Workshop über Kompaktifizierungen von Modulräumen und tropische Geometrie. Einführung. Termine WS 2007/08

Größe: px
Ab Seite anzeigen:

Download "Workshop über Kompaktifizierungen von Modulräumen und tropische Geometrie. Einführung. Termine WS 2007/08"

Transkript

1 WS 2007/08 Workshop über Kompaktifizierungen von Modulräumen und tropische Geometrie Termine Der Workshop findet an drei Samstagen im Wintersemester stattfinden: 10. November, 1. Dezember, 19. Januar. Über den Ort (der jeweils wechseln sollte) ist noch zu entscheiden. Einführung Sei M 0,n der Modulraum glatter projektiver Kurven vom Geschlecht 0 mit n markierten Punkten (mit anderen Worten: der Raum von n-tupeln von Punkten auf P 1 k ). (Wir arbeiten über einem algebraisch abgeschlossenen Körper k der Charakteristik 0.) Der Raum M 0,n der n-punktierten stabilen Kurven vom Geschlecht 0, die Grothendieck- Knudsen-Kompaktifizierung von M 0,n besitzt eine Reihe schöner Eigenschaften. Beispielsweise kann man M 0,n neben der Interpretation als Modulraum auch als die logkanonische Kompaktifizierung charakterisieren. Das zentrale Objekt im Workshop wird der Modulraum X(r, n) von n-tupeln von Hyperebenen in P r 1 in allgemeiner Lage sein. Dies ist offenbar eine Verallgemeinerung von M 0,n : es ist X(2, n) = M 0,n. Wir wollen für diese Verallgemeinerung die Kompaktifizierung durch den Hilbert-Quotienten studieren, insbesondere in Hinsicht auf eine Interpretation als Modulraum, die Beschreibung der 1-Parameter-Degenerationen, und auf die Mori-theoretische Bedeutung. Diese Kompaktifizierung ist von Kapranov in [K1] (und in [K2] im Fall M 0,n ) studiert worden. Die Varietäten, die Lafforgue in [L] betrachtet, hängen eng damit zusammen. Wir richten uns im wesentlichen nach den neueren Arbeiten von Hacking, Keel und Tevelev [HKT1], [KT], [T]. Die Beziehung zum Mori-Programm und zur logarithmischen Geometrie ist oben schon angeklungen, und auch im Programm an vielen Stellen präsent. Die tropische Geometrie taucht zwar ganz prominent im Titel des Workshops auf, aber nicht ganz so sichtbar im Programm; daher hier noch ein Satz dazu, was wir unter dem tropischen Aspekt verstehen. Wir interessieren uns für Kompaktifizierungen sehr affiner Varietäten, d. h. abgeschlossener Untervarietäten X G N m. Die Bewertung auf dem Körper K der Puiseux-Reihen über k liefert eine Abbildung deg: T (K) X,Q = Q N. Das Bild A von X(K) unter dieser Abbildung bezeichnet man als die nichtarchimedische Amöbe von X. Es gibt Fächer mit zugrundeliegender Menge A, und man kann X durch Abschlussbildung in der zugehörigen torischen Varietät kompaktifizieren. Siehe [T] 2. In loc. cit. wird diese Methode sowohl für Komplemente von Hyperebenenarrangements, als auch für X(r, n) diskutiert. Im Workshop ist vor allem der erste Fall von Interesse. In [KT], Thm werden die Membranen, gewisse

2 Teilmenge des Bruhat-Tits-Gebäudes der P GL r, mit nichtarchimedischen Amöben identifiziert; siehe Vortrag 3.1. Für eine detailliertere Einführung verweisen wir (neben dem genauen Programm unten) auf die Einleitungen von [K1], [KT] und [HKT2]. Einige interessante Aspekte, die nahe an diesem Thema liegen, können wir aus Zeitgründen nicht behandeln. Zu nennen ist etwa die Arbeit [HKT2], in der Modulräume von del-pezzo-flächen kompaktifiziert werden. Ein anderes interessantes Thema wäre die Kompaktifizierung des Konfigurationsraums von n-tupeln verschiedener Punkte in einer Varietät X, wo die Isomorphismen nicht herausgeteilt werden, siehe etwa die Arbeiten von Fulton und MacPherson [FM], Totaro [To], Ulyanov [U]. Organisatorisches An jedem Termin sollte ein Team vier oder fünf Vorträge bestreiten, dessen Mitglieder idealerweise auch im Vorfeld Gelegenheit haben, diese Vorträge miteinander zu diskutieren, d.h. am gleichen oder an nahe beisammenliegenden Standorten arbeiten. Die Angaben zur Vortragsdauer unten sind als Vorschläge zu verstehen. Die Teams können in dieser Hinsicht in eigener Regie umdisponieren. Allerdings sollte die Gesamtvortragsdauer von vier Stunden pro Treffen festbleiben. Sprache Zu der Frage, ob die Vorträge auf Deutsch oder auf Englisch gehalten werden sollten ist unser Vorschlag (der natürlich diskutiert werden kann): jeder Vortragende entscheidet selbst unter Berücksichtigung seiner eigenen Sprachkenntnisse und der seiner Zuhörer, mit welcher Sprache er die beste Kommunikation herstellen kann. 1 Chow-Quotienten von Grassmannschen 1.1 Chow-Quotient und Hilbert-Quotient (60 Min.) Wir beginnen mit der allgemeinen Definition des Chow-Quotienten und des Hilbert- Quotienten; siehe [K1] 0. (Die Definition von Chow- und Hilbert-Schema sollte vielleicht kurz wiederholt werden; ihre Existenz nehmen wir hin.) Den Chow-Quotienten des projektiven Raums nach einer Torus-Operation kann man recht konkret beschreiben, siehe loc. cit. 0.2, [KSZ], [KT] 2.1. Wir wollen dies nun anwenden auf die Konstruktion des Quotienten der Grassmannschen Gr(r, n) der r-dimensionalen Unterräume von k n nach der Operation des Torus G n m, der in natürlicher Weise auf k n und damit auf Gr(r, n) operiert. In [K1], Thm wird gezeigt, dass in diesem Fall Chow- und Hilbert-Quotient übereinstimmen.

3 Die Gelfand-MacPherson-Korrespondenz stellt dann den Zusammenhang her zum Modulraum von n-tupeln von Hyperebenen in P r 1 (in allgemeiner Lage): [K1], Thm , siehe auch [HKT1] Lafforgues torische Varietät der Pflasterungen eines Matroidpolytops (60 Min.) Neben dem Hilbert-Quotienten spielt insbesondere die Kompaktifizierung von Lafforgue im folgenden eine Rolle. (Beide Kompaktifizierungen haben dieselbe Normalisierung.) In diesem Vortrag sollen die Abschnitte [KT] behandelt werden, und, soweit möglich, die Teile aus [L] bewiesen werden, die dort benötiget werden. Sofern es Erleichterungen mit sich bringt, kann man sich stets auf den in [KT] betrachteten Fall einschränken. Wo es sich anbietet, sollte man als Beispiel auf den Fall r = 2 (wo X(2, n) = M 0,n ) eingehen. 1.3 Der Modulraum von Paaren (60 Min.) In diesem Vortrag konstruieren wir mit Hilfe des multi-graduierten Hilbert-Schemas ein weiteres kompaktes Schema M X(r, n), das X(r, n) enthält (und das wir in Vortrag 2.1 als Modulraum sehr stabiler Paare beschreiben werden). Wir folgen [HKT1] 3. Die Räume X(r, n), M, und Lafforgues Kompaktifizierung X L (r, n) sollen dann verglichen werden. Siehe [HKT1], Cor. 3.9, [KT] Familie der sichtbaren Konturen (60 Min.) Zum Abschluss des ersten Treffens definieren und untersuchen wir die Familie der sichtbaren Konturen auf dem Modulraum X(r, n) bzw. M. Insgesamt sollten die Ergebnisse aus [KT] und [HKT1] 4 (die sich zu einem guten Teil überschneiden), besprochen werden. Vergleiche auch [HKT1], 2, und [T], insbesondere Thm. 1.4, Modulare Beschreibung und die Singularitäten von (X(r, n), B) Bei diesem Treffen werden einige Begriffe aus der logarithmischen Geometrie benötigt. Uns scheint es am sinnvollsten, darauf keinen eigenen Vortrag zu verwenden, sondern die benötigten Begriffe jeweils an Ort und Stelle zu behandeln. In jedem Fall sollten sie kurz wiederholt werden. Referenzen sind zum Beispiel [KMM], [Ka], [O1], [O2].

4 2.1 Modulare Beschreibung (75 Min.) Nun geht es um die Beschreibung des Raums M aus Vortrag 1.3 als feiner Modulraum, [HKT1], 5 7. Sicherlich lässt sich nicht alles im Detail besprechen; wir überlassen die Gewichtung dem Vortragenden. Das Beispiel in 7 sollte aber nach Möglichkeit behandelt werden. 2.2 Log-Struktur (45 Min.) Wir diskutieren einige Eigenschaften von X(r, n) im Sinne der logarithmischen Geometrie: [KT], Abschnitt X(r, n) ist nicht log-kanonisch I (45 Min.) Nach den im vorhergehenden Vortrag behandelten Ergebnissen (insbesondere [KT], Prop. 2.18) und allgemeinen Vermutungen aus der Mori-Theorie erwartet man, dass X(r, n) eine log-kanonische Kompaktifizierung besitzt. Das wesentliche Ergebnis dieses Vortrags ist, dass aber die Kompaktifizierung durch (die Normalisierung des) Hilbert- Quotienten nicht die gesuchte ist: [KT] Thm Der Ansatz, um zu zeigen, dass die Kompaktifizierung X(r, n) X(r, n) (abgesehen von den wenigen ausgeschlossenen Fällen) nicht log-kanonisch ist, ist ganz einfach: wäre sie es, so müssten die Durchschnitte der Divisoren im Rand die erwarteten Dimensionen haben (siehe [KT], Prop. 3.18). Dass das nicht der Fall ist, lässt sich durch kombinatorische Argumente zeigen. Wir folgen [KT], X(r, n) ist nicht log-kanonisch II (30 Min.) In diesem Vortrag soll [KT], Thm behandelt werden. (Natürlich kann der Stoff der Vorträge 2.3 und 2.4 auch anders aufgeteilt werden.) 2.5 Mnëvs Theorem (45 Min.) Wir zeigen hier, dass die Singularitäten im Rand von X(3, n) beliebig schlecht sind, [KT] 1.8, Thm Das ist eine Variante von Mnëvs Theorem, siehe [L], Thm Parameter-Degenerationen 3.1 Grundlagen über das Bruhat-Tits-Gebäude, die Membran (45 Min.) In diesem Vortrag soll [KT] 4 behandelt werden. Zur Erleichterung des Verständnisses und mit Blick auf Vortrag 3.3 sollte der Fall der P GL 2 stets als Beispiel mitgeführt werden; siehe auch [K2], p Vergleiche auch [JSY], wo ein kombinatorischer Beweis von [KT] Thm gegeben wird.

5 3.2 Tropische Kompaktifizierungen (45 Min.) An dieser Stelle machen wir noch einen kleinen Exkurs über tropische Kompaktifizierungen, und behandeln so viel von [T] (insbesondere aus 5), wie möglich ist (d. h.: dem Vortragenden sinnvoll erscheint). Das ist damit abzustimmen, was in vorhergehenden Vorträgen (insbesondere 1.4) schon zu diesem Thema gesagt wurde. Eventuell ist es sinnvoll, die Reihenfolge der Vorträge 3.1 und 3.2 zu tauschen. 3.3 Der Fall von M 0,n (60 Min.) [K2] Thm. 0.1 (dabei Teil (c) ohne Beweis), 3. Siehe auch [K1], Thm , das zumindest zitiert werden sollte: darin wird gezeigt, dass der Hilbert-Quotient X(2, n) gerade die Grothendieck-Knudsen-Kompaktifizierung von X(2, n) = M 0,n ist. 3.4 Deligne-Schemata und semistabile Auflösung (45 Min.) Wir betrachten nun einparametrige Degenerationen in X(r, n). Zu einem K = k((z))- wertigen Punkt von X(r, n), gegeben durch Elemente f 1,..., f n K r, (von denen je r linear unabhängig sind), suchen wir den zugehörigen R = k[[z]]-wertigen Punkt von X(r, n). Die f i beschreiben eine Membran im Bruhat-Tits-Gebäude, und die spezielle Faser der zugehörigen Familie lässt sich durch einen Mustafin-Join in Termen dieser Membran beschreiben, siehe [KT] Thm Insgesamt sollen loc. cit. 5, 6 behandelt (und damit Theorem 1.13 bewiesen) werden. Wenn die Zeit ausreicht, kann man auch noch etwas zum Übergang zum Limes sagen, wie in loc. cit Explizite Beschreibung der speziellen Faser (45 Min.) Schließlich betrachten wir die Frage, wie man die Faser in der Familie der sichtbaren Konturen über dem speziellen Punkt einer einparametrigen Familie explizit beschreiben kann: [KT], 8. Vielleicht muss man hier noch etwas zur Variation von GIT- Quotienten wiederholen, [DH]. Literatur [DH] [F] I. Dolgachev, Y. Hu, Variation of geometric invariant theory quotients, Inst. Hautes Études Sci. Publ. Math. 87 (1998), G. Faltings, Toroidal resolutions for some matrix singularities, in: Moduli of Abelian Varieties (Texel 1999), Prog. Math. 195, Birkhäuser 2001, O [FM] W. Fulton, R. MacPherson, A compactification of configuration spaces, Ann. Math. 139 (1994), [JSY] M. Joswig, B. Sturmfels, J. Yu, Affine Buildings and Tropical Convexity, ar- Xiv: v1

6 [K1] M. Kapranov, Chow quotients of Grassmannians, I, in: I. M. Gelfand Seminar, Adv. Soviet. Math. 16, Part 2, AMS 1993, [K2] M. Kapranov, Veronese curves and Grothendieck-Knudsen moduli space M 0,n, J. Alg. Geom. 2 (1993), [KSZ] M. Kapranov, B. Sturmfels, A. Zelevinsky, Quotients of toriv varieties, Math. Ann. 290 (1991), [Ka] K. Kato, Logarithmic structures of Fontaine-Illusie, in: Algebraic analysis, geometry, and number theory (Baltimore, 1988), Johns Hopkins Univ. Press (1989), [KMM] Y. Kawamata, K. Matsuda, K. Matsuki, Introduction to the minimal model program, in: Algebraic Geometry (Sendai, 1985), Adv. Stud. Pure Math. 10, North Holland (1987), [H] P. Hacking, Compact moduli of hyperplane arrangements, math.ag/ [HKT1] P. Hacking, S. Keel, J. Tevelev, Compactification of the moduli space of hyperplane arrangements, J. Alg. Geom. 15 (2006), no. 4, math.ag/ [HKT2] P. Hacking, S. Keel, J. Tevelev, Stable pair, tropical, and log canonical compact moduli of del Pezzo surfaces, math.ag/ [KT] S. Keel, J. Tevelev, Geometry of Chow quotients of Grassmannians, Duke Math. J. 134, no. 2 (2006), vgl. auch math.ag/ [L] L. Lafforgue, Chirurgie des grassmanniennes, CRM Monogr. Ser. 19, AMS [O1] M. Olsson, Logarithmic geometry and algebraic stacks, Ann. Sci. École Norm. Sup. (4) 36 (2003), [O2] M. Olsson, The logarithmic cotangent complex, Math. Ann. 333 (2005), [T] J. Tevelev, Compactifications of subvarieties of tori, Amer. J. Math. 129, no. 4 (2007), tevelev/trop70.pdf [To] B. Totaro, Configuration spaces of algebraic varieties, Topology 35 (1996), [U] A. Ulyanov, Polydiagonal compactification of configuration spaces, J. Alg. Geom. 11 (2002),

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Projektive Moduln. Lemma/Definition 1.1. Folgende Aussagen für einen R-Modul P sind äquivalent: (i) P erfüllt folgende Liftungseigenschaft:

Projektive Moduln. Lemma/Definition 1.1. Folgende Aussagen für einen R-Modul P sind äquivalent: (i) P erfüllt folgende Liftungseigenschaft: Seminar Summen von Quadraten und K-Theorie Projektive Moduln Im Folgenden sei R ein assoziativer Ring mit Eins, nicht notwendigerweise kommutativ. R-Modul ist im Folgenden stets ein Rechts-R-Modul. Ein

Mehr

Die Weierstraßsche Funktion

Die Weierstraßsche Funktion Die Weierstraßsche Funktion Nicolas Weisskopf 7. September 0 Zusammenfassung In dieser Arbeit führen wir die Weierstraßsche Funktion ein und untersuchen einige ihrer Eigenschaften. Wir zeigen, dass jede

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Die Cantor-Funktion. Stephan Welz

Die Cantor-Funktion. Stephan Welz Die Cantor-Funktion Stephan Welz Ausarbeitung zum Vortrag im Proseminar Überraschungen und Gegenbeispiele in der Analysis (Sommersemester 2009, Leitung PD Dr. Gudrun Thäter) Zusammenfassung: In dieser

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

Lineare Algebra - alles was man wissen muß

Lineare Algebra - alles was man wissen muß Statistik für Bioinformatiker SoSe 3 Rainer Spang Lineare Algebra - alles was man wissen muß Der Titel ist natürlich gelogen, aber was wir hier zusammengetragen haben ist zumindest ein Anfang. Weniger

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

Geometrische Mannigfaltigkeiten

Geometrische Mannigfaltigkeiten Geometrische Mannigfaltigkeiten Thilo Kuessner Abstract Kurzfassung der Vorlesung: Definitionen, Beispiele und Sätze, keine Beweise. Definition 1. Ein topologischer Raum ist eine Menge X mit einer Familie

Mehr

Das Kryptosystem von McEliece. auf der Basis von linearen Codes

Das Kryptosystem von McEliece. auf der Basis von linearen Codes Das Kryptosystem von McEliece auf der Basis von linearen Codes Anforderungen Public-Key Kryptosysteme E e (m) = c Verschlüsselung D d (c) = m Entschlüsselung mit Schl. effizient effizient 2/25 Anforderungen

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Kompakte Graphmodelle handgezeichneter Bilder

Kompakte Graphmodelle handgezeichneter Bilder Kompakte Graphmodelle handgezeichneter Bilder Einbeziehung in Authentizierung und Bilderkennung Inhaltsverzeichnis Seminar Mustererkennung WS 006/07 Autor: Stefan Lohs 1 Einleitung 1 Das graphische Modell.1

Mehr

Definition 27 Affiner Raum über Vektorraum V

Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V ist die Menge A = Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A,

Mehr

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Computer Vision: 3D-Geometrie D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Lochkamera Modell C Projektionszentrum, Optische Achse, Bildebene, P Hauptpunkt (optische Achse kreuzt die Bildebene),

Mehr

Definition:Eine meromorphe Modulform vom Gewicht k Z ist eine meromorphe. f : H C. (ii) C > 0, so daß f(z) im Bereich Im z > C keine Singularität hat.

Definition:Eine meromorphe Modulform vom Gewicht k Z ist eine meromorphe. f : H C. (ii) C > 0, so daß f(z) im Bereich Im z > C keine Singularität hat. Die k/2 - Formel von Renate Vistorin Zentrales Thema dieses Vortrages ist die k/2 - Formel für meromorphe Modulformen als eine Konsequenz des Residuensatzes. Als Folgerungen werden danach einige Eigenschaften

Mehr

7.4 Analyse anhand der SQL-Trace. 7.3.5 Vorabanalyse mit dem Code Inspector

7.4 Analyse anhand der SQL-Trace. 7.3.5 Vorabanalyse mit dem Code Inspector 7.4 Analyse anhand der SQL-Trace 337 7.3.5 Vorabanalyse mit dem Code Inspector Der Code Inspector (SCI) wurde in den vorangegangenen Kapiteln immer wieder erwähnt. Er stellt ein paar nützliche Prüfungen

Mehr

(2) (x 2 1 + x 2 2 + + x 2 n)(y 2 1 + y 2 2 + + y 2 n) = z 2 1 + z 2 2 + + z 2 n

(2) (x 2 1 + x 2 2 + + x 2 n)(y 2 1 + y 2 2 + + y 2 n) = z 2 1 + z 2 2 + + z 2 n Über die Komposition der quadratischen Formen von beliebig vielen Variablen 1. (Nachrichten von der k. Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-physikalische Klasse, 1898, S. 309 316.)

Mehr

Über dieses Buch. Kapitel 1. 1.1 Einleitung

Über dieses Buch. Kapitel 1. 1.1 Einleitung Kapitel 1 Über dieses Buch 1.1 Einleitung Dieses Buch behandelt das Vorgehensmodell Kanban und seinen Einsatz in Softwareentwicklungsprojekten. Kanban ist ein Vorgehensmodell der schlanken Softwareentwicklung

Mehr

Thesen. Gut vortragen! Aber wie? Thesen. Vortragen ist Kommunikation. Die vier Seiten (nach Schulz von Thun) Vortragen ist Kommunikation

Thesen. Gut vortragen! Aber wie? Thesen. Vortragen ist Kommunikation. Die vier Seiten (nach Schulz von Thun) Vortragen ist Kommunikation Thesen Gutes Vortragen ist Begabungssache Gut vortragen! Aber? Institut für Informatik Jeder kann Vortragen lernen! Gutes Vortragen ist Einstellungssache Handwerk Übungssache harte Arbeit Punkt dieser

Mehr

Lineare Codes. Dipl.-Inform. Wolfgang Globke. Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19

Lineare Codes. Dipl.-Inform. Wolfgang Globke. Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19 Lineare Codes Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19 Codes Ein Code ist eine eindeutige Zuordnung von Zeichen

Mehr

Einführung in die Kodierungstheorie

Einführung in die Kodierungstheorie Einführung in die Kodierungstheorie Einführung Vorgehen Beispiele Definitionen (Code, Codewort, Alphabet, Länge) Hamming-Distanz Definitionen (Äquivalenz, Coderate, ) Singleton-Schranke Lineare Codes Hamming-Gewicht

Mehr

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert:

a n + 2 1 auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: Beispiel: Wir untersuchen die rekursiv definierte Folge a 0 + auf Konvergenz. Berechnen der ersten paar Folgenglieder liefert: ( ) (,, 7, 5,...) Wir können also vermuten, dass die Folge monoton fallend

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen

Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen Michael Schaeer 3.04.03 Abstract This seminar is about convex functions and several imortant ineualities. At the beginning the term

Mehr

6 Fehlerkorrigierende Codes

6 Fehlerkorrigierende Codes R. Reischuk, ITCS 35 6 Fehlerkorrigierende Codes Wir betrachten im folgenden nur Blockcodes, da sich bei diesen das Decodieren und auch die Analyse der Fehlertoleranz-Eigenschaften einfacher gestaltet.

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

Überblick. Lineares Suchen

Überblick. Lineares Suchen Komplexität Was ist das? Die Komplexität eines Algorithmus sei hierbei die Abschätzung des Aufwandes seiner Realisierung bzw. Berechnung auf einem Computer. Sie wird daher auch rechnerische Komplexität

Mehr

16. All Pairs Shortest Path (ASPS)

16. All Pairs Shortest Path (ASPS) . All Pairs Shortest Path (ASPS) All Pairs Shortest Path (APSP): Eingabe: Gewichteter Graph G=(V,E) Ausgabe: Für jedes Paar von Knoten u,v V die Distanz von u nach v sowie einen kürzesten Weg a b c d e

Mehr

3. Zusammenhang. 22 Andreas Gathmann

3. Zusammenhang. 22 Andreas Gathmann 22 Andreas Gathmann 3. Zusammenhang Eine der anschaulichsten Eigenschaften eines topologischen Raumes ist wahrscheinlich, ob er zusammenhängend ist oder aus mehreren Teilen besteht. Wir wollen dieses Konzept

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr

Balancierte Bäume. Martin Wirsing. in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer. http://www.pst.ifi.lmu.de/lehre/ss06/infoii/ SS 06

Balancierte Bäume. Martin Wirsing. in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer. http://www.pst.ifi.lmu.de/lehre/ss06/infoii/ SS 06 Balancierte Bäume Martin Wirsing in Zusammenarbeit mit Moritz Hammer und Axel Rauschmayer http://www.pst.ifi.lmu.de/lehre/ss06/infoii/ SS 06 2 Ziele AVL-Bäume als einen wichtigen Vertreter balancierter

Mehr

\"UBER DIE BIVEKTOR\"UBERTRAGUNG

\UBER DIE BIVEKTOR\UBERTRAGUNG TitleÜBER DIE BIVEKTORÜBERTRAGUNG Author(s) Hokari Shisanji Journal of the Faculty of Science Citation University Ser 1 Mathematics = 北 要 02(1-2): 103-117 Issue Date 1934 DOI Doc URLhttp://hdlhandlenet/2115/55900

Mehr

Mit welcher Strategie hast Du am Glücksrad Erfolg?

Mit welcher Strategie hast Du am Glücksrad Erfolg? Mit welcher Strategie hast Du am Glücksrad Erfolg? Kinderuni, Workshop an der TU Wien 24. Juli 2009, 10:30 11:30 Uhr Univ.-Prof. Dr. Uwe Schmock Forschungsgruppe Finanz- und Versicherungsmathematik Institut

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Approximationsalgorithmen: Klassiker I. Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling

Approximationsalgorithmen: Klassiker I. Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling Approximationsalgorithmen: Klassiker I Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling VO Approximationsalgorithmen WiSe 2011/12 Markus Chimani

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

3 Konvexe Analysis. 3.1 Grundlagen

3 Konvexe Analysis. 3.1 Grundlagen 25 3 Konvee Analsis 3.1 Grundlagen Die konvee Analsis auch Konveitätstheorie genannt untersucht geometrische Eigenschaften von konveen Mengen, Funktionen und Funktionalen in linearen Räumen. Eine tpische

Mehr

Meet the Germans. Lerntipp zur Schulung der Fertigkeit des Sprechens. Lerntipp und Redemittel zur Präsentation oder einen Vortrag halten

Meet the Germans. Lerntipp zur Schulung der Fertigkeit des Sprechens. Lerntipp und Redemittel zur Präsentation oder einen Vortrag halten Meet the Germans Lerntipp zur Schulung der Fertigkeit des Sprechens Lerntipp und Redemittel zur Präsentation oder einen Vortrag halten Handreichungen für die Kursleitung Seite 2, Meet the Germans 2. Lerntipp

Mehr

17. Penalty- und Barriere-Methoden

17. Penalty- und Barriere-Methoden H.J. Oberle Optimierung SoSe 01 17. Penalty- und Barriere-Methoden Penalty- und Barriere Methoden gehören zu den ältesten Ansätzen zur Lösung allgemeiner restringierter Optimierungsaufgaben. Die grundlegende

Mehr

EIN LEMMA ÜBER PERLENKETTEN. Christian SIEBENEICHER

EIN LEMMA ÜBER PERLENKETTEN. Christian SIEBENEICHER EIN LEMMA ÜBER PERLENKETTEN VON Andreas DRESS UND Christian SIEBENEICHER Abstract: We establish a diagram providing various bijections related to the theory of necklaces (or aperiodic words ) and clarifying

Mehr

3. Das Auslastungsspiel

3. Das Auslastungsspiel Literatur: 3. Das Auslastungsspiel R. W. Rosenthal. A class of games possessing pure-strategy Nash equilibria. International Journal of Game Theory 2, pp. 65 67. 1973. D. S. Johnson, Chr. H. Papadimitriou,

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

(für Grund- und Leistungskurse Mathematik) 26W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP

(für Grund- und Leistungskurse Mathematik) 26W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP .RPELQDWRULN (für Grund- und Leistungsurse Mathemati) 6W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP Nach dem Studium dieses Sripts sollten folgende Begriffe beannt sein: n-menge, Kreuzprodut, n-tupel Zählprinzip

Mehr

Wie schreibt man eine Ausarbeitung?

Wie schreibt man eine Ausarbeitung? Wie schreibt man eine Ausarbeitung? Holger Karl Holger.karl@upb.de Computer Networks Group Universität Paderborn Übersicht Ziel einer Ausarbeitung Struktur Sprache Korrektes Zitieren Weitere Informationen

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Steinerbäume. Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering

Steinerbäume. Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering Steinerbäume Seminarausarbeitung Hochschule Aalen Fakultät für Elektronik und Informatik Studiengang Informatik Schwerpunkt Software Engineering Verfasser Flamur Kastrati Betreuer Prof. Dr. habil. Thomas

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Kompakte Graphmodelle handgezeichneter Bilder. Einbeziehung in Autentizierung und Bilderkennung

Kompakte Graphmodelle handgezeichneter Bilder. Einbeziehung in Autentizierung und Bilderkennung Kompakte Graphmodelle handgezeichneter Bilder Einbeziehung in Autentizierung und Bilderkennung Inhaltsverzeichnis 1 Einleitung Das graphische Model.1 Image Thinning................................. 3.

Mehr

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr.

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Gert Zöller Übungsklausur Hilfsmittel: Taschenrechner, Formblatt mit Formeln. Lösungswege sind stets anzugeben. Die alleinige Angabe eines

Mehr

Einleitung. Das Ein-Perioden-Modell ist das einfachste. von derivaten Finanzinstrumenten (hier: Optionen) zu erklären.

Einleitung. Das Ein-Perioden-Modell ist das einfachste. von derivaten Finanzinstrumenten (hier: Optionen) zu erklären. Einleitung Das Ein-Perioden-Modell ist das einfachste Modell, um die Idee der Preisgebung von derivaten Finanzinstrumenten (hier: Optionen) zu erklären. naive Idee der Optionspreisbestimmung: Erwartungswertprinzip

Mehr

Methoden Quantitative Datenanalyse

Methoden Quantitative Datenanalyse Leitfaden Universität Zürich ISEK - Andreasstrasse 15 CH-8050 Zürich Telefon +41 44 635 22 11 Telefax +41 44 635 22 19 www.isek.uzh.ch 11. September 2014 Methoden Quantitative Datenanalyse Vorbereitung

Mehr

Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise:

Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise: Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 192 Beispiel Bsp.: Betrachte Schlussweise in: 1 Wenn es regnet, dann wird die Straße nass. R N

Mehr

Redemittel für einen Vortrag (1)

Redemittel für einen Vortrag (1) Redemittel für einen Vortrag (1) Vorstellung eines Referenten Als ersten Referenten darf ich Herrn A begrüßen. der über das/zum Thema X sprechen wird. Unsere nächste Rednerin ist Frau A. Sie wird uns über

Mehr

Das Collatz Problem. Dieter Wolke

Das Collatz Problem. Dieter Wolke Das Collatz Problem Dieter Wolke Einleitung. Die Zahlentheorie verfügt über eine große Anzahl leicht formulierbarer, aber schwer lösbarer Probleme. Einige sind Jahrhunderte alt, andere sind relativ neu.

Mehr

2.1 Codes: einige Grundbegriffe

2.1 Codes: einige Grundbegriffe Gitter und Codes c Rudolf Scharlau 2. Mai 2009 51 2.1 Codes: einige Grundbegriffe Wir stellen die wichtigsten Grundbegriffe für Codes über dem Alphabet F q, also über einem endlichen Körper mit q Elementen

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Stefan Lucks Diskrete Strukturen (WS 2009/10) 57 2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32,

Mehr

Bewertung von Forwards, Futures und Optionen

Bewertung von Forwards, Futures und Optionen Bewertung von Forwards, Futures und Optionen Olaf Leidinger 24. Juni 2009 Olaf Leidinger Futures und Optionen 2 24. Juni 2009 1 / 19 Überblick 1 Kurze Wiederholung Anleihen, Terminkontrakte 2 Ein einfaches

Mehr

4.9 Deterministische Kellerautomaten Wir haben bereits definiert: Ein PDA heißt deterministisch (DPDA), falls

4.9 Deterministische Kellerautomaten Wir haben bereits definiert: Ein PDA heißt deterministisch (DPDA), falls 4.9 Deterministische Kellerautomaten Wir haben bereits definiert: Ein PDA heißt deterministisch (DPDA), falls δ(q, a, Z) + δ(q, ɛ, Z) 1 (q, a, Z) Q Σ. Die von einem DPDA, der mit leerem Keller akzeptiert,

Mehr

Agiles Schätzen. Quelle: Kap. 7 aus Wie schätzt man in agilen Projekten oder wieso Scrum-Projekte erfolgreicher sind [Boris Gloger 2014]

Agiles Schätzen. Quelle: Kap. 7 aus Wie schätzt man in agilen Projekten oder wieso Scrum-Projekte erfolgreicher sind [Boris Gloger 2014] Agiles Schätzen Quelle: Kap. 7 aus Wie schätzt man in agilen Projekten oder wieso Scrum-Projekte erfolgreicher sind [Boris Gloger 2014] Schätzen der Größe Wir bestimmen die Größe, nicht den Aufwand. Auf

Mehr

Theorien für die Darstellung von Unsicherheit Ein Vergleich der Wahrscheinlichkeits-, Möglichkeits- und Dempster-Shafer Theorie

Theorien für die Darstellung von Unsicherheit Ein Vergleich der Wahrscheinlichkeits-, Möglichkeits- und Dempster-Shafer Theorie Theorien für die Darstellung von Unsicherheit Ein Vergleich der Wahrscheinlichkeits-, Möglichkeits- und Dempster-Shafer Theorie Johannes Leitner Inhalt I Modellierung von Unschärfe Unscharfe Mengen Unscharfe

Mehr

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5)

Einführung. Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Vorlesungen zur Komplexitätstheorie. K-Vollständigkeit (1/5) Einführung 3 Vorlesungen zur Komplexitätstheorie: Reduktion und Vollständigkeit (3) Univ.-Prof. Dr. Christoph Meinel Hasso-Plattner-Institut Universität Potsdam, Deutschland Hatten den Reduktionsbegriff

Mehr

Vorschriften und Probleme... Das Problem der Wüstenposten. - Reisende dürfen die Wüste nur "kontrolliert" (bei einem "wachen" Posten) betreten

Vorschriften und Probleme... Das Problem der Wüstenposten. - Reisende dürfen die Wüste nur kontrolliert (bei einem wachen Posten) betreten Das Problem der Wüstenposten Vorschriften und Probleme... - Reisende dürfen die Wüste nur "kontrolliert" (bei einem "wachen" Posten) betreten - Nur ein wacher Posten lässt Personen in die Wüste einreisen

Mehr

Integration geometrischer und fotogrammetrischer Information zum Wiederfinden von Bildern

Integration geometrischer und fotogrammetrischer Information zum Wiederfinden von Bildern Integration geometrischer und fotogrammetrischer Information zum Wiederfinden von Bildern Björn Burow SE Mustererkennung in Bildern und 3D-Daten Lehrstuhl Graphische Systeme BTU Cottbus Inhaltsübersicht

Mehr

Beweis des Satzes, dass eine einwerthige mehr als 2nfach periodische Function von n Veränderlichen unmöglich ist. Bernhard Riemann

Beweis des Satzes, dass eine einwerthige mehr als 2nfach periodische Function von n Veränderlichen unmöglich ist. Bernhard Riemann Beweis des Satzes, dass eine einwerthige mehr als 2nfach periodische Function von n Veränderlichen unmöglich ist. Bernhard Riemann (Auszug aus einem Schreiben Riemann s an Herrn Weierstrass) [Journal für

Mehr

promote SAGE für Forschung und Lehre

promote SAGE für Forschung und Lehre promote SAGE für und Institut für Informatik & Automation, IIA Fakultät E-Technik & Informatik, Hochschule Bremen risse@hs-bremen.de Source Talk Tage, 30.8.-1.9.2011, Göttingen Agenda 1 HSB- 2 3 HSB- Alternativen

Mehr

GNS-Konstruktion und normale Zustände. 1 Rückblick. 2 Beispiel für einen Typ-II 1 -Faktor

GNS-Konstruktion und normale Zustände. 1 Rückblick. 2 Beispiel für einen Typ-II 1 -Faktor GNS-Konstruktion und normale Zustände 1 Rückblick Wir betrachten von-neumann-algebren M B(H), d.h. Unteralgebren mit 1 H M, die in der schwachen Operatortopologie (und damit in jeder der anderen) abgeschlossen

Mehr

Gibt es verschiedene Arten unendlich? Dieter Wolke

Gibt es verschiedene Arten unendlich? Dieter Wolke Gibt es verschiedene Arten unendlich? Dieter Wolke 1 Zuerst zum Gebrauch des Wortes unendlich Es wird in der Mathematik in zwei unterschiedlichen Bedeutungen benutzt Erstens im Zusammenhang mit Funktionen

Mehr

k-server-algorithmen Alexander Leider 4. Februar 2007

k-server-algorithmen Alexander Leider 4. Februar 2007 k-server-algorithmen Alexander Leider 4. Februar 2007 1 INHALTSVERZEICHNIS 2 Inhaltsverzeichnis 1 Einleitung 3 1.1 Online-Algorithmen....................... 3 1.2 Kompetitive Algorithmen....................

Mehr

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert Inhalt Einführung 1. Arrays 1. Array unsortiert 2. Array sortiert 3. Heap 2. Listen 1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert 3. Bäume

Mehr

Codierung. Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau

Codierung. Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau Codierung Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau Ein bisschen Informationstheorie Betrachten wir das folgende Problem: Wie lautet eine sinnvolle Definition für das quantitative

Mehr

Von der UML nach C++

Von der UML nach C++ 22 Von der UML nach C++ Dieses Kapitel behandelt die folgenden Themen: Vererbung Interfaces Assoziationen Multiplizität Aggregation Komposition Die Unified Modeling Language (UML) ist eine weit verbreitete

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

TAV Übung 3. Übung 3: Verteilte Datenhaltung

TAV Übung 3. Übung 3: Verteilte Datenhaltung Übung 3: Verteilte Datenhaltung 1. Serialisierung Konstruieren Sie Historien aus drei Transaktionen T1, T2 und T3, die folgende Merkmale aufweisen: 1. Die serielle Reihenfolge ist T1 vor T2 vor T3. 2.

Mehr

Vorlesung 3 MINIMALE SPANNBÄUME

Vorlesung 3 MINIMALE SPANNBÄUME Vorlesung 3 MINIMALE SPANNBÄUME 72 Aufgabe! Szenario: Sie arbeiten für eine Firma, die ein Neubaugebiet ans Netz (Wasser, Strom oder Kabel oder...) anschließt! Ziel: Alle Haushalte ans Netz bringen, dabei

Mehr

Transformation und Darstellung funktionaler Daten

Transformation und Darstellung funktionaler Daten Transformation und Darstellung funktionaler Daten Seminar - Statistik funktionaler Daten Jakob Bossek Fakultät für Statistik 7. Mai 2012 Übersicht Einleitung Einordnung im Seminar Motivation am Beispiel

Mehr

Einführung in die Informatik II

Einführung in die Informatik II Einführung in die Informatik II Vorlesung Sommersemester 2013 Prof. Dr. Nikolaus Wulff Ziele der Vorlesung Sie vertiefen die Kenntnisse aus Informatik I und runden diese in weiteren Anwendungsgebieten

Mehr

Wir gehen aus von euklidischen Anschauungsraum bzw. von der euklidischen Zeichenebene. Parallele Geraden schneiden einander nicht.

Wir gehen aus von euklidischen Anschauungsraum bzw. von der euklidischen Zeichenebene. Parallele Geraden schneiden einander nicht. 2 Ein wenig projektive Geometrie 2.1 Fernpunkte 2.1.1 Projektive Einführung von Fernpunkten Wir gehen aus von euklidischen Anschauungsraum bzw. von der euklidischen Zeichenebene. Parallele Geraden schneiden

Mehr

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu Herleitung der oppenecker-formel (Wiederholung) Für ein System ẋ Ax + Bu (B habe Höchstrang) wird eine Zustandsregelung u x angesetzt. Der geschlossene egelkreis gehorcht der Zustands-Dgl. ẋ (A B)x. Die

Mehr

4. Relationen. Beschreibung einer binären Relation

4. Relationen. Beschreibung einer binären Relation 4. Relationen Relationen spielen bei Datenbanken eine wichtige Rolle. Die meisten Datenbanksysteme sind relational. 4.1 Binäre Relationen Eine binäre Relation (Beziehung) R zwischen zwei Mengen A und B

Mehr

Seminar Messbarkeit von Anforderungen. Betreuer: Eric Knauss. Gennadi Mirmov

Seminar Messbarkeit von Anforderungen. Betreuer: Eric Knauss. Gennadi Mirmov Just Enough Requirements Seminar Messbarkeit von Anforderungen am Fachgebiet Software Engineering Wintersemester 2007/2008 Betreuer: Eric Knauss 31.10.0710 07 Gennadi Mirmov Gliederung Einleitung Anforderungen

Mehr

Anforderungen und Auswahlkriterien für Projektmanagement-Software

Anforderungen und Auswahlkriterien für Projektmanagement-Software Anforderungen und Auswahlkriterien für Projektmanagement-Software Anika Gobert 1,Patrick Keil 2,Veronika Langlotz 1 1 Projektmanagement Payment Giesecke &Devrient GmbH Prinzregentenstr. 159, Postfach 800729,

Mehr

DATENSTRUKTUREN UND ZAHLENSYSTEME

DATENSTRUKTUREN UND ZAHLENSYSTEME DATENSTRUKTUREN UND ZAHLENSYSTEME RALF HINZE Institute of Information and Computing Sciences Utrecht University Email: ralf@cs.uu.nl Homepage: http://www.cs.uu.nl/~ralf/ March, 2001 (Die Folien finden

Mehr

Binäre Division. Binäre Division (Forts.)

Binäre Division. Binäre Division (Forts.) Binäre Division Umkehrung der Multiplikation: Berechnung von q = a/b durch wiederholte bedingte Subtraktionen und Schiebeoperationen in jedem Schritt wird Divisor b testweise vom Dividenden a subtrahiert:

Mehr

Von Luft und Klima. Experimente im Anfangsunterricht

Von Luft und Klima. Experimente im Anfangsunterricht Unterrichten Anfänge Klasse 2 4 Von Luft und Klima Experimente im Anfangsunterricht Abb. 1: Experimente mit Luft sind gut für den Anfangsunterricht und Kindergarten geeignet. Auch ein Protokoll führen

Mehr

Best Practices fü r Seminararbeiten

Best Practices fü r Seminararbeiten Best Practices fü r Seminararbeiten 1. Ziel des Seminars Ein Seminar ist dazu da, vorhandene Literatur / Software / etc. zu einem bestimmten Thema durchzuarbeiten und die wesentlichen Punkte zusammenzufassen,

Mehr

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow

LINEARE ALGEBRA Ferienkurs. Hanna Schäfer Philipp Gadow LINEARE ALGERA Ferienkurs Hanna Schäfer Philipp Gadow INHALT Eigenwerte und Eigenvektoren. asiswechsel.2 Eigenwertgleichung 2.3 Diagonalisierbarkeit 5.4 Trigonalisierung 8.5 Zusatzmaterial 8 Aufgaben 9

Mehr

Rekursionen (Teschl/Teschl 8.1-8.2)

Rekursionen (Teschl/Teschl 8.1-8.2) Rekursionen (Teschl/Teschl 8.1-8.2) Eine Rekursion kter Ordnung für k N ist eine Folge x 1, x 2, x 3,... deniert durch eine Rekursionsvorschrift x n = f n (x n 1,..., x n k ) für n > k, d. h. jedes Folgenglied

Mehr

Unternehmen XY sucht neue Ideen für Sport App

Unternehmen XY sucht neue Ideen für Sport App Unternehmen XY sucht neue Ideen für Sport App 1.) Briefing Welche Aufgabenstellung gilt es zu bearbeiten? (2 Punkte) Wir sollen Ideen für eine neue Sport App suchen. Dies soll natürlich zum Unternehmen

Mehr

UCB-Seminare. Seminar. zur Vorbereitung auf die Q 12

UCB-Seminare. Seminar. zur Vorbereitung auf die Q 12 UCB-Seminare Seminar zur Vorbereitung auf die Q 12 31.08.2015 04.09.2015 UCB-Seminare Uwe C. Bremhorst Dipl. Math. Rotbuchenstr. 1 81547 München Telefon 089 645205 Sehr geehrte Eltern, liebe Schülerinnen

Mehr

Beweis der Darstellbarkeit irgend eines ganzen invarianten Gebildes einer binären Form als ganze Function einer geschlossenen Anzahl solcher Gebilde.

Beweis der Darstellbarkeit irgend eines ganzen invarianten Gebildes einer binären Form als ganze Function einer geschlossenen Anzahl solcher Gebilde. 73 Beweis der Darstellbarkeit irgend eines ganzen invarianten Gebildes einer binären Form als ganze Function einer geschlossenen Anzahl solcher Gebilde. von F. Mertens. 1. Ich habe in dem hundertsten Bande

Mehr

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg

Computer Vision I. Nikos Canterakis. Lehrstuhl für Mustererkennung, Universität Freiburg Nikos Canterakis Lehrstuhl für Mustererkennung, Universität Freiburg Gliederung 7 Projektionen und Rückprojektionen Der Punkt Die Gerade Die Quadrik Die Ebene Zusammenhang Kalibriermatrix - Bild des absoluten

Mehr

Wi W s i sens n ch c a h ft f l t ilc i h c e h s s A rbe b it i en Hans-Peter Wiedling 1

Wi W s i sens n ch c a h ft f l t ilc i h c e h s s A rbe b it i en Hans-Peter Wiedling 1 Wissenschaftliches Arbeiten Hans-Peter Wiedling 1 Mit Ihrer wissenschaftlichen Arbeit dokumentieren Sie die eigenständige Einarbeitung in eine Aufgaben-/Problemstellung sowie die methodische Erarbeitung

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ).

Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ). Aufgabe Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(3A E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A 3E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Bild(A

Mehr

Prüfungsprotokoll Computergrafik 1 und 2 (1692 & 1693) Prüfer: M. Felten von: Lindig Florian. Dauer: 30 min jeweils. Note: 1.

Prüfungsprotokoll Computergrafik 1 und 2 (1692 & 1693) Prüfer: M. Felten von: Lindig Florian. Dauer: 30 min jeweils. Note: 1. Prüfungsprotokoll Computergrafik 1 und 2 (1692 & 1693) Prüfer: M. Felten von: Lindig Florian Dauer: 30 min jeweils Note: 1.0 jeweils Alles in allem eine lockere Atmosphäre, man bekommt genug Papier und

Mehr