Kapitel 10. Stichproben

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Kapitel 10. Stichproben"

Transkript

1 Kapitel 10 n In der deskriptiven Statistik werden die Charakteristika eines Datensatzes durch Grafiken verdeutlicht und durch Maßzahlen zusammengefasst. In der Regel ist man aber nicht nur an der Verteilung des Merkmals im Datensatz interessiert, sondern man will auf Basis der Daten eine Aussage über die Verteilung des Merkmals in der machen, aus der die Daten gezogen wurden. Man nennt die Teilgesamtheit auch eine. So könnte die Durchschnittsnote aller Studenten der Wirtschaftswissenschaften im Abitur und der Anteil der Studenten, die den Mathematik Leistungskurs besucht haben, von Interesse sein. Die Durchschnittsnote ist der Erwartungswert µ. Einen Anteil in einer bezeichnen wir im folgenden mit p. Allgemein bezeichnen wir eine Größe einer Verteilung, an der wir interessiert sind, als Parameter θ. Will man einen oder mehrere Werte für den Parameter angeben, so spricht man vom Schätzen. Hierbei unterscheidet man Punktschätzung und Intervallschätzung. Bei der Punktschätzung bestimmt man aus den Daten einen Wert für den unbekannten Parameter, während man bei der Intervallschätzung ein Intervall angibt. Soll eine Vermutung über den Parameter überprüft werden, so spricht man vom Testen. Um verstehen zu können, warum und wann man auf Basis einer Aussagen über eine machen kann, muss man sich Gedanken über n machen. Ausgangspunkt der schließenden Statistik ist eine. Dies ist die Menge aller Personen bzw. bjekte, bei denen das oder die interessierenden Merkmale erhoben werden können. So ist die Menge aller Studenten der Wirtschaftswissenschaften in Deutschland eine. Hier könnten der Frauenanteil, die erwartete Dauer des Studiums oder die Durschnittsnote im Diplom von Interesse sein. 231

2 232 KAPITEL 10. STICHPRBEN Beispiel 85 Eine besteht aus 4 Personen. Die Körpergröße der Personen beträgt Die durchschnittliche Körpergröße E() = µ aller 4 Personen beträgt 174 und die Varianz Var() =σ 2 der Körpergröße ist 20. Es liegt nahe, bei allen Personen bzw. bjekten der die interessienden Merkmale zu erheben. Man spricht in diesem Fall von einer Vollerhebung. Ein Beispiel hierfür ist die Volkszählung. Bei dieser werden in regelmäßigen Abständen eine Reihe von Merkmalen von allen Bürgern der Bundesrepublik Deutschland erfragt. In der Regel ist eine Vollerhebung aber zu teuer oder zu aufwendig. ft ist es auch gar nicht möglich, die vollständig zu untersuchen. Dies ist der Fall, wenn die Untersuchung eines bjekts zu dessen Zerstörung führt. Kennt man die Lebensdauer einer Glühbirne oder eines Autoreifens, so kann man sie nicht mehr gebrauchen. Man spricht von zerstörender Prüfung. Da Vollerhebungen eine Reihe Nachteile besitzen, wird man nur einen Teil der, eine sogenannte Teilgesamtheit untersuchen. Will man von der Teilgesamtheit sinnvoll auf die schließen, so muss die Teilgesamtheit repräsentativ für die sein. Dies ist unter anderem dann der Fall, wenn jedes Element der die gleiche Chance hat, in die Teilgesamtheit zu gelangen. Man spricht dann von einer Zufallsstichprobe. Die folgende Abbildung visualisiert den Ziehungsprozess.

3 233 Bezeichnen wir mit x i den Wert des interessierenden Merkmals beim i-ten bjekt der Teilgesamtheit, so ist x 1,...,x n die. Nehmen wir an, dass die nicht vollständig beobachtet wird. Es können nur zwei Personen beobachtet werden. Man zieht also eine (x 1,x 2 ) vom Umfang n = 2. Dabei ist x 1 die Größe der ersten gezogenen Person und x 2 die Größe der zweiten gezogenen Person. Beim Ziehen ohne Zurücklegen gibt es 4 3 = 12 mögliche Sichproben. Sie sind (168, 172) (168, 176) (168, 180) (172, 168) (172, 176) (172, 180) (176, 168) (176, 172) (176, 180) (180, 168) (180, 172) (180, 176) Beim Ziehen mit Zurücklegen gibt es 4 2 =16mögliche Sichproben. Sie sind (168, 168) (168, 172) (168, 176) (168, 180) (172, 168) (172, 172) (172, 176) (172, 180) (176, 168) (176, 172) (176, 176) (176, 180) (180, 168) (180, 172) (180, 176) (180, 180) Bei einer Zufallsstichprobe hat jedes Element der die gleiche Chance, in die zu gelangen. In der folgenden Abbildung werden die bjekte in der Ellipse in der bei der Ziehung nicht berücksichtigt. Man spricht von einer verzerrten.

4 234 KAPITEL 10. STICHPRBEN Schauen wir uns am Beispiel an, was passiert, wenn bestimmte Elemente der nicht in die gelangen können. Die ersten beiden Personen sind Frauen und die beiden anderen Männer. Es werden aber nur die Frauen in Betracht gezogen. Ziehen wir mit Zurücklegen, dann gibt es folgende n (168, 168) (168, 172) (172, 168) (172, 172) Diese liefern alle ein verzerrtes Bild der, da wir die Körpergröße in der auf Basis der zu klein einschätzen. Wie das Beispiel zeigt, liefert eine ein verzerrtes Bild der, wenn Elemente der nicht in die gelangen können. Dies kann dadurch geschehen, dass sie bei der Ziehung der nicht berücksichtigt wurden. Man spricht in diesem Fall vom Selektions-Bias. Dieser liegt zum Beispiel bei Befragungen im Internet vor. Hier ist die sicherlich nicht repräsentativ für die Bevölkerung, da nur ein Teil der Bevölkerung Zugang zum Internet besitzt. Eine verzerrte erhält man aber auch dann, wenn Befragte eine Frage nicht beantworten und dieses Verhalten von der gestellten Frage abhängt. Man spricht in diesem Fall vom Nonresponse-Bias. Dieser tritt zum Beispiel bei Fragen nach dem Einkommen auf. Hier werden Personen mit sehr niedrigem oder sehr hohem Einkommen aus naheliegenden Gründen diese Frage nicht beantworten. Bei Befragungen auf freiwilliger Basis antworten oft nur die, die bei der Frage besonders involviert sind. Man spricht hier vom Selfselection- Bias. Beispiel 86 Der Literary Digest hatte seit 1916 den Gewinner der Präsidentschaftswahlen in den USA immer richtig prognostiziert. Im Jahr 1936 trat der Kandidat der Republikaner Landon gegen den demokratischen Präsidenten Roosevelt an. Eine Befragung von 2,4 Milionen Amerikanern durch den Literary Digest ergab, dass aber 57 Prozent Landon wählen würden. Bei der Wahl wurderoosevelt von 62 Prozent der Wähler gewählt. Woran lag das schlechte Prognose des Literary Digest? Der Literary Digest hatte Fragebögen an 10 Millionen Haushalte verschickt. Von diesen haben aber nur 24 Prozent geantwortet. Dies spricht für einen Nonresponse-Bias. Besitzt man keine Informationen über eine, so sollte man eine Zufallsstichprobe ziehen. Liegen jedoch Informationen über die vor, so sollten diese bei der nziehung berücksichtigt

5 235 werden. Ein Beispiel hierfür sind geschichtete n. Bei diesen sind bei jedem Merkmalsträger die Ausprägungen eines oder mehrerer Merkmale bekannt. Auf der Basis dieser Merkmale teilt man die in disjunkte Klassen ein, die man auch Schichten nennt. Man zieht aus jeder der Schichten eine Zufallsstichprobe. Die folgende Abbildung visualisiert die Schichtenbildung und den Ziehungsvorgang. Dabei bilden die Kreise die eine und die Kreuze die andere Schicht. Die ersten beiden Personen seien Frauen, die beiden anderen Männer. Die erste Schicht besteht aus den Frauen und die zweite aus den Männern. Aus jeder der beiden Schichten wird eine vom Umfang n = 1 gezogen. Es gibt also folgende n: (168, 176) (168, 180) (172, 176) (172, 180) ft werden Personen oder bjekte zu einer Einheit zusammengefasst. So ist es bei mündlichen Befragungen aus Kostengründen sinnvoll, Personen zu befragen, die nahe beieinander wohnen. Eine Auswahleinheit ist dann nicht die Person, sondern die Gruppe. Man spricht auch von Klumpen und dem Klumpenverfahren. Die folgende Abbildung illustriert das Klumpenverfahren. Dabei gibt es drei Klumpen. Die bjekte des ersten Klumpen sind

6 236 KAPITEL 10. STICHPRBEN durch ein, die des zweiten durch ein und die des dritten durch ein + veranschaulicht Wir fassen die ersten beiden Personen zu einem Klumpen und die beiden anderen Personen zum anderen Klumpen zusammen. Es wird ein Klumpen als ausgewählt. Es gibt also folgende n: (168, 172) (176, 180) Beispiel 87 Der Mikrozensus ist eine Erhebung, bei der jedes Jahr 1 Prozent der Bevölkerung der Bundesrepublik Deutschland befragt wird. Im Mikrozensusgesetz wird die Aufgabe des Mikrozensus beschrieben. Es sollen statistische Angaben in tiefer fachlicher Gliederung über die Bevölkerungsstruktur, die wirtschaftliche und soziale Lage der Bevölkerung, der Familien und der Haushalte, den Arbeitsmarkt, die berufliche Gliederung und die Ausbildung der Erwerbsbevölkerung sowie die Wohnverhältnisse bereitgestellt werden. Beim Mikrozensus wird das Schichtungsverfahren und das Klumpenverfahren verwendet. Die Klumpen bestehen dabei aus Haushalten, wobei ein Klumpen aus höchstens 9 Wohnungen besteht. Außerdem wird nach mehreren Variablen geschichtet. Es werden zunächst regionale Schichten gebildet, die im

7 237 Mittel Einwohner enthalten. So bilden Kreise, Zusammenfassungen von Kreisen oder Großstädte regionale Schichten. Sehr große Städte werden in regionale Schichten geteilt. Als weiteres Schichtungsmerkmal wird die Gebäudegröße betrachtet. Hierbei werden 4 Schichten gebildet. Schicht 1 enthält alle Gebäude, die mindestens eine aber höchstens vier Wohungen enthalten, Schicht 2 enthält alle Gebäude mit 5 bis 10 Wohnungen, Schicht 3 alle Gebäude mit mindestens 11 Wohnungen und Schicht 4 alle Gebäude, in denen eine Anstalt vermutet wird. Aus jeder Schicht wird ein Prozent der Personen ausgewählt. Die Stadt Bielefeld mit ihren ungefähr Einwohnern bildet eine eigene regionale Schicht, in der es die vier Schichten der Gebäudegrößen gibt. Aus jeder dieser Schichten wird eine gezogen.

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 4.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren)

5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5. Schließende Statistik (Inferenzstatistik, konfirmatorische Verfahren) 5.1. Einführung Schätzen unbekannter Parameter im Modell, z.b. Wahrscheinlichkeiten p i (Anteile in der Gesamtmenge), Erwartungswerte

Mehr

1. Einführung in die induktive Statistik

1. Einführung in die induktive Statistik Wichtige Begriffe 1. Einführung in die induktive Statistik Grundgesamtheit: Statistische Masse, die zu untersuchen ist, bzw. über die Aussagen getroffen werden soll Stichprobe: Teil einer statistischen

Mehr

Schließende Statistik

Schließende Statistik Schließende Statistik [statistical inference] Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de

Statistik Testverfahren. Heinz Holling Günther Gediga. Bachelorstudium Psychologie. hogrefe.de rbu leh ch s plu psych Heinz Holling Günther Gediga hogrefe.de Bachelorstudium Psychologie Statistik Testverfahren 18 Kapitel 2 i.i.d.-annahme dem unabhängig. Es gilt also die i.i.d.-annahme (i.i.d = independent

Mehr

Grundlagen der Statistik

Grundlagen der Statistik Grundlagen der Statistik Übung 10 2010 FernUniversität in Hagen Alle Rechte vorbehalten Fakultät für Wirtschaftswissenschaft Übersicht über die mit den Übungsaufgaben geprüften Lehrzielgruppen Lehrzielgruppe

Mehr

Kapitel 3 Schließende Statistik

Kapitel 3 Schließende Statistik Motivation Grundgesamtheit mit unbekannter Verteilung F Stichprobe X 1,...,X n mit Verteilung F Realisation x 1,...,x n der Stichprobe Rückschluss auf F Dr. Karsten Webel 160 Motivation (Fortsetzung) Kapitel

Mehr

5. Stichproben und Statistiken

5. Stichproben und Statistiken 5. Stichproben und Statistiken Problem: Es sei X eine ZV, die einen interessierenden Zufallsvorgang repräsentiere Man möchte die tatsächliche Verteilung von X kennenlernen (z.b. mittels der VF F X (x)

Mehr

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert

Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Konfidenzintervalle Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Anteilswert Differenzen von Erwartungswert Anteilswert Beispiel für Konfidenzintervall Im Prinzip haben wir

Mehr

Auswahlverfahren. Verfahren, welche die prinzipiellen Regeln zur Konstruktion von Stichproben angeben

Auswahlverfahren. Verfahren, welche die prinzipiellen Regeln zur Konstruktion von Stichproben angeben Auswahlverfahren Verfahren, welche die prinzipiellen Regeln zur Konstruktion von Stichproben angeben Definition der Grundgesamtheit Untersuchungseinheit: Objekt an dem Messungen vorgenommen werden Grundgesamtheit

Mehr

Mehrdimensionale Zufallsvariablen

Mehrdimensionale Zufallsvariablen Mehrdimensionale Zufallsvariablen Im Folgenden Beschränkung auf den diskreten Fall und zweidimensionale Zufallsvariablen. Vorstellung: Auswerten eines mehrdimensionalen Merkmals ( ) X Ỹ also z.b. ω Ω,

Mehr

er einen Fragebogen, den er von den Teilnehmern ausfüllen lässt. Der Fragebogen ist auf Seite 8 zu finden.

er einen Fragebogen, den er von den Teilnehmern ausfüllen lässt. Der Fragebogen ist auf Seite 8 zu finden. Kapitel 1 Grundbegriffe Fragt man Personen, was sie mit dem Begriff Statistik assoziieren, so werden in den Antworten in der Regel die Begriffe Zahlenkolonnen, Tabellen und Graphiken auftauchen. Es schließt

Mehr

TEIL 5: AUSWAHLVERFAHREN

TEIL 5: AUSWAHLVERFAHREN TEIL 5: AUSWAHLVERFAHREN Dozent: Dawid Bekalarczyk GLIEDERUNG Auswahlverfahren eine Umschreibung Grundbegriffe Graphische Darstellung: Grundgesamtheit und Stichprobe Vor- und Nachteile: Voll- vs. Teilerhebung

Mehr

WS 2014/15. (d) Bestimmen Sie die Wahrscheinlichkeitsfunktion von X. (e) Bestimmen Sie nun den Erwartungswert und die Varianz von X.

WS 2014/15. (d) Bestimmen Sie die Wahrscheinlichkeitsfunktion von X. (e) Bestimmen Sie nun den Erwartungswert und die Varianz von X. Fragenkatalog zur Übung Methoden der empirischen Sozialforschung WS 2014/15 Hier finden Sie die denkbaren Fragen zum ersten Teil der Übung. Das bedeutet, dass Sie zu diesem Teil keine anderen Fragen im

Mehr

Auswahlverfahren. Zufallsauswahl Bewusste Auswahl Willkürliche Auswahl. Dipl.-Päd. Ivonne Bemerburg

Auswahlverfahren. Zufallsauswahl Bewusste Auswahl Willkürliche Auswahl. Dipl.-Päd. Ivonne Bemerburg Auswahlverfahren Zufallsauswahl Bewusste Auswahl Willkürliche Auswahl Blockseminar: Methoden quantitativer Grundgesamtheit und Stichprobe Die Festlegung einer Menge von Objekten, für die die Aussagen der

Mehr

Tabelle 11.2 zeigt die gemeinsame Wahrscheinlichkeitsfunktion und die Randverteilungen

Tabelle 11.2 zeigt die gemeinsame Wahrscheinlichkeitsfunktion und die Randverteilungen Kapitel 11 Stichprobenfunktionen Um eine Aussage über den Wert eines unbekannten Parameters θ zu machen, zieht man eine Zufallsstichprobe vom Umfang n aus der Grundgesamtheit. Das Merkmal wird in diesem

Mehr

Grundlagen der Statistik

Grundlagen der Statistik Grundlagen der Statistik Übung 12 2009 FernUniversität in Hagen Alle Rechte vorbehalten Fachbereich Wirtschaftswissenschaft Übersicht über die mit den Übungsaufgaben geprüften Lehrzielgruppen Lehrzielgruppe

Mehr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen Wir betrachten nun ein Verfahren zur Konstruktion von Schätzvariablen für Parameter von Verteilungen. Sei X = (X 1,..., X n ). Bei X

Mehr

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management

Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Einführung in die Statistik für Wirtschaftswissenschaftler für Betriebswirtschaft und Internationales Management Sommersemester 2013 Hochschule Augsburg Lageparameter: Erwartungswert d) Erwartungswert

Mehr

Stichproben Parameterschätzung Konfidenzintervalle:

Stichproben Parameterschätzung Konfidenzintervalle: Stichproben Parameterschätzung Konfidenzintervalle: Beispiel Wahlprognose: Die Grundgesamtheit hat einen Prozentsatz p der Partei A wählt. Wenn dieser Prozentsatz bekannt ist, dann kann man z.b. ausrechnen,

Mehr

Dr. Guido Knapp Fakultät Statistik Technische Universität Dortmund 6. Februar Klausur zur Veranstaltung Erhebungstechniken

Dr. Guido Knapp Fakultät Statistik Technische Universität Dortmund 6. Februar Klausur zur Veranstaltung Erhebungstechniken Dr. Guido Knapp Fakultät Statistik Technische Universität Dortmund 6. Februar 2009 Klausur zur Veranstaltung Erhebungstechniken im Wintersemester 2008 / 2009 Name, Vorname: Studiengang (Bachelor/Diplom):

Mehr

7. Hypothesentests. Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang. X habe die unbekannte VF F X (x)

7. Hypothesentests. Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang. X habe die unbekannte VF F X (x) 7. Hypothesentests Ausgangssituation erneut: ZV X repräsentiere einen Zufallsvorgang X habe die unbekannte VF F X (x) Interessieren uns für einen unbekannten Parameter θ der Verteilung von X 350 Bisher:

Mehr

3.2 Stichprobenauswahl (Sampling)

3.2 Stichprobenauswahl (Sampling) 3.2 Stichprobenauswahl (Sampling) Stichprobe = als Stichprobe bezeichnet man eine Teilmenge einer Grundgesamtheit, die unter bestimmten Gesichtspunkten ausgewählt wurde. Der Stichprobenentnahme vorgelagert

Mehr

Modellanpassung und Parameterschätzung. A: Übungsaufgaben

Modellanpassung und Parameterschätzung. A: Übungsaufgaben 7 Modellanpassung und Parameterschätzung 1 Kapitel 7: Modellanpassung und Parameterschätzung A: Übungsaufgaben [ 1 ] Bei n unabhängigen Wiederholungen eines Bernoulli-Experiments sei π die Wahrscheinlichkeit

Mehr

Statistik I für Betriebswirte Vorlesung 13

Statistik I für Betriebswirte Vorlesung 13 Statistik I für Betriebswirte Vorlesung 13 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 6. Juli 2017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 13 Version: 7. Juli

Mehr

Kapitel 17. Unabhängigkeit und Homogenität Unabhängigkeit

Kapitel 17. Unabhängigkeit und Homogenität Unabhängigkeit Kapitel 17 Unabhängigkeit und Homogenität 17.1 Unabhängigkeit Im Rahmen der Wahrscheinlichkeitsrechnung ist das Konzept der Unabhängigkeit von zentraler Bedeutung. Die Ereignisse A und B sind genau dann

Mehr

Statistik Einführung // Stichprobenverteilung 6 p.2/26

Statistik Einführung // Stichprobenverteilung 6 p.2/26 Statistik Einführung Kapitel 6 Statistik WU Wien Gerhard Derflinger Michael Hauser Jörg Lenneis Josef Leydold Günter Tirler Rosmarie Wakolbinger Statistik Einführung // 6 p.0/26 Lernziele 1. Beschreiben

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger HSA. für Betriebswirtschaft und International Management Statistik für Betriebswirtschaft und International Management Sommersemester 2014 Prof. Dr. Stefan Etschberger HSA Streuungsparameter Varianz Var(X) bzw. σ 2 : [x i E(X)] 2 f(x i ), wenn X diskret Var(X)

Mehr

Inhaltsverzeichnis: Aufgaben zur Vorlesung Statistik Seite 1 von 10 Prof. Dr. Karin Melzer, Prof. Dr. Gabriele Gühring, Fakultät Grundlagen

Inhaltsverzeichnis: Aufgaben zur Vorlesung Statistik Seite 1 von 10 Prof. Dr. Karin Melzer, Prof. Dr. Gabriele Gühring, Fakultät Grundlagen Inhaltsverzeichnis: 1. Aufgabenlösungen... Lösung zu Aufgabe 1:... Lösung zu Aufgabe... Lösung zu Aufgabe 3... Lösung zu Aufgabe 4... Lösung zu Aufgabe 5... 3 Lösung zu Aufgabe... 3 Lösung zu Aufgabe 7...

Mehr

Kapitel 5. Univariate Zufallsvariablen. 5.1 Diskrete Zufallsvariablen

Kapitel 5. Univariate Zufallsvariablen. 5.1 Diskrete Zufallsvariablen Kapitel 5 Univariate Zufallsvariablen Im ersten Teil dieses Skriptes haben wir uns mit Daten beschäftigt und gezeigt, wie man die Verteilung eines Merkmals beschreiben kann. Ist man nur an der Population

Mehr

Datenstrukturen. Querschnitt. Grösche: Empirische Wirtschaftsforschung

Datenstrukturen. Querschnitt. Grösche: Empirische Wirtschaftsforschung Datenstrukturen Datenstrukturen Querschnitt Panel Zeitreihe 2 Querschnittsdaten Stichprobe von enthält mehreren Individuen (Personen, Haushalte, Firmen, Länder, etc.) einmalig beobachtet zu einem Zeitpunkt

Mehr

Grundlagen der empirischen Sozialforschung

Grundlagen der empirischen Sozialforschung Grundlagen der empirischen Sozialforschung Sitzung 5 - Auswahlverfahren Jan Finsel Lehrstuhl für empirische Sozialforschung Prof. Dr. Petra Stein 17. November 2008 1 / 24 Online-Materialien Die Materialien

Mehr

Beschreibende Statistik Deskriptive Statistik. Schließende Statistik Inferenzstatistik. Schluss von der Stichprobe auf die Grundgesamtheit

Beschreibende Statistik Deskriptive Statistik. Schließende Statistik Inferenzstatistik. Schluss von der Stichprobe auf die Grundgesamtheit Beschreibende Statistik Deskriptive Statistik Schließende Statistik Inferenzstatistik Beschreibung der Stichprobe Schluss von der Stichprobe auf die Grundgesamtheit Keine Voraussetzungen Voraussetzung:

Mehr

Rangkorrelationskoeffizient nach Spearman

Rangkorrelationskoeffizient nach Spearman Grundgesamtheit vs. Stichprobe Wer gehört zur Grundgesamtheit? Die Untersuchungseinheiten, die zur Grundgesamtheit gehören, sollten nach zeitlichen Kriterien räumlichen Kriterien sachlichen Kriterien Wie

Mehr

Verteilung von Summen

Verteilung von Summen Verteilung von Summen Beispiel: Würfelwurf Frage: Wie verhält sich die Verteilung der Augensumme von -Würfeln bei wachsendem? Zur Beantwortung führen wir ein Simulationseperiment durch. 6 Würfe mit 1 Würfel

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg 2 R. 06-206 (Persike) R. 06-214 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

1.2 Stichprobenarten. 20 Elementare Definitionen

1.2 Stichprobenarten. 20 Elementare Definitionen 20 Elementare Definitionen 1.2 Stichprobenarten In der Empirie (wissenschaftlich gewonnene Erfahrung) werden unterschiedliche Zugänge zur Auswahl einer repräsentativen Stichprobe verfolgt. Mittels eines

Mehr

5. Schließende Statistik. 5.1. Einführung

5. Schließende Statistik. 5.1. Einführung 5. Schließende Statistik 5.1. Einführung Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

Kapitel 13. Grundbegriffe statistischer Tests

Kapitel 13. Grundbegriffe statistischer Tests Kapitel 13 Grundbegriffe statistischer Tests Oft hat man eine Vermutung über die Verteilung einer Zufallsvariablen X. Diese Vermutung formuliert man als Hypothese H 0.Sokönnte man daran interessiert sein

Mehr

Statistik I für Betriebswirte Vorlesung 14

Statistik I für Betriebswirte Vorlesung 14 Statistik I für Betriebswirte Vorlesung 14 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 13. Juli 017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 14 Version: 8. Juli

Mehr

Multivariate Zufallsvariablen

Multivariate Zufallsvariablen Kapitel 7 Multivariate Zufallsvariablen 7.1 Diskrete Zufallsvariablen Bisher haben wir immer nur eine Zufallsvariable betrachtet. Bei vielen Anwendungen sind aber mehrere Zufallsvariablen von Interesse.

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests Nach Verteilungsannahmen: verteilungsabhängig: parametrischer [parametric] Test verteilungsunabhängig: nichtparametrischer [non-parametric] Test Bei parametrischen Tests

Mehr

Statistik II für Betriebswirte Vorlesung 1

Statistik II für Betriebswirte Vorlesung 1 Statistik II für Betriebswirte Vorlesung 1 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 16. Oktober 2017 Dr. Andreas Wünsche Statistik II für Betriebswirte Vorlesung 1 Version:

Mehr

Aufgabe 1 (8= Punkte) 13 Studenten haben die folgenden Noten (ganze Zahl) in der Statistikklausur erhalten:

Aufgabe 1 (8= Punkte) 13 Studenten haben die folgenden Noten (ganze Zahl) in der Statistikklausur erhalten: Aufgabe 1 (8=2+2+2+2 Punkte) 13 Studenten haben die folgenden Noten (ganze Zahl) in der Statistikklausur erhalten: Die Zufallsvariable X bezeichne die Note. 1443533523253. a) Wie groß ist h(x 5)? Kreuzen

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne

Mehr

Übungsaufgaben zu Kapitel 2 und 3

Übungsaufgaben zu Kapitel 2 und 3 Übungsaufgaben zu Kapitel 2 und 3 Aufgabe 1 Wann ist eine Teilerhebung sinnvoller als eine Vollerhebung? Nennen Sie mindestens drei Gründe. Aufgabe 2 Welches Verfahren soll angewendet werden, um eine Teilerhebung

Mehr

Kategoriale und metrische Daten

Kategoriale und metrische Daten Kategoriale und metrische Daten Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/14 Übersicht Abhängig von der Anzahl der Ausprägung der kategorialen Variablen unterscheidet man die folgenden Szenarien:

Mehr

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe Kapitel 4 Statistische Tests 4.1 Grundbegriffe Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe X 1,..., X n. Wir wollen nun die Beobachtung der X 1,...,

Mehr

Kapitel 3 Datengewinnung und Auswahlverfahren 3.1. Erhebungsarten und Studiendesigns

Kapitel 3 Datengewinnung und Auswahlverfahren 3.1. Erhebungsarten und Studiendesigns Kapitel 3 Datengewinnung und Auswahlverfahren 3.1. Erhebungsarten und Studiendesigns Daten Erhebungsdesign: Werte eines /mehrere Merkmale in einer Grundgesamtheit von Merkmalsträgern Planung der Datengewinnung

Mehr

Inferenzstatistik und Hypothesentests. Hierbei geht es um die Absicherung eines Untersuchungsergebnisses gegen ein Zufallsereignis.

Inferenzstatistik und Hypothesentests. Hierbei geht es um die Absicherung eines Untersuchungsergebnisses gegen ein Zufallsereignis. Statistik II und Hypothesentests Dr. Michael Weber Aufgabenbereich Hierbei geht es um die Absicherung eines Untersuchungsergebnisses gegen ein Zufallsereignis. Ist die zentrale Fragestellung für alle statistischen

Mehr

Warum Stichproben? Vollerhebungen sind teuer Nehmen (zu)viel Zeit in Anspruch Sind evtl. destruktiv

Warum Stichproben? Vollerhebungen sind teuer Nehmen (zu)viel Zeit in Anspruch Sind evtl. destruktiv Warum Stichproben? Vollerhebungen sind teuer Nehmen (zu)viel Zeit in Anspruch Sind evtl. destruktiv Voraussetzung für die Anwendung von Stichproben: Stichproben müssen repräsentativ sein, d.h. ein verkleinertes

Mehr

Parameterschätzung. Kapitel 14. Modell Es sei {P θ θ Θ}, Θ R m eine Familie von Verteilungen auf χ (sog. Stichprobenraum),

Parameterschätzung. Kapitel 14. Modell Es sei {P θ θ Θ}, Θ R m eine Familie von Verteilungen auf χ (sog. Stichprobenraum), Kapitel 14 Parameterschätzung Modell Es sei {P θ θ Θ}, Θ R m eine Familie von Verteilungen auf χ (sog. Stichprobenraum), = ( 1,..., n ) sei eine Realisierung der Zufallsstichprobe X = (X 1,..., X n ) zu

Mehr

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar "Statistische Methoden in der Physik"

Theorie Parameterschätzung Ausblick. Schätzung. Raimar Sandner. Studentenseminar Statistische Methoden in der Physik Studentenseminar "Statistische Methoden in der Physik" Gliederung 1 2 3 Worum geht es hier? Gliederung 1 2 3 Stichproben Gegeben eine Beobachtungsreihe x = (x 1, x 2,..., x n ): Realisierung der n-dimensionalen

Mehr

Mikrozensus Datenproduktion und Datenanalyse in der amtlichen Statistik

Mikrozensus Datenproduktion und Datenanalyse in der amtlichen Statistik Mikrozensus Datenproduktion und Datenanalyse in der amtlichen Statistik Tim Hochgürtel Inhalt 1. Was ist der Mikrozensus? 2. Frageprogramm des Mikrozensus 3. Methodik der Erhebung 4. Hochrechnung 5. Nutzungsmöglichkeit

Mehr

ohne berufsqualifizierenden Bildungsabschluss ohne Schulabschluss 3,8 Bevölkerung 9,2 7,4 10,9 1,6 1,8 1,4 insgesamt Männer Frauen

ohne berufsqualifizierenden Bildungsabschluss ohne Schulabschluss 3,8 Bevölkerung 9,2 7,4 10,9 1,6 1,8 1,4 insgesamt Männer Frauen Anteil der 25- bis unter 65-jährigen Bevölkerung* ohne Schulabschluss bzw. ohne berufsqualifizierenden Bildungsabschluss an der gleichaltrigen Bevölkerung in Prozent, 2011 ohne berufsqualifizierenden Bildungsabschluss

Mehr

Statistik-Übungsaufgaben

Statistik-Übungsaufgaben Statistik-Übungsaufgaben 1) Bei der Produktion eine Massenartikels sind erfahrungsgemäß 20 % aller gefertigten Erzeugnisse unbrauchbar. Es wird eine Stichprobe vom Umfang n =1000 entnommen. Wie groß ist

Mehr

Kapitel 3 Schließende Statistik

Kapitel 3 Schließende Statistik Beispiel 3.4: (Fortsetzung Bsp. 3.) bekannt: 65 i=1 X i = 6, also ˆp = X = 6 65 = 0, 4 Überprüfen der Voraussetzungen: (1) n = 65 30 () n ˆp = 6 10 (3) n (1 ˆp) = 39 10 Dr. Karsten Webel 194 Beispiel 3.4:

Mehr

Eigene MC-Fragen Kap. 6 Auswahlverfahren

Eigene MC-Fragen Kap. 6 Auswahlverfahren Eigene MC-Fragen Kap. 6 Auswahlverfahren 1. Werden Untersuchungseinheiten für die Teilerhebung nach vorher festgelegten Regen aus der Grundgesamtheit ausgewählt, spricht man von Stichprobe sample Auswahl

Mehr

Kapitel 10 Mittelwert-Tests Einstichproben-Mittelwert-Tests 10.2 Zweistichproben Mittelwert-Tests

Kapitel 10 Mittelwert-Tests Einstichproben-Mittelwert-Tests 10.2 Zweistichproben Mittelwert-Tests Kapitel 10 Mittelwert-Tests 10.1 Einstichproben-Mittelwert-Tests 10.2 Zweistichproben Mittelwert-Tests 10.1 Einstichproben- Mittelwert-Tests 10.1.1 Einstichproben- Gauß-Test Dichtefunktion der Standard-Normalverteilung

Mehr

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg Methodenlehre Vorlesung 10 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre II Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 18.2.15 Psychologie als Wissenschaft

Mehr

Grundgesamtheit und Stichprobe

Grundgesamtheit und Stichprobe Grundgesamtheit und Stichprobe Definition 1 Die Menge der Untersuchungseinheiten {U 1,U 2,...,U N } heißt Grundgesamtheit. Die Anzahl N der Einheiten ist der Umfang der Grundgesamtheit. Jeder Einheit U

Mehr

Elisabeth Aufhauser, unveröffentlichter Text Unterrichtsmaterial Statistik-UE für Soziologie

Elisabeth Aufhauser, unveröffentlichter Text Unterrichtsmaterial Statistik-UE für Soziologie Elisabeth Aufhauser, unveröffentlichter Text Unterrichtsmaterial Statistik-UE für Soziologie Konfidenzintervall Statistische Analyse von Stichproben Der Datensatz aus der Übung (social survey 2003) besteht

Mehr

b) Bestimmen Sie die Varianz der beiden Schätzer. c) Ist ein oder sind beide Schätzer konsistent? Begründen Sie!

b) Bestimmen Sie die Varianz der beiden Schätzer. c) Ist ein oder sind beide Schätzer konsistent? Begründen Sie! Aufgabe 1 (3 + 3 + 2 Punkte) Ein Landwirt möchte das durchschnittliche Gewicht von einjährigen Ferkeln bestimmen lassen. Dies möchte er aus seinem diesjährigen Bestand an n Tieren schätzen. Er kann dies

Mehr

Experimentelle und quasiexperimentelle

Experimentelle und quasiexperimentelle Experimentelle und quasiexperimentelle Designs Experimentelle Designs Quasi- experimenttel Designs Ex- post- facto- Desingns Experimentelle Designs 1. Es werden mindestens zwei experimentelle Gruppen gebildet.

Mehr

Prüfung aus Statistik 1 für SoziologInnen

Prüfung aus Statistik 1 für SoziologInnen Prüfung aus Statistik 1 für SoziologInnen 27. Juni 2009 Nachname: Vorname: Matrikelnummer: Studienkennzahl: Beispiel 1: (6 Punkte) a) Wie viel Prozent der Beobachtungen liegen beim Box-Plot außerhalb der

Mehr

2.3 Intervallschätzung

2.3 Intervallschätzung 2.3.1 Motivation und Hinführung Bsp. 2.15. [Wahlumfrage] Der wahre Anteil der rot-grün Wähler unter allen Wählern war 2009 auf eine Nachkommastelle gerundet genau 33.7%. Wie groß ist die Wahrscheinlichkeit,

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilung diskreter Zufallsvariablen Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Grundproblem der Inferenzstatistik

Grundproblem der Inferenzstatistik Grundproblem der Inferenzstatistik Grundgesamtheit Stichprobenziehung Zufalls- Stichprobe... "wahre", unbekannte Anteil nicht zufällig p... beobachtete Anteil zufällig? Statistik für SoziologInnen 1 Inferenzschluss

Mehr

Auswahlverfahren. Schnell, R. Hill, P. B. Esser, E. 1999, Methoden der empirischen Sozialforschung. München: Oldenbourg. Seiten ;

Auswahlverfahren. Schnell, R. Hill, P. B. Esser, E. 1999, Methoden der empirischen Sozialforschung. München: Oldenbourg. Seiten ; Auswahlverfahren Objektbereich & Grundgesamtheit Vollerhebung Volkszählung Teilerhebung angestrebte Grundgesamtheit Auswahlgesamtheit Inferenzpopulation Willkürliche Auswahl Bewußte Auswahl Schnell, R.

Mehr

Klausurvorbereitung - Statistik

Klausurvorbereitung - Statistik Aufgabe 1 Klausurvorbereitung - Statistik Studenten der Politikwissenschaft der Johannes Gutenberg-Universität wurden befragt, seit wie vielen Semestern sie eingeschrieben sind. Berechnen Sie für die folgenden

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Punkt- und Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr.

Mehr

Webinar Induktive Statistik. - Wahrscheinlichkeitsrechnung - Stichprobentheorie

Webinar Induktive Statistik. - Wahrscheinlichkeitsrechnung - Stichprobentheorie Webinar Induktive Statistik - Wahrscheinlichkeitsrechnung - Stichprobentheorie Wahrscheinlichkeitstheorie Aufgabe : Zwei Lieferanten decken den Bedarf eines PKW-Herstellers von 00.000 Einheiten pro Monat.

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 6 Genzwertsätze Einführung 1 Wahrscheinlichkeit: Definition und Interpretation

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 8. Dezember 2010 Teil V Schließende Statistik 1 Parameterschätzung Erwartungstreue und Konsistenz Maximum-Likelihood

Mehr

von x-würfeln bei wachsendem n? Zur Beantwortung führen wir ein Simulationsexperiment durch.

von x-würfeln bei wachsendem n? Zur Beantwortung führen wir ein Simulationsexperiment durch. Zentraler Grenzwertsatz Die Normalverteilung verdankt ihre universelle theoretische und praktische Bedeutung dem zentralen Grenzwertsatz. Unabhängig von der konkreten k Ausgangsverteilung konvergiert die

Mehr

1. Inhaltsverzeichnis. 2. Abbildungsverzeichnis

1. Inhaltsverzeichnis. 2. Abbildungsverzeichnis 1. Inhaltsverzeichnis 1. Inhaltsverzeichnis... 1 2. Abbildungsverzeichnis... 1 3. Einleitung... 2 4. Beschreibung der Datenquelle...2 5. Allgemeine Auswertungen...3 6. Detaillierte Auswertungen... 7 Zusammenhang

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

WATCHING YOUR STEP - Clinical Trial Process

WATCHING YOUR STEP - Clinical Trial Process WATCHING YOUR STEP - Clinical Trial Process Kritische Bewertung wissenschaftlicher Literatur Bewertung einer quantitativen Querschnittstudie über die Anwendung von Forschungsergebnissen in der Pflegepraxis

Mehr

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle Patric Müller ETHZ Teil VIII Zentraler Grenzwertsatz und Vertrauensintervalle WBL 17/19, 29.05.2017 Wahrscheinlichkeit

Mehr

Kapitel VII. Punkt- und Intervallschätzung bei Bernoulli-Versuchen

Kapitel VII. Punkt- und Intervallschätzung bei Bernoulli-Versuchen Kapitel VII Punkt- und Intervallschätzung bei Bernoulli-Versuchen Einführungsbeispiel: Jemand wirft einen korrekten Würfel 60 mal. Wie oft etwa wird er die 6 würfeln? Klar: etwa 10 mal, es kann aber auch

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Punkt- und Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr.

Mehr

Grundlagen der Biometrie in Agrarwissenschaften / Ernährungswissenschaften

Grundlagen der Biometrie in Agrarwissenschaften / Ernährungswissenschaften Grundlagen der Biometrie in Agrarwissenschaften / Ernährungswissenschaften Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Grundlagen der Biometrie, WS 2011/12 Vorlesung: Dienstag 8.15-9.45,

Mehr

Gewichtung in der Umfragepraxis. Von Tobias Hentze

Gewichtung in der Umfragepraxis. Von Tobias Hentze Gewichtung in der Umfragepraxis Von Tobias Hentze Gliederung 1. Einführung 2. Gewichtungsarten 1. Designgewichtung 2. Non-Response-Gewichtung 3. Zellgewichtung 3. Fazit Gewichtung Definition: Ein Gewicht

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Wahrscheinlichkeitsfunktionen

Mehr

Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit:

Ermitteln Sie auf 2 Dezimalstellen genau die folgenden Kenngrößen der bivariaten Verteilung der Merkmale Weite und Zeit: 1. Welche der folgenden Kenngrößen, Statistiken bzw. Grafiken sind zur Beschreibung der Werteverteilung des Merkmals Konfessionszugehörigkeit sinnvoll einsetzbar? A. Der Modalwert. B. Der Median. C. Das

Mehr

Einige Grundbegriffe der Statistik

Einige Grundbegriffe der Statistik Einige Grundbegriffe der Statistik 1 Überblick Das Gesamtbild (Ineichen & Stocker, 1996) 1. Ziehen einer Stichprobe Grundgesamtheit 2. Aufbereiten der Stichprobe (deskriptive Statistik) 3. Rückschluss

Mehr

Statistik II Februar 2005

Statistik II Februar 2005 Statistik II Februar 5 Aufgabe Zufällig ausgewählten Personen der Zielgruppe wird der Prototyp eines neuen Konsumgutes vorgelegt, um die Zahlungsbereitschaft Z ( pro Einheit des Konsumgutes) zu ermitteln.

Mehr

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Methodenlehre. Vorlesung 10. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg Methodenlehre Vorlesung 10 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre I Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 25.9.13 Psychologie als Wissenschaft

Mehr

Wahrscheinlichkeitsrechnung und Statistik

Wahrscheinlichkeitsrechnung und Statistik 10. Vorlesung - 017 Quantil der Ordnung α für die Verteilung des beobachteten Merkmals X ist der Wert z α R für welchen gilt z 1 heißt Median. P(X < z α ) α P(X z α ). Falls X stetige zufällige Variable

Mehr

Statistik-Klausur vom 6. Februar 2007

Statistik-Klausur vom 6. Februar 2007 Statistik-Klausur vom 6. Februar 2007 Bearbeitungszeit: 90 Minuten Aufgabe 1 Bei einer Besucherumfrage in zwei Museen wurden die Besuchsdauern (gemessen in Stunden) festgestellt: Besuchsdauer Anteil der

Mehr

M13 Übungsaufgaben / pl

M13 Übungsaufgaben / pl Die Histogramme von Binomialverteilungen werden bei wachsendem Stichprobenumfang n immer flacher und breiter. Dem Maximum einer solchen Verteilung kommt daher keine allzu große Wahrscheinlichkeit zu. Vielmehr

Mehr

Statistische Tests für unbekannte Parameter

Statistische Tests für unbekannte Parameter Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung

Mehr

2.3 Intervallschätzung

2.3 Intervallschätzung 2.3.1 Motivation und Hinführung Bsp. 2.11. [Wahlumfrage] Der wahre Anteil der rot-grün Wähler 2009 war genau 33.7%. Wie groß ist die Wahrscheinlichkeit, in einer Zufallsstichprobe von 1000 Personen genau

Mehr

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung

1 Wahrscheinlichkeitsrechnung. 2 Zufallsvariablen und ihre Verteilung. 3 Statistische Inferenz. 4 Intervallschätzung 0 Einführung 1 Wahrscheinlichkeitsrechnung Zufallsvariablen und ihre Verteilung 3 Statistische Inferenz 4 Intervallschätzung Motivation und Hinführung Der wahre Anteil der rot-grün Wähler 009 war genau

Mehr

Grundgesamtheit und Stichprobe

Grundgesamtheit und Stichprobe Grundgesamtheit und Stichprobe Definition 1 Die Menge der Untersuchungseinheiten {U 1,U 2,...,U N } heißt Grundgesamtheit. Die Anzahl N der Einheiten ist der Umfang der Grundgesamtheit. Jeder Einheit U

Mehr

Statistische Tests für unbekannte Parameter

Statistische Tests für unbekannte Parameter Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung

Mehr

5. Auswahlverfahren für Stichprobenelemente

5. Auswahlverfahren für Stichprobenelemente Grundlagen Uneingeschränkte Zufallsauswahl (z.b. Roulette, Würfeln) Zufallszahlen müssen eine vorgegebene Verteilung erfüllen (Gleichverteilung) Zufallszahlen müssen zufällig aufeinander folgen (keine

Mehr

6. Schätzverfahren für Parameter

6. Schätzverfahren für Parameter 6. Schätzverfahren für Parameter Ausgangssituation: Ein interessierender Zufallsvorgang werde durch die ZV X repräsentiert X habe eine unbekannte Verteilungsfunktion F X (x) Wir interessieren uns für einen

Mehr