Approximationsalgorithmen. Durchmesser-, Breite-, kleinster Zylinderund. dünnster Kreisring- Probleme

Größe: px
Ab Seite anzeigen:

Download "Approximationsalgorithmen. Durchmesser-, Breite-, kleinster Zylinderund. dünnster Kreisring- Probleme"

Transkript

1 Approximationsalgorithmen für Durchmesser-, Breite-, kleinster Zylinderund dünnster Kreisring- Probleme Georgy Sklyarenko Vortrag im Seminar über Algorithmen am 2. December 2005

2 Kapitel 1. Einführung 1.1. Definitionen Gegeben: eine Menge von Punkten P R d, P = n. Finde: Durchmesser: der größte Abstand über alle Paare in P Breite: die minimale Breite über alle P einschließenden Platten, wobei eine Platte von der Breite b den Bereich zwischen zwei parallelen Hyperebenen bezeichnet den kleinsten Zylinder: der minimale Radius über alle P umschließenden Zylinder, wobei ein Zylinder des Radius r den Bereich aller Punkte mit dem Abstand r von einer Geraden bezeichnet den dünnsten Kreisring: die kleinste Breite über alle P umschließenden Kreisringe, wobei ein Kreisring auch sphärische Schicht genannt von der Breite r 1 r 2 der Bereich zwischen zwei konzentrischen Sphären der Radien r 1 und r 2 ist 1.2. Motivation Statistische Analyse Algorithmische Metrologie Datenanpassung 1.3. LTAS Es gibt keine exakten Algorithmen mit linearer Laufzeit 1

3 sogar für Duchmeser in d 4, für Breite in d 3, und Kreisring in d 2 Approximationsalgorithmen 1 + ε-approximationen mit linearer Zeit Ignorieren den d-abhängigen konstanten Faktor 1 O -Notation versteckt log O1 Faktoren ε n LTAS der Ordnung c: O ε c linear-time approximation scheme Aufgabe: Finde das kleinste c 1.4. sltas Für alle vier Probleme gibt es Approximationsalgorithmen mit Laufzeit O n + 1 ε c Strenges LTAS sltas der Ornung c Aufgabe: Finde das kleinste c 1.5. Bekannte exakte Algorithmen Durchmesser Breite Für d = 2: On log n, einfach Für d = 3: On log n, randomisiert, optimal Clarkson and Shor, 1989, [4] On log n, deterministisch Ramos, 2000, [5] Für d 4: On 2, einfach O n 2 2/ d/2 +1 log O1 n mit Datenstrukturen Für d = 2: On log n, einfach Für d = 3: 2

4 On 2, schwer Houle and Toussaint 1985, [6] On 3/2+δ erwartete Zeit Für d 4: On d/2, einfach Lösungsraum als ein konvexer Polyeder in R d Bekannte exakte Algorithmen Zylinder Für d = 2: identisch mit Breite Für d = 3: On 4+δ Schömer, 2000, [7] On 3+δ Agarwal, 2000, [8] Für d 4: On 2d 1+δ, einfach Lösungsraum als eine Zelle in einem Arrangement von Hyperebenen in 2d 1 Dimensionen Kreisring Für d = 2: On 2, durch Voronoi-Diagramm, einfach On 3/2+δ, randomisiert, Agarwal, 1997, [9] Für d 3: On n/2 +1, einfach Lösungsraum als konvexer Polyeder in d + 2 Variablen On 3 1/19+δ nicht interessant Agarwal, 1999, [10] 1.7. Bekannte Approximationsalgorithmen Durchmesser: d = 4 : 1.5-LTAS, 4.8-sLTAS, d = 5 : 2-LTAS, 6.67-sLTAS Breite: d = 3 : 1-LTAS, d = 4 : 1.5-LTAS Zylinder: d = 3 : 2-LTAS Kreisring: d = 2 : 1-LTAS, d = 3 : 2-LTAS 3

5 1.8. Techniken Gitter Kegel Reduktion der Dimension 4

6 Kapitel 2. Durchmesser Das einfachste Problem unter den vier genannten Gegeben: P R d, P = n, d = const Finde: P mit p i p k P, p i, p k P 2.1. Approximationsalgorithmus mit konstanter relativer Güte Einfach: Wähle einen beliebigen Punkt p 0 P Sei p0 = max p P p 0 p Offensichtlich p0 P 2 p0 Relative Güte-Garantie Gitter Konstruiere ein regelmäßiges Gitter mit Seitenlänge ε p0 Runde die Punkte auf Gitterknoten Berechne den Durchmesser von Gitterknoten 2.3. Analyse Additiver Fehler durch das Runden Oε p0 = Oε P 1 + Oε-Approximation 5

7 Laufzeit: Runden in On Zeit mit -Funktion Entfernung von Duplikaten mit BucketSort in O n + 1ε Zeit d alle Punkte liegen innerhalb einer Kugel vom Radius O P = O p0 insgesamt O 1 Gitterknoten ε d 1 Berechnung des Durchmessers von O Zeit O n + 1 sltas ε 2d Verbesserungsvorschläge: ε d 1 Gitterknoten mit brute-force in O ε 2d Beim Runden: nur der oberste und der unterste Gitterknoten auf den vertikalen 1 Linien sind von Interesse nur O Gitterknoten nur O n + 1 Zeit ε d 1 ε d 1 für BucketSort Usw Kegel 1 Beobachtung: O Kegel mit dem Winkel O θ θε d 1 ε bedecken den Richtungsraum, 1 wobei θ ε = arccos 1 + ε θ ε = 2ε ε + O ε θ ε 2 U d = {e R d e = 1 x R d e U d : e, x θ ε } sei Menge von U d O Einheitsvektoren x 1 + ε max e U d e x x 2.5. Kegel 1 θε d 1 Gesucht: p 0, q 0 P mit p 0 q 0 = max p q p,q P 1 + ε-approximation: Finde max p,q P e U d ep q e U d finde 6

8 p 0 P mit e p 0 = max e p p P q 0 P mit e q 0 = min e q q P 1 Suche nach Randpunkten von P in O Anfragerichtungen θε d 1 Im Dual bekannt als Strahlenwerfen ray-shooting in einen konvexen Polyeder On Zeit pro Anfrage, trivial n O -LTAS ε d 1/ Gitter und Kegel Erinnerung: Reduktion auf O Idee: Anstatt von brute-force Kegel 1 Gitterknoten ε d 1 zwei 1 + ε-approximationen 1 + Oε-Approximation O n + 1 -sltas ε 3 2 d Gitter, Kegel und Reduktion der Dimension 1 Gitter: O Gitterknoten ε d 1 Anstatt von d-dimensionalen Kegeln 2-dimensionale Kegel Reduktion auf d 1-dimensionale Teilprobleme 1 2-dimensionalen Kegelrichtungen entsprechen Projektionen auf O Hyperebenen ε Löse die Teilprobleme rekursiv sltas der Ordnung d 1/ Gitter, Kegel und Reduktion der Dimension Projektion π e : R d R d 1 π e x = e 1 x 1 + e 2 x 2, x 3, x 4,..., x d x 1 + ε max π 2 e x 2 x 2 e U 2 7

9 Finde 1 + Oε-Approximation für den Durchmesser von P R d Finde 1 + Oε-Approximation für max π e p q p,q P e U 2 Finde rekursiv Approximation für den Durchmesser von π e P R d 1 über alle e U 2 T d n = O n + ε 1 1 T d 1 O Lösung: T d n = O n + 1 ε d 1/2 sltas der Ordnung d 1 ε d 1 8

10 Kapitel 3. Breite 3.1. Optimierungsproblem Zwei parallele Hyperebenen: E 1 = {x R d n x = b 1 } und E 2 = {x R d n x = b 2 } Optimierungsproblem: Die Menge der Problem-Instanzen Eingaben: P R d Die Menge der zu Eingabe P zulässigen Lösungen: SP = {b 1, b 2, n R R R d b 1 n p b 2, p P } Die Bewertungsfunktion: fb 1, b 2, n = b 1 b 2 n Ziel: min Lineare/konvexe Programmierung nicht anwendbar 3.2. Kegel und LP Zerlege das Optimierungsproblem in LPs Idee: Kegel Bewertungsfunktion: b 2 b 1 e n 1 + ε-approximation Substitution: η = P R d n b 1 b 2, σ = b 1 b 1 b 2 9

11 σ p η σ + 1, p P e η max d + 1-dimensionale LPs für O n O -LTAS ε d 1/2 1 Vektoren e U ε d 1/2 d 10

12 Kapitel 4. Der kleinste Zylinder 4.1. Optimierungsproblem Achse des Zylinders l = {s + t r t R}, Radius ρ Optimierungsproblem OP : Die Menge der Instanzen: P R d Die { Menge der zu Instanz P zulässigen Lösungen: } ρ, r, s R 2d+1 p s r s + r p r 2 ρ, p P Die Bewertungsfunktion: ρ Ziel: min Idee: Ersetze das Optimierungsproblem durch einfachere Probleme OP Kegel e p s s + r p e r ρ ρ min 4.2. Kegel und CP Lemma. Seien r, s, ρ und r, s, ρ, e optimale Lösungen für OP und OP. Dann 1 r, s, ρ ist zulässiger Bereich für OP, und 2 ρ 1 + ερ 1 einfach 11

13 2 wähle e U d mit e, r θ ε. Sei p 0 P, q 1 = s + r p 0 s r r 2 q 2 = s + e p 0 s r e r p 0 q 1 l p 0 q 2 e p 0 q 2, r π 2 + θ ε q 1 p 0, q 2 p 0 θ ε q 2 p ε q 1 p Kegel und CP Substitution: ξ = s e s e r r, η = 1 O CPs für alle e U ε d 1/2 d P R d ξ + e p η p 2 δ, p P δ e ξ = 0, e η = 1 min n O -LTAS ε d 1/2 r e r, δ = ρ2 12

14 Kapitel 5. Der dünnste Kreisring 5.1. Optimierungsproblem Die Menge der Instanzen: P R d Die Menge der zu Instanz P zulässigen Lösungen: {ξ, ρ 1, ρ 2 R d+2 ρ 1 ξ p ρ 2, p P } Die Bewertungsfunktion: ρ 2 ρ 1 Ziel: min Mittelpunkt ξ R d Annahme: O P ρ 1 ξ ρ 2 Sei ξ, ρ 1, ρ 2 optimale Lösung, b = ρ 2 ρ Idee Nebenbedingungen linearisieren die Zielfunktion ist weder linear noch konvex Alternativ: Betrachte ρ 2 2 ρ 2 1 als Zielfunktion ρ 2 ρ 1 nicht unbedingt gut approximiert Idee: Fallunterscheidung! Schmaler Kreisring: ρ ερ 1 13

15 Beobachtung: b ρ 2 ρ 1 2 ξ Breiter Kreisring: ρ 2 > 1 + ερ 1 einfach 5.3. Approximation mit konstanter relativer Güte-Garantie Kegel und LP Optimierungsproblem OP P R d { ξ, ρ 1, ρ 2, e R d R R U d ρ 1 ξ p ρ 2, p P } ρ2 2 ρ2 1 e ξ min 5.4. Lemma Lemma. Sei ξ, ρ 1, ρ 2, e optimale Lösung für OP. Dann c : ρ 2 ρ 1 cb Beweis: Wähle e U d mit e ξ ξ 1 + ε ρ 2 2 ρ2 1 ρ2 2 ρ2 1 ρ2 2 ρ2 1 ρ 2 2 ρ 2 1 ρ 2 ξ e ξ e ξ 1 + ρ 1 /ρ 2 ρ 2 ρ ε1 + ρ 2 /ρ 1 ρ 2 ρ ε ρ 2 2 ρ 2 1 ξ 1 + ε ρ 2 2 ρ 2 1 ρ 1 1.Fall: ρ 2 2ρ 1 : ρ 2 ρ Oεb 2.Fall: ρ 2 > 2ρ 1: b > ρ 2 /2 /4, wobei Durchmesser von P ist 5.5. Kegel und LP Substitution: ζ = 1 O LPs: ε d 1/2 P R d ξ ρ 2 2 ρ2 1, δ = ρ2 1 ξ 2 ρ 2 2, γ = ρ2 1 1 ρ 2 2 ρ2 1 { ζ, δ, γ, e R d+2 U d δ 2p ζ + p 2 γ δ + 1, p P } 14

16 e ζ max Approximation mit konstanter relativer Güte-Garantie in linearer Zeit: b 0 b cb Schmaler Kreisring: Kegel und LP ρ ερ Oε-Approximation Idee: 2b = 2ρ 2 ρ 1 ρ 2 2 ρ 2 1 / ξ 2b? ρ ερ 1 notwendig! Nebenbedingung weder linear noch konvex Idee: ersetze Nebenbedingung OP 2 ρ 1 ξ p ρ 2, p P, b 0 ε1 + εe ξ ρ2 2 ρ 2 1 e ξ min 5.7. Lemma Lemma: Sei ξ, ρ 1, ρ 2, e optimale Lösung für OP 2. Dann ρ 2 ρ Oεb Beweis: ξ, ρ 1, ρ 2, e ist zulässiger Bereich für OP 2, denn b 0 b ερ 1 ε ξ ε1 + εe ξ b = ρ 2 ρ Oεb O1b 0 Oεe ξ Oε ξ Oερ 2 ρ Oερ 1 2 Oεb 2 + Oεb Zusätzliche Nebenbedingung für LPs: b 0 γ ε1 + εeζ n 1 + Oε-Approximation mit O Zeit ε d 1/2 15

17 5.8. Breiter Kreisring: Gitter ρ ερ Oε-Approximation b > 1 1 ρ 2 = Ωερ ε Konstruiere Gitter mit Seitenlänge εb 0 Runde die Punkte von P auf Gitterknoten additiver Fehler Oεb 0 = Oεb 1 insgesamt O Punkte denn Volumen von dem Kreisring Oρ d ε 2d 1 2 ρ d 1 = Ob ρ d 1 2 = Ob d 0 /εd 1 Mögliche Mittelpunkte Gitterknoten, O1/ε 2d Mittelpunkte zu probieren, denn der Mittelpunkt liegt innerhalb von ξ ρ 2 = Ob 0/ε zum Koordinatenanfang, für jeden: Finde die Randpunkte von P Breiter Kreisring: O n + 1 -sltas ε 4d 1 n Schmaler Kreisring: O -LTAS ε d 1/2 n Kreisring komplett: O ε + 1 d 1/2 ε 4d 1 -LTAS 16

18 Literaturverzeichnis 1. T.M. Chan Approximating the Diameter, Width, Smallest Enclosing Cylinder, and Minimum-Width Annulus. Int. J. Comput. Geometry Appl , pp , R. Wanka Approximationsalgorithmen. Skript zur Vorlesung, Version 2.3, H. Alt Algorithmische Geometrie. Skript zur Vorlesung, FU Berlin, SoSe K.L. Clarkson, P.W. Shor Applications of random sampling in computational geometry, II Discrete Comput. Geom., 4, pp , E. Ramos Deterministic algorithms for 3-D diameter and some 2-D lower envelopes Proc. 13th ACM Sympos. Comput. Geom., pp , M.E. Houle, G.T. Toussaint Computing the width of a set Proc. 1st ACM Sympos. Comput. Geom., pp. 1-7, E. Schömer, J. Sellen, M. Teichmann, C.-K. Yap Smallest enclosing cylinders Algorithmica, 27, pp , P.K. Agarwal, B. Aronov, and M. Sharir Line transversals of balls and smallest enclosing cylinders in three dimensions Discrete Comput. Geom., 21, pp , P.K. Agarwal, B. Aronov, M. Sharir Computing envelopes in four dimensions with applications SIAM J. Comput., 26, pp , P.K. Agarwal, B. Aronov, S. Har-Peled, and M. Sharir Approximation and exact algotithms for minimum-width annuli and shells Proc. 15th ACM Sympos. Comput. Geom., pp ,

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 13, Henning Meyerhenke

Algorithmische Methoden zur Netzwerkanalyse Vorlesung 13, Henning Meyerhenke Algorithmische Methoden zur Netzwerkanalyse Vorlesung 13, 01.02.2012 Henning Meyerhenke 1 KIT Henning Universität desmeyerhenke: Landes Baden-Württemberg und nationales Algorithmische Forschungszentrum

Mehr

Berechnung approximierter Voronoi-Zellen auf geometrischen Datenströmen

Berechnung approximierter Voronoi-Zellen auf geometrischen Datenströmen Definition Berechnung approximierter Voronoi-Zellen auf geometrischen Datenströmen Seminar über Algorithmen WS 2005/2006 Vorgetragen von Oliver Rieger und Patrick-Thomas Chmielewski basierend auf der Arbeit

Mehr

Algorithmische Methoden für schwere Optimierungsprobleme

Algorithmische Methoden für schwere Optimierungsprobleme Algorithmische Methoden für schwere Optimierungsprobleme Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund

Mehr

Algorithmische Geometrie: Rest Lokalisierung von Punkten; Voronoi Diagramme (1/2)

Algorithmische Geometrie: Rest Lokalisierung von Punkten; Voronoi Diagramme (1/2) Algorithmische Geometrie: Rest Lokalisierung von Punkten; Voronoi Diagramme (1/2) Nico Düvelmeyer WS 2009/2010, 22.12.2009 Überblick 1 Fertigstellung Kapitel 7 2 Definition Voronoi Diagramm 3 Grundlegende

Mehr

Effiziente Algorithmen Lineares Programmieren 216. Schwache Dualität

Effiziente Algorithmen Lineares Programmieren 216. Schwache Dualität Effiziente Algorithmen Lineares Programmieren 216 Schwache Dualität Sei wieder z = max{ c T x Ax b, x 0 } (P ) und w = min{ b T u A T u c, u 0 }. (D) x ist primal zulässig, wenn x { x Ax b, x 0 }. u ist

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Die Forschungsuniversität Meyerhenke, in der Institut für Theoretische Informatik

Mehr

Kapitel 9: Lineare Programmierung Gliederung

Kapitel 9: Lineare Programmierung Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Finite Elemente I Konvergenzaussagen

Finite Elemente I Konvergenzaussagen Finite Elemente I 195 5 onvergenzaussagen 5 onvergenzaussagen TU Bergakademie Freiberg, SoS 2006 Finite Elemente I 196 5.1 Interpolation in Sobolev-Räumen Wesentlicher Baustein der FE-onvergenzanalyse

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 7. Dezember 2017 INSTITUT FÜR THEORETISCHE 0 07.12.2017 Dorothea Wagner - Theoretische Grundlagen der Informatik INSTITUT FÜR THEORETISCHE KIT Die Forschungsuniversität

Mehr

Algorithmische Geometrie

Algorithmische Geometrie Algorithmische Geometrie Martin Peternell TU Wien 31. Fortbildungstagung für Geometrie 2010, Strobl 1 Themen der Algorithmische Geometrie Entwurf von Algorithmen für geometrische Fragestellungen betreffend

Mehr

Übungsblatt 6 Lösungsvorschläge

Übungsblatt 6 Lösungsvorschläge Institut für Theoretische Informatik Lehrstuhl Prof. Dr. D. Wagner Übungsblatt 6 Lösungsvorschläge Vorlesung Algorithmentechnik im WS 09/10 Problem 1: Größter Kreis in konvexem Polygon [vgl. Kapitel 6

Mehr

Voronoi-Diagramme. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK

Voronoi-Diagramme. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 29.05.2011 Das Postamt-Problem b(p, q) = {x R 2 : xp = xq } p q h(p, q) h(q, p) = {x :

Mehr

Algorithmische Geometrie: Lineare Optimierung (I)

Algorithmische Geometrie: Lineare Optimierung (I) Algorithmische Geometrie: Lineare Optimierung (I) Nico Düvelmeyer WS 2009/2010, 17.11.2009 Überblick 1 Geometrie von Gießformen 2 Durchschnitte von Halbebenen 3 Inkrementeller Algorithmus Überblick 1 Geometrie

Mehr

Voronoi-Diagramme INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie

Voronoi-Diagramme INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 03.06.2014 1 Das Postamt-Problem b(p, q) = {x 2 R 2 : xp = xq } p q h(p, q) h(q, p) = {x

Mehr

Vortrag 20: Kurze Vektoren in Gittern

Vortrag 20: Kurze Vektoren in Gittern Seminar: Wie genau ist ungefähr Vortrag 20: Kurze Vektoren in Gittern Kerstin Bauer Sommerakademie Görlitz, 2007 Definition und Problembeschreibung Definition: Gitter Seien b 1,,b k Q n. Dann heißt die

Mehr

Vorlesung Algorithmische Geometrie Konvexe Hülle im R 3

Vorlesung Algorithmische Geometrie Konvexe Hülle im R 3 Vorlesung Algorithmische Geometrie Konvexe Hülle im R 3 LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Andreas Gemsa 26.06.2012 Prüfung! Termine: 20. Juli 27.

Mehr

Polynomialzeit- Approximationsschema

Polynomialzeit- Approximationsschema Polynomialzeit- Approximationsschema 27.01.2012 Elisabeth Sommerauer, Nicholas Höllermeier Inhalt 1.NP-Vollständigkeit Was ist NP-Vollständigkeit? Die Klassen P und NP Entscheidungsproblem vs. Optimierungsproblem

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke PARALLELES RECHNEN INSTITUT FÜR THEORETISCHE INFORMATIK, FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales

Mehr

Geradenarrangements und Dualität von Punkten und Geraden

Geradenarrangements und Dualität von Punkten und Geraden Vorlesung Algorithmische Geometrie von Punkten und Geraden INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 12.06.2012 Dualitätsabbildung Bisher haben wir Dualität für planare

Mehr

Geradenarrangements und Dualität von Punkten und Geraden

Geradenarrangements und Dualität von Punkten und Geraden Vorlesung Algorithmische Geometrie von Punkten und Geraden INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 12.06.2012 Dualitätsabbildung Bisher haben wir Dualität für planare

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

Anwendungen des Fréchet-Abstandes Das Constrained Free Space Diagram zur Analyse von Körperbewegungen

Anwendungen des Fréchet-Abstandes Das Constrained Free Space Diagram zur Analyse von Körperbewegungen Anwendungen des Fréchet-Abstandes Das Constrained Free Space Diagram zur Analyse von Körperbewegungen David Knötel Freie Universität Berlin, Institut für Informatik Seminar über Algorithmen Leitfaden Wiederholung

Mehr

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS)

Literatur. Dominating Set (DS) Dominating Sets in Sensornetzen. Problem Minimum Dominating Set (MDS) Dominating Set 59 Literatur Dominating Set Grundlagen 60 Dominating Set (DS) M. V. Marathe, H. Breu, H.B. Hunt III, S. S. Ravi, and D. J. Rosenkrantz: Simple Heuristics for Unit Disk Graphs. Networks 25,

Mehr

Konvexe Mengen und Funktionen

Konvexe Mengen und Funktionen Konvexe Mengen und Funktionen von Corinna Alber Seminararbeit Leiter: Prof. Jarre im Rahmen des Seminars Optimierung III am Lehrstuhl für Mathematische Optimierung an der Heinrich-Heine-Universität Düsseldorf

Mehr

Lineares Programmieren

Lineares Programmieren Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 03.05.2011 Nachtrag Art Gallery Problem Lässt sich der Triangulierungs-Algorithmus

Mehr

Die Lagrange-duale Funktion

Die Lagrange-duale Funktion Die Lagrange-duale Funktion Gregor Leimcke 21. April 2010 1 Die Lagrangefunktion Wir betrachten das allgemeine Optimierungsproblem wobei minimiere f 0 über D sodass f i 0, i = 1,..., m 1.1 D = h i = 0,

Mehr

12. Flächenrekonstruktion aus 3D-Punktwolken und generalisierte Voronoi-Diagramme

12. Flächenrekonstruktion aus 3D-Punktwolken und generalisierte Voronoi-Diagramme 12. Flächenrekonstruktion aus 3D-Punktwolken und generalisierte Voronoi-Diagramme (Einfache) Voronoi-Diagramme: Motivation: gegeben: Raum R, darin Menge S von Objekten Frage nach Zerlegung von R in "Einflusszonen"

Mehr

Mehrkriterielle Optimierung mit Metaheuristiken

Mehrkriterielle Optimierung mit Metaheuristiken Sommersemester 2006 Mehrkriterielle Optimierung mit Metaheuristiken (Vorlesung) Prof. Dr. Günter Rudolph Fachbereich Informatik Lehrstuhl für Algorithm Engineering (LS XI) Fachgebiet Computational Intelligence

Mehr

Approximationsalgorithmen für NP-harte Optimierungsprobleme

Approximationsalgorithmen für NP-harte Optimierungsprobleme Approximationsalgorithmen für NP-harte Optimierungsprobleme Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 1 / 18 Was tun mit NP-harten Problemen? Viele praxisrelevante

Mehr

Approximationsalgorithmen für NP-harte Optimierungsprobleme

Approximationsalgorithmen für NP-harte Optimierungsprobleme Approximationsalgorithmen für NP-harte Optimierungsprobleme Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 4. Januar 2011 Berthold Vöcking, Informatik 1 () Vorlesung

Mehr

Optimierung für Wirtschaftsinformatiker: Lineare Programme

Optimierung für Wirtschaftsinformatiker: Lineare Programme Optimierung für Wirtschaftsinformatiker: Lineare Programme Dr. Nico Düvelmeyer Dienstag, 31. Mai 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Lineare Programme Allgemeine Form 2 Spezielle Darstellungen

Mehr

Polygontriangulierung

Polygontriangulierung Vorlesung Algorithmische Geometrie Polygone triangulieren LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 26.04.2011 Das Kunstgalerie-Problem

Mehr

Distanzprobleme in der Ebene

Distanzprobleme in der Ebene Distanzprobleme in der Ebene (Literatur: deberg et al., Kapitel 7,9) Christian Knauer 1 Motivation: Alle nächsten Nachbarn Gegeben: Eine Menge von Punkten P in der Ebene Berechne: Zu jedem Punkt aus P

Mehr

Technische Universität München Zentrum Mathematik Diskrete Optimierung: Fallstudien aus der Praxis. Station 1: Facetten des Knapsack-Polytops

Technische Universität München Zentrum Mathematik Diskrete Optimierung: Fallstudien aus der Praxis. Station 1: Facetten des Knapsack-Polytops Technische Universität München Zentrum Mathematik Diskrete Optimierung: Fallstudien aus der Praxis Barbara Wilhelm Michael Ritter Station 1: Facetten des Knapsack-Polytops Diskutieren Sie folgende Fragen

Mehr

ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter

ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese Aufgabenblätter Berufsmaturitätsschule GIB Bern Aufnahmeprüfung 2005 Mathematik Teil A Zeit: 45 Minuten Name / Vorname:... ALGEBRA Der Lösungsweg muss klar ersichtlich sein Schreiben Sie Ihre Lösungswege direkt auf diese

Mehr

Grundlagen zur Delaunay-Triangulierung und zur konvexen Hülle. zum Begriff des Voronoi-Diagramms (vgl. auch Vorlesung "Algorithmische Geometrie"):

Grundlagen zur Delaunay-Triangulierung und zur konvexen Hülle. zum Begriff des Voronoi-Diagramms (vgl. auch Vorlesung Algorithmische Geometrie): Grundlagen zur Delaunay-Triangulierung und zur konvexen Hülle zum Begriff des Voronoi-Diagramms (vgl. auch Vorlesung "Algorithmische Geometrie"): 1 Erzeugung des Voronoi-Diagramms (siehe Vorlesung "Algorithmische

Mehr

Algorithmen zum Lösen von Vertex und Set Cover Instanzen zur Planung von Angriffen auf Netzwerke

Algorithmen zum Lösen von Vertex und Set Cover Instanzen zur Planung von Angriffen auf Netzwerke Algorithmen zum Lösen von Vertex und Set Cover Instanzen zur Planung von Angriffen auf Netzwerke Steve Göring 13.07.2012 1/18 Gliederung Einleitung Grundlagen Vertex-Cover-Problem Set-Cover-Problem Lösungsalgorithmen

Mehr

Das Subgradientenverfahren

Das Subgradientenverfahren Das Subgradientenverfahren Seminar Optimierung WS 05/06 Betreuer: Prof. F. Jarre von Jalo Liljo Das Subgradientenverfahren Das Ziel dieses Vortrags ist die Berechnung einer Lösung des unrestringierten

Mehr

Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung

Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Optimierung für Wirtschaftsinformatiker: Dualität, Ganzzahlige lineare Optimierung Dr. Nico Düvelmeyer Freitag, 24. Juni 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Dualität Motivation Duales LP Dualitätssätze

Mehr

Theoretische Informatik. Exkurs: Komplexität von Optimierungsproblemen. Optimierungsprobleme. Optimierungsprobleme. Exkurs Optimierungsprobleme

Theoretische Informatik. Exkurs: Komplexität von Optimierungsproblemen. Optimierungsprobleme. Optimierungsprobleme. Exkurs Optimierungsprobleme Theoretische Informatik Exkurs Rainer Schrader Exkurs: Komplexität von n Institut für Informatik 13. Mai 2009 1 / 34 2 / 34 Gliederung Entscheidungs- und Approximationen und Gütegarantien zwei Greedy-Strategien

Mehr

1 Der Simplex Algorithmus I

1 Der Simplex Algorithmus I 1 Nicoletta Andri 1 Der Simplex Algorithmus I 1.1 Einführungsbeispiel In einer Papiermühle wird aus Altpapier und anderen Vorstoffen feines und grobes Papier hergestellt. Der Erlös pro Tonne feines Papier

Mehr

Visualisierung von Graphen

Visualisierung von Graphen 1 Visualisierung von Graphen Teile-und-Herrsche-Algorithmen: Bäume und serienparallele Graphen 3. Vorlesung Sommersemester 2013 (basierend auf Folien von Martin Nöllenburg und Robert Görke, KIT) 2 Ankündigung

Mehr

Optimierung. Optimierung. Vorlesung 9 Lineare Programmierung & Kombinatorische Optimierung Fabian Kuhn

Optimierung. Optimierung. Vorlesung 9 Lineare Programmierung & Kombinatorische Optimierung Fabian Kuhn Optimierung Vorlesung 9 Lineare Programmierung & Kombinatorische Optimierung 1 Assignment Problem (Zuordnungsproblem) Gewichtetes Perfektes Bipartites Matching agents Costs tasks Weise jedem Agenten genau

Mehr

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn

Optimierung. Optimierung. Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren. 2013 Thomas Brox, Fabian Kuhn Optimierung Vorlesung 2 Optimierung ohne Nebenbedingungen Gradientenverfahren 1 Minimierung ohne Nebenbedingung Ein Optimierungsproblem besteht aus einer zulässigen Menge und einer Zielfunktion Minimum

Mehr

Algorithmik WS 07/ Vorlesung, Andreas Jakoby Universität zu Lübeck

Algorithmik WS 07/ Vorlesung, Andreas Jakoby Universität zu Lübeck Lemma 15 KLP 1 ist genau dann lösbar, wenn das dazugehörige LP KLP 2 eine Lösung mit dem Wert Z = 0 besitzt. Ist Z = 0 für x 0, x 0, dann ist x eine zulässige Lösung von KLP 1. Beweis von Lemma 15: Nach

Mehr

Integralrechnung für GLET

Integralrechnung für GLET Freitagsrunden Tech Talk November 2, 2012 1 Grundlagen Rechenregeln für Integrale 2 Mehrdimensionale Integrale Flächenintegrale Volumenintegrale Lösbar? 3 Kugel- und Zylinderkoordinaten Kugelkoordinaten

Mehr

Delaunay-Triangulierungen

Delaunay-Triangulierungen Vorlesung Algorithmische Geometrie Delaunay-Triangulierungen INSTITUT FU R THEORETISCHE INFORMATIK FAKULTA T FU R INFORMATIK Martin No llenburg 10.06.2014 Grafik c Rodrigo I. Silveira 1 Dr. Martin No llenburg

Mehr

Übungsblatt 1: Lösungswege und Lösungen

Übungsblatt 1: Lösungswege und Lösungen Übungsblatt : Lösungswege und Lösungen 5..6 ) Hier geht es weniger um mathematisch-strenge Beweise als darum, mit abstrakten Vektoren ohne Komponenten) zu hantieren und damit die Behauptungen plausibel

Mehr

Entwurf und Analyse von Algorithmen

Entwurf und Analyse von Algorithmen Entwurf und Analyse von Algorithmen (5. Sem 2VO MAT.319 & 1 UE MAT.320 // 3VU 716.325) VO/UE/VU: Oswin Aichholzer UE/VU: Birgit Vogtenhuber Institut für Softwaretechnologie Entwurf 22nd European und Analyse

Mehr

Approximationsalgorithmen. 19. Dezember / 28

Approximationsalgorithmen. 19. Dezember / 28 Approximationsalgorithmen 19. Dezember 2017 1 / 28 Optimierungsprobleme Das Ziel: Bearbeite schwierige Optimierungsprobleme der Form opt y f (x, y) so dass L(x, y). Die Zielfunktion f (x, y) ist zu minimieren

Mehr

Approximationsalgorithmen

Approximationsalgorithmen Approximationsalgorithmen 1. Vorlesung Joachim Spoerhase Alexander Wolff Lehrstuhl für Informatik I Wintersemester 2017/18 Bücher zur Vorlesung Vijay V. Vazirani Approximation Algorithms Springer-Verlag

Mehr

Wiederholung. Wir gehen von LP s in Standardform aus, wobei A R m n vollen Zeilenrang hat: minc T x A x = b

Wiederholung. Wir gehen von LP s in Standardform aus, wobei A R m n vollen Zeilenrang hat: minc T x A x = b Wiederholung Wir gehen von LP s in Standardform aus, wobei A R m n vollen Zeilenrang hat: minc T x A x = b x 0. x R n heißt Basislösung, wenn Ax = b und rang(a J ) = J, wobei J = {j x (j) 0}; Basislösung

Mehr

Blatt 4. Stoß und Streuung - Lösungsvorschlag

Blatt 4. Stoß und Streuung - Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 211 Blatt 4. Stoß und Streuung - Lösungsvorschlag Aufgabe 4.1. Stoß Zwei

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 20. November 2014 INSTITUT FÜR THEORETISCHE 0 KIT 20.11.2014 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der

Mehr

Insbesondere sind nach dieser Definition also auch die leere Menge und einpunktige Teilmengen konvex.

Insbesondere sind nach dieser Definition also auch die leere Menge und einpunktige Teilmengen konvex. Konvexe Mengen 2 Wie am Ende des vorigen Kapitels bereits erwähnt, ist die notwendige Gradientenbedingung aus Satz 1.4.6 für konvexe Zielfunktionen auch hinreichend. Diese Tatsache mag als erste Motivation

Mehr

Algorithmen 2. Kapitel: Approximationsalgorithmen. Thomas Worsch. Fakultät für Informatik Karlsruher Institut für Technologie

Algorithmen 2. Kapitel: Approximationsalgorithmen. Thomas Worsch. Fakultät für Informatik Karlsruher Institut für Technologie Algorithmen 2 Algorithmen 2 Kapitel: Approximationsalgorithmen Thomas Worsch Fakultät für Informatik Karlsruher Institut für Technologie Wintersemester 2017/2018 1 / 40 Einleitung Überblick Einleitung

Mehr

Operations Research. Konvexe Funktionen. konvexe Funktionen. konvexe Funktionen. Rainer Schrader. 4. Juni Gliederung

Operations Research. Konvexe Funktionen. konvexe Funktionen. konvexe Funktionen. Rainer Schrader. 4. Juni Gliederung Operations Research Rainer Schrader Konvexe Funktionen Zentrum für Angewandte Informatik Köln 4. Juni 2007 1 / 84 2 / 84 wir haben uns bereits mit linearen Optimierungsproblemen beschäftigt wir werden

Mehr

Volumen eines Rotationskörpers

Volumen eines Rotationskörpers Volumen eines Rotationskörpers Das Volumen V des durch Rotation des Funktionsgraphen r = f (x) 0, a x b, um die x-achse erzeugten Körpers lässt sich durch Integration über die kreisförmigen Querschnitte

Mehr

Punktlokalisierung. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK

Punktlokalisierung. Dr. Martin Nöllenburg Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Vorlesung Algorithmische Geometrie INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 22.05.2012 Nachtrag: Dynamische Bereichsabfragen Letzte Woche: kd-trees und Range-Trees

Mehr

Das Gradientenverfahren

Das Gradientenverfahren Das Gradientenverfahren - Proseminar: Algorithmen der Nichtlinearen Optimierung - David Beisel December 10, 2012 David Beisel Das Gradientenverfahren December 10, 2012 1 / 28 Gliederung 0 Einführung 1

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 5. Übungsblatt - 22.November 2010 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (8 Punkte) Ein

Mehr

Wenn man den Kreis mit Radius 1 um (0, 0) beschreiben möchte, dann ist. (x, y) ; x 2 + y 2 = 1 }

Wenn man den Kreis mit Radius 1 um (0, 0) beschreiben möchte, dann ist. (x, y) ; x 2 + y 2 = 1 } A Analsis, Woche Implizite Funktionen A Implizite Funktionen in D A3 Wenn man den Kreis mit Radius um, beschreiben möchte, dann ist { x, ; x + = } eine Möglichkeit Oft ist es bequemer, so eine Figur oder

Mehr

Von mathematischer Modellierung und Computeralgebra - Die Lösung eines handfesten mathematischen Problems

Von mathematischer Modellierung und Computeralgebra - Die Lösung eines handfesten mathematischen Problems Von mathematischer Modellierung und Computeralgebra - Die Lösung eines handfesten mathematischen Problems Universität Paderborn Fakultät für Elektrotechnik, Informatik und Mathematik Institut für Mathematik

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2012/13 26. Vorlesung Greedy- und Approximationsalgorithmen Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Operations Research Optimierung für Wirtschaftsabläufe:

Mehr

Kapitel 5. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

Kapitel 5. Peter Becker (H-BRS) Operations Research I Sommersemester / 298 Kapitel 5 Dualität Peter Becker (H-BRS) Operations Research I Sommersemester 2014 241 / 298 Inhalt 5 Dualität Dualitätssätze Zweiphasen-Simplexalgorithmus Peter Becker (H-BRS) Operations Research I Sommersemester

Mehr

Normalengleichungen. Für eine beliebige m n Matrix A erfüllt jede Lösung x des Ausgleichsproblems Ax b min die Normalengleichungen A t Ax = A t b,

Normalengleichungen. Für eine beliebige m n Matrix A erfüllt jede Lösung x des Ausgleichsproblems Ax b min die Normalengleichungen A t Ax = A t b, Normalengleichungen Für eine beliebige m n Matrix A erfüllt jede Lösung x des Ausgleichsproblems Ax b min die Normalengleichungen A t Ax = A t b, Normalengleichungen 1-1 Normalengleichungen Für eine beliebige

Mehr

Einführung & Konvexe Hülle

Einführung & Konvexe Hülle Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 17.04.2012 AlgoGeom-Team Dozent Martin Nöllenburg noellenburg@kit.edu

Mehr

VORLESUNG 12 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt)

VORLESUNG 12 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) VORLESUNG 12 Lineare Optimierung (Viele Folien nach Ulf Lorenz, jetzt TU Darmstadt) 53 Wiederholung! Basis-Startlösung berechnet! Künstliche Variablen! Erkennung von unlösbaren Problemen! Eliminierung

Mehr

Daniel Borchmann. Sommerakademie Görlitz September 2007

Daniel Borchmann. Sommerakademie Görlitz September 2007 Einführung in Semidenite Programmierung Daniel Borchmann Sommerakademie Görlitz 2007 12. September 2007 1 Einleitung Lineare Optimierung Semidenite Optimierung 2 MAX-CUT MAX-BISECTION MAX-2SAT Einleitung

Mehr

Optimierung. Vorlesung 13

Optimierung. Vorlesung 13 Optimierung Vorlesung 13 Letze Woche Branch&Bound Suchbaum Nach Möglichkeit nicht komplett durchsuchen Abschätzungen nach oben und unten Suchheuristiken Randomisierte Lokale Suche Simulated Annealing Metropolis

Mehr

Teil I. Lineare Optimierung

Teil I. Lineare Optimierung Teil I Lineare Optimierung 5 Kapitel 1 Grundlagen Definition 1.1 Lineares Optimierungsproblem, lineares Programm. Eine Aufgabenstellung wird lineares Optimierungsproblem oder lineares Programm genannt,

Mehr

Das Linear Ordering Problem Exakte Lösungsverfahren. für NP-schwierige. VO Algorithm Engineering

Das Linear Ordering Problem Exakte Lösungsverfahren. für NP-schwierige. VO Algorithm Engineering Das Linear Ordering Problem Exakte Lösungsverfahren VO Algorithm Engineering für NP-schwierige Professor Dr. Petra Mutzel kombinatorische Lehrstuhl für Algorithm Engineering, LS11 Optimierungsprobleme

Mehr

Algorithmische Geometrie. Prof. Dr. Thomas Ottmann. Mitarbeit: PD Dr. Sven Schuierer Dr. Stefan Edelkamp

Algorithmische Geometrie. Prof. Dr. Thomas Ottmann. Mitarbeit: PD Dr. Sven Schuierer Dr. Stefan Edelkamp Algorithmische Geometrie Prof. Dr. Thomas Ottmann Mitarbeit: PD Dr. Sven Schuierer Dr. Stefan Edelkamp Literatur: M. de Berg, M. van Krefeld, M. Overmars O. Schwarzkopf: Computational Geometry (Algorithms

Mehr

Übung Computergrafik 3

Übung Computergrafik 3 Übung Computergrafik 3 1.Übungsblatt: Geometrie Stephan Groß (Dank an Irini Schmidt und Jakob Bärz) Institut für Computervisualistik Universität Koblenz-Landau 6. Juli 2011 Aufgabe 1: Fragezeichen Gegeben:

Mehr

Die duale Simplexmethode zur Lösung rein ganzzahliger linearer Programme

Die duale Simplexmethode zur Lösung rein ganzzahliger linearer Programme Kapitel 11 Die duale Simplexmethode zur Lösung rein ganzzahliger linearer Programme Wir betrachten folgendes Optimierungsproblem z = c T x min! Ax = b (11.1) (11.2) x j ganz für j = 1,..., n 1 n, (11.3)

Mehr

Satz 324 Sei M wie oben. Dann gibt es für ein geeignetes k Konstanten c i > 0 und Permutationsmatrizen P i, i = 1,...

Satz 324 Sei M wie oben. Dann gibt es für ein geeignetes k Konstanten c i > 0 und Permutationsmatrizen P i, i = 1,... Satz 324 Sei M wie oben. Dann gibt es für ein geeignetes k Konstanten c i > 0 und Permutationsmatrizen P i, i = 1,..., k, so dass gilt M = k c i P i i=1 k c i = r. i=1 Diskrete Strukturen 7.1 Matchings

Mehr

Theoretische Informatik. nichtdeterministische Turingmaschinen NDTM. Turingmaschinen. Rainer Schrader. 29. April 2009

Theoretische Informatik. nichtdeterministische Turingmaschinen NDTM. Turingmaschinen. Rainer Schrader. 29. April 2009 Theoretische Informatik Rainer Schrader nichtdeterministische Turingmaschinen Zentrum für Angewandte Informatik Köln 29. April 2009 1 / 33 2 / 33 Turingmaschinen das Konzept des Nichtdeterminismus nahm

Mehr

(u, v) z(u, v) u Φ(u, v) (v = const.) Parameterlinie v = const. v Φ(u, v) (u = const.) Parameterlinie u = const.

(u, v) z(u, v) u Φ(u, v) (v = const.) Parameterlinie v = const. v Φ(u, v) (u = const.) Parameterlinie u = const. 13 Flächenintegrale 64 13 Flächenintegrale Im letzten Abschnitt haben wir Integrale über Kurven betrachtet. Wir wollen uns nun mit Integralen über Flächen beschäftigen. Wir haben bisher zwei verschiedene

Mehr

Approximationsalgorithmen. Wintersemester 2013/14 HERZLICH WILLKOMMEN!

Approximationsalgorithmen. Wintersemester 2013/14 HERZLICH WILLKOMMEN! Approximationsalgorithmen Wintersemester 2013/14 HERZLICH WILLKOMMEN! 1 / 39 Worum geht s? Eine Bemerkung von Vasek Chvatal In den kommunistischen Ländern des Ostblocks in den 60 er und 70 er Jahren war

Mehr

Geometrische Algorithmen Voronoi-Diagramme. Lernmodul 7: Geo-Algorithmen und -Datenstrukturen - Voronoi-Diagramme

Geometrische Algorithmen Voronoi-Diagramme. Lernmodul 7: Geo-Algorithmen und -Datenstrukturen - Voronoi-Diagramme Folie 1 von 32 Geometrische Algorithmen Voronoi-Diagramme Folie 2 von 32 Voronoi-Diagramme Übersicht Problemstellung Animation zur Konstruktion eines Voronoi-Diagramms Definition, Eigenschaften eines Voronoi-Diagramms

Mehr

f(x 0 ) = lim f(b k ) 0 0 ) = 0

f(x 0 ) = lim f(b k ) 0 0 ) = 0 5.10 Zwischenwertsatz. Es sei [a, b] ein Intervall, a < b und f : [a, b] R stetig. Ist f(a) < 0 und f(b) > 0, so existiert ein x 0 ]a, b[ mit f(x 0 ) = 0. Wichtig: Intervall, reellwertig, stetig Beweis.

Mehr

Mathematik I (MATHE1) Klausuren lineare Algebra & analytische Geometrie

Mathematik I (MATHE1) Klausuren lineare Algebra & analytische Geometrie Mathematik I (MATHE1) Klausuren lineare Algebra & analytische Geometrie Prof. Dr. Thomas Risse www.weblearn.hs-bremen.de/risse/mai www.weblearn.hs-bremen.de/risse/mai/docs Fakultät Elektrotechnik & Informatik

Mehr

Proseminar: Konvexe Mengen

Proseminar: Konvexe Mengen Proseminar: Konvexe Mengen Varianten vom Satz von Kirchberger Trennung von Mengen mit einer Kugeloberfläche Trennung von Mengen mit Zylindern Jens Siewert Vortrag vom 14.12.04 und 04.01.05 1 Varianten

Mehr

Polarisierung und Magnetisierung

Polarisierung und Magnetisierung Übung 2 Abgabe: 10.03. bzw. 14.03.2017 Elektromagnetische Felder & Wellen Frühjahrssemester 2017 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch Polarisierung und Magnetisierung 1 Mathematische

Mehr

Seminar Algorithmen für planare Graphen

Seminar Algorithmen für planare Graphen Seminar Algorithmen für planare Graphen Reinhard Bauer, Marcus Krug, Ignaz Rutter, Dorothea Wagner Universität Karlsruhe (TH) Institut für Theoretische Informatik Lehrstuhl Algorithmik I 24. Oktober 2008

Mehr

Probabilistische Analyse von Algorithmen

Probabilistische Analyse von Algorithmen Lehrstuhl Informatik I Algorithmen & Komplexität RWTH Aachen 27. Mai 2005 Übersicht Einführung 1 Einführung 2 Exkurs: Wahrscheinlichkeitstheorie Borgwardts 3 Idee 4 Formale Beschreibung des s Motivation

Mehr

1 Pyramide, Kegel und Kugel

1 Pyramide, Kegel und Kugel 1 Pyramide, Kegel und Kugel Pyramide und Kegel sind beides Körper, die - anders als Prismen und Zylinder - spitz zulaufen. Während das Volumen von Prismen mit V = G h k berechnet wird, wobei G die Grundfläche

Mehr

Tetris ist NP-vollständig. Vortrag zum Seminar über Algorithmen SS2007 von Dietmar Mühmert

Tetris ist NP-vollständig. Vortrag zum Seminar über Algorithmen SS2007 von Dietmar Mühmert Tetris ist NP-vollständig Vortrag zum Seminar über Algorithmen SS2007 von Dietmar Mühmert Das Spiel Tetris Tetris wurde Mitte der 80er Jahre von dem russischen Mathematiker Alexei Paschitnow erfunden.

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

bekannt Analog reduzieren wir die Randwerte im 2d-System. Man erhält dann eine Blocktridia-

bekannt Analog reduzieren wir die Randwerte im 2d-System. Man erhält dann eine Blocktridia- 3.. Jetzt: Eliminiere 1. und 2. wie folgt u 2 + 2u 1 = h 2 f 1 + α }{{} bekannt Nun: Au = b mit A R n,n, b R n, u R n und A hat die Gestalt 2 1 1 2 1 A =......... =: tridiag( 1, 2, 1)...... 1 1 2 Analog

Mehr

2 Extrema unter Nebenbedingungen

2 Extrema unter Nebenbedingungen $Id: lagrange.tex,v 1.6 2012/11/06 14:26:21 hk Exp hk $ 2 Extrema unter Nebenbedingungen 2.1 Restringierte Optimierungsaufgaben Nachdem wir jetzt die bereits bekannten Techniken zur Bestimmung der lokalen

Mehr

Wie gross ist der Flächeninhalt A eines Quadrats mit der Seitenlänge a? A = a 2

Wie gross ist der Flächeninhalt A eines Quadrats mit der Seitenlänge a? A = a 2 Stereometrie-Formeln Quadrat eines Quadrats mit der Seitenlänge a? A = a Quadrat Wie lang ist die Diagonale d eines Quadrats mit der Seitenlänge a? d = a Rechteck eines Rechtecks mit den Seitenlängen a

Mehr

Innere-Punkt-Methoden

Innere-Punkt-Methoden Innere-Punkt-Methoden Johannes Stemick 26.01.2010 Johannes Stemick () Innere-Punkt-Methoden 26.01.2010 1 / 28 Übersicht 1 Lineare Optimierung 2 Innere-Punkt-Methoden Path-following methods Potential reduction

Mehr

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve.

1 Ableitungen. Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen. a 1 + tx 1. eine Kurve. 1 Ableitungen Definition: Eine Kurve ist eine Abbildung γ : I R R n, γ besteht also aus seinen Komponentenfunktionen γ 1 (t) γ(t) = γ n (t) Bild(γ) = {γ(t) t I} heißt auch die Spur der Kurve Beispiel:1)

Mehr

Optimale Steuerung 1 Prozessoptimierung 1

Optimale Steuerung 1 Prozessoptimierung 1 Optimale Steuerung 1 Prozessoptimierung 1 Kapitel 2: Lineare Optimierung Prof. Dr.-Ing. Pu Li Fachgebiet Simulation und Optimale Prozesse (SOP) Lineare Algebra (Mathematische Grundlagen) 2 Beispiel: Produktionsplanung

Mehr

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017

Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Mustererkennung Mathematische Werkzeuge R. Neubecker, WS 2016 / 2017 Optimierung: Lagrange-Funktionen, Karush-Kuhn-Tucker-Bedingungen Optimierungsprobleme Optimierung Suche nach dem Maximum oder Minimum

Mehr

UE Extremwertaufgaben 01

UE Extremwertaufgaben 01 1. Ein Rechteck mit einem Umfang von 2m dreht sich um eine seiner Seiten. Wie müssen die Seiten des Rechtecks gewählt werden, damit (a) die Mantelfläche (b) das Volumen des entstehenden Drehzylinders möglichst

Mehr

Typischerweise sind randomisierte Algorithmen einfacher zu beschreiben und zu implementieren als deterministische Algorithmen.

Typischerweise sind randomisierte Algorithmen einfacher zu beschreiben und zu implementieren als deterministische Algorithmen. Kapitel Randomisierte Algorithmen Einleitung Definition: Ein Algorithmus, der im Laufe seiner Ausführung gewisse Entscheidungen zufällig trifft, heisst randomisierter Algorithmus. Beispiel: Bei der randomisierten

Mehr

Das Boolesche Modell

Das Boolesche Modell mit konvexen Körnern 3.12.2009 mit konvexen Körnern Ziele des heutigen Seminars: ist sehr anwendungsbezogen. Daher ist unser Ziel, am Ende die folgenden statistischen Fragen zu beantworten: Wann ist das

Mehr

Konvexe Mengen mit konstanter Breite

Konvexe Mengen mit konstanter Breite PROSEMINAR KONVEXE MENGEN Konvexe Mengen mit konstanter Breite Christoph Buck Vortrag vom 11.05.2005 ProseminarWS 2004/2005 bei Prof. Dr. E. Oeljeklaus Universität Bremen 1 Dieser Vortrag im Rahmen des

Mehr