! Die Noten von 10 Bachlor- 30 Master- und 10 PhD-Studenten (Doktoranden) eines Informatikkurses waren wie folgt.

Größe: px
Ab Seite anzeigen:

Download "! Die Noten von 10 Bachlor- 30 Master- und 10 PhD-Studenten (Doktoranden) eines Informatikkurses waren wie folgt."

Transkript

1 In einem Informatik-Kurs bestehend aus 100 Studenten, haben 54 Studenten Mathematik, 69 Chemie und 35 beide Fächer belegt. Wenn wir zufällig einen Studenten auswählen, wie groß ist die Wahrscheinlichkeit dafür, dass er Mathematik oder Chemie (oder beide) belegt hat? dass er keins von diesen beiden Fächern belegt hat? dass er Chemie aber nicht Mathematik belegt hat? M M C C 12 Für die Elektrotechnik-Studenten einer Universität ist die Wahrscheinlichkeit, nach dem achlor- bschluss ein Master-Studium zu beginnen gleich ¼, für Maschinenbau-Studenten dagegen gleich. Geben Sie die Wahrscheinlichkeit dafür an, dass Studenten beider Fächer nach dem achlor-bschluss ein Master-Studium beginnen. dass Studenten der Elektrotechnik oder der Maschinenbau (oder beider Fachrichtungen) nach dem achlor-bschluss ein Master-Studium beginnen. Lösung: Unabhängige Ereignisse und dditionssatz a) 1/12 b) 1/2 ei einer Prüfung sind 25% der Prüflinge in Physik, 15% in Chemie und 10% in beiden Fächern durchgefallen. Wenn wir zufällig einen Prüfling auswählen, wie groß ist die Wahrscheinlichkeit, dass er in Physik durchfiel, wenn man weiß, dass er Chemie nicht bestanden hat? dass er in Chemie durchfiel, wenn man weiß, dass er Physik nicht bestanden hat? dass er in Physik oder Chemie (oder beide) durchfiel? Lösung: edingte Wahrscheinlichkeiten und dditionssatz a) 2/3 b) 2/5 c) 3/10 Die Feuerwehr einer kleinen Ortschaft besitzt ein Feuerwehrfahrzeug und einen Krankenwagen. Die Wahrscheinlichkeiten dafür, dass das Feuerwehrfahrzeug einsatzbereit ist, beträgt 0,98 und, dass der Krankenwagen einsatzbereit ist, beträgt 0,92. Wie groß ist die Wahrscheinlichkeit, dass beide Fahrzeuge gleichzeitig verfügbar sind. Lösung: Unabhängige Ereignisse 0,9016! Die Noten von 10 achlor- 30 Master- und 10 PhD-Studenten (Doktoranden) eines Informatikkurses waren wie folgt. Studien- bschluss Note Gut efriedigend usreichend achlor Master PhD

2 Wenn man aus diesem Kurs einen Studenten zufällig auswählt und heraus findet, dass er die Prüfung mit Gut bestanden hat, wie groß ist dann die Wahrscheinlichkeit, dass er ein Master- Student ist? Lösung: edingte Wahrscheinlichkeit: 10/18 " In einer Packung befinden sich 5 Speicherchips Zwei davon sind defekt. Jemand wählt nacheinander zufällig ohne Zurücklegen zwei Chips heraus. Definieren Sie die jeweiligen Ereignisse für die beiden Züge und zeichnen Sie den Wahrscheinlichkeitsbaum. erechnen Sie dann die Wahrscheinlichkeiten für die folgenden Ereignisse. Ereignis E 0 : kein Chip defekt. Ereignis E 1 : genau ein Chip defekt. Ereignis E 2 : zwei Chips defekt. Lösung: Wahrscheinlichkeitsbaum und abhängige Ereignisse für die Züge: a) 3/10 b) 6/10 c) 1/10 # In einer Packung befinden sich 5 Speicherchips Zwei davon sind defekt. Jemand wählt nacheinander zufällig ohne Zurücklegen zwei Chips heraus. $ estimmen Sie die nzahl der Möglichkeiten 2 Chips zu erhalten, so dass der Zustand der beiden Chips unwichtig ist so dass von den beiden Chips keiner defekt ist. so dass von den beiden Chips genau einer defekt ist. % so dass beide Chips defekt sind. &'!"#$%&$!$'&! "&$( Lösung: Kombinatorik: a) 10 b) 3 c) 6 d) 1 $$ estimmen Sie die Wahrscheinlichkeit dafür 2 Chips zu erhalten, so dass von den beiden Chips keiner defekt ist. so dass von den beiden Chips genau einer defekt ist. % so dass beide Chips defekt sind. &'!"#$)$ ** Lösung: Definition der Wahrscheinlichkeit: a) 3/10 b) 6/10 c) 1/10 ( Eine Packung enthält 11 Speicherchips. Von diesen Chips sind 6 aus Japan und 5 aus Korea. estimmen Sie die die Wahrscheinlichkeit dafür 4 Chips ohne Zurücklegen auszuwählen, falls 2 aus Japan und 2 aus Korea stammen sollen. falls alle aus Japan stammen sollen. Lösung: Mit Hilfe der Formeln der Kombinatorik und der Definition der Wahrscheinlichkeit a) 150 / 330 b) 15 / 330 ) Eine Packung enthält 500 Stück 400MHz-Prozessoren und 500 Stück 600MHz- Prozessoren. Die nzahl von intakten sowie von defekten Mikroprozessoren in der Packung ist in der folgenden Tabelle gegeben. Prozessor 400MHz 600MHz Intakt Defekt Gesamtzahl: 1000 Wenn man aus dieser Packung zufällig einen Mikroprozessor auswählt und heraus findet, dass dieser ein 400MHz-Prozessor ist, wie groß ist dann die Wahrscheinlichkeit, dass dieser Prozessor defekt ist? Lösung: edingte Wahrscheinlichkeit: (20/1000) : (500/1000) = 20/500 = 0,04 2

3 * +++,-./01&12.++ Der Kandidat wählt ein Tor aus, welches aber vorerst verschlossen bleibt. Daraufhin öffnet der Moderator, der die Position des Gewinns kennt, eines der beiden anderen Tore, hinter dem sich eine Ziege befindet. Im Spiel befinden sich also noch ein Gewinn und eine Niete. Der Moderator bietet dem Kandidaten an, seine Entscheidung zu überdenken und das andere Tor zu wählen Wie soll sich der Kandidat entscheiden, um seine Gewinnchance zu erhöhen? Soll er stehen bleiben oder das Tor wechseln? Kandidat wählt ein Tor Moderator macht ein Tor auf, hinter dem sich eine Ziege befindet,$$&)$- -./"& "011"$&$ -./"& "011"$&$ -./"& "011"$&$ 21301$4($/!1"541"$'"&$6&!""$7&$"&$ 01"5$&$&$&$6/&- 3-7&$"&$"&$ 3-7&$"&$"&$ Kandidat wählt Tor 1 uto hinter Tor / 2 1 / Moderator öffnet Tor 0 1 T 2 T 3 T 2 T 2 T 3 T 3 Nicht- Wechsel 0 0 Wechsel 0 2 / 3 /!,1$0101("!$("!8, $11 5$6 +++ erechnen Sie mit Hilfe des Satzes von ayes die Wahrscheinlichkeiten für das Ziegenproblem bei einem Wechsel und bei einem Nicht-Wechsel. 3

4 ufgrund von Erfahrungen und statistischen Untersuchungen geht die Flugsicherheitsbehörde davon aus, dass im Flughafen C& 0,1% der Passagiere (unabsichtlich oder absichtlich) mit sich verbotene Gegenstände mitführen. Ein Scanngerät der Marke G&E soll zur Kontrolle der Passagiere eingesetzt werden. Dieses Gerät hat die Eigenschaft, dass es in 98% der Fälle larm schlägt, wenn ein Passagier verbotene Gegenstände bei sich hat. Und in 1% der Fälle schlägt das Gerät auch larm, wenn ein Passagier keine verbotenen Gegenstände bei sich hat. Wie groß ist die Wahrscheinlichkeit, dass bei Passagier-Kontrollen in diesem Flughafen dieses Gerät larm schlägt? Lösung: Satz der totalen Wahrscheinlichkeit: 0,01097 Wenn bei Passagier-Kontrollen in diesem Flughafen dieses Gerät larm schlägt, wie groß ist die Wahrscheinlichkeit, dass der Passagier keine verbotenen Gegenstände bei sich hat (Fehlalarm)? Lösung: Satz von ayes:: 0, ,911 Wenn bei Passagier-Kontrollen in diesem Flughafen das Gerät larm schlägt, wie groß ist die Wahrscheinlichkeit, dass der Passagier tatsächlich verbotene Gegenstände bei sich hat? Lösung: Satz von ayes: 0,089 oder 1 0,911 = 0,089 % In diesem Flughafen werden durchschnittlich in einem Jahr mit dem Gerät Passagiere gescannt. Wie oft würde dann das Scanngerät larm schlagen und wie viele davon wären dann Fehlalarme? Lösung: 1097 larme und 999 Fehlalarme Das Scann-Gerät der der Marke G&E soll nun auch im Flughafen von Gotham-City eingesetzt werden, in dem nach statistischen Untersuchungen 20% der Passagiere mit sich absichtlich verbotene Gegenstände mitführen. In wie viel Prozent der Fälle schlägt in diesem Flughafen dieses Gerät larm? Wenn in diesem Flughafen das Gerät larm schlägt, wie groß ist die Wahrscheinlichkeit, dass der Passagier tatsächlich verbotene Gegenstände bei sich hat? Eine Produktionsanlage in einem Elektronikkonzern stellt Mikrochips mit einem usschuss von 10% her. Zur ussonderung werden die hergestellten Chips mit einem Prüfgerät geprüft. Durch das Prüfgerät werden 97% aller defekten Chips aussondiert. Leider werden durch das Prüfgerät auch 5% aller nicht-defekten Chips aussondiert. Wie groß ist der nteil aller aussondierten Chips aus der Gesamtproduktion. (Wie groß ist die Wahrscheinlichkeit, dass ein Chip aussondiert wird) Lösung: Satz der totalen Wahrscheinlichkeit: 0,142 Wie groß ist die Wahrscheinlichkeit dafür, dass ein aussondierter Chip auch tatsächlich defekt ist? Lösung: Satz von ayes: 0,683 4

5 , $ Ein System, das aus einer Serien-Schaltung mit zwei Komponenten besteht, funktioniert dann, wenn beide einzelnen Komponenten gleichzeitig funktionieren. Die Komponenten bzw. seien unabhängig von einander, und P() = 0,99 bzw. P() = 0,98 seien die Wahrscheinlichkeiten dafür, dass die Komponenten bzw. funktionieren. Geben Sie die Wahrscheinlichkeit dafür an, dass das System funktioniert (R: Zuverlässigkeit des Systems). dass das System ausfällt. (F: usfall des Systems). Lösen Sie diese ufgabe mit Hilfe: $ der Definition von unabhängigen Ereignissen (und ggf. den dditionssatzes). $$ eines Ereignisbaums (der Definition von unabhängigen Ereignissen und ggf. des dditionssatzes). $ Das System funktioniert, wenn UND gleichzeitig funktionieren. $$ : Komponente funktioniert. : : : R : System funktioniert F : System funktioniert nicht. 5

6 ! Ein System, das aus einer Parallel-Schaltung mit zwei Komponenten besteht, funktioniert dann, wenn mindestens einer der beiden Komponenten funktionieren. Die Komponenten bzw. seien unabhängig von einander, und P() = 0,99 bzw. P() = 0,98 seien die Wahrscheinlichkeiten dafür, dass die Komponenten bzw. funktionieren. Geben Sie die Wahrscheinlichkeit dafür an, dass das System funktioniert (R: Zuverlässigkeit des Systems). dass das System ausfällt. (F: usfall des Systems). &' Lösen Sie diese ufgabe mit Hilfe: $ der Definition von unabhängigen Ereignissen (und ggf. den dditionssatzes). $$ eines Ereignisbaums (der Definition von unabhängigen Ereignissen und ggf. des dditionssatzes). $ Das System funktioniert, wenn ODER (oder beide) funktionieren. $$ : Komponente funktioniert. : : : R : System funktioniert F : System funktioniert nicht. 6

7 " Folgendes gemischtes System ist gegeben. C Die Komponenten, bzw. C seien unabhängig von einander, und P() = 0,9 P() = 0,9 bzw. P(C) = 0,8 seien die Wahrscheinlichkeiten dafür, dass die Komponenten, bzw. C funktionieren. Geben Sie die Wahrscheinlichkeit dafür an, dass das System funktioniert (R: Zuverlässigkeit des Systems). dass das System ausfällt. (F: usfall des Systems). &' Lösen Sie diese ufgabe mit Hilfe: $ der Definition von unabhängigen Ereignissen und des dditionssatzes. $$ eines Ereignisbaums (der Definition von unabhängigen Ereignissen und des dditionssatzes). $ Das System funktioniert, wenn UND ODER C (oder alle) funktionieren. $$ : : : : C : C : 7

8 # Die irline D& bestellt für ihre Langstreckenflüge dreistrahlige Passagierjets der Marke Tri- Star mit Turbinen vom Hersteller R&R. Diese haben nach ngaben des Herstellers während eines Langstreckenfluges eine usfallwahrscheinlichkeit von p = 0,01. Wie groß ist die Wahrscheinlichkeit, dass während eines Langestreckenflugs keine Turbine ausfällt (Ereignis E 0 )? eine Turbine ausfällt (Ereignis E 1 )? 2 Turbinen ausfallen? (Ereignis E 2 ) % alle 3 Turbinen ausfallen? (Ereignis E 3 ). &' Lösen Sie diese ufgabe mit Hilfe: $ eines Ereignisbaums. $$ einer geeigneten Wahrscheinlichkeitsverteilung. : : : : C : C : E 0 = P( E 0 ) = E 1 = P( E 1 ) = E 2 = P( E 2 ) = E 3 = P( E 3 ) = 8

9 ( eim usfallen der Turbinen gerät ein Flugzeug in bsturzgefahr. Die Wahrscheinlichkeit für die bsturzgefahr des Flugzeugtyps aus der vorigen ufgabe beträgt 0,001, wenn keine Turbine ausfällt. beträgt 0,1, wenn eine Turbine ausfällt. beträgt 0,7, wenn 2 Turbinen ausfallen. beträgt 1, wenn alle 3 Turbinen ausfallen. Wie groß ist die Wahrscheinlichkeit, dass das Flugzeug in bsturzgefahr gerät? &' Lösung mit Hilfe der bedingten Wahrscheinlichkeiten und Satz der totalen Wahrscheinlichkeit. : : : : G : Flugzeug gerät in die bsturzgefahr. G = P( G ) = 9

10 ) Ein ergsteiger verwendet beim Klettern ein Seilsystem, das aus 2 Seilen gleicher Qualität besteht. Das erste Seil ist fest gespannt und trägt die ganze Last. Das zweite Seil ist ein wenig länger als Seil und trägt keine Last, so lange Seil noch funktioniert. Die Wahrscheinlichkeit dafür, dass ein Seil beim Tragen seines Gewichts zerreißt, beträgt 0,01. Falls Seil zerreißt, übernimmt Seil seine ufgabe. In diesem Fall ist aber die Wahrscheinlichkeit, dass zerreißt 0,02. Denn wegen der Trägheit von Seil und die schnelle Zugkraft, die es erfährt, erhöht sich die Wahrscheinlichkeit, dass es zerreist. Das Seilsystem fällt dann aus, wenn beide Seile zerreißen. erechnen Sie die Wahrscheinlichkeit dafür, dass das Seilsystem versagt. erechnen Sie die Wahrscheinlichkeit, dass das Seilsystem zuverlässig funktioniert Lösung: bhängige Ereignisse a) 0,00002 b) 1 0, / 10

Das System funktioniert, wenn A UND B gleichzeitig funktionieren. A: Komponente A funktioniert. A : B :

Das System funktioniert, wenn A UND B gleichzeitig funktionieren. A: Komponente A funktioniert. A : B : Ein System, das aus einer Serien-Schaltung mit zwei Komponenten besteht, funktioniert dann, wenn beide einzelnen Komponenten gleichzeitig funktionieren. Die Komponenten bzw. seien unabhängig von einander,

Mehr

P A P( A B) Definition Wahrscheinlichkeit

P A P( A B) Definition Wahrscheinlichkeit Unabhaengige Ereignisse edingte Wahrscheinlichkeit Definition Wahrscheinlichkeit Die Wahrscheinlichkeit eines Ereignisses ist das Verhältnis der günstigen Ergebnisse zur Gesamtmenge der Ergebnisse nzahl

Mehr

R R M 0,0187 0,4957 0,514 M 0,0021 0,4839 0,486 0,0208 0,9792 1,00

R R M 0,0187 0,4957 0,514 M 0,0021 0,4839 0,486 0,0208 0,9792 1,00 8 edingte Wahrscheinlichkeit 8 edingte Wahrscheinlichkeit 8.1 Einführung und Definition Der Zusammenhang zwischen dem Geschlecht einer beliebig ausgewählten erson und einer eventuellen Rotgrünblindheit

Mehr

Statistik I für Betriebswirte Vorlesung 2

Statistik I für Betriebswirte Vorlesung 2 Statistik I für Betriebswirte Vorlesung 2 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 11. April 2016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

Musterlösungen zu den Aufgaben aus. Statistische Methoden in den Wirtschafts- und Sozialwissenschaften

Musterlösungen zu den Aufgaben aus. Statistische Methoden in den Wirtschafts- und Sozialwissenschaften Musterlösungen zu den Aufgaben aus Statistische Methoden in den Wirtschafts- und Sozialwissenschaften von Prof. Dr. Hans Peter Litz Oldenbourg-Verlag München,.Auflage 1998 Teil II. Wahrscheinlichkeitstheoretische

Mehr

Korrektur, Änderungen sowie Ergänzungen zu den Vorlesungsskripten: Statistik-I SS-2015

Korrektur, Änderungen sowie Ergänzungen zu den Vorlesungsskripten: Statistik-I SS-2015 Korrektur, Änderungen sowie Ergänzungen zu den Vorlesungsskripten: Statistik-I SS-05!"!## x 8 0 8 0 8 0 0, 0, 3 0 0, 05 $ $ % 3, 75 $ Geben Sie für das vorige Beispiel. (Bsp. ) die Anteile der jeweiligen

Mehr

Sobald bei einem Zufallsexperiment zusätzliche Bedingungen zutreffen ändern sich i.a. die Wahrscheinlichkeiten.

Sobald bei einem Zufallsexperiment zusätzliche Bedingungen zutreffen ändern sich i.a. die Wahrscheinlichkeiten. 26 6. Bedingte Wahrscheinlichkeit Sobald bei einem Zufallsexperiment zusätzliche Bedingungen zutreffen ändern sich i.a. die Wahrscheinlichkeiten. Alarmanlage Tritt bei einer Sicherungsanlage ein Alarm

Mehr

Paradoxien bei bedingten Wahrscheinlichkeiten - Das Ziegenproblem

Paradoxien bei bedingten Wahrscheinlichkeiten - Das Ziegenproblem Paradoxien bei bedingten Wahrscheinlichkeiten - Das Ziegenproblem Ein Referat von Maren Hornischer & Anna Spitz Wuppertal, den 28. Mai 2014 Inhalt 1 Das Ziegenproblem oder auch das "3-Türen-Problem"...

Mehr

Das Ziegenproblem. Nils Schwinning und Christian Schöler Juni 2010

Das Ziegenproblem. Nils Schwinning und Christian Schöler  Juni 2010 Das Ziegenproblem Nils Schwinning und Christian Schöler http://www.esaga.uni-due.de/ Juni 2010 Die Formulierung Obwohl das sogenannte Ziegenproblem in der Mathematik allgegenwärtig erscheint, wurde es

Mehr

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente

Kapitel 6. Kapitel 6 Mehrstufige Zufallsexperimente Mehrstufige Zufallsexperimente Inhalt 6.1 6.1 Mehrstufige Experimente 6.2 6.2 Bedingte Wahrscheinlichkeiten Seite 2 6.1 Mehrstufige Experimente Grundvorstellung: Viele Viele Experimente werden der der

Mehr

Mathematik LK M1, 4. Kursarbeit Stochastik I - Lösung

Mathematik LK M1, 4. Kursarbeit Stochastik I - Lösung Aufgabe : Wahrscheinlichkeitsrechnung Löse die Aufgabe auf diesem Aufgabenblatt. Trage die Lösung in die Tabelle ein. Ein Rechenweg ist hier nicht erforderlich. Hinweis: Das Casinospiel besteht aus dem

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen)

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen) Dr. Jürgen Senger INDUKTIVE STATISTIK Wahrscheinlichkeitstheorie, Schätz- und Testverfahren ÜUNG. - LÖSUNGEN. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen Die Urne enthält 4 weiße und 8 rote Kugeln.

Mehr

Das Zweikinderproblem

Das Zweikinderproblem Das Zweikinderproblem Definition Zweikinderproblem Eine Familie besitzt zwei Kinder. Wie groß ist die Wahrscheinlichkeit Pr[ Beide Kinder sind Mädchen. Eines der Kinder ist ein Mädchen ]? Lösung: Sei A

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Wahrscheinlichkeitstheorie (Klausuraufgaben) Marcel Bliem Marco Boßle Jörg Hörner Mathematik Online Herbst 2010 Bliem/Boßle/Hörner (MO) PV-Kurs HM 3 1 / 7

Mehr

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen?

Kombinatorik. 1. Beispiel: Wie viele fünfstellige Zahlen lassen sich aus den fünf Ziffern in M = {1;2;3;4;5} erstellen? 1 Kombinatorik Aus einer Grundgesamtheit mit n Elementen wird eine Stichprobe k Elementen entnommen. Dabei kann die Stichprobe geordnet oder ungeordnet sein. "Geordnet" bedeutet, dass die Reihenfolge der

Mehr

Cusanus-Gymnasium Wittlich Statistik Das Ziegenproblem DIE ZEIT Nr.48. W.Zimmer. Tür 1 Tür 2 Tür 3

Cusanus-Gymnasium Wittlich Statistik Das Ziegenproblem DIE ZEIT Nr.48. W.Zimmer. Tür 1 Tür 2 Tür 3 Das Ziegenproblem DIE ZEIT 18.11.2004 Nr.48 Tür 1 Tür 2 Tür 3 Cusanus-Gymnasium Wittlich Statistik Das Ziegenproblem DIE ZEIT 18.11.2004 Nr.48 Du bist Kandidat einer Fernsehshow. Als Sieger darfst du eine

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkommen zur der Um sich schnell innerhalb der ca. 350.000 Mathematikaufgaben zu orientieren, benutzen Sie unbedingt das Lesezeichen Ihres crobat Readers: Das Icon finden Sie in der links stehenden

Mehr

Bedingte Wahrscheinlichkeiten - Übersicht

Bedingte Wahrscheinlichkeiten - Übersicht edingte Wahrscheinlichkeiten - Übersicht LK LIE/10 1 Mengen, Ereignisse, ussagen 1.1 Grundlegendes 1.1.1 Mengenbilder (VENN-Diagramme), Symbole, Sprechweisen 1.1.2 äquivalente Terme 1.2 Ergänzungen 1.2.1

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. rinkmann http://brinkmann-du.de Seite 1 17.09.2012 Lösungen edingte Wahrscheinlichkeit II en: 1 ufgabe Es soll die eliebtheit einer Fernsehsendung überprüft werden. Eine litzumfrage hatte folgendes

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 12. Dezember 2012 1 Kombinatorik Fakultät Binomialkoeffizienten Urnenmodelle 2 Definition Fakultät Die Zahl n! =

Mehr

Für die Wahrscheinlichkeit P A (B) des Eintretens von B unter der Bedingung, dass das Ereignis A eingetreten ist, ist dann gegeben durch P(A B) P(A)

Für die Wahrscheinlichkeit P A (B) des Eintretens von B unter der Bedingung, dass das Ereignis A eingetreten ist, ist dann gegeben durch P(A B) P(A) 3. Bedingte Wahrscheinlichkeit ================================================================== 3.1 Vierfeldertafel und Baumdiagramm Sind A und B zwei Ereignisse, dann nennt man das Schema B B A A P

Mehr

3.7 Wahrscheinlichkeitsrechnung II

3.7 Wahrscheinlichkeitsrechnung II 3.7 Wahrscheinlichkeitsrechnung II Inhaltsverzeichnis 1 bedingte Wahrscheinlichkeiten 2 2 unabhängige Ereignisse 5 3 mehrstufige Zufallsversuche 7 1 Wahrscheinlichkeitsrechnung II 28.02.2010 Theorie und

Mehr

Statistik für Ingenieure Vorlesung 2

Statistik für Ingenieure Vorlesung 2 Statistik für Ingenieure Vorlesung 2 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 24. Oktober 2016 2.4 Bedingte Wahrscheinlichkeiten Häufig ist es nützlich, Bedingungen

Mehr

2.2 Ereignisse und deren Wahrscheinlichkeit

2.2 Ereignisse und deren Wahrscheinlichkeit 2.2 Ereignisse und deren Wahrscheinlichkeit Literatur: [Papula Bd., Kap. II.2 und II.], [Benning, Kap. ], [Bronstein et al., Kap. 1.2.1] Def 1 [Benning] Ein Zufallsexperiment ist ein beliebig oft wiederholbarer,

Mehr

Vorlesung - Medizinische Biometrie

Vorlesung - Medizinische Biometrie Vorlesung - Medizinische Biometrie Stefan Wagenpfeil Institut für Medizinische Biometrie, Epidemiologie und Medizinische Informatik Universität des Saarlandes, Homburg / Saar Vorlesung - Medizinische Biometrie

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Hans Walser Mathematik 2 für Naturwissenschaften Modul 203 Stochastische Unabhängigkeit Hans Walser: Modul 203, Stochastische Unabhängigkeit ii Inhalt 1 Bedingte Wahrscheinlichkeit... 1 1.1 Feuermeldeanlage,

Mehr

Übung zur Vorlesung Statistik I für Biowissenschaften WS Übungsblatt 3

Übung zur Vorlesung Statistik I für Biowissenschaften WS Übungsblatt 3 Übung zur Vorlesung Statistik I für iowissenschaften WS 2015-2016 Übungsblatt 3 2. November 2015 ufgabe 6 (4 Punkte): eim Lotto 6 aus 49 werden zufällig sechs Kugeln aus 49 ohne Zurücklegen gezogen. Geben

Mehr

1 Axiomatische Definition von Wahrscheinlichkeit

1 Axiomatische Definition von Wahrscheinlichkeit Schülerbuchseite 174 176 Lösungen vorläufig und Unabhängigkeit 1 Axiomatische Definition von Wahrscheinlichkeit S. 174 1 Ein Schätzwert für die Wahrscheinlichkeit von Sau kann nur mithilfe der relativen

Mehr

Übungsscheinklausur,

Übungsscheinklausur, Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 27 Prof. Dr. F. Liese Übungsscheinklausur, 3.7.27 Dipl.-Math. M. Helwich Name:...

Mehr

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur April/Mai 2002 Mathematik (Grundkurs) Arbeitszeit: 210 Minuten Der Prüfling wählt je eine Aufgabe aus den Gebieten G 1, G 2 und G 3 zur Bearbeitung aus.

Mehr

10. Klasse der Hauptschule. Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses (24. Juni 2009 von 8:30 bis 11:00 Uhr)

10. Klasse der Hauptschule. Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses (24. Juni 2009 von 8:30 bis 11:00 Uhr) 10. Klasse der Hauptschule bschlussprüfung zum Erwerb des Mittleren Schulabschlusses 009 (. Juni 009 von 8:0 bis 11:00 Uhr) M T H E M T I K ei der bschlussprüfung zum Erwerb des mittleren Schulabschlusses

Mehr

Ü b u n g s b l a t t 4

Ü b u n g s b l a t t 4 Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel 30. 4. 2007 Ü b u n g s b l a t t 4 Mit und gekennzeichnete Aufgaben können zum Sammeln von Bonuspunkten verwendet werden. Lösungen von -Aufgaben

Mehr

Lernzusammenfassung für die Klausur. Inhaltsverzeichnis. Stochastik im SS 2001 bei Professor Sturm

Lernzusammenfassung für die Klausur. Inhaltsverzeichnis. Stochastik im SS 2001 bei Professor Sturm Stochastik im SS 2001 bei Professor Sturm Lernzusammenfassung für die Klausur Hallo! In diesem Text habe ich die wichtigsten Dinge der Stochastikvorlesung zusammengefaÿt, jedenfalls soweit, wie ich bis

Mehr

Einführung in die Wahrscheinlichkeitsrechnung

Einführung in die Wahrscheinlichkeitsrechnung Marco Cattaneo Institut für Statistik Ludwig-Maximilians-Universität München Sommersemester 2011 1. Wahrscheinlichkeitsrechnung 2. Diskrete Zufallsvariable 3. Stetige Zufallsvariable 4. Grenzwertsätze

Mehr

Bedingte Wahrscheinlichkeit

Bedingte Wahrscheinlichkeit Bedingte Wahrscheinlichkeit Aufgaben Aufgabe 1 Beim Drucken im Computer Pool kommt es immer wieder zu einem Papierstau.Einer der Poolmgr hat rausgefunden das die Wahrscheinlichkeit einen Papierstau zu

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 3. November 2010 1 Kombinatorik Fakultät Binomialkoeffizienten Urnenmodelle 2 Definition Tabellen Fakultät, Beispiel

Mehr

Europa-Universität Flensburg Zentrum für Methodenlehre Tutorium Statistik I

Europa-Universität Flensburg Zentrum für Methodenlehre Tutorium Statistik I Europa-Universität Flensburg Zentrum für Methodenlehre Tutorium Statistik I In einer sozialwissenschaftlichen Studie wurden Personen nach ihrem allgemeinen Schulabschluss (mögliche Optionen kein Schulabschluss,

Mehr

R. Brinkmann Seite M M : Placebo genommen G : gesund geworden G : nicht gesund geworden

R. Brinkmann  Seite M M : Placebo genommen G : gesund geworden G : nicht gesund geworden R. rinkmann http://brinkmann-du.de Seite 1 17.09.2012 Lösungen edingte Wahrscheinlichkeit I usführliche Lösungen: 1 ufgabe In einem roßversuch wurde ein Medikament Summe getestet. Die Ergebnisse sind in

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Abiturvorbereitung Wahrscheinlichkeitsrechnung S. 1 von 9 Wahrscheinlichkeitsrechnung Kombinatorik Formeln für Wahrscheinlichkeiten Bedingte Wahrscheinlichkeiten Zusammenfassung wichtiger Begriffe Übungsaufgaben

Mehr

B 2. " Zeigen Sie, dass die Wahrscheinlichkeit, dass eine Leiterplatte akzeptiert wird, 0,93 beträgt. (genauerer Wert: 0,933).!:!!

B 2.  Zeigen Sie, dass die Wahrscheinlichkeit, dass eine Leiterplatte akzeptiert wird, 0,93 beträgt. (genauerer Wert: 0,933).!:!! Das folgende System besteht aus 4 Schraubenfedern. Die Federn A ; B funktionieren unabhängig von einander. Die Ausfallzeit T (in Monaten) der Federn sei eine weibullverteilte Zufallsvariable mit den folgenden

Mehr

Mathematik. Abiturprüfung Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden.

Mathematik. Abiturprüfung Prüfungsteil A. Arbeitszeit: 90 Minuten. Bei der Bearbeitung der Aufgaben dürfen keine Hilfsmittel verwendet werden. Mathematik biturprüfung 016 Prüfungsteil rbeitszeit: 90 Minuten ei der earbeitung der ufgaben dürfen keine Hilfsmittel verwendet werden. Zu den Themengebieten nalysis, Stochastik und Geometrie wählt der

Mehr

3. Kombinatorik Modelltheoretische Wahrscheinlichkeiten Regeln der Kombinatorik

3. Kombinatorik Modelltheoretische Wahrscheinlichkeiten Regeln der Kombinatorik 3. Kombinatorik Modelltheoretische Wahrscheinlichkeiten lassen sich häufig durch Abzählen der günstigen und möglichen Fällen lösen. Kompliziertere Fragestellungen bedürfen aber der Verwendung mathematischer

Mehr

Elemente der Stochastik (SoSe 2016) 9. Übungsblatt

Elemente der Stochastik (SoSe 2016) 9. Übungsblatt Dr. M. Weimar 06.06.2016 Elemente der Stochastik (SoSe 2016) 9. Übungsblatt Aufgabe 1 (2+2+2+2+1=9 Punkte) In einer Urne befinden sich sieben Lose, darunter genau ein Gewinnlos. Diese Lose werden nacheinander

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Wahrscheinlichkeit und Zufallsvorgänge Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Die Kugeln tragen zwei Merkmale mit jeweils zwei Ausprägungen. Merkmal I Ausprägung Merkmal II Ausprägung. A: Holz B: rot A: Kunststoff B: grün

Die Kugeln tragen zwei Merkmale mit jeweils zwei Ausprägungen. Merkmal I Ausprägung Merkmal II Ausprägung. A: Holz B: rot A: Kunststoff B: grün R. rinkmann http://brinkmann-du.de Seite 6..00 edingte Wahrscheinlichkeit ei mehrmaligem Würfeln hängt die Wahrscheinlichkeit eine bestimmte Zahl zwischen und 6 zu werfen nicht von dem vorherigen Ergebnis

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 10. November 2010 1 Bedingte Wahrscheinlichkeit Satz von der totalen Wahrscheinlichkeit Bayessche Formel 2 Grundprinzipien

Mehr

Studiengang der meisten Studenten: Bachelor Physik Fachsemester: Die meisten Studenten kamen aus dem 6. Semester, Mittelwert: 4.9

Studiengang der meisten Studenten: Bachelor Physik Fachsemester: Die meisten Studenten kamen aus dem 6. Semester, Mittelwert: 4.9 ausgewertete Bögen: 18 Auswertung der Evaluation von Übungen im SS 11 Vorlesung: Einführung in Quantenfeldtheorien Veranst.-Nr.: 5-23-2311 Dozent: PD Dr. Buballa, Michael Studiengang der meisten Studenten:

Mehr

Wahrscheinlichkeit und Zufall

Wahrscheinlichkeit und Zufall Wahrscheinlichkeit und Zufall Klassische Probleme der Wahrscheinlichkeitsrechnung 23. Juni 2009 Dr. Katja Krüger Universität Paderborn Inhalt Die Wetten des Chevalier de Méréé Warten auf die erste Sechs

Mehr

Hypergeometrische Verteilung

Hypergeometrische Verteilung Hypergeometrische Verteilung Aufgaben Aufgabe 1 Eine Firma produziert insgesamt 30 elektronische Bauteile des gleichen Typs. Aus langjähriger Erfahrung weiß man das davon jedes 70te defekt ist. Um die

Mehr

8. Wahrscheinlichkeitsrechnung

8. Wahrscheinlichkeitsrechnung Didaktik der Geometrie und Stochastik WS 09/10 Bürker 27. 1. 11 8. Wahrscheinlichkeitsrechnung 8.1 Begriffe 8.1.1 Zufallsexperiment Was ist ein Zufallsexperiment? a) Mehrere Ergebnisse möglich b) Ergebnis

Mehr

Wissenschaftliche Nachrichten: https://www.bmbf.gv.at/schulen/sb/wina/wina.html Vol. 125/2004, 35-37

Wissenschaftliche Nachrichten: https://www.bmbf.gv.at/schulen/sb/wina/wina.html Vol. 125/2004, 35-37 Wissenschaftliche Nachrichten: https://www.bmbf.gv.at/schulen/sb/wina/wina.html Vol. 5/004, 5-7 Das Ziegenproblem in Excel NORBERT BRUNNER und MANFRED KÜHLEITNER Das folgende Problem stammt aus einer Fernsehshow:

Mehr

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung

Mathematik: LehrerInnenteam Arbeitsblatt Semester ARBEITSBLATT 12. Erwartungswert, Varianz und Standardabweichung Mathematik: LehrerInnenteam Arbeitsblatt 7-7. Semester ARBEITSBLATT Erwartungswert, Varianz und Standardabweichung Die Begriffe Varianz und Standardabweichung sind uns bereits aus der Statistik bekannt

Mehr

UE Statistik 1, SS 2015, letztes Update am 5. März Übungsbeispiele

UE Statistik 1, SS 2015, letztes Update am 5. März Übungsbeispiele UE Statistik, SS 05, letztes Update am 5. März 05 Übungsbeispiele Beispiele mit Musterlösungen finden Sie auch in dem Buch Brannath, W., Futschik, A., Krall, C., (00) Statistik im Studium der Wirtschaftswissenschaften..

Mehr

Wahrscheinlichkeitsrechnung für die Mittelstufe

Wahrscheinlichkeitsrechnung für die Mittelstufe Wahrscheinlichkeitsrechnung für die Mittelstufe Wir beginnen mit einem Beispiel, dem Münzwurf. Es wird eine faire Münze geworfen mit den Seiten K (für Kopf) und Z (für Zahl). Fair heißt, dass jede Seite

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Aufgaben Wahrscheinlichkeitsrechnung 1. Eine Münze wird viermal geworfen. Y sei die Anzahl der Wechsel zwischen 0 und 1 während einer Versuchsfolge, z. B. Y(00) =. Bestimmen Sie die Verteilung von Y, zeichnen

Mehr

Abiturvorbereitung Mathematik Stochastik. Copyright 2013 Ralph Werner

Abiturvorbereitung Mathematik Stochastik. Copyright 2013 Ralph Werner biturvorbereitung Mathematik Stochastik Copyright 2013 Ralph Werner Zufallsexperiment in Zufallsexperiment ist ein Vorgang, dessen usgang ungewiss ist das beliebig oft wiederholt werden kann dessen Wiederholungen

Mehr

Vierfeldertafel und bedingte Wahrscheinlichkeit. 1 Ereignisse und Vierfeldertafel

Vierfeldertafel und bedingte Wahrscheinlichkeit. 1 Ereignisse und Vierfeldertafel Seite 9 9 Lösungen vorläufig Vierfeldertafel und bedingte Wahrscheinlichkeit IV Vierfeldertafel und bedingte Wahrscheinlichkeit Ereignisse und Vierfeldertafel S. 9 a) 0 b) Zwei Personen aus der 0C sind

Mehr

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6

1 Vorbemerkungen 1. 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2. 3 Wahrscheinlichkeitsaxiome 4. 4 Laplace-Experimente 6 Inhaltsverzeichnis 1 Vorbemerkungen 1 2 Zufallsexperimente - grundlegende Begriffe und Eigenschaften 2 3 Wahrscheinlichkeitsaxiome 4 4 Laplace-Experimente 6 5 Hilfsmittel aus der Kombinatorik 7 1 Vorbemerkungen

Mehr

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur Januar/Februar Mathematik (Grundkurs) Arbeitszeit: 210 Minuten

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur Januar/Februar Mathematik (Grundkurs) Arbeitszeit: 210 Minuten KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur Januar/Februar 2002 Mathematik (Grundkurs) Arbeitszeit: 210 Minuten Der Prüfling wählt je eine Aufgabe aus den Gebieten G 1, G 2 und G 3 zur Bearbeitung

Mehr

A B A A A B A C. Übungen zu Frage 110:

A B A A A B A C. Übungen zu Frage 110: Übungen Wahrscheinlichkeit Übungen zu Frage : Nr. : Die Abschlussklassen der Linden-Realschule organisieren zugunsten eines sozialen Projekts eine Tombola. Die Tabelle zeigt die Losverteilung und die damit

Mehr

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Wichtige Tatsachen und Formeln zur Vorlesung Mathematische Grundlagen für das Physikstudium 3 Franz Embacher http://homepage.univie.ac.at/franz.embacher/

Mehr

2. Übung zur Vorlesung Statistik 2

2. Übung zur Vorlesung Statistik 2 2. Übung zur Vorlesung Statistik 2 Aufgabe 1 Welche der folgenden grafischen Darstellungen und Tabellen zeigen keine (Einzel-)Wahrscheinlichkeitsverteilung? Kreuzen Sie die richtigen Antworten an und begründen

Mehr

Übungsaufgaben zum Kapitel Baumdiagramme - Bernoulli

Übungsaufgaben zum Kapitel Baumdiagramme - Bernoulli BOS 98 S I Im ahmen einer statistischen Erhebung wurden 5 repräsentative Haushalte ausgewählt und im Hinblick auf ihre Ausstattung mit Fernsehern, adiorecordern sowie Homecomputern untersucht. Dabei gaben

Mehr

12 Kombinatorik Prof. Dr. rer. nat. Claus Brell Hochschule Niederrhein Stand:

12 Kombinatorik Prof. Dr. rer. nat. Claus Brell Hochschule Niederrhein Stand: 409 www.statistik-von-null-auf-hundert.de 12 Kombinatorik Prof. Dr. rer. nat. Claus Brell Hochschule Niederrhein Stand: 10.04.2014 Kombinatorik 410 Definition: Kombinatorik ist die Lehre des Zählens. Gegenstand:

Mehr

Übungen zur Kombinatorik (Laplace)

Übungen zur Kombinatorik (Laplace) 1. In einem Beutel sind 10 Spielmarken enthalten, die von 0 bis 9 nummeriert sind. X sei das Ereignis, dass man zufällig die Marke 5 oder 8 herausholt, Y das Ereignis, dass eine größere Zahl als 5 gezogen

Mehr

9. Elementare Wahrscheinlichkeitsrechnung

9. Elementare Wahrscheinlichkeitsrechnung 9. Elementare Wahrscheinlichkeitsrechnung Beispiel (Einmaliges Würfeln): verbal mengentheoretisch I. Zufällige Ereignisse Beispiel (Einmaliges Würfeln): Alle möglichen Ausgänge 1,,, 6 des Experiments werden

Mehr

BMT Bayerischer Mathematik-Test für die Jahrgangsstufe 8 der Gymnasien. Name: Note: Klasse: Punkte: / 21

BMT Bayerischer Mathematik-Test für die Jahrgangsstufe 8 der Gymnasien. Name: Note: Klasse: Punkte: / 21 MT8 2011 ayerischer Mathematik-Test für die Jahrgangsstufe 8 der Gymnasien Name: Note: Klasse: Punkte: 1 ufgabe 1 Lukas macht eine Mountainbike-Tour rund um den Hochfelln. Die bbildung zeigt das Streckenprofil

Mehr

alte Maturaufgaben zu Stochastik

alte Maturaufgaben zu Stochastik Stochastik 01.02.13 alte Maturaufgaben 1 alte Maturaufgaben zu Stochastik 1 07/08 1. (8 P.) In einer Urne liegen 5 rote, 8 gelbe und 7 blaue Kugeln. Es werden nacheinander drei Kugeln gezogen, wobei die

Mehr

Zwei Ziegen und ein Auto

Zwei Ziegen und ein Auto Prof. Dr. Ludwig Paditz 29.10.2002 Zwei Ziegen und ein Auto In der amerikanischen Spielshow "Let`s make a deal" ist als Hauptpreis ein Auto ausgesetzt. Hierzu sind auf der Bühne drei verschlossene Türen

Mehr

Bayes kommt Markowitz zu Hilfe

Bayes kommt Markowitz zu Hilfe Moderne Portfoliotheorie Bayes kommt Markowitz zu Hilfe Die Moderne Portfoliotheorie nach Harry Markowitz ist mathematisch kristallklar. Bei der Umsetzung gibt es aber Fallstricke. Das Ersetzen der Parameter

Mehr

M. Schumacher wird die nächsten drei Rennen gewinnen richtig, wenn alle Fahrer und Autos gleich gut sind?

M. Schumacher wird die nächsten drei Rennen gewinnen richtig, wenn alle Fahrer und Autos gleich gut sind? Name:. MHMIKKLUSU 17.0.2005 M1 - Mathe K () earbeitungszeit: 15 min Seite 1 ufgabe 1: In einer Urne befinden sich 4 rote, 5 grüne und blaue Kugeln a) Zwei Kugeln werden nacheinander ohne Zurücklegen gezogen.

Mehr

Aufgabe 50. Ein Schießbudenbesitzer hat festgestellt, dass die Trefferwahrscheinlichkeit in den späten Abendstunden 0;1 pro Schuss beträgt.

Aufgabe 50. Ein Schießbudenbesitzer hat festgestellt, dass die Trefferwahrscheinlichkeit in den späten Abendstunden 0;1 pro Schuss beträgt. Aufgabe 0 Ein Schießbudenbesitzer hat festgestellt, dass die Trefferwahrscheinlichkeit in den späten Abendstunden 0;1 pro Schuss beträgt. a) Wie hoch ist die Wahrscheinlichkeit, bei Schüssen mindestens

Mehr

Grundlagen der Kombinatorik

Grundlagen der Kombinatorik Statistik 1 für SoziologInnen Grundlagen der Kombinatorik Univ.Prof. Dr. Marcus Hudec Zufallsauswahl aus Grundgesamtheiten In der statistischen Praxis kommt dem Ziehen von Stichproben größte Bedeutung

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR STOCHASTIK SS 2007 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Dipl.-Math. oec. W. Lao Klausur (Maschineningenieure) Wahrscheinlichkeitstheorie und Statistik vom 2.9.2007 Musterlösungen

Mehr

Statistik für Naturwissenschaftler

Statistik für Naturwissenschaftler Hans Walser Statistik für Naturwissenschaftler 9 t-verteilung Lernumgebung Hans Walser: 9 t-verteilung ii Inhalt 1 99%-Vertrauensintervall... 1 2 95%-Vertrauensintervall... 1 3 Akkus... 2 4 Wer ist der

Mehr

Übung zur Vorlesung Statistik I für Biowissenschaften WS Übungsblatt 4

Übung zur Vorlesung Statistik I für Biowissenschaften WS Übungsblatt 4 Übung zur Vorlesung Statistik I für iowissenschaften WS 2015-2016 Übungsblatt 4 9. November 2015 ufgabe 9 (6 Punkte): Für eine Population im Hardy-Weinberg Gleichgewicht sei bekannt, dass der heterozygote

Mehr

Die Die wichtigsten Blutgruppensysteme beim beimmenschen Menschensind sinddas dasab0-system AB0-Systemund unddas das Rhesussystem.

Die Die wichtigsten Blutgruppensysteme beim beimmenschen Menschensind sinddas dasab0-system AB0-Systemund unddas das Rhesussystem. ufgabe 3 1 lutgruppen lutgruppen Die Die wichtigsten lutgruppensysteme beim beimmenschen Menschensind sinddas das-system -Systemund unddas das Rhesussystem. dabei Es werden die vier dabei lutgruppen die

Mehr

Inklusion und Exklusion

Inklusion und Exklusion Inklusion und xklusion ufgaben ufgabe 1: Wie groß ist die nzahl der natürlichen Zahlen zwischen 1 und 100 (jeweils einschließlich), die weder durch 2 noch durch 3 teilbar sind? ufgabe 2: Wie groß ist die

Mehr

11 Unabhängige Ereignisse

11 Unabhängige Ereignisse 11 Unabhängige Ereignisse In engem Zusammenhang mit dem Begriff der bedingten Wahrscheinlichkeit steht der Begriff der Unabhängigkeit von Ereignissen. Wir klären zuerst, was man unter unabhängigen Ereignissen

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 15.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

3.2. Prüfungsaufgaben zur bedingten Wahrscheinlichkeit

3.2. Prüfungsaufgaben zur bedingten Wahrscheinlichkeit 3.2. Prüfungsaufgaben zur bedingten Wahrscheinlichkeit Aufgabe : Summenregel und bedingte Wahrscheinlichkeit Eine Statistik hat folgende Ergebnisse zutage gebracht: 52 % der Bevölkerung sind weiblich.

Mehr

7 Unabhängigkeit von Ereignissen; bedingte Wahrscheinlichkeit

7 Unabhängigkeit von Ereignissen; bedingte Wahrscheinlichkeit Übungsmaterial 7 Unabhängigkeit von reignissen; bedingte Wahrscheinlichkeit 7. Unabhängigkeit von reignissen Wir betrachten folgendes Beispiel: Zwei unterscheidbare Münzen werden geworfen. Man betrachtet

Mehr

Unabhängigkeit KAPITEL 4

Unabhängigkeit KAPITEL 4 KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht

Mehr

Einführung. Wahrscheinlichkeit. 1 Wahrscheinlichkeit: Definition und Interpretation. 2 Elementare Wahrscheinlichkeitsrechnung, bedingte

Einführung. Wahrscheinlichkeit. 1 Wahrscheinlichkeit: Definition und Interpretation. 2 Elementare Wahrscheinlichkeitsrechnung, bedingte Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2 Elementare Wahrscheinlichkeitsrechnung, bedingte Wahrscheinlichkeit Axiome nach Kolmogorov Gegeben sei ein Zufallsexperiment mit Ergebnisraum

Mehr

mathphys-online Abiturprüfung Berufliche Oberschule 2005 Mathematik 13 Technik - B I - Lösung

mathphys-online Abiturprüfung Berufliche Oberschule 2005 Mathematik 13 Technik - B I - Lösung biturprüfung Berufliche Oberschule 0 Mathematik 3 Technik - B I - ösung Die Firma Schraubfix hat sich auf den Vertrieb von Schrauben spezialisiert. Für eine utofirma liefert sie zwei rten von Schrauben,

Mehr

6 Kombinatorik: Einschluß-Ausschluß Formel. 6.1 Indikatorfunktionen. I A ist eine Zufallsvariable E[I A ] = P (A) IĀ = 1 I A I A B = I A I B

6 Kombinatorik: Einschluß-Ausschluß Formel. 6.1 Indikatorfunktionen. I A ist eine Zufallsvariable E[I A ] = P (A) IĀ = 1 I A I A B = I A I B 6 Kombinatorik: Einschluß-Ausschluß Formel 6.1 Indikatorfunktionen I A (ω) = { 1 falls ω A 0 falls ω A I A ist eine Zufallsvariable E[I A ] = P (A) IĀ = 1 I A I A B = I A I B I 2 A = I A V ar[i A ] = P

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 3. Vorlesung - 21.10.2016 Bedingte Wahrscheinlichkeit In einer Urne sind 2 grüne und 3 blaue Kugeln. 2 Kugeln werden ohne Zürücklegen gezogen. Welches ist die Wahrscheinlichkeit, dass : a) man eine grüne

Mehr

Ist P(T) = p die Trefferwahrscheinlichkeit eines Bernoulli-Experiments,

Ist P(T) = p die Trefferwahrscheinlichkeit eines Bernoulli-Experiments, . Binomialverteilung ==================================================================.1 Bernoulli-Experimente und Bernoullikette -----------------------------------------------------------------------------------------------------------------

Mehr

Rechnen mit einfachem Mengenkalkül

Rechnen mit einfachem Mengenkalkül edingte ahrscheinlichkeiten llgemeine Frage: Rechnen mit einfachem Mengenkalkül ie groß ist die ahrscheinlichkeit für ein Ereignis falls bereits ein Ereignis eingetreten ist (und der etrachter über diese

Mehr

Stochastik (Laplace-Formel)

Stochastik (Laplace-Formel) Stochastik (Laplace-Formel) Übungen Spielwürfel oder Münzen werden ideal (oder fair) genannt, wenn jedes Einzelereignis mit gleicher Wahrscheinlichkeit erwartet werden kann. 1. Ein idealer Spielwürfel

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 12.02.2010 Fakultät für Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Statistik-Klausur vom

Statistik-Klausur vom Statistik-Klausur vom 09.02.2009 Bearbeitungszeit: 90 Minuten Aufgabe 1 a) Ein Unternehmen möchte den Einfluss seiner Werbemaßnahmen auf den erzielten Umsatz quantifizieren. Hierfür werden die jährlichen

Mehr

Oberstufe (11, 12, 13)

Oberstufe (11, 12, 13) Department Mathematik Tag der Mathematik 1. Oktober 009 Oberstufe (11, 1, 1) Aufgabe 1 (8+7 Punkte). (a) Die dänische Flagge besteht aus einem weißen Kreuz auf rotem Untergrund, vgl. die (nicht maßstabsgerechte)

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Absolute und relative Häufigkeiten Wenn man mit Reißzwecken würfelt, dann können sie auf den Kopf oder auf die Spitze fallen. Was ist wahrscheinlicher? Ein Versuch schafft Klarheit. Um nicht immer wieder

Mehr

Prüfung aus Statistik 1 für SoziologInnen. Musterlösung

Prüfung aus Statistik 1 für SoziologInnen. Musterlösung Prüfung aus Statistik 1 für SoziologInnen Gesamtpunktezahl =80 1) Wissenstest (maximal 20 Punkte) Prüfungsdauer: 2 Stunden Musterlösung Kreuzen ( ) Sie die jeweils richtige Antwort an. Jede richtige Antwort

Mehr

Kommt ein Vektor zur Drogenberatung: "Hilfe ich bin linear abhängig."

Kommt ein Vektor zur Drogenberatung: Hilfe ich bin linear abhängig. Stephan Peter Wirtschaftsingenieurwesen WS 15/16 Mathematik Serie 8 Vektorrechnung Kommt ein Vektor zur Drogenberatung: "Hilfe ich bin linear abhängig." Aufgabe 1 Gegeben sind die Vektoren a = b = 1 graphisch

Mehr

ABITURPRÜFUNG AN BERUFSOBERSCHULEN UND FACHOBERSCHULEN ZUR ERLANGUNG DER FACHGEBUNDENEN HOCHSCHULREIFE MATHEMATIK. Ausbildungsrichtung Technik

ABITURPRÜFUNG AN BERUFSOBERSCHULEN UND FACHOBERSCHULEN ZUR ERLANGUNG DER FACHGEBUNDENEN HOCHSCHULREIFE MATHEMATIK. Ausbildungsrichtung Technik ABITURPRÜFUNG 0 11 AN BERUFSOBERSCHULEN UND FACHOBERSCHULEN ZUR ERLANGUNG DER FACHGEBUNDENEN HOCHSCHULREIFE MATHEMATIK Ausbildungsrichtung Technik Mittwoch, den 1. Juni 011, 9.00 Uhr bis 1.00 Uhr Die Schülerinnen

Mehr

1 Zuverlässigkeit von Netzwerken

1 Zuverlässigkeit von Netzwerken 1 Zuverlässigkeit von Netzwerken Wir betrachten Mehrkomponenten-Netzwerke. Diese werden durch Zuverlässigkeitsschaltbilder dargestellt. Dies sind Graphen, die zur Zuverlässigkeitsanalyse von Netzwerken

Mehr

Ziegenproblem (Monty Hall Problem)

Ziegenproblem (Monty Hall Problem) Ziegenproblem (Monty Hall Problem) Proseminar Schlüsselprobleme der Informatik Das Ziegenproblem (MontyHall Problem) Universität Potsdam Institut für Informatik 1 Schlüsselprobleme der Informatik Ziegenproblem

Mehr