Ablauf. 1 Imitationsdynamik. 2 Monotone Auszahlung. 3 Entscheidung gegen iterativ dominierte Strategien. 4 Beste-Antwort-Dynamik 2 / 26

Größe: px
Ab Seite anzeigen:

Download "Ablauf. 1 Imitationsdynamik. 2 Monotone Auszahlung. 3 Entscheidung gegen iterativ dominierte Strategien. 4 Beste-Antwort-Dynamik 2 / 26"

Transkript

1 Spieldynamik Josef Hofbauer and Karl Sigmund: Evolutionary Games and Population Dynamics, Cambridge, Kap. 8 Simon Maurer Saarbrücken, den / 26

2 Ablauf 1 Imitationsdynamik 2 Monotone Auszahlung 3 Entscheidung gegen iterativ dominierte Strategien 4 Beste-Antwort-Dynamik 2 / 26

3 Imitationsdynamik Voraussetzungen: Symmetrische Spiele mit (n x n) - Auszahlungsmatrix eine (große) Population von Spielern reine Strategien R 1 bis R n werden mit einer Wiederholungsrate x i (t) gewählt 3 / 26

4 Imitationsdynamik Voraussetzungen: Symmetrische Spiele mit (n x n) - Auszahlungsmatrix eine (große) Population von Spielern reine Strategien R 1 bis R n werden mit einer Wiederholungsrate x i (t) gewählt Zustand ist zu jedem Zeitpunkt durch einen Punkt x S n gegeben 3 / 26

5 Imitationsdynamik Voraussetzungen: Symmetrische Spiele mit (n x n) - Auszahlungsmatrix eine (große) Population von Spielern reine Strategien R 1 bis R n werden mit einer Wiederholungsrate x i (t) gewählt Zustand ist zu jedem Zeitpunkt durch einen Punkt x S n gegeben Auszahlung: Strategie R i erhält dann (Ax) i = a ij x j pro Spiel die durchschnittliche Auszahlung der Population ist x A x 3 / 26

6 Imitationsdynamik Gelegentliche Auswahl eines Spielers der Population, Möglichkeit, die Strategie zu wechseln, Wahlprozess zufällig, übernimmt mit einer gewissen Wahrscheinlichkeit dessen Strategie. 4 / 26

7 Imitationsdynamik Gelegentliche Auswahl eines Spielers der Population, Möglichkeit, die Strategie zu wechseln, Wahlprozess zufällig, übernimmt mit einer gewissen Wahrscheinlichkeit dessen Strategie. Ein genereller Ansatz wird durch das Input-Output-Modell repräsentiert: Input-Output-Modell ẋ i = x i ( fij (x) f ji (x) ) x j. j 4 / 26

8 Imitationsdynamik Gelegentliche Auswahl eines Spielers der Population, Möglichkeit, die Strategie zu wechseln, Wahlprozess zufällig, übernimmt mit einer gewissen Wahrscheinlichkeit dessen Strategie. Ein genereller Ansatz wird durch das Input-Output-Modell repräsentiert: Input-Output-Modell ẋ i = x i ( fij (x) f ji (x) ) x j. j Klar: Ist ẋ i = 0, so ist S n invariant unter obiger Formel. 4 / 26

9 Imitationsdynamik Die Änderungsrate von R j zu R i ist gegeben durch x i x j f ij t mit x i x j = Wahrscheinlichkeit für das Auswählen eines Spielers mit Strategie R j bzw. R i, f ij = Rate mit der ein R j -Spieler zu R i umschwenkt 5 / 26

10 Imitationsdynamik Die Änderungsrate von R j zu R i ist gegeben durch x i x j f ij t mit x i x j = Wahrscheinlichkeit für das Auswählen eines Spielers mit Strategie R j bzw. R i, f ij = Rate mit der ein R j -Spieler zu R i umschwenkt Diese Rate hängt natürlich von der momentanen Auszahlung (Ax) i und (Ax) j ab. f ij (x) = f ( (Ax) i, Ax) j ) mit f = f(u, v) Funktion, welche die Imitationsvorschrift angibt. 5 / 26

11 Imitationsdynamik Imitiere den Besseren Erste Idee: 0, wenn u < v f(u, v) = 1, wenn u > v 6 / 26

12 Imitationsdynamik Imitiere den Besseren Erste Idee: 0, wenn u < v f(u, v) = 1, wenn u > v Problem: Diese Funktion ist unstetig. 6 / 26

13 Imitationsdynamik Imitiere den Besseren Erste Idee: 0, wenn u < v f(u, v) = 1, wenn u > v Problem: Diese Funktion ist unstetig. Ausweg: Man definiert sich eine Funktion, die von der Auszahlungsdifferenz abhängig ist. 6 / 26

14 Imitationsdynamik Definiere z.b. f(u, v) als f(u, v) = φ(u v) mit φ monoton wachsend. 7 / 26

15 Imitationsdynamik Definiere z.b. f(u, v) als f(u, v) = φ(u v) mit φ monoton wachsend. Das Input-Output-Modell kann dann mit ψ(u) = φ(u) φ( u) (ungerade, monoton wachsend) geschrieben werden als: ẋ i = x i x j ψ ( ) (Ax) i Ax) j j 7 / 26

16 Imitationsdynamik Beispiel Setze φ(u) u α +, α 0 und ψ(u) u α + sgn(u). Für α = 1 ergibt sich ψ(u) = u. Diese Imitationsvorschrift ist proportional und bedeutet im Endeffekt imitiere Verhalten mit höherem Profit, gewichtet mit einer Wahrscheinlichkeit, die proportional zum erwarteten Gewinn ist. Das Input-Output-Modell reduziert sich dann zur gewohnten Replikatordynamik: ẋ i = x i ( (Ax)i x Ax ). Im Grenzfall α 0 entsteht nun aus dem Input-Output-Modell die zuvor angesprochene Imitiere den Besseren-Strategie. 8 / 26

17 Imitationsdynamik Das Input-Output-Modell lässt sich auch wie folgt darstellen: ( ( ) ) ẋ i = x i f (Ax)i f mit f = ( ) x i f (Ax) i Dieser Fall tritt dann auf, wenn ein Spieler zu einer besseren Strategie wechselt, die proportional zur Differenz [f((ax) i ) f((ax) j )] + ist, wenn f ij = f((ax) i ), d.h. der Wechsel ist nur vom imitierten Spieler abhängig, wenn f ij = f((ax) j ), d.h. der Wechsel ist nur von der Auszahlung an der imitierenden Spieler abhängig (Imitation aufgrund Unzufriedenheit, mit der Annahme, dass unerfolgreiche Spieler öfters und blind imitieren). 9 / 26

18 Monotone Auszahlung Nun interessieren uns Spieldynamiken der Form ẋ i = x i g i (x) mit g i C 1 und x i g i (x) = 0 x S n. 10 / 26

19 Monotone Auszahlung Nun interessieren uns Spieldynamiken der Form ẋ i = x i g i (x) mit g i C 1 und x i g i (x) = 0 x S n. Definition: Auszahlungsmonoton Eine Spieldynamik wird als auszahlungsmonoton bezeichent, falls sich die Wachstumsrate der verschiedenen Strategien direkt proportional zur erwarteten Auszahlung verhält: g i (x) > g j (x) (Ax) i > (Ax) j 10 / 26

20 Monotone Auszahlung Informationen zur monotonen Auszahlung: Die Replikatordynamik ist auszahlungsmonoton. Auszahlungsmonotone Spiele haben die gleichen stationären Punkte, wie die Replikatordynamik. Für auszahlungsmonotone Spiele sind die Lyapunov-stabilen Gleichgewichte Nash-Gleichgewichte. Die strikten Nash-Gleichgewichte sind asymptotisch stabil. 11 / 26

21 Monotone Auszahlung Schwach auszahlungspositiv: Reine Strategie mit einer höheren Auszahlung als der Durchschnitt der Population. Die Strategie hat eine streng monoton wachsende Wachstumsrate. B(x) ( i : (Ax) i > x Ax ) g i (x) > 0 12 / 26

22 Entscheidung gegen iterativ dominierte Strategien Definition: strikt dominiert Die reine Strategie R i wird als strikt dominiert bezeichnet, wenn es eine Strategie y S n gibt, sodass x S n gilt: (Ax) i < y Ax. 13 / 26

23 Entscheidung gegen iterativ dominierte Strategien Spiel wird von rational denkenden Menschen gespielt, die Strategie R i wird nicht benutzt, alle strikt dominierten Strategien verschwinden aus dem Spiel, es bleiben reine Strategien übrig, die im nächsten Spiel strikt dominiert werden. 14 / 26

24 Entscheidung gegen iterativ dominierte Strategien Beispiel Es sei die Auszahlungsmatrix A gegeben durch A = R 2 ist strikt dominiert, im nächsten Spiel ist R 3 strikt dominiert, man erhält also eine nichtleere Menge von reinen Strategien, diese Menge hängt nicht vom Eliminationsprozess selbst ab. 15 / 26

25 Entscheidung gegen iterativ dominierte Strategien Definition: konvex monoton Eine auszahlungsmonotone Spieldynamik wird als konvex monoton bezeichnet, falls i und y, x S n gilt: y Ax > (Ax) i y i g j (x) > g i (x) 16 / 26

26 Entscheidung gegen iterativ dominierte Strategien Definition: konvex monoton Eine auszahlungsmonotone Spieldynamik wird als konvex monoton bezeichnet, falls i und y, x S n gilt: y Ax > (Ax) i y i g j (x) > g i (x) Satz 1 Ist eine monotone Spieldynamik konvex monoton und ist die reine Strategie R i iterativ strikt dominiert, so konvergiert die Frequenz x i (t) gegen 0. (Beweis siehe Anhang.) 16 / 26

27 Entscheidung gegen iterativ dominierte Strategien Beispiel Folgende Auszahlungsmatrix soll betrachtet werden: a c b γ b a c γ A = c b a γ α + β α + β α + β 0 mit c < a < b, 0 < β < b a und γ > / 26

28 Entscheidung gegen iterativ dominierte Strategien J. Hofbauer, K. Sigmund: Evolutionary Games and Population Dynamics, Cambridge, Seite / 26

29 Beste-Antwort-Dynamik d.h. Diskrete Generationen von Spielern, in jeder Runde soll ein Spieler zur Generation hinzustoßen, dieser Spieler nimmt eine Strategie der besten Antwort auf den bestehenden Strategien-Mix ein, dieser Spieler muss seine Strategie für das gesamte Spiel beibehalten, in der Generation k + 1 nimmt dieser Spieler eine Strategie r k+1 {R 1,..., R n } ein r k+1 maximiert die erwartete Auszahlung gegenüber s k = 1 k k r k i=1 19 / 26

30 Beste-Antwort-Dynamik Die Änderung in der Durchschnittsstrategie kann mit Hilfe der Differenzengleichung s k+1 s k = r k+1 s k k+1 berechnet werden. Dabei ist r k+1 β(s k ), wobei β(s k ) die Menge der besten Antworten auf x S n repräsentiert. 20 / 26

31 Beste-Antwort-Dynamik Übergang zu einer kontinuierlichen Betrachtungsweise: ( ) ṡ(t) = 1 t r(t) s(t) mit r(t) β(s(t)) bzw. in integraler Form: t s(t) = t 1 r(τ) dτ. Die Betrachtung von stückweise linearen Lösungen führt zur Beste-Antwort-Dynamik: 0 ẋ = β(x) x 21 / 26

32 Beste-Antwort-Dynamik Beispiel Folgende Auszahlungsmatrix soll betrachtet werden: A = J. Hofbauer, K. Sigmund: Evolutionary Games and Population Dynamics, Cambridge, Seite / 26

33 Beste-Antwort-Dynamik Allgemeine Konstruktion der stückweise linearen Lösungen der Beste-Antwort-Dynamik Anfangspunkt x, die Strategie b β((1 ɛ)x ɛb) fungiert als beste Antwort (ɛ 0), Iteration führt auf eine stückweise lineare Lösung für alle Zeiten t > / 26

34 Beste-Antwort-Dynamik Allgemeine Konstruktion der stückweise linearen Lösungen der Beste-Antwort-Dynamik Anfangspunkt x, die Strategie b β((1 ɛ)x ɛb) fungiert als beste Antwort (ɛ 0), Iteration führt auf eine stückweise lineare Lösung für alle Zeiten t > 0. Satz 2 Sei p eine innere ESS für ein Spiel mit Auszahlungsmatrix A. Dann ist p für die Beste-Antwort-Dynamik global asymptotisch stabil. Alle stückweise linearen Pfade erreichen p in einer endlichen Zeit. (Beweis siehe Anhang.) 23 / 26

35 Fazit Wir haben: 24 / 26

36 Fazit Wir haben: gelernt den Imitationsprozess mathematisch zu modellieren, 24 / 26

37 Fazit Wir haben: gelernt den Imitationsprozess mathematisch zu modellieren, die Auswirkungen der Dominanz auf statische Spiele untersucht, 24 / 26

38 Fazit Wir haben: gelernt den Imitationsprozess mathematisch zu modellieren, die Auswirkungen der Dominanz auf statische Spiele untersucht, die Möglichkeit einer besten Antwort auf bestehende Strategien besprochen. 24 / 26

39 Anhang Beweis zu Satz 1 Sei R i strikt dominiert von einem y S n. Aufgrund der Stetigkeit existiert ein δ > 0, sodass g i (x) y i g j (x) < δ x S n. Mit P(x) x i erreichen wir für jede innere Lösung mit t x(t), dass j x y j j Ṗ(x) = P(x) x j ẋ j = P(x) ( g i (x) y i g j (x) ). Daher ist Ṗ(x) < δ P(x). Daraus folgt, dass x i (t), welches kleiner als P(x(t)) ist, exponentiell abnimmt. Es reicht nun, dieses Argument zu wiederholen: ist das x i klein genug, so gibt es eine Ungleichung, die analog zur konvexen Monotonität für alle Strategien gilt, die in der nächsten Runde eliminiert werden, usw.. Also konvergiert die Frequenz x i (t) für die reinen Strategien R i, welche strikt dominiert sind, gegen / 26

40 Anhang Beweis zu Satz 2 Betrachte die Funktion V(x) = max i (Ax) i x Ax mit V(x) 0 und V(x) = 0, falls x = p. Entlang eines geraden Stückes ẋ = b-x ist dann V = (b-x) x Ax und V = ẋ Ax + (b-x) Aẋ = (b-x) Ax + (b-x) A(b-x). Für x p ist der erste Term nach Def. negativ und der zweite Term ist aufgrund Gleichung (6.19) und sogar nach unten durch 0 begrenzt. Also fällt V(x(t)) und erreichet den Wert 0 in einer endlichen Zeit. 26 / 26

Bimatrix-Spiele. Sarah Hidlmayer

Bimatrix-Spiele. Sarah Hidlmayer Bimatrix-Spiele Sarah Hidlmayer 13.12.2011 Literatur: Josef Hofbauer and Karl Sigmund: Evolutionary Games and Population Dynamics (Ch. 11), Cambridge. Bimatrix-Spiele 1 Dynamik für Bimatrix-Spiele 2 Partnerschaftsspiele

Mehr

Asymmetrische Spiele. Eric Barré. 13. Dezember 2011

Asymmetrische Spiele. Eric Barré. 13. Dezember 2011 Asymmetrische Spiele Eric Barré 13. Dezember 2011 Gliederung 1 Einführung Allgemeines Definition Begründung Nash-Gleichgewicht 2 Kampf der Geschlechter Allgemein Auszahlungsmatrix Nash-Gleichgewicht Beispiel

Mehr

Lotka-Volterra-Gleichungen für mehr als zwei Populationen

Lotka-Volterra-Gleichungen für mehr als zwei Populationen Lotka-Volterra-Gleichungen für mehr als zwei Populationen Dennis Kunz 06.12.2011 Josef Hofbauer and Karl Sigmund: Evolutionary Games and Population Dynamics Lotka-Volterra-Gleichungen für mehr als zwei

Mehr

Geometrie in der Spieltheorie

Geometrie in der Spieltheorie Evolutionäre Spieltheorie November 3, 2011 Evolution der Spieltheorie John von Neumann, Oskar Morgenstern 1944: The Theory of Games and Economic Behavior John Nash 1950: Non-cooperative Games Nash Gleichgewicht:

Mehr

Kapitel 13. Evolutionäre Spieltheorie. Einleitung. Evolutionäre Biologie. Übersicht 2. Alternative: Biologische Evolutionstheorie

Kapitel 13. Evolutionäre Spieltheorie. Einleitung. Evolutionäre Biologie. Übersicht 2. Alternative: Biologische Evolutionstheorie Übersicht : Evolutionäre Spieltheorie Einleitung Evolutionäre Biologie Evolutionäre Spieltheorie: Idee Gefangenendilemma (Beispiel) Evolutionäre Stabilität Beispiele Wiederholtes Gefangenendilemma Chicken-Spiel

Mehr

1 Lektion 7: Evolutorische Spieltheorie. Evolution?r stabile Strategien und Replikatordynamik als Beitrag aus der Biologie

1 Lektion 7: Evolutorische Spieltheorie. Evolution?r stabile Strategien und Replikatordynamik als Beitrag aus der Biologie 1 Lektion 7: Evolutorische Spieltheorie. Evolution?r stabile Strategien und Replikatordynamik als Beitrag aus der Biologie Verfeinerungen vom Begri Nash-Gleichgewicht Erfahrung hat gezeigt, dass sich Spieler

Mehr

Evolutionär stabile Strategien

Evolutionär stabile Strategien Evolutionär stabile Strategien Thomas Luxenburger 06.12.2011 LITERATUR: Josef Hofbauer, Karl Sigmund: Evolutionary Games and Population Dynamics, Kapitel 6: Evolutionary stable strategies Gliederung 1

Mehr

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt.

Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Kapitel 3 Konvexität 3.1 Konvexe Mengen Der Begriff der konvexen Menge ist bereits aus Definition 1.4, Teil I, bekannt. Definition 3.1 Konvexer Kegel. Eine Menge Ω R n heißt konvexer Kegel, wenn mit x

Mehr

Beispiel: Evolution infizierter Individuen

Beispiel: Evolution infizierter Individuen Differentialgleichungen sind sehr nützlich in der Modellierung biologischer Prozesse, denn: damit kann man auch sehr komplizierte Systeme beschreiben die Mathematik liefert mit der gut entwickelten Theorie

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

MAA = MAB + B AA = B CA + CAA BA A Nun sehen wir mit Proposition 10.7 aus dem Skript, dass A M AB gelten muss.

MAA = MAB + B AA = B CA + CAA BA A Nun sehen wir mit Proposition 10.7 aus dem Skript, dass A M AB gelten muss. 1. Konvexität in der absoluten Ebene In einem Dreieck in der Euklidischen Ebene hat die Strecke zwischen zwei Seitenmittelpunkten die halbe Länge der dritten Seite. In der absoluten Ebene hat man eine

Mehr

TEILWEISE ASYNCHRONE ALGORITHMEN

TEILWEISE ASYNCHRONE ALGORITHMEN TEILWEISE ASYNCHRONE ALGORITHMEN FRANK LANGBEIN Literatur: D. Berseas, J. Tsitsilis: Parallel and distributed computatoin, pp. 48 489 URI: http://www.langbein.org/research/parallel/ Modell teilweiser asynchroner

Mehr

Dynamische Systeme eine Einführung

Dynamische Systeme eine Einführung Dynamische Systeme eine Einführung Seminar für Lehramtstudierende: Mathematische Modelle Wintersemester 2010/11 Dynamische Systeme eine Einführung 1. Existenz und Eindeutigkeit von Lösungen 2. Flüsse,

Mehr

Lösungen zu den Hausaufgaben zur Analysis II

Lösungen zu den Hausaufgaben zur Analysis II Christian Fenske Lösungen zu den Hausaufgaben zur Analysis II Blatt 6 1. Seien 0 < b < a und (a) M = {(x, y, z) R 3 x 2 + y 4 + z 4 = 1}. (b) M = {(x, y, z) R 3 x 3 + y 3 + z 3 = 3}. (c) M = {((a+b sin

Mehr

Abbildung 5.1: stabile und instabile Ruhelagen

Abbildung 5.1: stabile und instabile Ruhelagen Kapitel 5 Stabilität Eine intuitive Vorstellung vom Konzept der Stabilität vermitteln die in Abb. 5.1 dargestellten Situationen. Eine Kugel rollt unter dem Einfluss von Gravitation und Reibung auf einer

Mehr

01. Gruppen, Ringe, Körper

01. Gruppen, Ringe, Körper 01. Gruppen, Ringe, Körper Gruppen, Ringe bzw. Körper sind wichtige abstrakte algebraische Strukturen. Sie entstehen dadurch, dass auf einer Menge M eine oder mehrere sogenannte Verknüpfungen definiert

Mehr

Klausur zur Vorlesung Spieltheorie Musterlösung

Klausur zur Vorlesung Spieltheorie Musterlösung Prof. Dr. Ulrich Schwalbe Sommersemester 2001 Klausur zur Vorlesung Spieltheorie Musterlösung Die Klausur besteht aus vier Vorfragen, von denen drei zu beantworten sind sowie drei Hauptfragen, von denen

Mehr

11 Logarithmus und allgemeine Potenzen

11 Logarithmus und allgemeine Potenzen Logarithmus und allgemeine Potenzen Bevor wir uns mit den Eigenschaften von Umkehrfunktionen, und insbesondere mit der Umkehrfunktion der Eponentialfunktion ep : R R + beschäftigen, erinnern wir an den

Mehr

10 Untermannigfaltigkeiten

10 Untermannigfaltigkeiten 10. Untermannigfaltigkeiten 1 10 Untermannigfaltigkeiten Definition. Eine Menge M R n heißt k-dimensionale Untermannigfaltigkeit des R n, 1 k n, falls es zu jedem a M eine offene Umgebung U R n von a und

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

Kapitel 16 : Differentialrechnung

Kapitel 16 : Differentialrechnung Kapitel 16 : Differentialrechnung 16.1 Die Ableitung einer Funktion 16.2 Ableitungsregeln 16.3 Mittelwertsätze und Extrema 16.4 Approximation durch Taylor-Polynome 16.5 Zur iterativen Lösung von Gleichungen

Mehr

2. Vorlesung. 1.3 Beste-Antwort Funktion. Vorlesung: Einführung in die Spieltheorie WS 2006/ Oktober 2006 Guido Schäfer

2. Vorlesung. 1.3 Beste-Antwort Funktion. Vorlesung: Einführung in die Spieltheorie WS 2006/ Oktober 2006 Guido Schäfer LETZTE ÄNDERUNG: 15. NOVEMBER 2006 Vorlesung: Einführung in die Spieltheorie WS 2006/2007 2. Vorlesung 24. Oktober 2006 Guido Schäfer 1.3 Beste-Antwort Funktion Notation: Definiere A i := j N\{i} A j.

Mehr

Seminararbeit zur Spieltheorie. Thema: Rationalisierbarkeit und Wissen

Seminararbeit zur Spieltheorie. Thema: Rationalisierbarkeit und Wissen Seminararbeit zur Spieltheorie Thema: Rationalisierbarkeit und Wissen Westfälische-Wilhelms-Universität Münster Mathematisches Institut Dozent: Prof. Dr. Löwe Verfasst von: Maximilian Mümken Sommersemester

Mehr

Unabhängigkeit KAPITEL 4

Unabhängigkeit KAPITEL 4 KAPITEL 4 Unabhängigkeit 4.1. Unabhängigkeit von Ereignissen Wir stellen uns vor, dass zwei Personen jeweils eine Münze werfen. In vielen Fällen kann man annehmen, dass die eine Münze die andere nicht

Mehr

Katalytische Hyperzyklen

Katalytische Hyperzyklen Katalytische Hyperzyklen Lara Münster 20.12.2011 Literatur: Hofbauer J., Sigmund K. (1998). Evolutionary Games and Population Dynamics. Cambridge University Press: Cambridge Katalytische Hyperzyklen 1

Mehr

12. Vorlesung. 19. Dezember 2006 Guido Schäfer

12. Vorlesung. 19. Dezember 2006 Guido Schäfer LETZTE ÄNDERUNG: 6. JANUAR 007 Vorlesung: Einführung in die Spieltheorie WS 006/007. Vorlesung 9. Dezember 006 Guido Schäfer 4 Bayesian Games Wir haben bisher immer angenommen, dass jeder Spieler vollständige

Mehr

Spieltheorie - Wiederholte Spiele

Spieltheorie - Wiederholte Spiele Spieltheorie - Wiederholte Spiele Janina Heetjans 12.06.2012 1 Inhaltsverzeichnis 8 Wiederholte Spiele 3 8.1 Einführung und Motivation................................. 3 8.2 Unendlich oft wiederholte Spiele:

Mehr

Regularitätsresultate für parabolische Gleichungen mit nichtlokalem Operator

Regularitätsresultate für parabolische Gleichungen mit nichtlokalem Operator Universität Bielefeld Regularitätsresultate für parabolische Gleichungen mit nichtlokalem Operator Matthieu Felsinger Universität Bielefeld Mathematisches Kolloquium, TU Clausthal 05. Februar 2014 1 Einleitung

Mehr

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen

Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Kapitel 8 Darstellungsformeln für die Lösung von parabolischen Differentialgleichungen Wir hatten im Beispiel 5. gesehen, dass die Wärmeleitungsgleichung t u u = f auf Ω (0, ) (8.1) eine parabolische Differentialgleichung

Mehr

Universität des Saarlandes Seminar der Fachrichtung Mathematik Rudolf Umla

Universität des Saarlandes Seminar der Fachrichtung Mathematik Rudolf Umla Universität des Saarlandes Seminar der Fachrichtung Mathematik Rudolf Umla Sätze über Konvexität von Kapitel 4.7 bis 4.10 Theorem 4.7-1. Sei U ein konvexer Unterraum eines normierten Vektorraums. Dann

Mehr

Seminar stabile Zufallsprozesse

Seminar stabile Zufallsprozesse Definitionen und Eigenschaften stabiler Verteilungen 2. November 2011 Inhalt 1 Definitionen Definitionen Beweis der Äquivalenz Beispiele 2 Eigenschaften 3 Charakteristische Funktion 4 Laplace Transformation

Mehr

Wiederholte Spiele. Grundlegende Konzepte. Zwei wichtige Gründe, wiederholte Spiele zu betrachten: 1. Wiederholte Interaktionen in der Realität.

Wiederholte Spiele. Grundlegende Konzepte. Zwei wichtige Gründe, wiederholte Spiele zu betrachten: 1. Wiederholte Interaktionen in der Realität. Spieltheorie Sommersemester 2007 1 Wiederholte Spiele Grundlegende Konzepte Zwei wichtige Gründe, wiederholte Spiele zu betrachten: 1. Wiederholte Interaktionen in der Realität. 2. Wichtige Phänomene sind

Mehr

7. Die Brownsche Bewegung

7. Die Brownsche Bewegung 7. DIE BROWNSCHE BEWEGUNG 7 5 5 50 00 50 200 250 0 5 20 Abbildung 7.: Pfad einer Brownschen Bewegung 7. Die Brownsche Bewegung Definition 7.. Ein cadlag stochastischer Prozess {W t } mit W 0 = 0, unabhängigen

Mehr

Konstruktion der reellen Zahlen

Konstruktion der reellen Zahlen Konstruktion der reellen Zahlen Zur Wiederholung: Eine Menge K (mit mindestens zwei Elementen) heißt Körper, wenn für beliebige Elemente x, y K eindeutig eine Summe x+y K und ein Produkt x y K definiert

Mehr

Mathematik für Wirtschaftswissenschaftler. gehalten von Claus Diem

Mathematik für Wirtschaftswissenschaftler. gehalten von Claus Diem Mathematik für Wirtschaftswissenschaftler gehalten von Claus Diem Übungen Die Seminare / Übungsgruppen / Tutorien finden wöchentlich statt. Alle zwei Wochen am Montag wird ein Übungsblatt ausgegeben. Dies

Mehr

Proseminar Konvexe Mengen: Der Satz von Carathéodory

Proseminar Konvexe Mengen: Der Satz von Carathéodory Proseminar Konvexe Mengen: Der Satz von Carathéodory Gerrit Grenzebach 26. Otober 2004 In diesem Referat werden der Begriff der onvexen Hülle einer Menge eingeführt und einige Eigenschaften der onvexen

Mehr

Räuber-Beute-Modelle, Auslese/Schwellensatz

Räuber-Beute-Modelle, Auslese/Schwellensatz Räuber-Beute-Modelle, Auslese/Schwellensatz Mareike Franz und Brigitte Steinhauser 15. Dezember 2008 1 / 37 1 Räuber-Beute-Modelle 2 Prinzip der Auslese durch Wettbewerb 3 Schwellensatz der Epidemiologie

Mehr

:50:11 REZ: Spieltheorie SoSe Sitzung 7

:50:11 REZ: Spieltheorie SoSe Sitzung 7 01.05.2007 16:50:11 REZ: Spieltheorie SoSe 2007 16 Sitzung 7 Der Begriff der evolutionären Stabilität unterstellt implizite dynamische Betrachtungen. Diese können nach Maßgabe einer Differentialgleichung

Mehr

Übungen zu Einführung in die Numerische Mathematik (V2E2) Sommersemester 2016

Übungen zu Einführung in die Numerische Mathematik (V2E2) Sommersemester 2016 Übungen zu Einführung in die Numerische Mathematik (VE) Sommersemester 6 Prof. Dr. Martin Rumpf Pascal Huber Sascha Tölkes Übungsblatt 8 Abgabe:.6.6 Aufgabe 5 (Elliptisches Randwertproblem auf einem Ring)

Mehr

MATHEMATIK FÜR WIRTSCHAFTSWISSENSCHAFTLER MUSTERLÖSUNG 3. TEST

MATHEMATIK FÜR WIRTSCHAFTSWISSENSCHAFTLER MUSTERLÖSUNG 3. TEST Privatdozent Dr. C. Diem diem@math.uni-leipzig.de http://www.math.uni-leipzig.de/ diem/wiwi MATHEMATIK FÜR WIRTSCHAFTSWISSENSCHAFTLER MUSTERLÖSUNG 3. TEST Es folgt eine Musterlösung zusammen mit Anleitungen

Mehr

Kapitel 5: Spiele mit simultanen Spielzügen und reinen Strategien: Kontinuierliche Strategien

Kapitel 5: Spiele mit simultanen Spielzügen und reinen Strategien: Kontinuierliche Strategien Übersicht Teil 2 Kapitel 5: Spiele mit simultanen Spielzügen und reinen Strategien: Kontinuierliche Strategien Kapitel 5 1 Kapitel 5 Übersicht Teil 2 2 Übersicht Reine Strategien als stetige Variablen

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Kurze Einführung zu Stabilität bei Differentialgleichungen und Einschrittverfahren

Kurze Einführung zu Stabilität bei Differentialgleichungen und Einschrittverfahren Kurze Einführung zu Stabilität bei Differentialgleichungen und Einschrittverfahren Was sind typische qualitative Aussagen bei gewöhnlichen Differentialgleichungen der Form x (t) = f(t, x)? (1) 1. Andere

Mehr

Übungsaufgaben zur Vorlesung ANALYSIS I (WS 12/13) Lösungsvorschlag Serie 12

Übungsaufgaben zur Vorlesung ANALYSIS I (WS 12/13) Lösungsvorschlag Serie 12 Humboldt-Universität zu Berlin Institut für Mathematik Prof. A. Griewank Ph.D.; Dr. A. Hoffkamp; Dipl.Math. T.Bosse; Dipl.Math. L. Jansen Übungsaufgaben zur Vorlesung ANALYSIS I (WS 2/3) Lösungsvorschlag

Mehr

Evolutionäre Spiele. Wolfgang Mulzer, Yannik Stein

Evolutionäre Spiele. Wolfgang Mulzer, Yannik Stein Seminar über Algorithmen 11.02.2014 Julian Ritter Evolutionäre Spiele Wolfgang Mulzer, Yannik Stein 1 Idee Motivation aus der Natur: Interesse der theoretischen Biologie an einer Bevölkerung, die um Ressourcen

Mehr

Verfeinerungen des Bayesianischen Nash Gleichgewichts

Verfeinerungen des Bayesianischen Nash Gleichgewichts Spieltheorie Sommersemester 007 Verfeinerungen des Bayesianischen Nash Gleichgewichts Das Bayesianische Nash Gleichgewicht für Spiele mit unvollständiger Information ist das Analogon zum Nash Gleichgewicht

Mehr

Kapitel 1. Grundlegendes

Kapitel 1. Grundlegendes Kapitel 1 Grundlegendes Abschnitt 1.4 Vollständige Induktion Charakterisierung der natürlichen Zahlen Die Menge N 0 = {0, 1, 2, 3,...} der natürlichen Zahlen läßt sich wie folgt charakterisieren: 1. 0

Mehr

Stabilität von n-spezies Gemeinschaften

Stabilität von n-spezies Gemeinschaften Stabilität von n-spezies Gemeinschaften Julia Klein 20.12.2011 Joseph Hofbauer and Karl Sigmund: Evolutionary Games and Population Dynamics, Kap.15 Übersicht 1 Einführung 2 Mutualismus und M-Matrizen 3

Mehr

Markov-Prozesse. Markov-Prozesse. Franziskus Diwo. Literatur: Ronald A. Howard: Dynamic Programming and Markov Processes

Markov-Prozesse. Markov-Prozesse. Franziskus Diwo. Literatur: Ronald A. Howard: Dynamic Programming and Markov Processes Markov-Prozesse Franziskus Diwo Literatur: Ronald A. Howard: Dynamic Programming and Markov Processes 8.0.20 Gliederung Was ist ein Markov-Prozess? 2 Zustandswahrscheinlichkeiten 3 Z-Transformation 4 Übergangs-,

Mehr

Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel. dt = lim. = lim = Weiters erhalten wir durch partielle Integration, dass

Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel. dt = lim. = lim = Weiters erhalten wir durch partielle Integration, dass Die Gamma-Funktion, das Produkt von Wallis und die Stirling sche Formel Zuerst wollen wir die Gamma-Funktion definieren, die eine Verallgemeinerung von n! ist. Dazu benötigen wir einige Resultate. Lemma.

Mehr

Asymptotische Stochastik (SS 2010)

Asymptotische Stochastik (SS 2010) Institut für Stochastik PD. Dr. Dieter Kadelka Daniel Gentner Asymptotische Stochastik (SS 2010) Lösungen zu Übungsblatt 4 Aufgabe 1 (lokaler Grenzwertsatz von de Moivre und Laplace und eine Verallgemeinerung)

Mehr

4 Fehlerabschätzungen und Konvergenz der FEM

4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 153 Es sei V der Lösungsraum und V N V ein endlich dimensionaler Unterraum. Weiters sei u V die exakte Lösung und

Mehr

Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen

Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel XII - Kennzahlen mehrdimensionaler Zufallsvariablen Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig Senska

Mehr

Spieltheorie mit. sozialwissenschaftlichen Anwendungen

Spieltheorie mit. sozialwissenschaftlichen Anwendungen Friedel Bolle, Claudia Vogel Spieltheorie mit sozialwissenschaftlichen Anwendungen SS 2010 Simultane Spiele 1. Einführung: Spiele in Normalform Nash-Gleichgewicht Dominanz 2. Typen von Spielen Gefangenendilemma

Mehr

Einführung in die Stochastik 6. Übungsblatt

Einführung in die Stochastik 6. Übungsblatt Einführung in die Stochastik 6. Übungsblatt Fachbereich Mathematik SS M. Kohler 3. Mai A. Fromkorth D. Furer Gruppen und Hausübung Aufgabe (a) Die Wahrscheinlichkeit, dass eine S Bahn Verspätung hat, betrage.3.

Mehr

Partielle Informationen in Währungskrisenmodellen

Partielle Informationen in Währungskrisenmodellen Christian Bauer Partielle Informationen in Währungskrisenmodellen Verlag Dr. Kovac Inhaltsverzeichnis Einleitung 1 I Entscheidungen und die Qualität von Informationen 7 1 Entscheidungstheoretische Einordnung

Mehr

3 Lineare Differentialgleichungen

3 Lineare Differentialgleichungen 3 Lineare Differentialgleichungen In diesem Kapitel behandeln wir die allgemeine Theorie linearer Differentialgleichungen Sie werden zahlreiche Parallelen zur Theorie linearer Gleichungssysteme feststellen,

Mehr

Analysis und Lineare Algebra mit MuPAD

Analysis und Lineare Algebra mit MuPAD Analysis und Lineare Algebra mit MuPAD Dehling/Kubach Mögliche Themen für Abschlussprojekte 1 Fourier-Reihen Zu einer integrierbaren Funktion f : [0,2π] R definieren wir die Fourier-Reihe wobei a 0 = 1

Mehr

5 Stetigkeit und Differenzierbarkeit

5 Stetigkeit und Differenzierbarkeit 5 Stetigkeit und Differenzierbarkeit 5.1 Stetigkeit und Grenzwerte von Funktionen f(x 0 ) x 0 Graph einer stetigen Funktion. Analysis I TUHH, Winter 2006/2007 Armin Iske 127 Häufungspunkt und Abschluss.

Mehr

2 Die Dimension eines Vektorraums

2 Die Dimension eines Vektorraums 2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1

Mehr

13. Funktionen in einer Variablen

13. Funktionen in einer Variablen 13. Funktionen in einer Variablen Definition. Seien X, Y Mengen. Eine Funktion f : X Y ist eine Vorschrift, wo jedem Element der Menge X eindeutig ein Element von Y zugeordnet wird. Wir betrachten hier

Mehr

SBP Mathe Aufbaukurs 3. Imaginäre und komplexe Zahlen. Komplexe Zahlen in der Gaußschen Zahlenebene. Darstellungen komplexer Zahlen.

SBP Mathe Aufbaukurs 3. Imaginäre und komplexe Zahlen. Komplexe Zahlen in der Gaußschen Zahlenebene. Darstellungen komplexer Zahlen. SBP Mathe Aufbaukurs 3 # 0 by Clifford Wolf # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das Lernen mit Lernkarten

Mehr

3. Das Reinforcement Lernproblem

3. Das Reinforcement Lernproblem 3. Das Reinforcement Lernproblem 1. Agierender Agent in der Umgebung 2. Discounted Rewards 3. Markov Eigenschaft des Zustandssignals 4. Markov sche Entscheidung 5. Werte-Funktionen und Bellman sche Optimalität

Mehr

Definition: Die Menge der Imputationen ist die Menge I aller Nutzenallokationen, die erreichbar und individuell rational sind.

Definition: Die Menge der Imputationen ist die Menge I aller Nutzenallokationen, die erreichbar und individuell rational sind. Spieltheorie Sommersemester 2007 1 Der Kern Sei I = {1, 2,...,n} und Γ = (I, v). Definition: Die Menge der Imputationen ist die Menge I aller Nutzenallokationen, die erreichbar und individuell rational

Mehr

Folgen, Reihen, Grenzwerte u. Stetigkeit

Folgen, Reihen, Grenzwerte u. Stetigkeit Folgen, Reihen, Grenzwerte u. Stetigkeit Josef F. Bürgler Abt. Informatik HTA Luzern, FH Zentralschweiz HTA.MA+INF Josef F. Bürgler (HTA Luzern) Einf. Infinitesimalrechnung HTA.MA+INF 1 / 33 Inhalt 1 Folgen

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Dr. Jochen Köhler 1 Inhalt der heutigen Vorlesung Statistik und Wahrscheinlichkeitsrechnung Zusammenfassung der vorherigen Vorlesung Übersicht über Schätzung und

Mehr

Einführung in die Spieltheorie und Nash-Gleichgewichte

Einführung in die Spieltheorie und Nash-Gleichgewichte Einführung in die Spieltheorie und Nash-Gleichgewichte Vortrag im Seminar WT und Ihre Anwendungen Institut für Mathematische Statistik Fachbereich Mathematik und Informatik Westfählische Wilhelms-Universtät

Mehr

Flüsse, Fixpunkte, Stabilität

Flüsse, Fixpunkte, Stabilität 1 Flüsse, Fixpunkte, Stabilität Proseminar: Theoretische Physik Yannic Borchard 7. Mai 2014 2 Motivation Die hier entwickelten Formalismen erlauben es, Aussagen über das Verhalten von Lösungen gewöhnlicher

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

Formale Methoden 1. Gerhard Jäger 9. Januar Uni Bielefeld, WS 2007/2008 1/23

Formale Methoden 1. Gerhard Jäger 9. Januar Uni Bielefeld, WS 2007/2008 1/23 1/23 Formale Methoden 1 Gerhard Jäger Gerhard.Jaeger@uni-bielefeld.de Uni Bielefeld, WS 2007/2008 9. Januar 2008 2/23 Automaten (informell) gedachte Maschine/abstraktes Modell einer Maschine verhält sich

Mehr

Theorie der Wärme Musterlösung 11.

Theorie der Wärme Musterlösung 11. Theorie der Wärme Musterlösung. FS 05 Prof. Thomas Gehrmann Übung. Edelgas im Schwerefeld Berechne den Erwartungswert der Energie eines monoatomaren idealen Gases z. B. eines Edelgases in einem zylindrischen

Mehr

Einwegfunktionen. Problemseminar. Komplexitätstheorie und Kryptographie. Martin Huschenbett. 30. Oktober 2008

Einwegfunktionen. Problemseminar. Komplexitätstheorie und Kryptographie. Martin Huschenbett. 30. Oktober 2008 Problemseminar Komplexitätstheorie und Kryptographie Martin Huschenbett Student am Institut für Informatik an der Universität Leipzig 30. Oktober 2008 1 / 33 Gliederung 1 Randomisierte Algorithmen und

Mehr

Vorlesung: Nicht-kooperative Spieltheorie. Teil 4: 2-Personen-Nullsummenspiele

Vorlesung: Nicht-kooperative Spieltheorie. Teil 4: 2-Personen-Nullsummenspiele Vorlesung: Nicht-kooperative Spieltheorie Teil 4: 2-Personen-Nullsummenspiele Dr. Thomas Krieger Wintertrimester 2009 Dr. Thomas Krieger Vorlesung: Nicht-kooperative Spieltheorie 1 Definition 2-Personen-Nullsummenspiele

Mehr

1 Der Simplex Algorithmus I

1 Der Simplex Algorithmus I 1 Nicoletta Andri 1 Der Simplex Algorithmus I 1.1 Einführungsbeispiel In einer Papiermühle wird aus Altpapier und anderen Vorstoffen feines und grobes Papier hergestellt. Der Erlös pro Tonne feines Papier

Mehr

Vergleich von Entscheidungsträgern bzgl. ihrer Risikoaversion:

Vergleich von Entscheidungsträgern bzgl. ihrer Risikoaversion: Ist das Arrow-Pratt-Maß der absoluten Risikoaversion bekannt, so lässt sich daraus die Nutzenfunktion bestimmen: Mithilfe der Substitution y := U (w) dy = U (w)dw gilt: und daher U (w) U (w) dw = A a (w)dw

Mehr

3.3 Skalarprodukte 3.3. SKALARPRODUKTE 153

3.3 Skalarprodukte 3.3. SKALARPRODUKTE 153 3.3. SKALARPRODUKTE 153 Hierzu müssen wir noch die Eindeutigkeit (Unabhängigkeit von der Wahl der Basis bzw. des Koordinatensystems) zeigen. Sei hierzu β eine Bilinearform und q die entsprechende quadratische

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Ingenuin Gasser Department Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2008/2009 1 Kapitel 1: Aussagen, Mengen

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

Übungsskript Regelungstechnik 2

Übungsskript Regelungstechnik 2 Seite 1 von 11 Universität Ulm, Institut für Mess-, Regel- und Mikrotechnik Prof. Dr.-Ing. Klaus Dietmayer / Seite 2 von 11 Aufgabe 1 : In dieser Aufgabe sollen zeitdiskrete Systeme untersucht werden.

Mehr

r i w i (siehe (3.7)). r i v, w i = 0.

r i w i (siehe (3.7)). r i v, w i = 0. Orthogonales Komplement und Orthogonalprojektion Wir betrachten weiterhin einen euklidischen Vektorraum V,,. (6.13) Def.: Ist M V, so heißt das orthogonale Komplement von M. (6.14) Fakt. (i) M ist Untervektorraum

Mehr

[5], [0] v 4 = + λ 3

[5], [0] v 4 = + λ 3 Aufgabe 9. Basen von Untervektorräumen. Bestimmen Sie Basen von den folgenden Untervektorräumen U K des K :. K = R und U R = span,,,,,.. K = C und U C = span + i, 6, i. i i + 0. K = Z/7Z und U Z/7Z = span

Mehr

4 Fehlerabschätzungen und Konvergenz der FEM

4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 153 Es sei V der Lösungsraum und V N V ein endlich dimensionaler Unterraum. Weiters sei u V die exakte Lösung und

Mehr

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω

x, y 2 f(x)g(x) dµ(x). Es ist leicht nachzuprüfen, dass die x 2 setzen. Dann liefert (5.1) n=1 x ny n bzw. f, g = Ω 5. Hilberträume Definition 5.1. Sei H ein komplexer Vektorraum. Eine Abbildung, : H H C heißt Skalarprodukt (oder inneres Produkt) auf H, wenn für alle x, y, z H, α C 1) x, x 0 und x, x = 0 x = 0; ) x,

Mehr

2 Folgen und Reihen. 2.1 Folgen in C Konvergenz von Folgen. := f(n)

2 Folgen und Reihen. 2.1 Folgen in C Konvergenz von Folgen. := f(n) 2 Folgen und Reihen 2.1 Folgen in C 2.1.1 Konvergenz von Folgen Eine Folge komplexer Zahlen ist eine Funktion f : N C. Mit a n schreibt man (a n ) n=1, (a n ) oder auch a 1, a 2,.... := f(n) (a n ) heißt

Mehr

KAPITEL 1: ENDLICHE KÖRPER 1 ALLGEMEINES 2 GLEICHUNGEN ÜBER EINEM ENDLICHEN KÖRPER

KAPITEL 1: ENDLICHE KÖRPER 1 ALLGEMEINES 2 GLEICHUNGEN ÜBER EINEM ENDLICHEN KÖRPER RUPRECHT-KARLS-UNIVERSITÄT HEIDELBERG MATHEMATISCHES INSTITUT SEMINAR: QUADRATISCHE FORMEN ÜBER DEN RATIONALEN ZAHLEN SOMMERSEMESTER 2007 DOZENT: PROF. DR. KAY WINGBERG ASSISTENT: JOHANNES BARTELS KAPITEL

Mehr

Übungsaufgaben Lösungen

Übungsaufgaben Lösungen Übungsaufgaben Lösungen Stochastische Matrizen, Markov-Prozesse MV5.1 Eine N N-Matrix P heißt stochastisch, wenn ihre Matrixelemente nicht-negativ sind und alle Zeilensummen 1 ergeben. In Formeln: P ij

Mehr

8 Der Kompaktheitssatz und der Satz von Löwenheim und Skolem

8 Der Kompaktheitssatz und der Satz von Löwenheim und Skolem 8 Der Kompaktheitssatz und der Satz von Löwenheim und Skolem 8.1 Der Kompaktheitssatz Kompaktheitssatz Endlichkeitssatz Der Kompaktheitssatz ist auch unter dem Namen Endlichkeitssatz bekannt. Unter Verwendung

Mehr

Die Schreibweise x M bedeutet, dass das Objekt x in der Menge M liegt. Ist dies nicht der Fall, dann schreibt man

Die Schreibweise x M bedeutet, dass das Objekt x in der Menge M liegt. Ist dies nicht der Fall, dann schreibt man Die Schreibweise x M bedeutet, dass das Objekt x in der Menge M liegt. Ist dies nicht der Fall, dann schreibt man x / M. Man sagt, M ist Teilmenge von N und schreibt M N, wenn für jedes x M auch x N gilt.

Mehr

2.3 Kriterien der Entscheidungsfindung: Präferenzen

2.3 Kriterien der Entscheidungsfindung: Präferenzen .3 Kriterien der Entscheidungsfindung: Präferenzen Der Einfachheit halber beschränken wir uns auf n = ( zwei Güter). Annahme: Konsumenten können für sich herausfinden, ob sie x = ( x, ) dem Güterbündel

Mehr

3. Prozesse mit kontinuierlicher Zeit

3. Prozesse mit kontinuierlicher Zeit 3. Prozesse mit kontinuierlicher Zeit 3.1 Einführung Wir betrachten nun Markov-Ketten (X(t)) t R +. 0 Wie beim Übergang von der geometrischen zur Exponentialverteilung können wir uns auch hier einen Grenzprozess

Mehr

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme Newton-Verfahren zur gleichungsbeschränkten Optimierung Armin Farmani Anosheh (afarmani@mail.uni-mannheim.de) 3.Mai 2016 1 Gleichungsbeschränkte Optimierungsprobleme Einleitung In diesem Vortrag geht es

Mehr

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen

Topologische Grundbegriffe I. 1 Offene und Abgeschlossene Mengen Topologische Grundbegriffe I Vortrag zum Proseminar Analysis, 26.04.2010 Nina Neidhardt und Simon Langer Im Folgenden soll gezeigt werden, dass topologische Konzepte, die uns schon für die Reellen Zahlen

Mehr

35 Stetige lineare Abbildungen

35 Stetige lineare Abbildungen 171 35 Stetige lineare Abbildungen Lernziele: Konzepte: Lineare Operatoren und ihre Normen Resultate: Abschätzungen für Matrizennormen Kompetenzen: Abschätzung von Operatornormen 35.1 Lineare Abbildungen.

Mehr

Mathematische Ökologie

Mathematische Ökologie Mathematische Ökologie Eine Zusammenfassung von Bernhard Kabelka zur Vorlesung von Prof. Länger im WS 2002/03 Version 1.04, 15. März 2004 Es sei ausdrücklich betont, dass (1) dieses Essay ohne das Wissen

Mehr

ANALYSIS I FÜR TPH WS 2016/17 3. Übung Übersicht

ANALYSIS I FÜR TPH WS 2016/17 3. Übung Übersicht ANALYSIS I FÜR TPH WS 206/7 3. Übung Übersicht Aufgaben zu Kapitel 5 und 6 Aufgabe : Untersuchung von Reihen mittels Konvergenzkriterien Aufgabe 2: Konvergenz und Berechnung von Reihen I Aufgabe 3: ( )

Mehr

Übungen zu Kurvenintegralen Lösungen zu Übung 12

Übungen zu Kurvenintegralen Lösungen zu Übung 12 Übungen zu Kurvenintegralen Lösungen zu Übung. Sei der obere Halbreis mit dem Radius r um (, ), und sei f(x, y) : y. Berechnen Sie f(x, y) ds. Das ist jetzt eine leine Aufgabe zum Aufwärmen. Guter Tric:

Mehr

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J}

f(x, y) = 0 Anschaulich bedeutet das, dass der im Rechteck I J = {(x, y) x I, y J} 9 Der Satz über implizite Funktionen 41 9 Der Satz über implizite Funktionen Wir haben bisher Funktionen g( von einer reellen Variablen immer durch Formelausdrücke g( dargestellt Der Zusammenhang zwischen

Mehr

Inexakte Newton Verfahren

Inexakte Newton Verfahren Kapitel 3 Inexakte Newton Verfahren 3.1 Idee inexakter Newton Verfahren Wir betrachten weiterhin das nichtlineare Gleichungssystem F (x) = mit einer zumindest stetig differenzierbaren Funktion F : R n

Mehr

Konvexe Funktionen und Legendre-Transformation

Konvexe Funktionen und Legendre-Transformation Konvexe Funktionen und Legendre-Transformation Def. Eine Teilmenge A R n heißt konvex, wenn sie mit je zwei Punkten x, y auch stets deren Verbindungsstrecke xy = {x +t xy 0 t 1} = {(1 t)x +ty 0 t 1} enthält.

Mehr

cos(kx) sin(nx)dx =?

cos(kx) sin(nx)dx =? 3.5 Fourierreihen 3.5.1 Vorbemerkungen cos(kx) sin(nx)dx =? cos gerade Funktion x cos(kx) gerade Funktion sin ungerade Funktion x sin(nx) ungerade Funktion x cos(kx) sin(nx) ungerade Funktion Weil [, π]

Mehr