Workshop über Kompaktifizierungen von Modulräumen und tropische Geometrie. Einführung. Termine WS 2007/08

Größe: px
Ab Seite anzeigen:

Download "Workshop über Kompaktifizierungen von Modulräumen und tropische Geometrie. Einführung. Termine WS 2007/08"

Transkript

1 WS 2007/08 Workshop über Kompaktifizierungen von Modulräumen und tropische Geometrie Termine Der Workshop findet an drei Samstagen im Wintersemester stattfinden: 10. November, 1. Dezember, 19. Januar. Über den Ort (der jeweils wechseln sollte) ist noch zu entscheiden. Einführung Sei M 0,n der Modulraum glatter projektiver Kurven vom Geschlecht 0 mit n markierten Punkten (mit anderen Worten: der Raum von n-tupeln von Punkten auf P 1 k ). (Wir arbeiten über einem algebraisch abgeschlossenen Körper k der Charakteristik 0.) Der Raum M 0,n der n-punktierten stabilen Kurven vom Geschlecht 0, die Grothendieck- Knudsen-Kompaktifizierung von M 0,n besitzt eine Reihe schöner Eigenschaften. Beispielsweise kann man M 0,n neben der Interpretation als Modulraum auch als die logkanonische Kompaktifizierung charakterisieren. Das zentrale Objekt im Workshop wird der Modulraum X(r, n) von n-tupeln von Hyperebenen in P r 1 in allgemeiner Lage sein. Dies ist offenbar eine Verallgemeinerung von M 0,n : es ist X(2, n) = M 0,n. Wir wollen für diese Verallgemeinerung die Kompaktifizierung durch den Hilbert-Quotienten studieren, insbesondere in Hinsicht auf eine Interpretation als Modulraum, die Beschreibung der 1-Parameter-Degenerationen, und auf die Mori-theoretische Bedeutung. Diese Kompaktifizierung ist von Kapranov in [K1] (und in [K2] im Fall M 0,n ) studiert worden. Die Varietäten, die Lafforgue in [L] betrachtet, hängen eng damit zusammen. Wir richten uns im wesentlichen nach den neueren Arbeiten von Hacking, Keel und Tevelev [HKT1], [KT], [T]. Die Beziehung zum Mori-Programm und zur logarithmischen Geometrie ist oben schon angeklungen, und auch im Programm an vielen Stellen präsent. Die tropische Geometrie taucht zwar ganz prominent im Titel des Workshops auf, aber nicht ganz so sichtbar im Programm; daher hier noch ein Satz dazu, was wir unter dem tropischen Aspekt verstehen. Wir interessieren uns für Kompaktifizierungen sehr affiner Varietäten, d. h. abgeschlossener Untervarietäten X G N m. Die Bewertung auf dem Körper K der Puiseux-Reihen über k liefert eine Abbildung deg: T (K) X,Q = Q N. Das Bild A von X(K) unter dieser Abbildung bezeichnet man als die nichtarchimedische Amöbe von X. Es gibt Fächer mit zugrundeliegender Menge A, und man kann X durch Abschlussbildung in der zugehörigen torischen Varietät kompaktifizieren. Siehe [T] 2. In loc. cit. wird diese Methode sowohl für Komplemente von Hyperebenenarrangements, als auch für X(r, n) diskutiert. Im Workshop ist vor allem der erste Fall von Interesse. In [KT], Thm werden die Membranen, gewisse

2 Teilmenge des Bruhat-Tits-Gebäudes der P GL r, mit nichtarchimedischen Amöben identifiziert; siehe Vortrag 3.1. Für eine detailliertere Einführung verweisen wir (neben dem genauen Programm unten) auf die Einleitungen von [K1], [KT] und [HKT2]. Einige interessante Aspekte, die nahe an diesem Thema liegen, können wir aus Zeitgründen nicht behandeln. Zu nennen ist etwa die Arbeit [HKT2], in der Modulräume von del-pezzo-flächen kompaktifiziert werden. Ein anderes interessantes Thema wäre die Kompaktifizierung des Konfigurationsraums von n-tupeln verschiedener Punkte in einer Varietät X, wo die Isomorphismen nicht herausgeteilt werden, siehe etwa die Arbeiten von Fulton und MacPherson [FM], Totaro [To], Ulyanov [U]. Organisatorisches An jedem Termin sollte ein Team vier oder fünf Vorträge bestreiten, dessen Mitglieder idealerweise auch im Vorfeld Gelegenheit haben, diese Vorträge miteinander zu diskutieren, d.h. am gleichen oder an nahe beisammenliegenden Standorten arbeiten. Die Angaben zur Vortragsdauer unten sind als Vorschläge zu verstehen. Die Teams können in dieser Hinsicht in eigener Regie umdisponieren. Allerdings sollte die Gesamtvortragsdauer von vier Stunden pro Treffen festbleiben. Sprache Zu der Frage, ob die Vorträge auf Deutsch oder auf Englisch gehalten werden sollten ist unser Vorschlag (der natürlich diskutiert werden kann): jeder Vortragende entscheidet selbst unter Berücksichtigung seiner eigenen Sprachkenntnisse und der seiner Zuhörer, mit welcher Sprache er die beste Kommunikation herstellen kann. 1 Chow-Quotienten von Grassmannschen 1.1 Chow-Quotient und Hilbert-Quotient (60 Min.) Wir beginnen mit der allgemeinen Definition des Chow-Quotienten und des Hilbert- Quotienten; siehe [K1] 0. (Die Definition von Chow- und Hilbert-Schema sollte vielleicht kurz wiederholt werden; ihre Existenz nehmen wir hin.) Den Chow-Quotienten des projektiven Raums nach einer Torus-Operation kann man recht konkret beschreiben, siehe loc. cit. 0.2, [KSZ], [KT] 2.1. Wir wollen dies nun anwenden auf die Konstruktion des Quotienten der Grassmannschen Gr(r, n) der r-dimensionalen Unterräume von k n nach der Operation des Torus G n m, der in natürlicher Weise auf k n und damit auf Gr(r, n) operiert. In [K1], Thm wird gezeigt, dass in diesem Fall Chow- und Hilbert-Quotient übereinstimmen.

3 Die Gelfand-MacPherson-Korrespondenz stellt dann den Zusammenhang her zum Modulraum von n-tupeln von Hyperebenen in P r 1 (in allgemeiner Lage): [K1], Thm , siehe auch [HKT1] Lafforgues torische Varietät der Pflasterungen eines Matroidpolytops (60 Min.) Neben dem Hilbert-Quotienten spielt insbesondere die Kompaktifizierung von Lafforgue im folgenden eine Rolle. (Beide Kompaktifizierungen haben dieselbe Normalisierung.) In diesem Vortrag sollen die Abschnitte [KT] behandelt werden, und, soweit möglich, die Teile aus [L] bewiesen werden, die dort benötiget werden. Sofern es Erleichterungen mit sich bringt, kann man sich stets auf den in [KT] betrachteten Fall einschränken. Wo es sich anbietet, sollte man als Beispiel auf den Fall r = 2 (wo X(2, n) = M 0,n ) eingehen. 1.3 Der Modulraum von Paaren (60 Min.) In diesem Vortrag konstruieren wir mit Hilfe des multi-graduierten Hilbert-Schemas ein weiteres kompaktes Schema M X(r, n), das X(r, n) enthält (und das wir in Vortrag 2.1 als Modulraum sehr stabiler Paare beschreiben werden). Wir folgen [HKT1] 3. Die Räume X(r, n), M, und Lafforgues Kompaktifizierung X L (r, n) sollen dann verglichen werden. Siehe [HKT1], Cor. 3.9, [KT] Familie der sichtbaren Konturen (60 Min.) Zum Abschluss des ersten Treffens definieren und untersuchen wir die Familie der sichtbaren Konturen auf dem Modulraum X(r, n) bzw. M. Insgesamt sollten die Ergebnisse aus [KT] und [HKT1] 4 (die sich zu einem guten Teil überschneiden), besprochen werden. Vergleiche auch [HKT1], 2, und [T], insbesondere Thm. 1.4, Modulare Beschreibung und die Singularitäten von (X(r, n), B) Bei diesem Treffen werden einige Begriffe aus der logarithmischen Geometrie benötigt. Uns scheint es am sinnvollsten, darauf keinen eigenen Vortrag zu verwenden, sondern die benötigten Begriffe jeweils an Ort und Stelle zu behandeln. In jedem Fall sollten sie kurz wiederholt werden. Referenzen sind zum Beispiel [KMM], [Ka], [O1], [O2].

4 2.1 Modulare Beschreibung (75 Min.) Nun geht es um die Beschreibung des Raums M aus Vortrag 1.3 als feiner Modulraum, [HKT1], 5 7. Sicherlich lässt sich nicht alles im Detail besprechen; wir überlassen die Gewichtung dem Vortragenden. Das Beispiel in 7 sollte aber nach Möglichkeit behandelt werden. 2.2 Log-Struktur (45 Min.) Wir diskutieren einige Eigenschaften von X(r, n) im Sinne der logarithmischen Geometrie: [KT], Abschnitt X(r, n) ist nicht log-kanonisch I (45 Min.) Nach den im vorhergehenden Vortrag behandelten Ergebnissen (insbesondere [KT], Prop. 2.18) und allgemeinen Vermutungen aus der Mori-Theorie erwartet man, dass X(r, n) eine log-kanonische Kompaktifizierung besitzt. Das wesentliche Ergebnis dieses Vortrags ist, dass aber die Kompaktifizierung durch (die Normalisierung des) Hilbert- Quotienten nicht die gesuchte ist: [KT] Thm Der Ansatz, um zu zeigen, dass die Kompaktifizierung X(r, n) X(r, n) (abgesehen von den wenigen ausgeschlossenen Fällen) nicht log-kanonisch ist, ist ganz einfach: wäre sie es, so müssten die Durchschnitte der Divisoren im Rand die erwarteten Dimensionen haben (siehe [KT], Prop. 3.18). Dass das nicht der Fall ist, lässt sich durch kombinatorische Argumente zeigen. Wir folgen [KT], X(r, n) ist nicht log-kanonisch II (30 Min.) In diesem Vortrag soll [KT], Thm behandelt werden. (Natürlich kann der Stoff der Vorträge 2.3 und 2.4 auch anders aufgeteilt werden.) 2.5 Mnëvs Theorem (45 Min.) Wir zeigen hier, dass die Singularitäten im Rand von X(3, n) beliebig schlecht sind, [KT] 1.8, Thm Das ist eine Variante von Mnëvs Theorem, siehe [L], Thm Parameter-Degenerationen 3.1 Grundlagen über das Bruhat-Tits-Gebäude, die Membran (45 Min.) In diesem Vortrag soll [KT] 4 behandelt werden. Zur Erleichterung des Verständnisses und mit Blick auf Vortrag 3.3 sollte der Fall der P GL 2 stets als Beispiel mitgeführt werden; siehe auch [K2], p Vergleiche auch [JSY], wo ein kombinatorischer Beweis von [KT] Thm gegeben wird.

5 3.2 Tropische Kompaktifizierungen (45 Min.) An dieser Stelle machen wir noch einen kleinen Exkurs über tropische Kompaktifizierungen, und behandeln so viel von [T] (insbesondere aus 5), wie möglich ist (d. h.: dem Vortragenden sinnvoll erscheint). Das ist damit abzustimmen, was in vorhergehenden Vorträgen (insbesondere 1.4) schon zu diesem Thema gesagt wurde. Eventuell ist es sinnvoll, die Reihenfolge der Vorträge 3.1 und 3.2 zu tauschen. 3.3 Der Fall von M 0,n (60 Min.) [K2] Thm. 0.1 (dabei Teil (c) ohne Beweis), 3. Siehe auch [K1], Thm , das zumindest zitiert werden sollte: darin wird gezeigt, dass der Hilbert-Quotient X(2, n) gerade die Grothendieck-Knudsen-Kompaktifizierung von X(2, n) = M 0,n ist. 3.4 Deligne-Schemata und semistabile Auflösung (45 Min.) Wir betrachten nun einparametrige Degenerationen in X(r, n). Zu einem K = k((z))- wertigen Punkt von X(r, n), gegeben durch Elemente f 1,..., f n K r, (von denen je r linear unabhängig sind), suchen wir den zugehörigen R = k[[z]]-wertigen Punkt von X(r, n). Die f i beschreiben eine Membran im Bruhat-Tits-Gebäude, und die spezielle Faser der zugehörigen Familie lässt sich durch einen Mustafin-Join in Termen dieser Membran beschreiben, siehe [KT] Thm Insgesamt sollen loc. cit. 5, 6 behandelt (und damit Theorem 1.13 bewiesen) werden. Wenn die Zeit ausreicht, kann man auch noch etwas zum Übergang zum Limes sagen, wie in loc. cit Explizite Beschreibung der speziellen Faser (45 Min.) Schließlich betrachten wir die Frage, wie man die Faser in der Familie der sichtbaren Konturen über dem speziellen Punkt einer einparametrigen Familie explizit beschreiben kann: [KT], 8. Vielleicht muss man hier noch etwas zur Variation von GIT- Quotienten wiederholen, [DH]. Literatur [DH] [F] I. Dolgachev, Y. Hu, Variation of geometric invariant theory quotients, Inst. Hautes Études Sci. Publ. Math. 87 (1998), G. Faltings, Toroidal resolutions for some matrix singularities, in: Moduli of Abelian Varieties (Texel 1999), Prog. Math. 195, Birkhäuser 2001, O [FM] W. Fulton, R. MacPherson, A compactification of configuration spaces, Ann. Math. 139 (1994), [JSY] M. Joswig, B. Sturmfels, J. Yu, Affine Buildings and Tropical Convexity, ar- Xiv: v1

6 [K1] M. Kapranov, Chow quotients of Grassmannians, I, in: I. M. Gelfand Seminar, Adv. Soviet. Math. 16, Part 2, AMS 1993, [K2] M. Kapranov, Veronese curves and Grothendieck-Knudsen moduli space M 0,n, J. Alg. Geom. 2 (1993), [KSZ] M. Kapranov, B. Sturmfels, A. Zelevinsky, Quotients of toriv varieties, Math. Ann. 290 (1991), [Ka] K. Kato, Logarithmic structures of Fontaine-Illusie, in: Algebraic analysis, geometry, and number theory (Baltimore, 1988), Johns Hopkins Univ. Press (1989), [KMM] Y. Kawamata, K. Matsuda, K. Matsuki, Introduction to the minimal model program, in: Algebraic Geometry (Sendai, 1985), Adv. Stud. Pure Math. 10, North Holland (1987), [H] P. Hacking, Compact moduli of hyperplane arrangements, math.ag/ [HKT1] P. Hacking, S. Keel, J. Tevelev, Compactification of the moduli space of hyperplane arrangements, J. Alg. Geom. 15 (2006), no. 4, math.ag/ [HKT2] P. Hacking, S. Keel, J. Tevelev, Stable pair, tropical, and log canonical compact moduli of del Pezzo surfaces, math.ag/ [KT] S. Keel, J. Tevelev, Geometry of Chow quotients of Grassmannians, Duke Math. J. 134, no. 2 (2006), vgl. auch math.ag/ [L] L. Lafforgue, Chirurgie des grassmanniennes, CRM Monogr. Ser. 19, AMS [O1] M. Olsson, Logarithmic geometry and algebraic stacks, Ann. Sci. École Norm. Sup. (4) 36 (2003), [O2] M. Olsson, The logarithmic cotangent complex, Math. Ann. 333 (2005), [T] J. Tevelev, Compactifications of subvarieties of tori, Amer. J. Math. 129, no. 4 (2007), tevelev/trop70.pdf [To] B. Totaro, Configuration spaces of algebraic varieties, Topology 35 (1996), [U] A. Ulyanov, Polydiagonal compactification of configuration spaces, J. Alg. Geom. 11 (2002),

D. HUYBRECHTS, ST. SCHREIEDER

D. HUYBRECHTS, ST. SCHREIEDER SEMINAR: ALGEBRAISCHEN GEOMETRIE, WS 2015/16, (S2A1) D. HUYBRECHTS, ST. SCHREIEDER Ziel des Seminars ist es, sich mit grundlegenden Begriffen, Beispielen und Konstruktionen der algebraischen Geometrie

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

Projektive Moduln. Lemma/Definition 1.1. Folgende Aussagen für einen R-Modul P sind äquivalent: (i) P erfüllt folgende Liftungseigenschaft:

Projektive Moduln. Lemma/Definition 1.1. Folgende Aussagen für einen R-Modul P sind äquivalent: (i) P erfüllt folgende Liftungseigenschaft: Seminar Summen von Quadraten und K-Theorie Projektive Moduln Im Folgenden sei R ein assoziativer Ring mit Eins, nicht notwendigerweise kommutativ. R-Modul ist im Folgenden stets ein Rechts-R-Modul. Ein

Mehr

Seminar zur Darstellungstheorie endlicher Gruppen

Seminar zur Darstellungstheorie endlicher Gruppen Seminar zur Darstellungstheorie endlicher Gruppen Prof. Dr. Gebhard Böckle und Yujia Qiu Sommersemester 15, dienstags 16:15 17:45, Raum 248/INF 368. Beginn: 21.04.2015 Motivation und Ziele des Seminars

Mehr

Tropische Kurven zählen. Enumerative Geometrie. Alg. Geometrie. Beispiel Strategie. Geometrie. Kurven Multiplizität Correspondence Theorem Ergebnisse

Tropische Kurven zählen. Enumerative Geometrie. Alg. Geometrie. Beispiel Strategie. Geometrie. Kurven Multiplizität Correspondence Theorem Ergebnisse Alg. Ebene e Hannah Markwig Technische Universität Kaiserslautern 6. Juli 2006 Alg. Inhalt 1 () 2 3 Der Algorithmus zum Zählen ebener 4 Der Algorithmus Alg. Algebraische Geometrische Objekte sind Nullstellengebilde

Mehr

Im gesamten Kapitel sei Ω eine nichtleere Menge. Wir bezeichnen die Potenzmenge

Im gesamten Kapitel sei Ω eine nichtleere Menge. Wir bezeichnen die Potenzmenge 1 Mengensysteme Ein Mengensystem ist eine Familie von Teilmengen einer Grundmenge und damit eine Teilmenge der Potenzmenge der Grundmenge. In diesem Kapitel untersuchen wir Mengensysteme, die unter bestimmten

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

Unkämmbarkeit der Sphäre

Unkämmbarkeit der Sphäre Unkämmbarkeit der Sphäre Michela Riganti März 2010 1 2 BEISPIELE 1 Einführung In diesem Text geht es darum, folgenden Satz zu beweisen: Satz 1. Jedes glatte Vektorfeld auf einer Sphäre S n gerader Dimension

Mehr

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität Prof. Dr. H. Brenner Osnabrück SS 2012 Algebraische Kurven Vorlesung 26 Die Schnittmultiplizität Es seien zwei ebene algebraische Kurven C,D A 2 K gegeben, die keine Komponente gemeinsam haben. Dann besteht

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

Homogene und inhomogene Koordinaten und das Hyperboloid

Homogene und inhomogene Koordinaten und das Hyperboloid Seminararbeit zum Seminar aus Reiner Mathematik Homogene und inhomogene Koordinaten und das Hyperboloid Gernot Holler 1010674 WS 2012/13 28.November 2012 1 Inhaltsverzeichnis 1 Einleitung 3 2 Homogene

Mehr

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

Von Skalarprodukten induzierte Normen

Von Skalarprodukten induzierte Normen Von Skalarprodukten induzierte Normen Niklas Angleitner 4. Dezember 2011 Sei ein Skalarproduktraum X,, gegeben, daher ein Vektorraum X über C bzw. R mit einer positiv definiten Sesquilinearform,. Wie aus

Mehr

Die Weierstraßsche Funktion

Die Weierstraßsche Funktion Die Weierstraßsche Funktion Nicolas Weisskopf 7. September 0 Zusammenfassung In dieser Arbeit führen wir die Weierstraßsche Funktion ein und untersuchen einige ihrer Eigenschaften. Wir zeigen, dass jede

Mehr

7 Vektorräume und Körperweiterungen

7 Vektorräume und Körperweiterungen $Id: vektor.tex,v 1.3 2009/05/25 15:03:47 hk Exp $ 7 Vektorräume und Körperweiterungen Wir sind gerade bei der Besprechung derjenigen Grundeigenschaften des Tensorprodukts, die mit vergleichsweise wenig

Mehr

Algebraische Kurven - Vorlesung 29. Projektion weg von einem Punkt

Algebraische Kurven - Vorlesung 29. Projektion weg von einem Punkt Algebraische Kurven - Vorlesung 29 Definition 1. Die Abbildung P n K Projektion weg von einem Punkt {(1, 0,..., 0)} Pn 1 K, (x 0, x 1...,x n ) (x 1,..., x n ), heißt die Projektion weg vom Punkt (1, 0,...,

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Sommersemester 2010 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax = b

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Mathematik I für Biologen, Geowissenschaftler und Geoökologen 28. November 2011 Definition Beispiel: Wassermengen und Konzentrationen in einem Fluss Beispiel Zeilenstufenform Beispiel (Fortsetzung) Anhang

Mehr

GeoGebra Quickstart Eine Kurzanleitung für GeoGebra

GeoGebra Quickstart Eine Kurzanleitung für GeoGebra GeoGebra Quickstart Eine Kurzanleitung für GeoGebra Dynamische Geometrie, Algebra und Analysis ergeben GeoGebra, eine mehrfach preisgekrönte Unterrichtssoftware, die Geometrie und Algebra als gleichwertige

Mehr

3. Zusammenhang. 22 Andreas Gathmann

3. Zusammenhang. 22 Andreas Gathmann 22 Andreas Gathmann 3. Zusammenhang Eine der anschaulichsten Eigenschaften eines topologischen Raumes ist wahrscheinlich, ob er zusammenhängend ist oder aus mehreren Teilen besteht. Wir wollen dieses Konzept

Mehr

Cauchy-Folgen und Kompaktheit. 1 Cauchy-Folgen und Beschränktheit

Cauchy-Folgen und Kompaktheit. 1 Cauchy-Folgen und Beschränktheit Vortrag zum Seminar zur Analysis, 10.05.2010 Michael Engeländer, Jonathan Fell Dieser Vortrag stellt als erstes einige Sätze zu Cauchy-Folgen auf allgemeinen metrischen Räumen vor. Speziell wird auch das

Mehr

18.2 Implizit definierte Funktionen

18.2 Implizit definierte Funktionen 18.2 Implizit definierte Funktionen Ziel: Untersuche Lösungsmengen von nichtlinearen Gleichungssystemen g(x) = 0 mit g : D R m, D R n, d.h. betrachte m Gleichungen für n Unbekannte mit m < n, d.h. wir

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

Lehrstuhl für Analysis und Geometrie. 1. Arbeitsgebiete des Lehrstuhls. 2. Mitarbeiter. Professoren. Mitarbeiter. Sekretariat. Prof. Dr.

Lehrstuhl für Analysis und Geometrie. 1. Arbeitsgebiete des Lehrstuhls. 2. Mitarbeiter. Professoren. Mitarbeiter. Sekretariat. Prof. Dr. Lehrstuhl für Analysis und Geometrie Prof. Dr. Kai Cieliebak Prof. Dr. Urs Frauenfelder Universitätsstr. 14 86135 Augsburg Telefon +49 (0) 821 598-2138 Telefax +49 (0) 821 598 2458 kai.cieliebak@math.uni-augsburg.de

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Hinweise zum Seminar Kognitive Robotik

Hinweise zum Seminar Kognitive Robotik Hinweise zum Seminar Kognitive Robotik Das menschliche Gehirn ist eine großartige Sache. Es funktioniert vom Moment der Geburt an bis zu dem Zeitpunkt, wo du aufstehst, um eine Rede zu halten. (Mark Twain

Mehr

Das Singularitätentheorem von Hawking Teil 2

Das Singularitätentheorem von Hawking Teil 2 Das Singularitätentheorem von Hawking Teil Jakob Hedicke 0.06.06 In diesem Vortrag werden wir den Beweis des Singularitätentheorems von Stephen Hawking vervollständigen. Im letzten Vortrag wurde bereits

Mehr

Programm des Hauptseminars Symmetrie

Programm des Hauptseminars Symmetrie Programm des Hauptseminars Symmetrie Prof. Dr. Irene Bouw Universität Ulm Institut für Reine Mathematik SS 2008 irene.bouw at uni-ulm.de Vortrag 1: Einführung (2 Personen) Dieser Vortrag soll eine Einführung

Mehr

30 Metriken und Normen

30 Metriken und Normen 31 Metriken und Normen 153 30 Metriken und Normen Lernziele: Konzepte: Metriken, Normen, Skalarprodukte, Konvergenz von Folgen Frage: Versuchen Sie, möglichst viele verschiedene Konvergenzbegriffe für

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Hinweis:

Mehr

Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung

Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung Wintersemester 2005/2006 Gedächtnisprotokoll der mündlichen Prüfung Ulrich Loup 24.03.2006 Prüfungsstoff: Alegebra I, Analysis IV, Graphentheorie I Prüfer: Prof. Dr. Wilhelm Plesken Protokollant: Dipl.

Mehr

Vorlesung Analysis I / Lehramt

Vorlesung Analysis I / Lehramt Vorlesung Analysis I / Lehramt TU Dortmund, Wintersemester 2012/ 13 Winfried Kaballo Die Vorlesung Analysis I für Lehramtsstudiengänge im Wintersemester 2012/13 an der TU Dortmund basiert auf meinem Buch

Mehr

Maple-Skripte. A.1 Einleitung. A.2 Explizite Zweischritt-Runge-Kutta-Verfahren. Bei der Ausführung

Maple-Skripte. A.1 Einleitung. A.2 Explizite Zweischritt-Runge-Kutta-Verfahren. Bei der Ausführung A Maple-Skripte A.1 Einleitung Bei der Ausführung mechanischer Rechnungen können Computeralgebra-Programme sehr nützlich werden. Wenn man genau weiß, was eingesetzt, umgeformt, zusammengefaßt oder entwickelt

Mehr

Geometrische Mannigfaltigkeiten

Geometrische Mannigfaltigkeiten Geometrische Mannigfaltigkeiten Thilo Kuessner Abstract Kurzfassung der Vorlesung: Definitionen, Beispiele und Sätze, keine Beweise. Definition 1. Ein topologischer Raum ist eine Menge X mit einer Familie

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

Beweisbar sichere Verschlüsselung

Beweisbar sichere Verschlüsselung Beweisbar sichere Verschlüsselung ITS-Wahlpflichtvorlesung Dr. Bodo Möller Ruhr-Universität Bochum Horst-Görtz-Institut für IT-Sicherheit Lehrstuhl für Kommunikationssicherheit bmoeller@crypto.rub.de 6

Mehr

Vorlesung: Nicht-kooperative Spieltheorie. Teil 4: 2-Personen-Nullsummenspiele

Vorlesung: Nicht-kooperative Spieltheorie. Teil 4: 2-Personen-Nullsummenspiele Vorlesung: Nicht-kooperative Spieltheorie Teil 4: 2-Personen-Nullsummenspiele Dr. Thomas Krieger Wintertrimester 2009 Dr. Thomas Krieger Vorlesung: Nicht-kooperative Spieltheorie 1 Definition 2-Personen-Nullsummenspiele

Mehr

Frohe Weihnachten und ein gutes neues Jahr!

Frohe Weihnachten und ein gutes neues Jahr! Frohe Weihnachten und ein gutes neues Jahr! Die mit dem Stern * gekennzeichneten Übungen sind nicht verpflichtend, aber sie liefern zusätzliche Punkte. Unten wird immer mit I das reelle Intervall [0, 1]

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

TECHNISCHE UNIVERSITÄT MÜNCHEN. Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 26/7 en Blatt 4 13.11.26 Abzählbarkeit, Injektivität, Sürjektivität und Bijektivität

Mehr

Lebesgue-Integral und L p -Räume

Lebesgue-Integral und L p -Räume Lebesgue-Integral und L p -Räume Seminar Integraltransformationen, WS 2012/13 1 Treppenfunktionen Grundlage jedes Integralbegriffs ist das geometrisch definierte Integral von Treppenfunktionen. Für A R

Mehr

Bericht vom 1. Leipziger Seminar am 25. November 2006

Bericht vom 1. Leipziger Seminar am 25. November 2006 Bericht vom 1. Leipziger Seminar am 25. November 2006 Das Wythoff-Nim-Spiel Wir wollen uns ein Spiel für zwei Personen ansehen, welches sich W.A.Wythoff 1907 ausgedacht hat: Vor den Spielern liegen zwei

Mehr

1.) Matrix einer linearen Abbildung

1.) Matrix einer linearen Abbildung 1.) Matrix einer linearen Abbildung Aufgaben: 7 restart; with(linearalgebra): Definitionen MATH: Seien und Vektorräume über dem Körper mit Basen und. Wir wollen eine bequeme Art finden, eine lineare Abbildung

Mehr

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel Ausarbeitung zum Proseminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn zum Thema Simulation des Anlagenpreismodels von Simon Uphus im WS 09/10 Zusammenfassung

Mehr

Skript und Übungen Teil II

Skript und Übungen Teil II Vorkurs Mathematik Herbst 2009 M. Carl E. Bönecke Skript und Übungen Teil II Das erste Semester wiederholt die Schulmathematik in einer neuen axiomatischen Sprache; es ähnelt damit dem nachträglichen Erlernen

Mehr

Kompakte Graphmodelle handgezeichneter Bilder

Kompakte Graphmodelle handgezeichneter Bilder Kompakte Graphmodelle handgezeichneter Bilder Einbeziehung in Authentizierung und Bilderkennung Inhaltsverzeichnis Seminar Mustererkennung WS 006/07 Autor: Stefan Lohs 1 Einleitung 1 Das graphische Modell.1

Mehr

Affine Geometrie (Einfachere, konstruktive Version)

Affine Geometrie (Einfachere, konstruktive Version) Affine Geometrie (Einfachere, konstruktive Version) Def. Affiner Raum der Dimension n über Körper K ist nach Definition K n. Bemerkung. Man könnte Theorie von affinen Raumen auch axiomatisch aufbauen mit

Mehr

Betragsgleichungen und die Methode der Fallunterscheidungen

Betragsgleichungen und die Methode der Fallunterscheidungen mathe online Skripten http://www.mathe-online.at/skripten/ Betragsgleichungen und die Methode der Fallunterscheidungen Franz Embacher Fakultät für Mathematik der Universität Wien E-mail: franz.embacher@univie.ac.at

Mehr

Modulteilprüfung Geometrie (BaM-GS, L3M-RF)

Modulteilprüfung Geometrie (BaM-GS, L3M-RF) Modulteilprüfung Geometrie (BaM-GS, L3M-RF) Prof. Dr. Martin Möller SoSe 2011 // 05. Juli 2011 Kontrollieren Sie, ob Sie alle Blätter (12 einschließlich zweier Deckblätter) erhalten haben, und geben Sie

Mehr

Ein RSA verwandtes, randomisiertes Public Key Kryptosystem

Ein RSA verwandtes, randomisiertes Public Key Kryptosystem Seminar Codes und Kryptographie WS 2003 Ein RSA verwandtes, randomisiertes Public Key Kryptosystem Kai Gehrs Übersicht 1. Motivation 2. Das Public Key Kryptosystem 2.1 p-sylow Untergruppen und eine spezielle

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

Thema 3 Folgen, Grenzwerte

Thema 3 Folgen, Grenzwerte Thema 3 Folgen, Grenzwerte Definition Eine Folge von reellen Zahlen ist eine Abbildung von N in R d.h. jedem n N ist eine Zahl a n zugeordnet. Wir schreiben für eine solche Folge. Beispiele. (a n ) n N

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

LENZING LYOCELL MICRO UND LENZING LYOCELL FILL - DIE FEUCHTENMANAGER IDEAL FÜR BETTWAREN

LENZING LYOCELL MICRO UND LENZING LYOCELL FILL - DIE FEUCHTENMANAGER IDEAL FÜR BETTWAREN 93 LENZING LYOCELL MICRO UND LENZING LYOCELL FILL - DIE FEUCHTENMANAGER IDEAL FÜR BETTWAREN D. Eichinger, W. Feilmair, H. Männer Lenzing AG, Research & Development, A - 4860 Lenzing 1. Einleitung Der menschliche

Mehr

Wie man eine diophantische Gleichung löst

Wie man eine diophantische Gleichung löst Wie man eine diophantische Gleichung löst Michael Stoll Regionale Lehrerfortbildung Graf-Münster-Gymnasium Bayreuth 27. Juni 2012 Diophantische Gleichungen... sind Gleichungen F (x 1,..., x n ) = 0, wobei

Mehr

Installation. Arbeiten mit der MATLAB-Entwicklungsumgebung. MATLAB als Taschenrechner mit Matrix- und Vektorrechnung.

Installation. Arbeiten mit der MATLAB-Entwicklungsumgebung. MATLAB als Taschenrechner mit Matrix- und Vektorrechnung. Installation. Arbeiten mit der MATLAB-Entwicklungsumgebung. MATLAB als Taschenrechner mit Matrix- und Vektorrechnung. Die heutige Sitzung dient dem ersten Kennenlernen von MATLAB. Wir wollen MATLAB zuerst

Mehr

Absolute Stetigkeit von Maßen

Absolute Stetigkeit von Maßen Absolute Stetigkeit von Maßen Definition. Seien µ und ν Maße auf (X, Ω). Dann heißt ν absolut stetig bezüglich µ (kurz ν µ ), wenn für alle A Ω mit µ(a) = 0 auch gilt dass ν(a) = 0. Lemma. Sei ν ein endliches

Mehr

Seminar der WE AlZAGK. Glatte Zahlen

Seminar der WE AlZAGK. Glatte Zahlen Seminar der WE AlZAGK WiSe 200/ Glatte Zahlen von Sonja Riedel Mail: sriedel@math.uni-bremen.de Motivation Glatte Zahlen sind, grob gesagt, Zahlen, die nur kleine Primfaktoren besitzen. Sie werden in vielen

Mehr

Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen

Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen Seminar Analysis Konvexe Funktionen und einige wichtige Ungleichungen Michael Schaeer 3.04.03 Abstract This seminar is about convex functions and several imortant ineualities. At the beginning the term

Mehr

Topologische Räume und stetige Abbildungen Teil 2

Topologische Räume und stetige Abbildungen Teil 2 TU Dortmund Mathematik Fakultät Proseminar zur Linearen Algebra Ausarbeitung zum Thema Topologische Räume und stetige Abbildungen Teil 2 Anna Kwasniok Dozent: Prof. Dr. L. Schwachhöfer Vorstellung des

Mehr

8. Quadratische Reste. Reziprozitätsgesetz

8. Quadratische Reste. Reziprozitätsgesetz O Forster: Prizahlen 8 Quadratische Reste Rezirozitätsgesetz 81 Definition Sei eine natürliche Zahl 2 Eine ganze Zahl a heißt uadratischer Rest odulo (Abkürzung QR, falls die Kongruenz x 2 a od eine Lösung

Mehr

Definition 27 Affiner Raum über Vektorraum V

Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V Definition 27 Affiner Raum über Vektorraum V ist die Menge A = Definition 27 Affiner Raum über Vektorraum V ist die Menge A = mit einer Abbildung + : A V A,

Mehr

Vorlesung 27. Der projektive Raum. Wir werden den projektiven Raum zunehmend mit mehr Strukturen versehen.

Vorlesung 27. Der projektive Raum. Wir werden den projektiven Raum zunehmend mit mehr Strukturen versehen. Vorlesung 27 Der projektive Raum Definition 1. Sei K ein Körper. Der projektive n-dimensionale Raum P n K besteht aus allen Geraden des A n+1 K durch den Nullpunkt, wobei diese Geraden als Punkte aufgefasst

Mehr

PROSEMINAR ONLINE ALGORITHMEN

PROSEMINAR ONLINE ALGORITHMEN PROSEMINAR ONLINE ALGORITHMEN im Wintersemester 2000/2001 Prof. Dr. Rolf Klein, Dr. Elmar Langetepe, Dipl. Inform. Thomas Kamphans (Betreuer) Vortrag vom 15.11.2000 von Jan Schmitt Thema : Finden eines

Mehr

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Computer Vision: 3D-Geometrie D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Lochkamera Modell C Projektionszentrum, Optische Achse, Bildebene, P Hauptpunkt (optische Achse kreuzt die Bildebene),

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 25. April 2016 Die Dimensionsformel Definition 3.9 Sei f : V W eine lineare Abbildung zwischen zwei K-Vektorräumen. Der Kern

Mehr

Module und Modulprüfungen im Lehramtsstudium Mathematik

Module und Modulprüfungen im Lehramtsstudium Mathematik FB Mathematik und Informatik Modulprüfungsausschuss Lehramt Der Vorsitzende Prof. Dr. Thomas Bauer Hans-Meerwein-Straße 35032 Marburg Telefon: 06421 282 54 90 tbauer@mathematik.uni-marburg.de www.mathematik.uni-marburg.de/

Mehr

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12 Grundlagen: Folge 19 - Bäume 19.1 Binärbäume - Allgemeines Unter Bäumen versteht man in der Informatik Datenstrukturen, bei denen jedes Element mindestens zwei Nachfolger hat. Bereits in der Folge 17 haben

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Expander Graphen und Ihre Anwendungen

Expander Graphen und Ihre Anwendungen Expander Graphen und Ihre Anwendungen Alireza Sarveniazi Mathematisches Institut Universität Göttingen 21.04.2006 Alireza Sarveniazi (Universität Göttingen) Expander Graphen und Ihre Anwendungen 21.04.2006

Mehr

Modulabschlussklausur Analysis II

Modulabschlussklausur Analysis II Modulabschlussklausur Analysis II. Juli 015 Bearbeitungszeit: 150 min Aufgabe 1 [5/10 Punkte] Es sei a R und f a : R 3 R mit f a (x, y, z) = x cos(y) + z 3 sin(y) + a 3 + (z + ay a y) cos(x) a) Bestimmen

Mehr

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren.

Basis und Dimension. Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Basis und Dimension Als nächstes wollen wir die wichtigen Begriffe Erzeugendensystem und Basis eines Vektorraums definieren. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Mehr

Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen

Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen Seminar A - Spieltheorie und Multiagent Reinforcement Learning in Team Spielen Michael Gross mdgrosse@sbox.tugraz.at 20. Januar 2003 1 Spieltheorie 1.1 Matrix Game Definition 1.1 Ein Matrix Game, Strategic

Mehr

Die Dimension eines Vektorraumes

Die Dimension eines Vektorraumes Die Dimension eines Vektorraumes Ist (b 1, b 2,..., b n ) eine Basis des Vektorraums V, so heißt n die Dimension von V. Die Möglichkeit dieser Definition beruht auf dem folgenden nichttrivialen Satz. Je

Mehr

Konzepte von Betriebssystem-Komponenten: Mehrkern-Echtzeitsysteme

Konzepte von Betriebssystem-Komponenten: Mehrkern-Echtzeitsysteme Konzepte von Betriebssystem-Komponenten: Mehrkern-Echtzeitsysteme Peter Ulbrich Lehrstuhl für Informatik 4 Verteilte Systeme und Betriebssysteme Friedrich-Alexander-Universität Erlangen-Nürnberg Wintersemester

Mehr

2 Durchschnitt und Verbindungsraum

2 Durchschnitt und Verbindungsraum 2 Durchschnitt und Verbindungsraum Seien X und Y nicht leere affine Unterräume des R n (21) Satz: a) Ist X Y, so ist T(X) T(Y ) b) Ist X Y φ so ist X Y ein affiner Raum mit Richtungsvektorraum T(X) T(Y

Mehr

Definition Sei V ein Vektorraum, und seien v 1,..., v n V. Dann heißt eine Linearkombination. n λ i = 1. mit. v = v i λ i.

Definition Sei V ein Vektorraum, und seien v 1,..., v n V. Dann heißt eine Linearkombination. n λ i = 1. mit. v = v i λ i. Kapitel Geometrie Sei V ein Vektorraum, z.b. V = R 3. Wenn wir uns für geometrische Eigenschaften von R 3 interessieren, so stört manchmal die Ausnahmerolle des Nullvektors, die es ja in V gibt. Beispielsweise

Mehr

Einführung in die Kodierungstheorie

Einführung in die Kodierungstheorie Einführung in die Kodierungstheorie Einführung Vorgehen Beispiele Definitionen (Code, Codewort, Alphabet, Länge) Hamming-Distanz Definitionen (Äquivalenz, Coderate, ) Singleton-Schranke Lineare Codes Hamming-Gewicht

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 014/015 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 7 Abgabetermin: Freitag, 05.1.014, 11 Uhr Aufgabe 7.1 (Vektorräume

Mehr

Fixpunktsemantik logischer Programme Pascal Hitzler Juli 1997 Kurzuberblick im Rahmen der Vorlesung Einfuhrung in Prolog von T. Cornell im Sommersemester 1997 an der Universitat Tubingen. Beweise sind

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Lineare Codes. Dipl.-Inform. Wolfgang Globke. Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19

Lineare Codes. Dipl.-Inform. Wolfgang Globke. Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19 Lineare Codes Dipl.-Inform. Wolfgang Globke Institut für Algebra und Geometrie Arbeitsgruppe Differentialgeometrie Universität Karlsruhe 1 / 19 Codes Ein Code ist eine eindeutige Zuordnung von Zeichen

Mehr

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt

Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik II für biw/ciw/mach/mage/vt Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. F. Hettlich Dr. S. Schmitt Dipl.-Math. J. Kusch Karlsruhe, den 09.06.20 Lösungen zum 9. Übungsblatt zur Vorlesung Höhere Mathematik

Mehr

3.5 Duale Vektorräume und Abbildungen

3.5 Duale Vektorräume und Abbildungen 3.5. DUALE VEKTORRÄUME UND ABBILDUNGEN 103 3.5 Duale Vektorräume und Abbildungen Wir wollen im Folgenden auch geometrische Zusammenhänge mathematisch beschreiben und beginnen deshalb jetzt mit der Einführung

Mehr

Vektorräume und Lineare Abbildungen

Vektorräume und Lineare Abbildungen Lineare Algebra Kapitel 9. Vektorräume Der Körper der reellen Zahlen Der Vektorraumbegriff, Beispiele Rechnen in Vektorräumen Linearkombinationen und Erzeugendensysteme Lineare Abhängigkeit und Unabhängigkeit

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Mengen und Abbildungen

Mengen und Abbildungen 1 Mengen und bbildungen sind Hilfsmittel ( Sprache ) zur Formulierung von Sachverhalten; naive Vorstellung gemäß Georg Cantor (1845-1918) (Begründer der Mengenlehre). Definition 1.1 Eine Menge M ist eine

Mehr

Seminar Klassische Texte der Neuzeit und der Gegenwart Prof. Dr. Gianfranco Soldati. René Descartes Meditationen Erste Untersuchung

Seminar Klassische Texte der Neuzeit und der Gegenwart Prof. Dr. Gianfranco Soldati. René Descartes Meditationen Erste Untersuchung Seminar Klassische Texte der Neuzeit und der Gegenwart Prof. Dr. Gianfranco Soldati René Descartes Meditationen Erste Untersuchung INHALTSVERZEICHNIS 1 EINLEITUNG 3 1.1 PROBLEMSTELLUNG 3 1.2 ZIELSETZUNG

Mehr

Haskell zur Constraint-Programmierung HaL8

Haskell zur Constraint-Programmierung HaL8 Haskell zur Constraint-Programmierung HaL8 Alexander Bau 2. Mai 2013 Wir benutzen eine Teilmenge von Haskell zur Spezifikation von Constraint- Systemen über Haskell-Datentypen. Ein Constraint-Compiler

Mehr

1 Eingebettete Untermannigfaltigkeiten des R d

1 Eingebettete Untermannigfaltigkeiten des R d $Id: unter.tex,v 1.2 2014/04/14 13:19:35 hk Exp hk $ 1 Eingebettete Untermannigfaltigkeiten des R d In diesem einleitenden Paragraphen wollen wir Untermannigfaltigkeiten des R d studieren, diese sind die

Mehr

WS 2008/09. Diskrete Strukturen

WS 2008/09. Diskrete Strukturen WS 2008/09 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0809

Mehr

Konvergenz, Filter und der Satz von Tychonoff

Konvergenz, Filter und der Satz von Tychonoff Abschnitt 4 Konvergenz, Filter und der Satz von Tychonoff In metrischen Räumen kann man topologische Begriffe wie Stetigkeit, Abschluss, Kompaktheit auch mit Hilfe von Konvergenz von Folgen charakterisieren.

Mehr

Mathematik des Zufalls Was verbindet ein Münzspiel, Aktienkurse und einen Vogelflug

Mathematik des Zufalls Was verbindet ein Münzspiel, Aktienkurse und einen Vogelflug Mathematik des Zufalls Was verbindet ein Münzspiel, Aktienkurse und einen Vogelflug Sylvie Roelly Lehrstuhl für Wahrscheinlichkeitstheorie, Institut für Mathematik der Universität Potsdam Lehrertag, Postdam,

Mehr