikum SS 2003

1. Laboreinheit - Hardwarepraktikum SS 2003 1. Laboreinheit - Hardwarepraktikum SS 2003 1. Versuch: Gleichstromnetzwerk Berechnen Sie für die angegebene Schaltung alle Teilströme und Spannungsabfälle. Fassen Sie diese in einer Tabelle zusammen und

Mehr

Theorie digitaler Systeme

Theorie digitaler Systeme Theorie digitaler Systeme Vorlesung 15: Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Einführung Entwurfsmethoden für IIR-Filtern sind für Zeitbereich und Bildbereich bekannt Finite-Impulse-Response

Mehr

MusterModulprüfung. Anteil Transformationen

MusterModulprüfung. Anteil Transformationen MusterModulprüfung Anteil Transformationen Studiengang: Elektrotechnik oder Energiewirtschaft Datum: Prüfer: heute Prof. Dr. Felderhoff Version:.0 (vom 30.1.014) Name: Vorname: Matr.-Nr.: 1 Aufgabe 1 Fourier-Transformation

Mehr

2. Praktikum. Die Abgabe der Vorbereitungsaufgaben erfolgt einzeln, im Praktikum kann dann wieder in 2er-Gruppen abgegeben werden.

2. Praktikum. Die Abgabe der Vorbereitungsaufgaben erfolgt einzeln, im Praktikum kann dann wieder in 2er-Gruppen abgegeben werden. Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Anne-Kathrin Hess Dipl.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte Lehrveranstaltung

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 0.08.007 Uhrzeit: 09:00 Uhr Zeitdauer: Stunden Hilfsmittel:

Mehr

Entwurf eines modellbasierten Regelungssystems für einen totzeitbehafteten Prozess

Entwurf eines modellbasierten Regelungssystems für einen totzeitbehafteten Prozess Fakultät Informatik Institut für angewandte Informatik- Professur Technische Informationssysteme Verteidigung des Großen Beleges Entwurf eines modellbasierten Regelungssystems für einen totzeitbehafteten

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d + d z + c d z + c uk d + + yk z d + c d z + c Systemtheorie Teil B - Zeitdiskrete Signale und Systeme Übungsaufgaben Manfred Strohrmann Urban Brunner Inhalt Übungsaufgaben - Signalabtastung und Rekonstruktion...

Mehr

Abschlussprüfung Digitale Signalverarbeitung. Aufgaben, die mit einem * gekennzeichnet sind, lassen sich unabhängig von anderen Teilaufgaben lösen.

Abschlussprüfung Digitale Signalverarbeitung. Aufgaben, die mit einem * gekennzeichnet sind, lassen sich unabhängig von anderen Teilaufgaben lösen. Name: Abschlussprüfung Digitale Signalverarbeitung Studiengang: Elektrotechnik IK, E/ME Wahlfach SS2015 Prüfungstermin: Prüfer: Hilfsmittel: 3.7.2015 (90 Minuten) Prof. Dr.-Ing. Großmann, Prof. Dr.-Ing.

Mehr

Diskrete Folgen, z-ebene, einfache digitale Filter

Diskrete Folgen, z-ebene, einfache digitale Filter apitel 1 Diskrete Folgen, z-ebene, einfache digitale Filter 1.1 Periodische Folgen Zeitkoninuierliche Signale sind für jede Frequenz periodisch, zeitdiskrete Signale nur dann, wenn ω ein rationales Vielfaches

Mehr

Digitale Signalverarbeitung mit MATLAB

Digitale Signalverarbeitung mit MATLAB Martin Werner Digitale Signalverarbeitung mit MATLAB Grundkurs mit 16 ausführlichen Versuchen 4., durchgesehene und ergänzte Auflage Mit 180 Abbildungen und 76 Tabellen STUDIUM VIEWEG+ TEUBNER 1 Erste

Mehr

Versuch 4. Standardmessungen mit dem Oszilloskop. Gruppe: Tisch: Versuchsdatum: Teilnehmer: Korrekturen: Testat:

Versuch 4. Standardmessungen mit dem Oszilloskop. Gruppe: Tisch: Versuchsdatum: Teilnehmer: Korrekturen: Testat: Versuch 4 Standardmessungen mit dem Oszilloskop Gruppe: Tisch: Versuchsdatum:.. Teilnehmer: Korrekturen: Testat: Vers. 17/18 Versuch 4 1 / 5 Lernziel und grundsätzliche Vorgehensweise bei der Protokollerstellung

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum:.08.006 Uhrzeit: 09:00 Uhr Zeitdauer: Stunden Hilfsmittel:

Mehr

Einführung in die digitale Signalverarbeitung WS11/12

Einführung in die digitale Signalverarbeitung WS11/12 Einführung in die digitale Signalverarbeitung WS11/12 Prof. Dr. Stefan Weinzierl Musterlösung 11. Aufgabenblatt 1. IIR-Filter 1.1 Laden Sie in Matlab eine Audiodatei mit Sampling-Frequenz von fs = 44100

Mehr

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT)

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Ziele In diesem Versuch lernen Sie zwei Anwendungen der Diskreten Fourier-Transformation in der Realisierung als recheneffiziente schnelle

Mehr

Informationen zu Komplexpraktikum und Praktikum

Informationen zu Komplexpraktikum und Praktikum Informatik» Angewandte Informatik» Technische Informationssysteme Informationen zu Komplexpraktikum und Praktikum Sommersemester 2012 Einführungsveranstaltung Di 03.04.2012 / 4. DS / INF E07 Inhalt Inhalt»

Mehr

Grundlagen der Signalverarbeitung

Grundlagen der Signalverarbeitung Grundlagen der Signalverarbeitung Digitale und analoge Filter Wintersemester 6/7 Wiederholung Übertragung eines sinusförmigen Signals u t = U sin(ω t) y t = Y sin ω t + φ ω G(ω) Amplitude: Y = G ω U Phase:

Mehr

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner

Systemtheorie Teil A. - Zeitkontinuierliche Signale und Systeme - Musterlösungen. Manfred Strohrmann Urban Brunner Systemtheorie Teil A - Zeitkontinuierliche Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt 6 Musterlösungen Spektrum von Signalen 6. Approximation eines periodischen Signals

Mehr

Aufgabe 1 - Pegelrechnung und LTI-Systeme

Aufgabe 1 - Pegelrechnung und LTI-Systeme KLAUSUR Nachrichtentechnik 06.08.0 Prof. Dr.-Ing. Dr. h.c. G. Fettweis Dauer: 0 min. Aufgabe 3 4 Punkte 5 0 4 50 Aufgabe - Pegelrechnung und LTI-Systeme Hinweis: Die Teilaufgaben (a), (b) und (c) können

Mehr

Digitale Signalverarbeitung. mit MATLAB

Digitale Signalverarbeitung. mit MATLAB Martin Werner Digitale Signalverarbeitung mit MATLAB Grundkurs mit 16 ausführlichen Versuchen 3., vollständig überarbeitete und aktualisierte Auflage Mit 159 Abbildungen und 67 Tabellen Studium Technik

Mehr

Klausur im Lehrgebiet. Signale und Systeme. - Prof. Dr.-Ing. Thomas Sikora - Name:... Bachelor ET Master TI Vorname:... Diplom KW Magister...

Klausur im Lehrgebiet. Signale und Systeme. - Prof. Dr.-Ing. Thomas Sikora - Name:... Bachelor ET Master TI Vorname:... Diplom KW Magister... Signale und Systeme - Prof. Dr.-Ing. Thomas Sikora - Name:............................ Bachelor ET Master TI Vorname:......................... Diplom KW Magister.............. Matr.Nr:..........................

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 2. Teilprüfung 389.055 A Signale und Systeme 2 Institute of Telecommunications

Mehr

Probeklausur Grundlagen der Elektrotechnik I Winter-Semester 2012/2013

Probeklausur Grundlagen der Elektrotechnik I Winter-Semester 2012/2013 Probeklausur Grundlagen der Elektrotechnik I Winter-Semester 2012/2013 1. Diese Probeklausur umfasst 3 Aufgaben: Aufgabe 1: teils knifflig, teils rechenlastig. Wissensfragen. ca. 25% der Punkte. Aufgabe

Mehr

Vorteile digitaler Filter

Vorteile digitaler Filter Digitale Filter Vorteile digitaler Filter DF haben Eigenschaften, die mit analogen Filtern nicht realisiert werden können (z.b. lineare Phase). DF sind unabhängig von der Betriebsumgebung (z.b. Temperatur)

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 2. Teilprüfung 389.055 B Signale und Systeme 2 Institute of Telecommunications

Mehr

Aufgabe: Summe Punkte (max.): Punkte:

Aufgabe: Summe Punkte (max.): Punkte: ZUNAME:.................................... VORNAME:.................................... MAT. NR.:................................... 2. Teilprüfung 389.055 A Signale und Systeme 2 Institute of Telecommunications

Mehr

Puls-Code-Modulation. Thema: PCM. Ziele

Puls-Code-Modulation. Thema: PCM. Ziele Puls-Code-Modulation Ziele Mit diesen rechnerischen und experimentellen Übungen wird die Vorgehensweise zur Abtastung und linearen Quantisierung eines analogen Signals erarbeitet. Bei der Abtastung werden

Mehr

Erweiterung einer digitalen Übertragungsstrecke mit Einplatinencomputern zur Signalanalyse

Erweiterung einer digitalen Übertragungsstrecke mit Einplatinencomputern zur Signalanalyse Erweiterung einer digitalen mit Einplatinencomputern Alexander Frömming Mario Becker p.1 Inhalt 1 Ausgangssituation 2 Zielsetzung 3 Theoretische Grundlagen 4 Umsetzung - Hardware 5 Umsetzung - Software

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d 0 d c d c uk d 0 yk d c d c Systemtheorie Teil B - Zeitdiskrete Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Inhalt 9 Musterlösungen Zeitdiskrete pproximation zeitkontinuierlicher

Mehr

Fachhochschule Dortmund FB Informations und Elektrotechnik KLAUSUR LN/FP Sensortechnik/Applikation

Fachhochschule Dortmund FB Informations und Elektrotechnik KLAUSUR LN/FP Sensortechnik/Applikation KLAUSUR LN/FP Sensortechnik/Applikation Name: Matr.-Nr.: Vorname: Note: Datum: Beginn: 8:15 Uhr Dauer: 120 Min. Aufgabe 1 2 3 4 Summe max. Pkt 22 18 14 10 64 err. Pkt Allgemeine Hinweise: Erlaubte Hilfsmittel:

Mehr

Spektrum zeitdiskreter Signale

Spektrum zeitdiskreter Signale Spektrum zeitdiskreter Signale 1 Aufgabenstellung Mithilfe der Fouriertransformation können zeitkontinuierliche Signale in den Frequenzbereich transformiert werden, um die im Signal enthaltenen Frequenzanteile

Mehr

Übung 3: Fouriertransformation

Übung 3: Fouriertransformation ZHAW, SiSy HS202, Rumc, Übung 3: Fouriertransformation Aufgabe Fouriertransformation Dirac-Impuls. a) Bestimmen Sie die Fouriertransformierte S(f) des Dirac-Impulses s(t) = δ(t) und interpretieren Sie

Mehr

SSYLB2 SS06 Daniel Schrenk, Andreas Unterweger Übung 8. Laborprotokoll SSY. Diskrete Systeme II: Stabilitätsbetrachtungen und Systemantwort

SSYLB2 SS06 Daniel Schrenk, Andreas Unterweger Übung 8. Laborprotokoll SSY. Diskrete Systeme II: Stabilitätsbetrachtungen und Systemantwort SSYLB SS6 Daniel Schrenk, Andreas Unterweger Übung 8 Laborprotokoll SSY Diskrete Systeme II: Stabilitätsbetrachtungen und Systemantwort Daniel Schrenk, Andreas Unterweger, ITS 4 SSYLB SS6 Daniel Schrenk,

Mehr

Operationsverstärker. Sascha Reinhardt. 17. Juli 2001

Operationsverstärker. Sascha Reinhardt. 17. Juli 2001 Operationsverstärker Sascha Reinhardt 17. Juli 2001 1 1 Einführung Es gibt zwei gundlegende Operationsverstärkerschaltungen. Einmal den invertierenden Verstärker und einmal den nichtinvertierenden Verstärker.

Mehr

FACHHOCHSCHULE KÖLN FAKULTÄT IME NT BEREICH REGELUNGSTECHNIK PROF. DR. H.M. SCHAEDEL / PROF. DR. R. BARTZ. RT - Praktikum. Thema des Versuchs :

FACHHOCHSCHULE KÖLN FAKULTÄT IME NT BEREICH REGELUNGSTECHNIK PROF. DR. H.M. SCHAEDEL / PROF. DR. R. BARTZ. RT - Praktikum. Thema des Versuchs : FACHHOCHSCHULE KÖLN FAKULTÄT IME NT BEREICH REGELUNGSTECHNIK PROF. DR. H.M. SCHAEDEL / PROF. DR. R. BARTZ Gruppe: RT - Praktikum Thema des Versuchs : Analyse von Ausgleichsstrecken höherer Ordnung im Zeit-

Mehr

Ausgabe Rechenübung 6 A/D, D/A Wandlung, Oszilloskop

Ausgabe Rechenübung 6 A/D, D/A Wandlung, Oszilloskop AUTOMATION & CONTROL INSTITUTE INSTITUT FÜR AUTOMATISIERUNGS- & REGELUNGSTECHNIK Univ.Prof. Dr.sc.techn. Georg Schitter schitter@acin.tuwien.ac.at Ausgabe Rechenübung 6 A/D, D/A Wandlung, Oszilloskop Messtechnik,

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR THEORETISCHE NACHRICHTENTECHNIK UND INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 5.0.005 Uhrzeit: 09:00

Mehr

ZHAW, DSV1, FS2010, Rumc, 1. H(z) a) Zeichnen Sie direkt auf das Aufgabenblatt das Betragsspektrum an der Stelle 1.

ZHAW, DSV1, FS2010, Rumc, 1. H(z) a) Zeichnen Sie direkt auf das Aufgabenblatt das Betragsspektrum an der Stelle 1. ZHAW, DSV, FS200, Rumc, DSV Modulprüfung 7 + 4 + 5 + 8 + 6 = 30 Punkte Name: Vorname: : 2: 3: 4: 5: Punkte: Note: Aufgabe : AD-DA-Umsetzung. + + +.5 +.5 + = 7 Punkte Betrachten Sie das folgende digitale

Mehr

Grundlagen der Nachrichtentechnik

Grundlagen der Nachrichtentechnik Universität Bremen Arbeitsbereich Nachrichtentechnik Prof. Dr.-Ing. A. Dekorsy Schriftliche Prüfung im Fach Grundlagen der Nachrichtentechnik Name: Vorname: Mat.-Nr.: BSc./Dipl.: Zeit: Ort: Umfang: 07.

Mehr

Grundlagen der Signalverarbeitung

Grundlagen der Signalverarbeitung Grundlagen der Signalverarbeitung Zeitdiskrete Signale Wintersemester 6/7 Kontinuierliche und diskrete Signale wertkontinuierlich wertdiskret Signal Signal Signal Signal zeitdiskret zeitkontinuierlich

Mehr

Labor RT Versuch RT1-1. Versuchsvorbereitung. Prof. Dr.-Ing. Gernot Freitag. FB: EuI, FH Darmstadt. Darmstadt, den

Labor RT Versuch RT1-1. Versuchsvorbereitung. Prof. Dr.-Ing. Gernot Freitag. FB: EuI, FH Darmstadt. Darmstadt, den Labor RT Versuch RT- Versuchsvorbereitung FB: EuI, Darmstadt, den 4.4.5 Elektrotechnik und Informationstechnik Rev., 4.4.5 Zu 4.Versuchvorbereitung 4. a.) Zeichnen des Bode-Diagramms und der Ortskurve

Mehr

Klausur zur Vorlesung Digitale Signalverarbeitung

Klausur zur Vorlesung Digitale Signalverarbeitung INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 3067 Hannover Klausur zur Vorlesung Digitale Signalverarbeitung Datum: 7.03.007 Uhrzeit: 3:30 Uhr Zeitdauer: Stunden Hilfsmittel:

Mehr

3. Laboreinheit - Hardwarepraktikum SS 2003

3. Laboreinheit - Hardwarepraktikum SS 2003 3. Laboreinheit - Hardwarepraktikum SS 2003 1. Versuch: Operationsverstärker als Nichtinvertierender Verstärker Stellen Sie die Gleichungen zur Berechnung der Widerstände in der dargestellten Schaltung

Mehr

Tontechnik 2. Digitale Filter. Digitale Filter. Zuordnung Eingang x(t) Ausgang y(t) diskrete digitale Signale neue diskrete digitale Signale

Tontechnik 2. Digitale Filter. Digitale Filter. Zuordnung Eingang x(t) Ausgang y(t) diskrete digitale Signale neue diskrete digitale Signale Tontechnik 2 Digitale Filter Audiovisuelle Medien HdM Stuttgart Digitale Filter Zuordnung Eingang x(t) Ausgang y(t) diskrete digitale Signale neue diskrete digitale Signale lineares, zeitinvariantes, diskretes

Mehr

Anwendungen der Fourier-Entwicklung in der Elektrotechnik 1 / 22

Anwendungen der Fourier-Entwicklung in der Elektrotechnik 1 / 22 Anwendungen der Fourier-Entwicklung in der Elektrotechnik 1 / Unser heutiges Ziel Reaktion eines Netzwerks auf ein periodisches Eingangssignal oder speziell Wie reagiert ein RC-Glied auf periodische Erregung?

Mehr

Filterentwurf. Bernd Edler Laboratorium für Informationstechnologie DigSig - Teil 11

Filterentwurf. Bernd Edler Laboratorium für Informationstechnologie DigSig - Teil 11 Filterentwurf IIR-Filter Beispiele für die verschiedenen Filtertypen FIR-Filter Entwurf mit inv. Fouriertransformation und Fensterfunktion Filter mit Tschebyscheff-Verhalten Vorgehensweise bei Matlab /

Mehr

Theorie digitaler Systeme

Theorie digitaler Systeme Theorie digitaler Systeme Vorlesung 6: Impulsantwort und Faltung Fakultät für Elektro- und Informationstechnik, Manfred Strohrmann Grundlegende Systemeigenschaften Beispiele führten zu linearen Differenzengleichungen

Mehr

Tontechnik 2. Digitale Filter. Digitale Filter. Zuordnung diskrete digitale Signale neue diskrete digitale Signale

Tontechnik 2. Digitale Filter. Digitale Filter. Zuordnung diskrete digitale Signale neue diskrete digitale Signale Tontechnik 2 Digitale Filter Audiovisuelle Medien HdM Stuttgart Digitale Filter Zuordnung diskrete digitale Signale neue diskrete digitale Signale lineares, zeitinvariantes, diskretes System (LTD-System)

Mehr

Aufgabe 1 (20 Punkte)

Aufgabe 1 (20 Punkte) Augabe 1 (20 Punkte) Es wird ein Sprachsignal x(t) betrachtet, das über eine ISDN-Teleonleitung übertragen wird. Das Betragsspektrum X() des analogen Signals kann dem nachstehenden Diagramm entnommen werden.

Mehr

P1-53,54,55: Vierpole und Leitungen

P1-53,54,55: Vierpole und Leitungen Physikalisches Anfängerpraktikum (P1 P1-53,54,55: Vierpole und Leitungen Matthias Ernst (Gruppe Mo-24 Ziel des Versuchs ist die Durchführung mehrerer Messungen an einem bzw. mehreren Vierpolen (Drosselkette

Mehr

Übung 6: Analyse LTD-Systeme

Übung 6: Analyse LTD-Systeme ZHAW, DSV, FS2009, Übung 6: Analyse LTD-Systeme Aufgabe : Pol-Nullstellendarstellung, UTF und Differenzengleichung. Die folgenden Pol-Nullstellen-Darstellungen charakterisieren verschiedene LTD- Systeme,

Mehr

1 Einleitung. 2 Regelung. 2. Praktikum. Die Vorbereitungsaufgaben sind vor dem Praktikumstermin zu lösen! Maximal drei Personen in jeder Gruppe

1 Einleitung. 2 Regelung. 2. Praktikum. Die Vorbereitungsaufgaben sind vor dem Praktikumstermin zu lösen! Maximal drei Personen in jeder Gruppe Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Stephanie Geist Behrang Monajemi Nejad Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte Lehrveranstaltung

Mehr

Elektrische Filter Erzwungene elektrische Schwingungen

Elektrische Filter Erzwungene elektrische Schwingungen Elektrizitätslehre und Schaltungen Versuch 38 ELS-38-1 Elektrische Filter Erzwungene elektrische Schwingungen 1 Vorbereitung 1.1 Wechselstromwiderstände (Lit.: Gerthsen) 1.2 Schwingkreise (Lit.: Gerthsen)

Mehr

I-B-Rohm DDS-Filterdimensionierung -1/10- Dornheim, Dieses Dokument enthält den : Dipl.-Ing. (FH) Gerhard Rohm ; I-B-Rohm

I-B-Rohm DDS-Filterdimensionierung -1/10- Dornheim, Dieses Dokument enthält den : Dipl.-Ing. (FH) Gerhard Rohm ; I-B-Rohm I-B-Rohm DDS-Filterdimensionierung -1/10- Dipl.-Ing. (FH) Gerhard Rohm Am schwarzen Berg 15 64521 Gross-Gerau / Dornheim Tel. & Fax +49 {06152} 54963! " # $ EPost : Gerhard-Rohm@gmx.de % & ' ( ) * +, *

Mehr

Messverstärker und Gleichrichter

Messverstärker und Gleichrichter Mathias Arbeiter 11. Mai 2006 Betreuer: Herr Bojarski Messverstärker und Gleichrichter Differenz- und Instrumentationsverstärker Zweiwege-Gleichrichter Inhaltsverzeichnis 1 Differenzenverstärker 3 1.1

Mehr

Labor Grundlagen Elektrotechnik

Labor Grundlagen Elektrotechnik Fakultät für Technik Bereich Informationstechnik ersuch 5 Elektrische Filter und Schwgkreise SS 2008 Name: Gruppe: Datum: ersion: 1 2 3 Alte ersionen sd mit abzugeben! Bei ersion 2 ist ersion 1 mit abzugeben.

Mehr

Datenaquisition. Verstärker Filter. Sensor ADC. Objekt. Rechner

Datenaquisition. Verstärker Filter. Sensor ADC. Objekt. Rechner Datenaquisition Sensor Verstärker Filter ADC Objekt Rechner Datenaquisition Verstärker: - linearer Arbeitsbereich - linearer Frequenzgang - Vorkehrungen gegen Übersteuerung (trends, shot noise) - Verstärkerrauschen

Mehr

Grundlagen der Elektrotechnik II Duale Hochschule Baden Württemberg Karlsruhe Dozent: Gerald Oberschmidt

Grundlagen der Elektrotechnik II Duale Hochschule Baden Württemberg Karlsruhe Dozent: Gerald Oberschmidt DHBW Karlsruhe Grundlagen der Elektrotechnik II Grundlagen der Elektrotechnik II Duale Hochschule Baden Württemberg Karlsruhe Dozent: Gerald Oberschmidt 5 Hoch und Tiefpässe 5. L--Hoch und Tiefpass Abbildung

Mehr

Seminar Digitale Signalverarbeitung Thema: Digitale Filter

Seminar Digitale Signalverarbeitung Thema: Digitale Filter Seminar Digitale Signalverarbeitung Thema: Digitale Filter Autor: Daniel Arnold Universität Koblenz-Landau, August 2005 Inhaltsverzeichnis i 1 Einführung 1.1 Allgemeine Informationen Digitale Filter sind

Mehr

DSP-NF-Filter in QRP-Manier QRP an der See, 15. September 2012

DSP-NF-Filter in QRP-Manier QRP an der See, 15. September 2012 DSP-NF-Filter in QRP-Manier QRP an der See, 15. September 2012 Gerrit Buhe, Inhalt 2 Aufbau DSP-System Digitalisierung und Abtasttheorem Beschreibung LTI-System Impulsantwort zu Übertragungsfunktion Werkzeuge

Mehr

Beispiel-Klausuraufgaben Digitale Signalverarbeitung. Herbst 2008

Beispiel-Klausuraufgaben Digitale Signalverarbeitung. Herbst 2008 Beispiel-Klausuraufgaben Digitale Signalverarbeitung Herbst 8 Zeitdauer: Hilfsmittel: Stunden Formelsammlung Taschenrechner (nicht programmiert) eine DIN A4-Seite mit beliebigem Text oder Formeln (beidseitig)

Mehr

Faltung, Bildbereich und Stabilität

Faltung, Bildbereich und Stabilität Fakultät Informatik Institut für Angewandte Informatik, Professur für Technische Informationssysteme Faltung, Bildbereich und Stabilität Dresden, den 03.08.2011 Gliederung Vorbemerkungen Faltung Bildbereich

Mehr

FH Jena FB Elektrotechnik/Informationstechnik Prof. Giesecke Prüfungsaufgaben Signalverarbeitung SS 2012

FH Jena FB Elektrotechnik/Informationstechnik Prof. Giesecke Prüfungsaufgaben Signalverarbeitung SS 2012 Name, Vorname: Matr.-Nr.: Wichtige Hinweise: Ausführungen, Notizen und Lösungen auf den Aufgabenblättern werden nicht gewertet. Vor der entsprechenden Lösung ist deutlich die dazugehörige Nummer der Aufgabe

Mehr

Entwurf, Test und Analyse adaptiver Regelungsstrategien für einen nichtlinearen totzeitbehafteten technischen Prozess

Entwurf, Test und Analyse adaptiver Regelungsstrategien für einen nichtlinearen totzeitbehafteten technischen Prozess Fakultät Informatik Institut für angewandte Informatik- Professur Technische Informationssysteme Verteidigung der Diplomarbeit: Entwurf, Test und Analyse adaptiver Regelungsstrategien für einen nichtlinearen

Mehr

Audio-Bearbeitung. Diese Freq. Anteile «verschwinden» nach dem unterabtasten Filter muß schmal genug sein! Nach Unterabtastung

Audio-Bearbeitung. Diese Freq. Anteile «verschwinden» nach dem unterabtasten Filter muß schmal genug sein! Nach Unterabtastung Audio Signal Audio-Bearbeitung Ampl Vor Unterabtastung Teilband Grenzen Normierte Frequenz (normierte Abtastrate, maximale Frequenz ist pi oder 1) Teilbänder Diese Freq. Anteile «verschwinden» nach dem

Mehr

Experiment 4.1: Übertragungsfunktion eines Bandpasses

Experiment 4.1: Übertragungsfunktion eines Bandpasses Experiment 4.1: Übertragungsfunktion eines Bandpasses Schaltung: Bandpass auf Steckbrett realisieren Signalgenerator an den Eingang des Filters anschließen (50 Ω-Ausgang verwenden!) Eingangs- und Ausgangssignal

Mehr

Umdruck zum Versuch. Basis 1 Eigenschaften einfacher Bauelemente und. Anwendung von Messgeräten

Umdruck zum Versuch. Basis 1 Eigenschaften einfacher Bauelemente und. Anwendung von Messgeräten Universität Stuttgart Fakultät Informatik, Elektrotechnik und Informationstechnik Umdruck zum Versuch Basis 1 Eigenschaften einfacher Bauelemente und Anwendung von Messgeräten Bitte bringen Sie zur Versuchsdurchführung

Mehr

Übungen zu Signal- und Systemtheorie

Übungen zu Signal- und Systemtheorie Fachhochschule Dortmund University of Applied Sciences and Arts Übungen zu Signal- und Systemtheorie (Anteil: Prof. Felderhoff) Version 1.3 für das Wintersemester 016/017 Stand: 05.1.016 von: Prof. Dr.-Ing.

Mehr

Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung

Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung 28. September 2016 Elektrizitätslehre 3 Martin Weisenhorn Uebungsserie 1.1 Harmonische Signale und Ihre Darstellung Aufgabe 1. Die nachfolgende Grafik stellt das Oszillogramm zweier sinusförmiger Spannungen

Mehr

Versuch 5: Filterentwurf

Versuch 5: Filterentwurf Ziele In diesem Versuch lernen Sie den Entwurf digitaler Filter, ausgehend von der Festlegung eines Toleranzschemas für den Verlauf der spektralen Charakteristik des Filters, kennen. Es können Filtercharakteristiken

Mehr

Grundlagen der Nachrichtentechnik

Grundlagen der Nachrichtentechnik Universität Bremen Arbeitsbereich Nachrichtentechnik Prof. Dr.-Ing. K.D. Kammeyer Schriftliche Prüfung im Fach Grundlagen der Nachrichtentechnik Name: Vorname: Mat.-Nr.: Zeit: Ort: Umfang: 05. April 2005,

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 8.5.5 Arbeitszeit: min Name: Vorname(n): Matrikelnummer: Note: Aufgabe 3 4

Mehr

Frequenzgang und Übergangsfunktion

Frequenzgang und Übergangsfunktion Labor Regelungstechnik Frequenzgang und Übergangsfunktion. Einführung In diesem Versuch geht es um: Theoretische und experimentelle Ermittlung der Frequenzgänge verschiedener Übertragungsglieder (Regelstrecke,

Mehr

BESTIMMUNG DES WECHSELSTROMWIDERSTANDES IN EINEM STROMKREIS MIT IN- DUKTIVEM UND OHMSCHEM WIDERSTAND.

BESTIMMUNG DES WECHSELSTROMWIDERSTANDES IN EINEM STROMKREIS MIT IN- DUKTIVEM UND OHMSCHEM WIDERSTAND. Elektrizitätslehre Gleich- und Wechselstrom Wechselstromwiderstände BESTIMMUNG DES WECHSELSTOMWIDESTANDES IN EINEM STOMKEIS MIT IN- DUKTIVEM UND OHMSCHEM WIDESTAND. Bestimmung von Amplitude und Phase des

Mehr

Praktikum Schaltungen & Systeme

Praktikum Schaltungen & Systeme Fachhochschule Düsseldorf Fachbereich Elektrotechnik Praktikum Schaltungen & Systeme Versuch 1: Simulation eines Colpitts-Oszillators mit ADS Prof. Dr. P. Pogatzki Dipl.-Ing. D. Spengler Name: Matr.-Nr.:

Mehr