Musterlösungen zu den Aufgaben aus. Statistische Methoden in den Wirtschafts- und Sozialwissenschaften

Größe: px
Ab Seite anzeigen:

Download "Musterlösungen zu den Aufgaben aus. Statistische Methoden in den Wirtschafts- und Sozialwissenschaften"

Transkript

1 Musterlösungen zu den Aufgaben aus Statistische Methoden in den Wirtschafts- und Sozialwissenschaften von Prof. Dr. Hans Peter Litz Oldenbourg-Verlag München,.Auflage 1998 Teil II. Wahrscheinlichkeitstheoretische Grundlagen und statistische Induktion (S. 19-5) bearbeitet von Hauke Hunger, Dubravko Dolic, Martin Wehmeyer, Alexandra Lux u.a. Stand

2 Aufgabe 1: A B C Legende: A: ein Haus ist aus Ziegeln gebaut B: es ist älter als 0 Jahre C: es wird mit Öl geheizt b1) Ein Haus ist älter als 0 Jahre und wird mit Öl beheizt A B B C b) Ein Haus ist nicht aus Ziegeln gebaut C A B A C b) Ein Haus wird mit Öl beheizt oder ist älter als 0 Jahre A B C B C b4) Ein Haus ist aus Ziegeln gebaut und wird nicht mit Öl beheizt A B A C A - C C

3 b5) Ein neues, elektrisch beheiztes Holzferienhaus A B A B C A B C (Satz von Morgan) C Aufgabe : Von 5 Wählern wollen blau wählen 1,, gelb wählen 4, 5.1 Es wird eine Person gezogen unabhängige Ereignisse a) Wahrscheinlichkeit, den Gelbwähler mit der Nummer 4 auszuwählen günstige _ E 1 p ( gelb4) 0, mögliche _ E 5 b) Wahrscheinlichkeit, (irgend)einen Blauwähler auszuwählen günstige _ E p ( blau) 0,6 mögliche _ E 5 c) Wahrscheinlichkeit, einen Blauwähler oder einen Gelbwähler auszuwählen p( blau gelb) p( blau) + p( gelb) (sicheres Ereignis). Ziehen von Wählern nacheinander, wobei der Erste vor der Ziehung des Zweiten zurückgelegt wird. ( mit Wiederholung ) d) Ereignisraum

4 G5 G4 B B B1 5 mögliche Ereignisse B1 B B G4 G5 e) Wahrscheinlichkeit, in beliebiger reihenfolge einen Gelbwähler und einen Blauwähler zu ziehen ( ) ( ) ( ) + ( ) ( ) p G B p G p B p B p G 1 p( G B) , 48 G5 G4 B B B1 BBlau im1. und Gelb im. Zug Gelb im 1.und Blau im. Zug B1 B B G4 G5 günstige _ E mögliche _ E 1 5 Lösung durch Auszählen: P 0, 48 f) Wahrscheinlichkeit, erst einen Gelb- und dann einen Blauwähler zu ziehen (Multiplikationssatz für unabhängige Ereignisse) ( G) P( ) 0, 4 P G günstige _ E mögliche _ E Lösung durch Auszählen: P 0, 4 6 5

5 G5 G4 B B B1 Gelb im 1. Zug Blau im. Zug B1 B B G4 G5 g) Wahrscheinlichkeit, 5 als Summe der Nummern der beiden Wähler zu erhalten günstige _ E mögliche _ E g1)lösung durch Auszählen: P ( x 5) 0, 16 g) Lösung über Formel: anzuwenden ist der Additionssatz für sich gegenseitig aus schließende Ereignisse in Verbindung mit dem Multiplikationssatz für unabhängige Ereignisse: P( x 5) P( 1 4) P( ) P( ) P( 4 1 ) , Es werden nacheinander, ohne Zurücklegen, zwei Personen gezogen ohne Wiederholung. abhängige Ereignisse, h) Ereignisraum 4 5

6 G5 G4 B B B1 B1 B B G4 G5 0 mögliche Ereignisse i) Wahrscheinlichkeit, einen Gelbwähler und einen Blauwähler zu ziehen ( ) ( ) ( ) ( ) ( ) p G B p G p B G p B p G B 1 p( G B) , 6 G5 G4 B B B1 B1 B B G4 G5 günstige _ E mögliche _ E 1 0 Lösung durch Auszählen: P 0, 6 j) Wahrscheinlichkeit, erst einen Gelb- und dann einen Blauwähler zu ziehen 6 0 abhängige Ereignisse p ( G) p( B G) 0, 5 4

7 G5 G4 B Gelb im 1. Zug Blau im. Zug B B1 B1 B B G4 G5 günstige _ E mögliche _ E Lösung durch Auszählen: P 0,.4 Jetzt werden nacheinander, mit Wiederholung (Zurücklegen), drei Wähler gezogen k) Wahrscheinlichkeit, auch bei der dritten Ziehung einen Gelbwähler zu ziehen da die Wähler nach den ersten beiden Ziehungen jeweils wieder zurückgelegt worden sind, verändert sich die Wahrscheinlichkeit von Ziehung zu Ziehung nicht. Die Wahrscheinlichkeit beträgt nach dem Multiplikationssatz für unabhängige Ereignisse: 6 0 p G G G P G P G P G 8 ( ) ( ) ( ) ( ) 0, Aufgabe : a) Wahrscheinlichkeit, daß keines der Triebwerke ausfällt

8 P(T1) 0,001 P(T) 0,001 P(T1 und T) 0,0001 Die Wahrscheinlichkeit, daß keines der Triebwerke ausfällt entspricht der Restfläche. Dabei muß berücksichtigt werden, daß die Schnittfläche nicht zweimal einberechnet wird: ( T1 T ) 1 ( p( T1) + p( T ) p( T1 ) ) P( T1 T ) 1 p T 1 ( 0, , 001 0, 0001) 1 0, 019 0, 9981 Mit einer Wahrscheinlichkeit von 99,81% fällt keines der Triebwerke aus. b) Können die beiden Triebwerke als voneinander unabhängig betrachtet werden? Bei Unabhängigkeit der Ereignisse gilt: P( T1 T) P( T1) P( T) 0, , 001 0, 001 0, Die Triebwerke T1 und T können als voneinander abhängig betrachtet werden. c) Wie groß ist die bedingte Wahrscheinlichkeit für den Ausfall des Resttriebwerkes? P( T1 T ) 0,0001 P ( T T1) 0,1 T1 0,001

9 Aufgabe 4: a) Was ist Ihre spontane Antwort? b) Wie wird die Aufgabe systematisch gelöst? Ein 15köpfiger Betriebsrat wählt einen köpfigen Sprecherrat in drei Wahlgängen (also immer einen Sprecher/Sprecherin). Wenn die Wahl zufällig, also ohne bestimmte Präferenzen abläuft, sieht es folgendermaßen aus: 15/15 10/15 alle 5/15 M 9/14 5/14 10/14 4/14 F 1.WG 8/1 M F M 5/1 4/1 4/1 9/1 9/1 F 10/1 /1.WG M F M F M F M F.WG b1) P( M M M) P( F F F ) P( F) P( F F ) P( F F F) , 0 b) Ein Mann entspricht der Wahrscheinlichkeit P( ein Mann ) P M F F + P F M F + P F F M ( ) ( ) ( ) P( M) P( F M) P( F M F) + P( F) P( M F) P( F F M) + P( F) P( F F) P( M F F) , 198 b) Zwei Männer entspricht der Wahrscheinlichkeit P( zwei Männer ) P M M F + P M F M + P F M M ( ) ( ) ( ) P( M ) P( M M ) P( F M M ) + P( M) P( F M) P( M M F) + P( F) P( M F) P( M F M)

10 b4) drei Männer entsprechen , 495 0, P( M M M) P( M ) P( M M) P( M M M) 0, Aufgabe 5: Die Lösung ergibt sich aus dem Satz von Bayes. Dazu nehmen wir an, daß der Kandidat sich für eine beliebige Tür, z.b. T 1 entscheidet und der Quizmasterdaraufhin Tür T öffnet. Wir definieren nun das Ereignis: A: Auto hinter T 1 B: Der Quizmaster Q öffnet T gesucht ist P A B ( ) P( A) P( B A) P( B) P(A) Ausgangswahrscheinlichkeit dafür, dass das Auto hinter Tür T 1 steht. P(A B) die Wahrscheinlichkeit, daß sich das Auto hinter Tür T 1 befindet, unter der Bedingung, daß der Q Tür T öffnet. P(B A) die Wahrscheinlichkeit dafür, dass Tür T geöffnet wird unter der Bedingung, daß das Auto hinter Tür T 1 steht. dabei ist P(A) 1, P(B) 1 und P( B A) 1, weil Q zwei Türen ) ( T, T zur Auswahl hat, wenn das Auto hinter T 1 steht. P( A) P( B A) P( A B) P( B) Machen wir die Gegenprobe mit A: Auto hinter T Wenn das Auto hinter der Tür T steht, kann nur die Tür T geöffnet werden. D.h. P( B A) 1 1

11 P( A) P( B A) > P( A B) P( B) Es lohnt sich also für den Kandidaten von T 1 nach T zu wechseln. PS: Man kann sich das Ergebnis auch folgendermaßen plausibel machen: Der Kandidat wählt T 1. Die Wahrscheinlichkeit, daß dahinter das Auto steht ist 1. Daraus folgt, daß die Wahrscheinlichkeit, daß das Auto hinter einer der beiden anderen Türen steht ist. Diese Wahrscheinlichkeit ändert sich nicht, wenn eine der Türen geöffnet wird, weil wir davon ausgehen, daß der Q imme nur die Tüt öffnet, hinter welcher das Auto nicht steht. Sie bezieht sich dann jedoch nur auf die dritte, nicht geöffnete Tür. Lit.: Gero von Randow Das Ziegenproblem. Denken in Wahrscheinlichkeiten rororo 199, 176 S., DM (1998). Aufgabe 6: Es gibt zwei mögliche Kombinationen: V,M,V und M,V,M Der Ereignisraum umfaßt i 8 Ereignisse mit S Sieg und N Niederlage, von denen die Folgen SSN, NSS sowie SSS relevant sind und p i Wahrscheinlichkeit der jeweiligen Folge. Die Ergebnisse (der Spiele) sind voneinander unabhängig Multiplikationssatz für unabhängige Ereignisse für die Wahrscheinlichkeit einer Spielfolge Wahrscheinlichkeit der günstigen Spielfolgen über Additionssatz verknüpfen. i Vater Mutte r Vater p i Mutte r Vater Mutte r p i 1 S 0,5 S 0,8 S 0,5 0, S 0,8 S 0,5 S 0,8 0, S 0,5 S 0,8 N 0,5 0, S 0,8 S 0,5 N 0, 0,08 N 0,5 S 0,8 S 0,5 0, N 0, S 0,5 S 0,8 0,08

12 Wenn man die Wahrscheinlichkeiten der günstigen Spielfolgen, also der Spielfolgen mit zwei Siegen in Folge addiert, ergibt sich für die Kombination V,M,V eine Wahrscheinlichkeit von 0,6 für eine Taschengelderhöhung, während bei der Kombination M,V,M nur eine Wahrscheinlichkeit von 0,48 herauskommt. Der Sohn sollte also zuerst gegen den Vater spielen. Es ist also durchaus plausibel gegen den stärkeren Gegner zweimal anzutreten. Aufgabe 7: a) A 50% der Produktion davon % Ausschuß ( ) p A 0 5, p ( D A) 0, 0 B 0% der Produktion davon 4% Ausschuß ( ) p B 0, p ( D B) 0, 04 C 0% der Produktion davon 5% Ausschuß ( ) p C 0, p ( DC) 0, 05 ( ) ( ) ( ) ( ) ( ) ( ) ( ) p D p A p D A + p B p D B + p C p DC p( D) 0, 5 0, 0+ 0, 0, , 0, 05 p( D) 0, , , 01 p( D) 0, 07,7% der Produktion sind Ausschuß! b) Wahrscheinlichkeit, daß ein zufällig ausgewähltes, defektes Stück von A stammt. Die Lösung erhält man durch die Anwendung des Satzes von Bayes: p( D A) p( A) 0, 015 P( A D) 0, 405 p( D) 0, 07 Hier wird aus der Menge aller defekten Stücke ausgewählt und nach der Wahrscheinlichkeit gesucht, daß eines von diesen Stücken von einer bestimmten Maschine kommt. Aufgabe 8: A: Arbeiterhaushalt B: Angestelltenhaushalt C: Beamtenhaushalt D: Selbständigenhaushalt

13 G: Kind geht zum Gymnasium P(A)0,8 P(B)0,44 P(C)0,09 P(D)0,09 P(G A)0,09 P(G B)0,5 P(G C)0,45 P(G D)0, Wahrscheinlichkeit für Kind geht zum Gymnasium : P(G)P(A) P(G A) P(B) P(G B) P(C) P(G C) P(D) P(G D) P(G)0,8 0,09+0,44 0,5+0,09 0,45+0,09 0,0,575 Wahrscheinlichkeit für Gymnasiast kommt aus Arbeiterhaushalt : ( ) P AG ( ) P( G A) P A P( G) 0, 8 0, 09 0, 575 0, 1 Aufgabe 9: a) Wieviel Arbeitsgruppen à 5 Personen können aus 8 Mitarbeitern gebildet werden? Kombinationen ohne Berücksichtigung der Reihenfolge ohne Zurücklegen. n 8 k 5 n n k 8 8! 5 ( n k!! ) k! ( 8 5)! 5! Möglichkeiten b) Wieviel Möglichkeiten gibt es, 1 Personen auf Gruppen à,4 und 5 Personen aufzuteilen n 1 k, 4, 5 n! 1! k! k! k!! 4! 5! Möglichkeiten Aufgabe 10: Wie groß ist die Wahrscheinlichkeit, keinen Sowi in der Kommission zu haben? Wiwis und Politologen sind keine Sowis, also sind die 16 Wissenschaftler in 8 Sowis und 8 Nicht-Sowis aufzuteilen.

14 8 günstige 4 p möglichen ! ( 8 4)! 4! 70 0, ! 180 ( 16 4)! 4! wobei im Zähler 4 Wissenschaftler aus den 8 Nicht-Sowis gezogen werden.

Das Zweikinderproblem

Das Zweikinderproblem Das Zweikinderproblem Definition Zweikinderproblem Eine Familie besitzt zwei Kinder. Wie groß ist die Wahrscheinlichkeit Pr[ Beide Kinder sind Mädchen. Eines der Kinder ist ein Mädchen ]? Lösung: Sei A

Mehr

Statistik I für Betriebswirte Vorlesung 2

Statistik I für Betriebswirte Vorlesung 2 Statistik I für Betriebswirte Vorlesung 2 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 11. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Cusanus-Gymnasium Wittlich Statistik Das Ziegenproblem DIE ZEIT Nr.48. W.Zimmer. Tür 1 Tür 2 Tür 3

Cusanus-Gymnasium Wittlich Statistik Das Ziegenproblem DIE ZEIT Nr.48. W.Zimmer. Tür 1 Tür 2 Tür 3 Das Ziegenproblem DIE ZEIT 18.11.2004 Nr.48 Tür 1 Tür 2 Tür 3 Cusanus-Gymnasium Wittlich Statistik Das Ziegenproblem DIE ZEIT 18.11.2004 Nr.48 Du bist Kandidat einer Fernsehshow. Als Sieger darfst du eine

Mehr

Statistik I für Betriebswirte Vorlesung 2

Statistik I für Betriebswirte Vorlesung 2 Statistik I für Betriebswirte Vorlesung 2 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 13. April 2017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 2 Version: 11.

Mehr

Übungsblätter zu Methoden der Empirischen Sozialforschung III: Inferenzstatistik. Lösungsblatt zu Nr. 1

Übungsblätter zu Methoden der Empirischen Sozialforschung III: Inferenzstatistik. Lösungsblatt zu Nr. 1 Martin-Luther-Universität Halle-Wittenberg - Institut für Soziologie - Dr. Wolfgang Langer 1 Übungsblätter zu Methoden der Empirischen Sozialforschung III: Inferenzstatistik Lösungsblatt zu Nr. 1 1. Die

Mehr

Mathematik W27. Mag. Rainer Sickinger LMM. v 1 Mag. Rainer Sickinger Mathematik W27 1 / 51

Mathematik W27. Mag. Rainer Sickinger LMM. v 1 Mag. Rainer Sickinger Mathematik W27 1 / 51 Mathematik W27 Mag. Rainer Sickinger LMM v 1 Mag. Rainer Sickinger Mathematik W27 1 / 51 Einführung Wir befinden uns in einer kleinen Stadt. In dieser Stadt gibt es zwei Taxiunternehmen. Die Taxis des

Mehr

Rumpfskript. Elementare Wahrscheinlichkeitsrechnung. Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen

Rumpfskript. Elementare Wahrscheinlichkeitsrechnung. Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen Rumpfskript Elementare Wahrscheinlichkeitsrechnung Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen Vorbemerkung Vorbemerkung Das vorliegende Skript heißt nicht nur Rumpf skript, sondern

Mehr

Welche Axiome sind Grundlage der axiomatischen Wahrscheinlichkeitsdefinition von Kolmogoroff?

Welche Axiome sind Grundlage der axiomatischen Wahrscheinlichkeitsdefinition von Kolmogoroff? 2. Übung: Wahrscheinlichkeitsrechnung Aufgabe 1 Welche Axiome sind Grundlage der axiomatischen Wahrscheinlichkeitsdefinition von Kolmogoroff? a) P ist nichtnegativ. b) P ist additiv. c) P ist multiplikativ.

Mehr

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente Mehrstufige Zufallsexperimente Inhalt 6.1 6.1 Mehrstufige Experimente 6.2 6.2 Bedingte Wahrscheinlichkeiten Seite 2 6.1 Mehrstufige Experimente Grundvorstellung: Viele Viele Experimente werden der der

Mehr

Wie hoch ist das Risiko, dass ein System, das aus mehreren Komponenten besteht, ausfällt?

Wie hoch ist das Risiko, dass ein System, das aus mehreren Komponenten besteht, ausfällt? In diesem Kapitel werden wir den egriff Wahrscheinlichkeit und die Grundlagen der Wahrscheinlichkeitsrechnung kennenlernen, um z.. folgende Fragestellungen zu beantworten. Wie hoch ist das Risiko, dass

Mehr

8. Wahrscheinlichkeitsrechnung

8. Wahrscheinlichkeitsrechnung Didaktik der Geometrie und Stochastik WS 09/10 Bürker 27. 1. 11 8. Wahrscheinlichkeitsrechnung 8.1 Begriffe 8.1.1 Zufallsexperiment Was ist ein Zufallsexperiment? a) Mehrere Ergebnisse möglich b) Ergebnis

Mehr

Paradoxien bei bedingten Wahrscheinlichkeiten - Das Ziegenproblem

Paradoxien bei bedingten Wahrscheinlichkeiten - Das Ziegenproblem Paradoxien bei bedingten Wahrscheinlichkeiten - Das Ziegenproblem Ein Referat von Maren Hornischer & Anna Spitz Wuppertal, den 28. Mai 2014 Inhalt 1 Das Ziegenproblem oder auch das "3-Türen-Problem"...

Mehr

Aufgabe 1. Übung Wahrscheinlichkeitsrechnung Markus Kessler Seite 1 von 8. Die Ereignisse A, B und C erfüllen die Bedingungen

Aufgabe 1. Übung Wahrscheinlichkeitsrechnung Markus Kessler Seite 1 von 8. Die Ereignisse A, B und C erfüllen die Bedingungen Ü b u n g 1 Aufgabe 1 Die Ereignisse A, B und C erfüllen die Bedingungen P(A) = 0. 7, P(B) = 0. 6, P(C) = 0. 5 P(A B) = 0. 4, P(A C) = 0. 3, P(B C) = 0. 2, P(A B C) = 0. 1 Bestimmen Sie P(A B), P(A C),

Mehr

Lösungsskizzen Mathematik für Informatiker 5. Aufl. Kapitel 19 Peter Hartmann

Lösungsskizzen Mathematik für Informatiker 5. Aufl. Kapitel 19 Peter Hartmann Verständnisfragen 1. Welches sind die charakteristischen Eigenschaften eines Laplace-Raums? Der Raum ist endlich, die Wahrscheinlichkeit für alle Elementarereignisse ist gleich. 2. Unter welchen Bedingungen

Mehr

Einführung. Wahrscheinlichkeit. 1 Wahrscheinlichkeit: Definition und Interpretation. 2 Elementare Wahrscheinlichkeitsrechnung, bedingte

Einführung. Wahrscheinlichkeit. 1 Wahrscheinlichkeit: Definition und Interpretation. 2 Elementare Wahrscheinlichkeitsrechnung, bedingte Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2 Elementare Wahrscheinlichkeitsrechnung, bedingte Wahrscheinlichkeit Axiome nach Kolmogorov Gegeben sei ein Zufallsexperiment mit Ergebnisraum

Mehr

2.2 Ereignisse und deren Wahrscheinlichkeit

2.2 Ereignisse und deren Wahrscheinlichkeit 2.2 Ereignisse und deren Wahrscheinlichkeit Literatur: [Papula Bd., Kap. II.2 und II.], [Benning, Kap. ], [Bronstein et al., Kap. 1.2.1] Def 1 [Benning] Ein Zufallsexperiment ist ein beliebig oft wiederholbarer,

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen)

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen) Dr. Jürgen Senger INDUKTIVE STATISTIK Wahrscheinlichkeitstheorie, Schätz- und Testverfahren ÜUNG. - LÖSUNGEN. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen Die Urne enthält 4 weiße und 8 rote Kugeln.

Mehr

D. Ulmet IT 4 Blatt 5 Stochastik I SS 2005

D. Ulmet IT 4 Blatt 5 Stochastik I SS 2005 D. Ulmet IT 4 Blatt 5 Stochastik I SS 2005 Aufgabe 1: Von den Ereignissen A, B und C trete a) nur A ein, b) genau eines ein, c) höchstens eines ein, d) mindestens eines ein, e) mindestens eines nicht ein,

Mehr

Wiederholung. Einführung in die Wahrscheinlichkeitstheorie Wahrscheinlichkeitsraum Ergebnismenge Ω = {ω 1, ω 2, } mit ω Ω Pr[ω]=1.

Wiederholung. Einführung in die Wahrscheinlichkeitstheorie Wahrscheinlichkeitsraum Ergebnismenge Ω = {ω 1, ω 2, } mit ω Ω Pr[ω]=1. Wiederholung Einführung in die Wahrscheinlichkeitstheorie Wahrscheinlichkeitsraum Ergebnismenge Ω = {ω 1, ω, } mit ω Ω Pr[ω]=1. Berechnung von Pr[ n i=1 A i ]: A i disjunkt: Additionssatz n i=1 Pr[A i

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Abiturvorbereitung Wahrscheinlichkeitsrechnung S. 1 von 9 Wahrscheinlichkeitsrechnung Kombinatorik Formeln für Wahrscheinlichkeiten Bedingte Wahrscheinlichkeiten Zusammenfassung wichtiger Begriffe Übungsaufgaben

Mehr

1 Axiomatische Definition von Wahrscheinlichkeit

1 Axiomatische Definition von Wahrscheinlichkeit Schülerbuchseite 174 176 Lösungen vorläufig und Unabhängigkeit 1 Axiomatische Definition von Wahrscheinlichkeit S. 174 1 Ein Schätzwert für die Wahrscheinlichkeit von Sau kann nur mithilfe der relativen

Mehr

Lösungen zu Übungs-Blatt 8 Wahrscheinlichkeitsrechnung

Lösungen zu Übungs-Blatt 8 Wahrscheinlichkeitsrechnung Lösungen zu Übungs-Blatt Wahrscheinlichkeitsrechnung Diskrete Zufallsgrößen Zu Aufgabe ) Welche der folgenden grafischen Darstellungen und Tabellen zeigen keine (Einzel-)Wahrscheinlichkeitsverteilung?

Mehr

Vorlesung Statistik, H&A Mathe, Master M

Vorlesung Statistik, H&A Mathe, Master M Beispiel: Die Wahrscheinlichkeit dafür, dass ein Bewerber von Firma A angenommen wird ist P(A) = 0,2. Die Wahrscheinlichkeit von Firma B angenommen zu werden beträgt P(B) = 0,3. Von mindestens einer der

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 6 5 Hilfsmittel aus der Kombinatorik 7 1 Vorbemerkungen

Mehr

Welche Axiome sind Grundlage der axiomatischen Wahrscheinlichkeitsdefinition von Kolmogoroff?

Welche Axiome sind Grundlage der axiomatischen Wahrscheinlichkeitsdefinition von Kolmogoroff? 2. Übung: Wahrscheinlichkeitsrechnung Aufgabe 1 Welche Axiome sind Grundlage der axiomatischen Wahrscheinlichkeitsdefinition von Kolmogoroff? a) P ist nichtnegativ. b) P ist additiv. c) P ist multiplikativ.

Mehr

a) (A B) tritt ein = A tritt ein oder B tritt ein. = Mindestens eines der Ereignisse A, B tritt ein.

a) (A B) tritt ein = A tritt ein oder B tritt ein. = Mindestens eines der Ereignisse A, B tritt ein. Lösungsvorschläge zu den Aufgaben von Blatt 6: 43) 7 Telefonzellen ( 7 Kugeln in der Urne); 3 davon sind von je einem Benutzer besetzt ( 3 Kugeln in die Stichprobe). Die Telefonzellen werden nicht mehrfach

Mehr

Vorlesung Statistik WING ASW Melanie Kaspar, Prof. Dr. B. Grabowski 1

Vorlesung Statistik WING ASW Melanie Kaspar, Prof. Dr. B. Grabowski 1 Melanie Kaspar, Prof. Dr. B. Grabowski 1 Aus diesen Eigenschaften lassen sich alle weiteren Eigenschaften ableiten: Beweis zu 1) Melanie Kaspar, Prof. Dr. B. Grabowski 2 Aufgabe Die Wahrscheinlichkeit

Mehr

Mathematische Grundlagen der Computerlinguistik Wahrscheinlichkeit

Mathematische Grundlagen der Computerlinguistik Wahrscheinlichkeit Mathematische Grundlagen der Computerlinguistik Wahrscheinlichkeit Dozentin: Wiebke Petersen 8. Foliensatz Wiebke Petersen math. Grundlagen 1 Motivation Bsp.: In vielen Bereichen der CL kommt Wahrscheinlichkeitstheorie

Mehr

Übungen zur Kombinatorik (Laplace)

Übungen zur Kombinatorik (Laplace) 1. In einem Beutel sind 10 Spielmarken enthalten, die von 0 bis 9 nummeriert sind. X sei das Ereignis, dass man zufällig die Marke 5 oder 8 herausholt, Y das Ereignis, dass eine größere Zahl als 5 gezogen

Mehr

Übungs-Blatt 7 Wahrscheinlichkeitsrechnung

Übungs-Blatt 7 Wahrscheinlichkeitsrechnung Übungs-Blatt Wahrscheinlichkeitsrechnung BMT Biostatistik Prof. Dr. B. Grabowski Zu Aufgabe ) Ein bestimmtes Bauteil wird auf seine Zuverlässigkeit untersucht. Die technische Prüfung erfolgt dabei so:

Mehr

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen?

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen? 1 Kombinatorik Aus einer Grundgesamtheit mit n Elementen wird eine Stichprobe k Elementen entnommen. Dabei kann die Stichprobe geordnet oder ungeordnet sein. "Geordnet" bedeutet, dass die Reihenfolge der

Mehr

Statistik I für Humanund Sozialwissenschaften

Statistik I für Humanund Sozialwissenschaften Statistik I für Humanund Sozialwissenschaften 3. Übung Lösungsvorschlag Gruppenübung G 8 a) Ein Professor möchte herausfinden, welche 5 seiner insgesamt 8 Mitarbeiter zusammen das kreativste Team darstellen.

Mehr

,,Schäferhunde sind gefährlich! Denn,,Jeder dritte Biss geht auf das Konto dieser Rasse.

,,Schäferhunde sind gefährlich! Denn,,Jeder dritte Biss geht auf das Konto dieser Rasse. Wirtschaftswissenschaftliches Zentrum 7 Universität Basel Statistik Dr. Thomas Zehrt Bedingte Wahrscheinlichkeit Motivation Die bedingte Wahrscheinlichkeit eines Ereignisses A bei einem gegebenen Ereignis

Mehr

P A P( A B) Definition Wahrscheinlichkeit

P A P( A B) Definition Wahrscheinlichkeit Unabhaengige Ereignisse edingte Wahrscheinlichkeit Definition Wahrscheinlichkeit Die Wahrscheinlichkeit eines Ereignisses ist das Verhältnis der günstigen Ergebnisse zur Gesamtmenge der Ergebnisse nzahl

Mehr

Wahrscheinlichkeitsrechnung für die Mittelstufe

Wahrscheinlichkeitsrechnung für die Mittelstufe Wahrscheinlichkeitsrechnung für die Mittelstufe Wir beginnen mit einem Beispiel, dem Münzwurf. Es wird eine faire Münze geworfen mit den Seiten K (für Kopf) und Z (für Zahl). Fair heißt, dass jede Seite

Mehr

Elemente der Stochastik (SoSe 2016) 6. Übungsblatt

Elemente der Stochastik (SoSe 2016) 6. Übungsblatt Dr. M. Weimar 19.05.2016 Elemente der Stochastik (SoSe 2016 6. Übungsblatt Aufgabe 1 ( Punkte Eine Klausur, die insgesamt von zwölf Kursteilnehmern geschrieben wurde, soll von drei Gutachtern bewertet

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 12. Dezember 2012 1 Kombinatorik Fakultät Binomialkoeffizienten Urnenmodelle 2 Definition Fakultät Die Zahl n! =

Mehr

= 7! = 6! = 0, 00612,

= 7! = 6! = 0, 00612, Die Wahrscheinlichkeit, dass Prof. L. die Wette verliert, lässt sich wie folgt berechnen: Ω = {(i 1,..., i 7 ) : i j {1... 7}, j = 1... 7}, wobei i, j für den Wochentag steht, an dem die Person j geboren

Mehr

Einführung in die Wahrscheinlichkeitsrechnung

Einführung in die Wahrscheinlichkeitsrechnung Einführung in die Wahrscheinlichkeitsrechnung Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) Wahrscheinlichkeitsrechnung

Mehr

Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26)

Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26) Wahrscheinlichkeitsräume (Teschl/Teschl 2, Kap. 26 Ein Wahrscheinlichkeitsraum (Ω, P ist eine Menge Ω (Menge aller möglichen Ausgänge eines Zufallsexperiments: Ergebnismenge versehen mit einer Abbildung

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Grundbegriffe: Experiment: ein Vorgang, den man unter gleichen Voraussatzungen beliebig oft wiederholen kann. Ergebnis ω : Ausgang eines Experiments Ergebnismenge Ω : Menge

Mehr

Statistik I für Betriebswirte Vorlesung 2

Statistik I für Betriebswirte Vorlesung 2 Statistik I für Betriebswirte Vorlesung 2 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 16. April 2018 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 2 Version: 9. April

Mehr

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen. Bsp (3-maliges Werfen einer Münze) Menge der Elementarereignisse:

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen. Bsp (3-maliges Werfen einer Münze) Menge der Elementarereignisse: 3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen Bsp. 1.19 (3-maliges Werfen einer Münze) Menge der Elementarereignisse: Ω {zzz, zzw,zwz,wzz,zww,wzw,wwz,www}. Dabei gilt: Ω 2 3 8 N. Wir definieren

Mehr

Die Formel für Kombinationen wird verwendet, wenn

Die Formel für Kombinationen wird verwendet, wenn 1. Übung: Kombinatorik Aufgabe 1 Die Formel für Kombinationen wird verwendet, wenn a) Alle n Elemente angeordnet werden sollen. b) Aus n Elementen k Elemente gezogen werden sollen. c) Die Reihenfolge der

Mehr

Universität Basel Wirtschaftswissenschaftliches Zentrum. Kombinatorik. Dr. Thomas Zehrt. Inhalt: 1. Endliche Mengen 2. Einfache Urnenexperimente

Universität Basel Wirtschaftswissenschaftliches Zentrum. Kombinatorik. Dr. Thomas Zehrt. Inhalt: 1. Endliche Mengen 2. Einfache Urnenexperimente Universität Basel Wirtschaftswissenschaftliches Zentrum Kombinatorik Dr. Thomas Zehrt Inhalt: 1. Endliche Mengen 2. Einfache Urnenexperimente 2 Teil 1 Endliche Mengen Eine endliche Menge M ist eine Menge,

Mehr

Mathematik LK M1, 4. Kursarbeit Stochastik I - Lösung

Mathematik LK M1, 4. Kursarbeit Stochastik I - Lösung Aufgabe : Wahrscheinlichkeitsrechnung Löse die Aufgabe auf diesem Aufgabenblatt. Trage die Lösung in die Tabelle ein. Ein Rechenweg ist hier nicht erforderlich. Hinweis: Das Casinospiel besteht aus dem

Mehr

3. Kombinatorik Modelltheoretische Wahrscheinlichkeiten Regeln der Kombinatorik

3. Kombinatorik Modelltheoretische Wahrscheinlichkeiten Regeln der Kombinatorik 3. Kombinatorik Modelltheoretische Wahrscheinlichkeiten lassen sich häufig durch Abzählen der günstigen und möglichen Fällen lösen. Kompliziertere Fragestellungen bedürfen aber der Verwendung mathematischer

Mehr

Satz von der totalen Wahrscheinlichkeit

Satz von der totalen Wahrscheinlichkeit htw saar 1 Satz von der totalen Wahrscheinlichkeit Sei (Ω, P) ein Wahrscheinlichkeitsraum, und B 1,, B n seien paarweise disjunkte Ereignisse mit B i = Ω. Für jedes Ereignis A gilt dann: P(A) = P(A B 1

Mehr

Vorlesung Statistik, WING, ASW Wahrscheinlichkeit in Laplace Versuchen. Kombinatorische Formeln. Bedingte Wahrscheinlichkeit

Vorlesung Statistik, WING, ASW Wahrscheinlichkeit in Laplace Versuchen. Kombinatorische Formeln. Bedingte Wahrscheinlichkeit Wahrscheinlichkeit in Laplace Versuchen Kombinatorische Formeln Bedingte Wahrscheinlichkeit Multiplikationssatz Unabhängigkeit Melanie Kaspar 1 Formel der totalen Wahrscheinlichkeit Satz von Bayes Melanie

Mehr

Bedingte Wahrscheinlichkeiten

Bedingte Wahrscheinlichkeiten Bedingte Wahrscheinlichkeiten Bei der Betrachtung der Ereignisse A und B eines Zufallsexperiments muss man die beiden im folgendem beschrieben zwei Situationen unterscheiden. 1. Das Ereignis A und B tritt

Mehr

Stochastik Musterlösung 2

Stochastik Musterlösung 2 ETH Zürich HS 2018 RW, D-MATL, D-MAVT Prof. Marloes H. Maathuis Koordinator Dr. Marvin S. Müller Stochastik Musterlösung 2 1. Wir betrachten folgende vier Wettersituationen. Es regnet nur am Morgen; Es

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 3. Vorlesung - 21.10.2016 Bedingte Wahrscheinlichkeit In einer Urne sind 2 grüne und 3 blaue Kugeln. 2 Kugeln werden ohne Zürücklegen gezogen. Welches ist die Wahrscheinlichkeit, dass : a) man eine grüne

Mehr

Wahrscheinlichkeitstheorie

Wahrscheinlichkeitstheorie Kapitel 2 Wahrscheinlichkeitstheorie Josef Leydold c 2006 Mathematische Methoden II Wahrscheinlichkeitstheorie 1 / 24 Lernziele Experimente, Ereignisse und Ereignisraum Wahrscheinlichkeit Rechnen mit Wahrscheinlichkeiten

Mehr

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen 3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen 3.1 Einführung Bsp. 19 (3-maliges Werfen einer Münze) Menge der Elementarereignisse: Ω {zzz,zzw,zwz,wzz,zww,wzw,wwz,www}. Ω 2 3 8 N Wir definieren

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 1 17.09.2012 Lösungen Stichproben und Zählstrategien II : A1 A1 Aus schwarzen und weißen Mühlsteinen werden Türme gebaut, indem immer acht Steine übereinander

Mehr

Stochastik - Kapitel 2

Stochastik - Kapitel 2 " k " h(a) n = bezeichnet man als die relative Häufigkeit des Ereignisses A bei n Versuchen. n (Anmerkung: für das kleine h wird in der Literatur häufig auch ein r verwendet) k nennt man die absolute Häufigkeit

Mehr

Permutation und Kombination

Permutation und Kombination Permutation und Kombination Aufgaben Aufgabe 1 Wie viele verschiedene Wörter lassen sich durch Umstellen der Buchstaben aus den Wörtern a. Mississippi, b. Larissa, c. Stuttgart, d. Abrakadabra, e. Thorsten,

Mehr

Zusammenfassung Stochastik

Zusammenfassung Stochastik Zusammenfassung Stochastik Die relative Häufigkeit Ein Experiment, dessen Ausgang nicht vorhersagbar ist, heißt Zufallsexperiment (ZE). Ein Würfel wird 40-mal geworfen, mit folgendem Ergebnis Augenzahl

Mehr

Kapitel N. Wahrscheinlichkeitsrechnung

Kapitel N. Wahrscheinlichkeitsrechnung Kapitel N Wahrscheinlichkeitsrechnung Inhalt dieses Kapitels N000 1 Diskrete Wahrscheinlichkeitsräume 2 Bedingte Wahrscheinlichkeit und Unabhängigkeit 1 Produktexperimente 2 Kombinatorik und Urnenmodelle

Mehr

Wahrscheinlichkeit (Teschl/Teschl 2, Kap. 26)

Wahrscheinlichkeit (Teschl/Teschl 2, Kap. 26) Wahrscheinlichkeit (Teschl/Teschl 2, Kap. 26) Gegeben Menge Ω (Wahscheinlichkeitsraum, Menge aller möglichen Ausgänge eines Zufallsexperiments), Abbildung P : P(Ω) [0, 1] (Wahrscheinlichkeit): Jeder Teilmenge

Mehr

Vorlesung - Medizinische Biometrie

Vorlesung - Medizinische Biometrie Vorlesung - Medizinische Biometrie Stefan Wagenpfeil Institut für Medizinische Biometrie, Epidemiologie und Medizinische Informatik Universität des Saarlandes, Homburg / Saar Vorlesung - Medizinische Biometrie

Mehr

Statistik für Ingenieure Vorlesung 2

Statistik für Ingenieure Vorlesung 2 Statistik für Ingenieure Vorlesung 2 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 24. Oktober 2016 2.4 Bedingte Wahrscheinlichkeiten Häufig ist es nützlich, Bedingungen

Mehr

Sobald bei einem Zufallsexperiment zusätzliche Bedingungen zutreffen ändern sich i.a. die Wahrscheinlichkeiten.

Sobald bei einem Zufallsexperiment zusätzliche Bedingungen zutreffen ändern sich i.a. die Wahrscheinlichkeiten. 26 6. Bedingte Wahrscheinlichkeit Sobald bei einem Zufallsexperiment zusätzliche Bedingungen zutreffen ändern sich i.a. die Wahrscheinlichkeiten. Alarmanlage Tritt bei einer Sicherungsanlage ein Alarm

Mehr

htw saar 1 KAPITEL 4 BEDINGTE WAHRSCHEINLICHKEIT UND STOCHASTISCHE UNABHÄNGIGKEIT Hans-Peter Hafner WS 2016/2017

htw saar 1 KAPITEL 4 BEDINGTE WAHRSCHEINLICHKEIT UND STOCHASTISCHE UNABHÄNGIGKEIT Hans-Peter Hafner WS 2016/2017 htw saar 1 KAPITEL 4 BEDINGTE WAHRSCHEINLICHKEIT UND STOCHASTISCHE UNABHÄNGIGKEIT htw saar 2 Gliederung 25.01. Bedingte Wahrscheinlichkeit: Motivation und Definition Multiplikationssatz Stochastische Unabhängigkeit:

Mehr

Level 1 Grundlagen Blatt 1. Dokument mit 19 Aufgaben

Level 1 Grundlagen Blatt 1. Dokument mit 19 Aufgaben Level 1 Grundlagen Blatt 1 Dokument mit 19 Aufgaben Aufgabe A1 Ein Glücksrad hat drei Sektoren mit den Farben Rot, Gelb und Grün. Das Rad bleibt mit einer Wahrscheinlichkeit von 0,1 so stehen, dass der

Mehr

2. Rechnen mit Wahrscheinlichkeiten

2. Rechnen mit Wahrscheinlichkeiten 2. Rechnen mit Wahrscheinlichkeiten 2.1 Axiome der Wahrscheinlichkeitsrechnung Die Wahrscheinlichkeitsrechnung ist ein Teilgebiet der Mathematik. Es ist üblich, an den Anfang einer mathematischen Theorie

Mehr

3. Kombinatorik Modelltheoretische Wahrscheinlichkeiten Regeln der Kombinatorik

3. Kombinatorik Modelltheoretische Wahrscheinlichkeiten Regeln der Kombinatorik 3. Kombinatorik Modelltheoretische Wahrscheinlichkeiten lassen sich häufig durch Abzählen der günstigen und möglichen Fällen lösen. Kompliziertere Fragestellungen bedürfen aber der Verwendung mathematischer

Mehr

Zusammengesetzte Ereignisse

Zusammengesetzte Ereignisse Zusammengesetzte Ereignisse Die Frage nach dem Ausgang eines Zufallsexperiments kann aus einzelnen Teilfragen zusammengesetzt sein, die mit und bzw. oder verknüpft sind. Natürlich kann man auch nach der

Mehr

Vorkurs Mathematik KOMBINATORIK

Vorkurs Mathematik KOMBINATORIK Vorkurs Mathematik 2011 17 KOMBINATORIK Produktregel Wir illustrieren die Formel an einem einfachen Beispiel. Beispiel (Der Weg nach Hause). Max ist an der Uni (U) und will nach Hause (H). Auf dem Nachhauseweg

Mehr

Grundlagen der Mathematik II Lösungsvorschlag zum 9. Tutoriumsblatt

Grundlagen der Mathematik II Lösungsvorschlag zum 9. Tutoriumsblatt Mathematisches Institut der Universität München Sommersemester 4 Daniel Rost Lukas-Fabian Moser Aufgabe. rlagen der Mathematik II Lösungsvorschlag zum 9. Tutoriumsblatt a) Es bietet sich Ω = {(a,b) a,b

Mehr

Für die Wahrscheinlichkeit P A (B) des Eintretens von B unter der Bedingung, dass das Ereignis A eingetreten ist, ist dann gegeben durch P(A B) P(A)

Für die Wahrscheinlichkeit P A (B) des Eintretens von B unter der Bedingung, dass das Ereignis A eingetreten ist, ist dann gegeben durch P(A B) P(A) 3. Bedingte Wahrscheinlichkeit ================================================================== 3.1 Vierfeldertafel und Baumdiagramm Sind A und B zwei Ereignisse, dann nennt man das Schema B B A A P

Mehr

Kombinatorik & Stochastik Übung im Sommersemester 2018

Kombinatorik & Stochastik Übung im Sommersemester 2018 Kombinatorik & Stochastik Übung im Sommersemester 2018 Kombinatorik Formeln & Begriffe Begrifflichkeiten Permutation = Anordnung in einer bestimmten Reihenfolge Kombination = Anordnung ohne bestimmte Reihenfolge

Mehr

7. Kapitel: Zufallsvorgänge, Ereignisse und Wahrscheinlichkeiten

7. Kapitel: Zufallsvorgänge, Ereignisse und Wahrscheinlichkeiten 7. Kapitel: Zufallsvorgänge, Ereignisse und Wahrscheinlichkeiten 7.1 Zufallsvorgänge - zufälliges Geschehen/ Zufallsvorgang/ stochastische Vorgang: aus Geschehen/Vorgang/Experiment (mit gegebener Ausgangssituation)

Mehr

1 Übungen zu Wahrscheinlichkeitsrechnung und Zufallsvariablen

1 Übungen zu Wahrscheinlichkeitsrechnung und Zufallsvariablen 1 Übungen zu Wahrscheinlichkeitsrechnung und Zufallsvariablen Zoltán Zomotor Versionsstand: 16. März 2016, 11:21 This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0

Mehr

Allgemeine diskrete Wahrscheinlichkeitsräume I

Allgemeine diskrete Wahrscheinlichkeitsräume I 6 Diskrete Wahrscheinlichkeitsräume Allgemeine diskrete Wahrscheinlichkeitsräume 6.3 Allgemeine diskrete Wahrscheinlichkeitsräume I Verallgemeinerung von Laplaceschen Wahrscheinlichkeitsräumen: Diskrete

Mehr

Allgemeine diskrete Wahrscheinlichkeitsräume II

Allgemeine diskrete Wahrscheinlichkeitsräume II 6 Diskrete Wahrscheinlichkeitsräume Allgemeine diskrete Wahrscheinlichkeitsräume 6.3 Allgemeine diskrete Wahrscheinlichkeitsräume I Verallgemeinerung von Laplaceschen Wahrscheinlichkeitsräumen: Diskrete

Mehr

Allgemeine diskrete Wahrscheinlichkeitsräume II. Beispiel II. Beispiel I. Definition 6.3 (Diskreter Wahrscheinlichkeitsraum)

Allgemeine diskrete Wahrscheinlichkeitsräume II. Beispiel II. Beispiel I. Definition 6.3 (Diskreter Wahrscheinlichkeitsraum) Allgemeine diskrete Wahrscheinlichkeitsräume I Allgemeine diskrete Wahrscheinlichkeitsräume II Verallgemeinerung von Laplaceschen Wahrscheinlichkeitsräumen: Diskrete Wahrscheinlichkeitsräume Ω endlich

Mehr

Das Ziegenproblem. Nils Schwinning und Christian Schöler Juni 2010

Das Ziegenproblem. Nils Schwinning und Christian Schöler  Juni 2010 Das Ziegenproblem Nils Schwinning und Christian Schöler http://www.esaga.uni-due.de/ Juni 2010 Die Formulierung Obwohl das sogenannte Ziegenproblem in der Mathematik allgegenwärtig erscheint, wurde es

Mehr

D. Ulmet IT 4 Blatt 5 Stochastik I SS 2005

D. Ulmet IT 4 Blatt 5 Stochastik I SS 2005 D Ulmet IT Blatt Stochastik I SS 200 Aufgabe : Von den Ereignissen A, B und C trete a nur A ein, A B C ( (Ā (Ā b genau eines ein, A B C B C B C c höchstens eines ein, ( A B C (Ā B C (Ā B C (Ā B C d mindestens

Mehr

Unabhängigkeit KAPITEL 4

Unabhängigkeit KAPITEL 4 KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht

Mehr

3 Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen

3 Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen Berechnung von Wahrscheinlichkeiten bei mehrstufigen Zufallsversuchen.1 Pfadregeln.1.1 Pfadmultiplikationsregel Eine faire Münze und

Mehr

Ist P(T) = p die Trefferwahrscheinlichkeit eines Bernoulli-Experiments,

Ist P(T) = p die Trefferwahrscheinlichkeit eines Bernoulli-Experiments, . Binomialverteilung ==================================================================.1 Bernoulli-Experimente und Bernoullikette -----------------------------------------------------------------------------------------------------------------

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Teil V Wahrscheinlichkeitsrechnung Inhaltsangabe 6 Einführung in die Wahrscheinlichkeitsrechnung 125 6.1 Kombinatorik......................... 125 6.2 Grundbegri e......................... 129 6.3 Wahrscheinlichkeiten.....................

Mehr

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung Mathematik: LehrerInnenteam Arbeitsblatt 7-7. Semester ARBEITSBLATT Erwartungswert, Varianz und Standardabweichung Die Begriffe Varianz und Standardabweichung sind uns bereits aus der Statistik bekannt

Mehr

2 Kombinatorik. 56 W.Kössler, Humboldt-Universität zu Berlin

2 Kombinatorik. 56 W.Kössler, Humboldt-Universität zu Berlin 2 Kombinatorik Aufgabenstellung: Anzahl der verschiedenen Zusammenstellungen von Objekten. Je nach Art der zusätzlichen Forderungen, ist zu unterscheiden, welche Zusammenstellungen als gleich, und welche

Mehr

! Die Noten von 10 Bachlor- 30 Master- und 10 PhD-Studenten (Doktoranden) eines Informatikkurses waren wie folgt.

! Die Noten von 10 Bachlor- 30 Master- und 10 PhD-Studenten (Doktoranden) eines Informatikkurses waren wie folgt. In einem Informatik-Kurs bestehend aus 100 Studenten, haben 54 Studenten Mathematik, 69 Chemie und 35 beide Fächer belegt. Wenn wir zufällig einen Studenten auswählen, wie groß ist die Wahrscheinlichkeit

Mehr

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen

3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen 3 Bedingte Wahrscheinlichkeit, Unabhängigkeit von Ereignissen 3.1 Einführung Bsp. 19 (3-maliges Werfen einer Münze) Menge der Elementarereignisse: Ω = {zzz,zzw,zwz,wzz,zww,wzw,wwz,www}. Ω = 2 3 = 8 = N

Mehr

Eigenschaften der relativen Häufigkeit ( Zur Erinnerung) Axiomatische Definition der Wahrscheinlichkeit: Vorlesung Statistik WING

Eigenschaften der relativen Häufigkeit ( Zur Erinnerung) Axiomatische Definition der Wahrscheinlichkeit: Vorlesung Statistik WING Eigenschaften der relativen Häufigkeit ( Zur Erinnerung) Axiomatische Definition der Wahrscheinlichkeit: Melanie Kaspar, Prof. Dr. B. Grabowski 1 Aus diesen Eigenschaften lassen sich alle weiteren Eigenschaften

Mehr

1. Ziehg.: N M. falls nicht-rote K. in 1. Ziehg. gezogen

1. Ziehg.: N M. falls nicht-rote K. in 1. Ziehg. gezogen 6.4 Hyergeometrische Verteilung Gegeben ist eine Urne, die mit N Kugeln gefüllt ist. Es seien M dieser Kugeln rot und N-M Kugeln nicht rot. Wir entnehmen n Kugeln, d.h. eine Stichrobe des Umfangs n. Dabei

Mehr

Sprechstunde zur Klausurvorbereitung

Sprechstunde zur Klausurvorbereitung htw saar 1 Sprechstunde zur Klausurvorbereitung Mittwoch, 15.02., 10 12 + 13.30 16.30 Uhr, Raum 2413 Bei Interesse in Liste eintragen: Max. 20 Minuten Einzeln oder Kleingruppen (z. B. bei gemeinsamer Klausurvorbereitung)

Mehr

3.3 Bedingte Wahrscheinlichkeit

3.3 Bedingte Wahrscheinlichkeit 28 3.3 Bedingte Wahrscheinlichkeit Oft ist die Wahrscheinlichkeit eines Ereignisses B gesucht unter der Bedingung (bzw. dem Wissen), dass ein Ereignis A bereits eingetreten ist. Man bezeichnet diese Wahrscheinlichkeit

Mehr

Zusammengesetzte Zufallsexperimente - Baumdiagramme und Pfadregeln ==================================================================

Zusammengesetzte Zufallsexperimente - Baumdiagramme und Pfadregeln ================================================================== Zusammengesetzte Zufallsexperimente - Baumdiagramme und Pfadregeln ================================================================== Ein Zufallsexperiment heißt zusammegesetzt, wenn es es die Kombination

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren Dr. Jürgen Senger INDUKTIVE STATISTIK Wahrscheinlichkeitstheorie, Schätz- und Testverfahren ÜBUNG. - LÖSUNGEN. Werfen eines idealen Würfels a. Sei A das Ereignis, eine zu würfeln A { } Das Ereignis, keine

Mehr

Aufgabe Punkte

Aufgabe Punkte Institut für Mathematik Freie Universität Berlin Carsten Hartmann, Stefanie Winkelmann Musterlösung für die Nachklausur zur Vorlesung Stochastik I im WiSe 20/202 Name: Matr.-Nr.: Studiengang: Mathematik

Mehr

Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium

Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium Stochastik Pfadregeln Erwartungswert einer Zufallsvariablen Vierfeldertafel Gymnasium Alexander Schwarz www.mathe-aufgaben.com Oktober 205 Aufgabe : In einer Urne befinden sich drei gelbe, eine rote und

Mehr

Statistikprüfung 1B. vom 21. April Name:

Statistikprüfung 1B. vom 21. April Name: Statistikprüfung 1B vom 21. April 2017 Name: Als richtig wird der Lösungsweg und das Resultat betrachtet. Es wird mehr WertaufdenLösungswegalsaufdasResultatgelegt.DieAnzahlderPunktepro Aufgabe ist bei

Mehr

Einführung in die Wahrscheinlichkeitsrechnung

Einführung in die Wahrscheinlichkeitsrechnung Marco Cattaneo Institut für Statistik Ludwig-Maximilians-Universität München Sommersemester 2011 1. Wahrscheinlichkeitsrechnung 2. Diskrete Zufallsvariable 3. Stetige Zufallsvariable 4. Grenzwertsätze

Mehr