Einführung in die Informatik

Größe: px
Ab Seite anzeigen:

Download "Einführung in die Informatik"

Transkript

1 Einführung in die Informatik Vorlesung gehalten von Prof. Dr. rer. nat. E. Bertsch Skript verfasst von Sebastian Ritz 7. Dezember

2 Inhaltsverzeichnis 1 Was versteht man unter Informatik 3 2 Aufbau der Vorlesung 3 3 Aufbau von Schaltungen NAND NOT AND OR Diverse Schreibweisen 8 5 Digitale Elektronik Der Feldeffekt-Transistor (FET) Funktionsweise Anwendung Schaltzeiten und Signalweg Reduzierung Präzise Definitionen Boole sche Ausdrücke(BA) Liste wichtiger Boole scher Ausdrücke Umwandeln von bel. BA in DN 14 9 Verfahren für Kanonizität Quine Mc Cluskey Minterme zu Primtermen Grobskizze

3 1 Was versteht man unter Informatik Der Begriff Informatik entspringt den Begriffen Ïnformationünd äutomatiqueünd er entspricht der Wissenschaft vom Bau und Betrieb elektrischer Rechenanlagen. Die Informatik hat ein großes Problem - das Wissen veraltet recht schnell. 2 Aufbau der Vorlesung 1. Technische Informatik logische Schaltungen, Rechnerstruktur(besonders Prozessor und Addierer), low-level Programmierung 2. Praktische Informatik-System Programme Parallele Konzepte, Grundzüge von Betriebssystemen 3. Theoretische Informatik Formale Sprachen und Grammatiken, Berechenbarkeit Erkenntnisse: Hardware, Software wechselseitig austauschbar; Aufwand 3

4 3 Aufbau von Schaltungen 3.1 NAND Das Grundelement bildet das NAND(auch Sheffer-Fuktion). Das Nand wird heute als Halbleiter-Baustein mit einer Größe von < 10 6 m produziert. An Abbildung 1: Schaltzeichen Nand den Eingängen können zwei mögliche Spannungen, z.b. 0 Volt und 5 Volt (für die Schaltzustände 0 und 1), angelegt werden. Als Funktion beschrieben ergibt sich: {0, 1} {0, 1} {0, 1} (1) Tabelle 1: Schaltzustände Nand e 1 e 2 a=nand(e 1,e 2 ) Hieraus ergibt sich, dass nand(e 1, e 2 )=0 genau dann, wenn beide Eingänge e=1 sind. Die Realisierung dieser Schaltung im Werkstoff(Silizium) in vielfältiger Weise möglich, außerdem z.b. durch Laser-Optik und Hydraulik! 4

5 3.2 NOT Eine weitere elementare Schaltung ist das not. Die Funktion des not: not {0, 1} {0, 1} (2) Für diese Schaltung ist kein neuer Baustein von Nöten, sondern kann auch Tabelle 2: Schaltzustände not e a nach folgendem Modell realisiert werden: not (e) nand (e, e) (3) Der Beweis ergibt sich nach der nand-tabelle(tabelle 1), demnach ist: nand(0,0)=1 (4) nand(1,1)=0 (5) Abbildung 2: Schaltzeichen NOT 5

6 3.3 AND Abbildung 3: Schaltzeichen AND Außerdem gibt es noch das and. Die Funktion lautet: {0, 1} {0, 1} {0, 1} (6) Also ist and(e 1, e 2 ) genau dann 1 wenn beide Eingänge 1 sind. auch hierfür Tabelle 3: Schaltzustände and e 1 e 2 a wird kein neuer Baustein benötigt, da gilt: and (e 1, e 2 ) not (nand(e 1, e 2 )) (7) (Anmerkung: Ersetze einfach in Tabelle?? in der a-spalte die 1 durch eine 0 und umgekehrt.) Andererseits gilt: nand(e 1, e 2 ) not(and(e 1, e 2 )) (8) Daher der neu-englische Name Nand. 6

7 3.4 OR Abbildung 4: Schaltsymbol OR Tabelle 4: Schaltzustände Or e 1 e 2 a Or ist genau dann 1 wenn e 1 =1 oder e 2 =1. Diesen Baustein kann man mit drei NAND-Bausteinen realisieren. or(e 1, e 2 ) nand(not e 1, not e 2 ) (9) Dies ist die sogenannte De-Morgan-Gleichung. Den Beweis führen wir über eine Tabelle: Wir erkennen, das and(...,...),or (...,...),, not (...,...) durch e 1 e 2 not e 1 not e 2 nand(not e 1, not e 2 ) ein oder mehrere nand-bausteine darstellbar sind. 7

8 4 Diverse Schreibweisen Man erlaubt Abkürzungen in der Form: ebenso gilt: and (e 1,..., e n ) and ( and (... (e 1, e 2 )...), e n ) (10) or ( e 1,..., e n ) or ( or (... (e 1, e 2 )...), e n ) (11) Statt and(e 1,..., e n ), or(e 1,..., e n ) bei besserer Lesbarkeit auch Infix-Notation. Sowie e statt not(e). Weiter gilt für: üblich. e 1 and... and e n, e 1 or... or e n a and b a b, ab a or b a b, a+b 8

9 5 Digitale Elektronik 5.1 Der Feldeffekt-Transistor (FET) Abbildung 5: Aufbau FET Abbildung 6: FET Symbol n= Silizium mit Elektronen-Überschuß p= Silizium mit Elektronen-Mangel Die abmessungen liegen bei der Gate-Breite im Bereich von 100nm im Labor von Intel bestehen bereits welche mit ungefähr 50nm. Die Dicke der Oxidschicht im Labor beträgt 1,2nm! Verglichen mit dem Atomradius(10 10 m sind dies also ca. 5 Atome(Speicherchips mit 8Gbit geplant). 9

10 5.1.1 Funktionsweise Bei G=0Volt Bei G=5Volt sind sehr wenige Elektronen in der p-schicht verteilt. sind mehr Elektronen in der Grenzschicht von p zum Isolator dadurch ergibt sich Leitfähigkeit zwischen Source und Drain der Schalter ist geschlossen. Bei positiven Spannungen an G wirkt der sogenannte Feldeffekt(Sharkley 1952) - es fließt kein Strom vom Gate zum Source oder Drain(Dies wär nur bei bipolaren Transistoren der Fall) Anwendung Die Transistor-Schaltung für Nand: Wenn U e1 und U e2 5 Volt haben, dann Abbildung 7: NAND-Schaltung sind beide Schalter geschlossen U a =0Volt. Andernfalls wenn einer der beiden offen ist U a =5Volt. Der Widerstand dieser Schalter ist entweder 0 oder. 6 Schaltzeiten und Signalweg Die schnellsten nand-bausteine(bipolar) benötigen ca 10psec. Es sind ca 3cm. Signalweg auf einem Chip möglich. 3cm Signalweg entsprechen (c=0,3 Gm/s) 100psec bzw. 10 nand-zeiten. Aus diesen Überlegungen folgt unmittelbar, dass die Anordnung der Bausteine durchaus von Bedeutung ist. In den späteren Überlegungen wird die Anordnung wegen des Fertigungsverfahrens genormt. 10

11 6.1 Reduzierung Sind alle Schaltfunktionen f : {0, 1} {0, 1} durch and, or oder nor darstellbar? Beispiel: Sei f 1 (e 1, e 2 ) wie folgt: Offenbar ist a = 1 wenn (nicht e 1 =1 und e 2 =1) oder Tabelle 5: Bisher unbekanntes Funktionsbild e 1 e 2 a (e 1 =1 und nicht e 2 =1). Ein logischer Ausdruck wäre: (e 1 e 2 ) (e 1 e 2 ) (12) Ist dies möglich? Dafür fertigen wir eine Tabelle an: e 1 e 2 e 1 e 2 e 1 e 2 e 1 e Dieses Funktionschema ist der umgangssprachlichen Formulierung entsprungen. Wir formulieren nun diese Idee für Tabellen mit n 2 Eingangssignalen: Wie stellen wir die Funktion von Tabelle 6 als logischen Ausdruck dar? Falls nur eine Zeile mit n=1 existiert, dann ist f(e 1, e 2,...) and (E 1, E 2,...), wobei Somit is nun f 2 = (e 1, e 2, e 3 ) = (e 1 e 2 e 3 ) (e 1 e 2 e 3 ) (e 1 e 2 e 3 ) (13) Zur Kontrolle können wir dies für alle 8 Belegungen nachrechnen jedoch ist diese Art der Konstruktion meist nicht optimal. Der Ausdruck wird durch diese Findung nur unnötig teuer wie wir anhand des folgenden Beispiels sehen werden. 11

12 Tabelle 6: Funktionschema für n 2 Signalen e 1 e 2 e 3 a e 1 e 2 a Nach Schema e 1 e 2 e 1 e 2 e 1 e 2. Aber es würde genügen not(e 1 e 2 ), und somit wäre dieser Ausdruck um einiges billiger. (Im Verlauf dieses Scripts werden noch Verfahren zur automatischen Vereinfachung solcher Ausdrücke behandelt.) Unser Ziel wird es nun sein, mit logischen(booleschen) Ausdrücken so zu rechnen wie mit arithmetischen Audrücken. Tabelle 7: default Arithmetik Logik (x+1)(x-2) (x y) (2 0) 12

13 7 Präzise Definitionen 7.1 Boole sche Ausdrücke(BA) Die Konstante 0 und 1 und alle Variablen-Namen a,b,c,... sind BA. Wenn A 1 und A 2 schon BA sind dann auch not(a 1 ), A 1 und A 2, A 1 or A 2. Zuordnung konkreter Werte aus {0,1} zu Variablen eines BA heißt Belegung. Wahrheitswert eines BA für feste Belegung ergibt sich durch Einsetzen und Auswerten aller and, or, not. Zwei BA A 1,A 2 heißen äquivalent, wenn sie bei gleicher Belegung gemeinsamer Variablen stets den gleichen Wert liefern(a 1 A 2 oder einfacher A 1 = A 2 ). 7.2 Liste wichtiger Boole scher Ausdrücke a = a Negation der Negation a b = b a Kommutativgesetz a (b a) = (a b) c Assoziativgesetz a (b c) = (a b) (a c) Distributivgesetz a a = a Idempotenz a not a = 0 Komplementidempotenz a 1 = a 0-1 Gesetz a 0 = Gesetz (a b) (a b) = a Absorptionsgesetz a b = a b De-Morgan-Gesetz Die Gleichungen, die entstehen, wenn man oben systematisch (,, 0, 1) durch (,, 1, 0) ersetzt gelten auch(dualität). Besser von De-Morgan: a b a b a b a b a b Spezielle BA : Ein BA X 1 X 2... X n heißt Konjunktionsterm (Und- Term) wenn alle X i Variablen oder negierte Variable(v) sind und jede Variable höchstens einmal vorkommt. Die Konstante 1 sei per Definition auch 13

14 ein K.-Term. Dual: BA X 1 X 2... X n heißt Disjunktionsterm (Oder-Term), wenn X i wie oben Konstante 0 sei per Definition auch ein D-Term. Ein BA K 1... K n heißt disjunktive Notmalform (DN), wenn alle K i paarweise nicht äquivalent k.-terme sind. Tabelle 8: Beispiel Beispiel für DN: abc ac ab x 1 x 2 x 2 x 3 Ëin oder aus mehreren Unds Wir werden im Weiteren noch sehen, dass alle BA in DN umformbar sind und DN-Schaltungen schnell sind. Maximaler Zeitbedarf bei DN: Durchlauf durch not-, dann and-, dann or-gatter. Situation in Prozessoren: Taktfrequenz sei ca 4 GHz, also 250 psec zwischen Taktsignalen. Schaltdauer von FET bei 50 psec. Mit etwas Verschnitt lässt sich der Durchlauf durch wenige Gatter nacheinander in einem Takt unterbringen. Lösung ist alles auf DN zu bringen. 8 Umwandeln von bel. BA in DN 1. De- Morgan und doppelte Negation: A B zu A B 14

15 A B zu A B A zu A 2. Ausmultiplizieren: A (B C) zu AB AC 3. Kürzen durch Komplement und 0-1-Gesetz: A A = 0 A 0 = 0 A 0 = A 4. Zusammenfassen von Variablen und K.-Termen gemäß A A = A A A = A (Kommutativität und Assoziativität wurden ausgelassen) Laut Konvention gilt: vor wie bei Punkt vor Strichrechnung! Definition: Eine DN (zu einer n-stelligen Funktion heißt kanonisch, wenn jeder K.-Term alle n Variablen enthält - als oder Beispiel: x 1 x 2 x 3 nicht kanonische DN x 1 x 2 x 3 x 1 x 2 x 3 kanonische DN 9 Verfahren für Kanonizität 1. Sei im K-Term T die Variable a nicht enthalten: Verändere T gemäß Absorptionsgesetz zu T a T a! Wiederhole dies so oft wie möglich! 2. Fasse gleiche Terme zusammen! Man nennt die K.-Terme einer KDN auch Minterme. Die Sortierung der Var.-Namen(z.B. a,b,c,...) stehe fest. Dann notieren wir einen minterm auch durch die 0-1-Belegung, bei der er 1 liefert. und sogar als m i wobei i der dezimale Wert des BÄ ist. (Im Bsp: m 5, m 4, m 6 ) Das ziel ist nun die Minterme einer Funktion öptimal durch Absorption zusammenzufassen. 15

16 Beispiel: Funktion f = ab bc, ab = abc abc, bc = abc abc Also f = abc abc abc Tabelle 9: Beispiele Minterm Binäräquivalent (BÄ) abc abc abc Quine Mc Cluskey Minterme zu Primtermen 10.1 Grobskizze 1. Stelle KDN auf: somit Minterme 2. Fasse Terme - so lange wie möglich - paarweise zusammenfassen gemäß Ka Ka K 3. Verknüpfe Terme, die sich nicht zusammenfassen ließen mit Oder! Diese heißen nicht Primterme. 16

3 Boole'sche Algebra und Aussagenlogik

3 Boole'sche Algebra und Aussagenlogik 3 Boole'sche Algebra und Aussagenlogik 3- Boole'sche Algebra Formale Grundlagen der Informatik I Herbstsemester 22 Robert Marti Vorlesung teilweise basierend auf Unterlagen von Prof. emer. Helmut Schauer

Mehr

Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen

Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen Rückblick Erweiterte b-adische Darstellung von Kommazahlen 7,1875 dargestellt mit l = 4 und m = 4 Bits 66 Rückblick Gleitkommazahlen (IEEE Floating Point Standard 754) lassen das Komma bei der Darstellung

Mehr

Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen

Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen Rückblick Erweiterte b-adische Darstellung von Kommazahlen 7,1875 dargestellt mit l = 4 und m = 4 Bits 66 Rückblick Gleitkommazahlen (IEEE Floating Point Standard 754) lassen das Komma bei der Darstellung

Mehr

Informationsverarbeitung auf Bitebene

Informationsverarbeitung auf Bitebene Informationsverarbeitung auf Bitebene Dr. Christian Herta 5. November 2005 Einführung in die Informatik - Informationsverarbeitung auf Bitebene Dr. Christian Herta Grundlagen der Informationverarbeitung

Mehr

Boolesche Algebra (1)

Boolesche Algebra (1) Boolesche Algebra (1) Definition 1: Sei B = Σ 2 = {0,1} das Alphabet mit den Elementen 0 und 1. Seien auf B die 3 Operatoren einer Algebra wie folgt definiert für x,y aus B: x+y := Max(x,y), x y := Min(x,y),

Mehr

4 Schaltalgebra. Hochschule für Angewandte Wissenschaften Hamburg FACHBEREICH ELEKTROTECHNIK UND INFORMATIK DIGITALTECHNIK 4-1

4 Schaltalgebra. Hochschule für Angewandte Wissenschaften Hamburg FACHBEREICH ELEKTROTECHNIK UND INFORMATIK DIGITALTECHNIK 4-1 4 Schaltalgebra 4. Axiome; Signale und Schaltfunktionen Der Entwurf einer Digitalschaltung mit vorgegebener Funktion erfordert die Manipulation der verschiedenen Eingangssignale auf eine Weise, die in

Mehr

Algebra mit Schaltungen I Städtisches Gymnasium Bad Laasphe

Algebra mit Schaltungen I Städtisches Gymnasium Bad Laasphe Informatik Gierhardt Algebra mit Schaltungen I Städtisches Gymnasium Bad Laasphe Algebra Der englische Mathematiker George Boole (1815-1864) entwickelte in seinem Buch The Laws of Thought zur systematischen

Mehr

13. Vorlesung. Logix Klausuranmeldung nicht vergessen! Übungsblatt 3 Logikschaltungen. Multiplexer Demultiplexer Addierer.

13. Vorlesung. Logix Klausuranmeldung nicht vergessen! Übungsblatt 3 Logikschaltungen. Multiplexer Demultiplexer Addierer. 13. Vorlesung Logix Klausuranmeldung nicht vergessen! Übungsblatt 3 Logikschaltungen Diode Transistor Multiplexer Demultiplexer Addierer 1 Campus-Version Logix 1.1 Vollversion Software und Lizenz Laboringenieur

Mehr

Technische Informatik I, SS03. Boole sche Algebra, Kombinatorische Logik

Technische Informatik I, SS03. Boole sche Algebra, Kombinatorische Logik Übung zur Vorlesung Technische Informatik I, SS03 Ergänzung Übungsblatt 1 Boole sche Algebra, Kombinatorische Logik Guenkova, Schmied, Bindhammer, Sauer {guenkova@vs., schmied@vs., bindhammer@vs., dietmar.sauer@}

Mehr

Logik (Prof. Dr. Wagner FB AI)

Logik (Prof. Dr. Wagner FB AI) Logik (Prof. Dr. Wagner FB AI) LERNZIELE: Über die Kenntnis und das Verständnis der gegebenen Definitionen hinaus verfolgt dieser Teil der Lehrveranstaltung die folgenden Lernziele: Bei gegebenen sprachlichen

Mehr

1. Grundlagen der Informatik Boolesche Algebra / Aussagenlogik

1. Grundlagen der Informatik Boolesche Algebra / Aussagenlogik 1. Grundlagen der Informatik Boolesche Algebra / Aussagenlogik Inhalt Grundlagen digitaler Systeme Boolesche Algebra / Aussagenlogik Organisation und Architektur von Rechnern Algorithmen, Darstellung von

Mehr

II. Grundlagen der Programmierung

II. Grundlagen der Programmierung II. Grundlagen der Programmierung II.1. Zahlenssteme und elementare Logik 1.1. Zahlenssteme 1.1.1. Ganze Zahlen Ganze Zahlen werden im Dezimalsstem als Folge von Ziffern 0, 1,..., 9 dargestellt, z.b. 123

Mehr

Logische Äquivalenz. Definition Beispiel 2.23

Logische Äquivalenz. Definition Beispiel 2.23 Logische Äquivalenz Definition 2.22 Zwei aussagenlogische Formeln α, β A heißen logisch äquivalent, falls für jede Belegung I von α und β gilt: Schreibweise: α β. Beispiel 2.23 Aus Folgerung 2.6 ergibt

Mehr

03 Boolesche Algebra. Technische Grundlagen der Informatik

03 Boolesche Algebra. Technische Grundlagen der Informatik 03 Boolesche Algebra Technische Grundlagen der Informatik Automation Systems Group E183-1 Institute of Computer Aided Automation Vienna University of Technology email: tgi@auto.tuwien.ac.at Inhalt Operationen

Mehr

Teil 1: Digitale Logik

Teil 1: Digitale Logik Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Analoge und digitale Hardware bei

Mehr

Ein Signal ist eine zeitlich veränderliche physikalische Größe, die eine auf sie abgebildete Information trägt.

Ein Signal ist eine zeitlich veränderliche physikalische Größe, die eine auf sie abgebildete Information trägt. 4. Technische Realisierung Sie erinnern sich: Ein Signal ist eine zeitlich veränderliche physikalische Größe, die eine auf sie abgebildete Information trägt. Hier: physikalische Größe = elektrische Spannung

Mehr

Aufgabe 1. Aufgabe 2. Abbildung 1: Schaltung für die Multiplikation mit 4

Aufgabe 1. Aufgabe 2. Abbildung 1: Schaltung für die Multiplikation mit 4 Aufgabe 1 Eine Zahl a ist mit 8 Bits vorzeichenlos (8 bit unsigned) dargestellt. Die Zahl y soll die Zahl a multipliziert mit 4 sein (y = a 4 D ). a) Wie viele Bits benötigen Sie für die Darstellung von

Mehr

Computersysteme. 2. Grundlagen Digitaler Schaltungen 2.10 Minimierung Boole scher Funktionen 2.11 CMOS Komplexgatter

Computersysteme. 2. Grundlagen Digitaler Schaltungen 2.10 Minimierung Boole scher Funktionen 2.11 CMOS Komplexgatter Computersysteme 2. Grundlagen Digitaler Schaltungen 2.10 Minimierung Boole scher Funktionen 2.11 CMOS Komplexgatter 1 Die Einsen im KV-Diagramm werden zu Blöcken maximaler Größe zusammengefasst. Dabei

Mehr

Systemorientierte Informatik 1

Systemorientierte Informatik 1 Systemorientierte Informatik. Grundlagen Digitaler Schaltungen.8 Schaltnetze aus Gattern und Leitungen.9 Boole sche Algebra. Minimierung Boole scher Funktionen. CMOS Komplegatter Die nächste Funktion,

Mehr

Technische Informatik I

Technische Informatik I Rechnerstrukturen Dario Linsky Wintersemester 200 / 20 Teil 2: Grundlagen digitaler Schaltungen Überblick Logische Funktionen und Gatter Transistoren als elektronische Schalter Integrierte Schaltkreise

Mehr

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 15/16

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 15/16 Rechnerstrukturen, Teil Vorlesung 4 SWS WS 5/6 Dr. Lars Hildebrand Fakultät für Informatik Technische Universität Dortmund lars.hildebrand@tu-.de http://ls-www.cs.tu-.de Übersicht. Organisatorisches 2.

Mehr

2. Funktionen und Entwurf digitaler Grundschaltungen

2. Funktionen und Entwurf digitaler Grundschaltungen 2. Funktionen und Entwurf digitaler Grundschaltungen 2.1 Kominatorische Schaltungen Kombinatorische Schaltungen - Grundlagen 1 Grundgesetze der Schaltalgebra UND-Verknüpfung ODER-Verknüpfung NICHT-Verknüpfung

Mehr

Grundlagen der Informationverarbeitung

Grundlagen der Informationverarbeitung Grundlagen der Informationverarbeitung Information wird im Computer binär repräsentiert. Die binär dargestellten Daten sollen im Computer verarbeitet werden, d.h. es müssen Rechnerschaltungen existieren,

Mehr

Algorithmus von McClusky: Der Algorithmus von McCluskey liefert durch wiederholte Anwendung der ersten und zweiten Vereinfachungsregel:

Algorithmus von McClusky: Der Algorithmus von McCluskey liefert durch wiederholte Anwendung der ersten und zweiten Vereinfachungsregel: Seite 1 Aufgabe 1 Algorithmus von McClusky: Der Algorithmus von McCluskey liefert durch wiederholte Anwendung der ersten und zweiten Vereinfachungsregel: f 1 = a b c d + a b c d + a b c d + a b c d + a

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Arithmetische und bitweise Operatoren im Binärsystem Prof. Dr. Nikolaus Wulff Operationen mit Binärzahlen Beim Rechnen mit Binärzahlen gibt es die ganz normalen arithmetischen

Mehr

Teil 1: Digitale Logik

Teil 1: Digitale Logik Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Analoge und digitale Hardware bei

Mehr

Aussagenlogik. 1 Einführung. Inhaltsverzeichnis. Zusammenfassung

Aussagenlogik. 1 Einführung. Inhaltsverzeichnis. Zusammenfassung Tobias Krähling email: Homepage: 13.10.2012 Version 1.2 Zusammenfassung Die Aussagenlogik ist sicherlich ein grundlegendes mathematisches Gerüst für weitere

Mehr

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 14/15

Rechnerstrukturen, Teil 1. Vorlesung 4 SWS WS 14/15 Rechnerstrukturen, Teil 1 Vorlesung 4 SWS WS 14/15 Prof. Dr Jian-Jia Chen Dr. Lars Hildebrand Fakultät für Informatik Technische Universität Dortmund lars.hildebrand@tu-.de http://ls1-www.cs.tu-.de Übersicht

Mehr

Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik

Rechnerstrukturen. Michael Engel und Peter Marwedel WS 2013/14. TU Dortmund, Fakultät für Informatik Rechnerstrukturen Michael Engel und Peter Marwedel TU Dortmund, Fakultät für Informatik WS 2013/14 Folien a. d. Basis von Materialien von Gernot Fink und Thomas Jansen 21. Oktober 2013 1/33 1 Boolesche

Mehr

Aussagenlogik. Formale Methoden der Informatik WiSe 2012/2013 teil 6, folie 1

Aussagenlogik. Formale Methoden der Informatik WiSe 2012/2013 teil 6, folie 1 Aussagenlogik Formale Methoden der Informatik WiSe 22/23 teil 6, folie Teil VI: Aussagenlogik. Einführung 2. Boolesche Funktionen 3. Boolesche Schaltungen Franz-Josef Radermacher & Uwe Schöning, Fakultät

Mehr

Informationsdarstellung

Informationsdarstellung Informationsdarstellung Signale und Logik Grundzüge der Booleschen Algebra Signale und Logik (2) Grundzüge d. Informationstheorie [Logarithmen-Repetitorium] Zahlensysteme und ihre Anwendung Signale und

Mehr

Grundlagen der Technischen Informatik. 7. Übung

Grundlagen der Technischen Informatik. 7. Übung Grundlagen der Technischen Informatik 7. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 7. Übungsblatt Themen Aufgabe : Aufgabe : Aufgabe : Aufgabe : KMF, Nelson/Petrick-Verfahren Quine-McCluskey-Verfahren

Mehr

Aussagenlogik. Aussagen und Aussagenverknüpfungen

Aussagenlogik. Aussagen und Aussagenverknüpfungen Aussagenlogik Aussagen und Aussagenverknüpfungen Aussagen sind Sätze, von denen sich sinnvollerweise sagen läßt, sie seien wahr oder falsch. Jede Aussage besitzt also einen von zwei möglichen Wahrheitswerten,

Mehr

f ist sowohl injektiv als auch surjektiv.

f ist sowohl injektiv als auch surjektiv. Bemerkungen: Wir erinnern uns an folgende Definitionen: Eine Funktion f : U V heißt injektiv, wenn gilt: ( x, y U)[x y f(x) f(y)] Eine Funktion f : U V heißt surjektiv, wenn gilt: ( y V x U)[y = f(x)]

Mehr

Übungen zur Vorlesung Grundlagen der Rechnerarchitektur

Übungen zur Vorlesung Grundlagen der Rechnerarchitektur Universität Koblenz-Landau Übungen zur Vorlesung Grundlagen der Rechnerarchitektur - Sommersemester 2018 - Übungsblatt 2 Abgabe bis Montag, 28. Mai 2018, 23:59 Uhr als pdf via SVN Punkte Kürzel A1 (10)

Mehr

11. Beschreiben Sie die disjunktive und die konjunktive Normalform eines logischen Ausdrucks!

11. Beschreiben Sie die disjunktive und die konjunktive Normalform eines logischen Ausdrucks! Kapitel 3 Logik Verständnisfragen Sachfragen 1. Was ist eine logische Aussage? 2. Wie ist die Konjunktion und die Disjunktion definiert? 3. Beschreiben Sie das Exklusive Oder, die Implikation und die Äquivalenz!

Mehr

Digital Design. Digital Design SS Prof. Dr. Richard Roth. 6 SWS SU und Übungen

Digital Design. Digital Design SS Prof. Dr. Richard Roth. 6 SWS SU und Übungen SS 2005 Prof. Dr. Richard Roth 6 SWS SU und Übungen Richard Roth / FB Informatik und Mathematik Schaltungstechnische Grundlagen 1 Literatur zur Vorlesung DD [1] PERNARDS, P..; Digitaltechnik Hüthig, 1992

Mehr

Schaltfunktion, Definition

Schaltfunktion, Definition Schaltfunktion, Definition Sei S = { 0,1}. Dann heißt eine Abbildung f: S n S eine Schaltfunktion. = f(x n-1,x n-2,...,,, ), x n-1, x n-2,...,,, S x i X = (x n-1,x n-2,...,,, ) Eingangsvariable Eingangsvektor

Mehr

Digitalelektronik - Inhalt

Digitalelektronik - Inhalt Digitalelektronik - Inhalt Grundlagen Signale und Werte Rechenregeln, Verknüpfungsregeln Boolesche Algebra, Funktionsdarstellungen Codes Schaltungsentwurf Kombinatorik Sequentielle Schaltungen Entwurfswerkzeuge

Mehr

Formale Grundlagen von Schaltnetzen L6, L7, L8 1. L 6 : Gesetze der Booleschen Algebra

Formale Grundlagen von Schaltnetzen L6, L7, L8 1. L 6 : Gesetze der Booleschen Algebra Formale Grundlagen von Schaltnetzen L6, L7, L8 1 L 6 : Gesetze der Booleschen Algebra Formale Grundlagen von Schaltnetzen L6, L7, L8 2 L 6-2: Einführung und Motivation Seien term 1 und term 2 beliebige

Mehr

Antwort: h = 5.70 bit Erklärung: Wahrscheinlichkeit p = 1/52, Informationsgehalt h = ld(1/p) => h = ld(52) = 5.70 bit

Antwort: h = 5.70 bit Erklärung: Wahrscheinlichkeit p = 1/52, Informationsgehalt h = ld(1/p) => h = ld(52) = 5.70 bit Übung 1 Achtung: ld(x) = Logarithmus dualis: ld(x) = log(x)/log(2) = ln(x)/ln(2)! Aufgabe 1 Frage: Wie gross ist der Informationsgehalt einer zufällig aus einem Stapel von 52 Bridgekarten gezogenen Spielkarte?

Mehr

5. Aussagenlogik und Schaltalgebra

5. Aussagenlogik und Schaltalgebra 5. Aussagenlogik und Schaltalgebra Aussageformen und Aussagenlogik Boolesche Terme und Boolesche Funktionen Boolesche Algebra Schaltalgebra Schaltnetze und Schaltwerke R. Der 1 Aussagen Information oft

Mehr

DuE-Tutorien 17 und 18

DuE-Tutorien 17 und 18 DuE-Tutorien 17 und 18 Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Christian A. Mandery TUTORIENWOCHE 5 AM 02.12.2011 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Einführung in die Theoretische Informatik

Einführung in die Theoretische Informatik Einführung in die Theoretische Informatik Woche 5 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung Zusammenfassung der letzten LV Jede binäre Operation hat maximal ein

Mehr

2.1 Boole sche Funktionen

2.1 Boole sche Funktionen . Grundlagen digitaler Schaltungen. Boole sche Funktionen Darstellung Boolescher Funktionen. Boole sche lgebra Sätze der Booleschen lgebra.3 Realisierung von Booleschen Funktionen Normalformen zweistufiger

Mehr

DuE-Tutorien 17 und 18

DuE-Tutorien 17 und 18 DuE-Tutorien 17 und 18 Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Christian A. Mandery TUTORIENWOCHE 3 AM 18.11.2011 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

DuE-Tutorien 16 und 17

DuE-Tutorien 16 und 17 Tutorien zur Vorlesung Digitaltechnik und Entwurfsverfahren Tutorienwoche 3 am 19.11.2010 1 Christian A. Mandery: KIT Universität des Landes Baden-Württemberg und nationales Grossforschungszentrum in der

Mehr

A.1 Schaltfunktionen und Schaltnetze

A.1 Schaltfunktionen und Schaltnetze Schaltfunktionen und Schaltnetze A. Schaltfunktionen und Schaltnetze 22 Prof. Dr. Rainer Manthey Informatik II Bedeutung des Binärsystems für den Rechneraufbau Seit Beginn der Entwicklung von Computerhardware

Mehr

Grundlagen der Digitaltechnik GD. Aufgaben und Musterlösungen

Grundlagen der Digitaltechnik GD. Aufgaben und Musterlösungen DIGITALTECHNIK GD KLAUSUR VOM 19. 3. 2014 AUFGABEN UND MUSTERLÖSUNGEN SEITE 1 VON 9 Name: FH Dortmund Matr.-Nr.: FB Informations- und Elektrotechnik Grundlagen der Digitaltechnik GD Klausur vom 19. 3.

Mehr

Einführung in die Boolesche Algebra

Einführung in die Boolesche Algebra Einführung in die Boolesche Algebra Einführung in Boole' sche Algebra 1 Binäre Größe Eine Größe (eine Variable), die genau 2 Werte annehmen kann mathematisch: falsche Aussage wahre Aussage technisch: ausgeschaltet

Mehr

Grundlagen der Informationsverarbeitung:

Grundlagen der Informationsverarbeitung: Grundlagen der Informationsverarbeitung: Boolesche Funktionen, Schaltnetze und Schaltwerke Prof. Dr.-Ing. habil. Ulrike Lucke Durchgeführt von Prof. Dr. rer. nat. habil. Mario Schölzel Maximaler Raum für

Mehr

Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14

Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14 Logik Logik Vorkurs Informatik Theoretischer Teil WS 2013/14 30. September 2013 Logik > Logik > logische Aussagen Logik Logik > Logik > logische Aussagen Motivation Logik spielt in der Informatik eine

Mehr

Boolesche (Schalt-) Algebra (1)

Boolesche (Schalt-) Algebra (1) Boolesche (Schalt-) Algebra (1) Definition 1: Sei B = SS 2 = 0,1 das Alphabet mit den Elementen 0 und 1. Seien auf BB die folgenden 3 Operatoren definiert für xx, yy B: xx + yy max xx, yy xx yy min xx,

Mehr

Einführung in die Theoretische Informatik. Inhalte der Lehrveranstaltung. Definition (Boolesche Algebra) Einführung in die Logik

Einführung in die Theoretische Informatik. Inhalte der Lehrveranstaltung. Definition (Boolesche Algebra) Einführung in die Logik Zusammenfassung Einführung in die Theoretische Informatik Woche 5 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Zusammenfassung der letzten LV Jede binäre Operation hat maximal ein

Mehr

Praktikum 2: Diode, Logische Schaltungen mit Dioden und Feldeffekttransistoren

Praktikum 2: Diode, Logische Schaltungen mit Dioden und Feldeffekttransistoren PraktikantIn 1 Matrikelnr: PraktikantIn 2 Matrikelnr: Datum: Aufgabe 2 durchgeführt: Aufgabe 3 durchgeführt: Aufgabe 4a durchgeführt: Aufgabe 4b durchgeführt: Aufgabe 4c durchgeführt: Aufgabe 4d durchgeführt:

Mehr

9. Kombinatorische Schaltungen

9. Kombinatorische Schaltungen 9. Kombinatorische Schaltungen Christoph Mahnke 15.06.2006 1 NAND-Gatter sowie der Eingangsstrom I E = f(u E ) Abbildung 1: Schaltsymbol NAND-Gatter Ein NAND-Gatter entspricht der logischen Verknüpfung

Mehr

Satz von De Morgan A B A + B A + B A B A. Transistoren: A B U a A 0 0 Vcc Vcc Vcc V 0

Satz von De Morgan A B A + B A + B A B A. Transistoren: A B U a A 0 0 Vcc Vcc Vcc V 0 Satz von De Morgan A + = A A A + A + A A 0 0 0 1 1 1 1 0 1 1 0 1 1 0 1 0 1 0 0 1 0 1 1 1 0 0 0 0 Transistoren: A U a A 0 0 Vcc 1 0 1 Vcc 1 1 0 Vcc 1 1 1 0 V 0 eispiel: Schaltung zur Erkennung gültiger

Mehr

, SS2012 Übungsgruppen: Do., Mi.,

, SS2012 Übungsgruppen: Do., Mi., VU Technische Grundlagen der Informatik Übung 3: Schaltnete 83.579, SS202 Übungsgruppen: Do., 9.04. Mi., 25.04.202 Aufgab: Vereinfachung mittels KV-Diagramm Gegeben ist folgende Wahrheitstafel: e 0 Z Z

Mehr

Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Hornformeln

Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Hornformeln Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Frank Heitmann heitmann@informatik.uni-hamburg.de 9. Juni 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/36 Ersetzbarkeitstheorem

Mehr

Kapitel 6 Programmierbare Logik. Literatur: Kapitel 6 aus Oberschelp/Vossen, Rechneraufbau und Rechnerstrukturen, 9. Auflage

Kapitel 6 Programmierbare Logik. Literatur: Kapitel 6 aus Oberschelp/Vossen, Rechneraufbau und Rechnerstrukturen, 9. Auflage Kapitel 6 Programmierbare Logik Literatur: Kapitel 6 aus Oberschelp/Vossen, Rechneraufbau und Rechnerstrukturen, 9. Auflage Kapitel 6: Programmierbare Logik und VLSI Seite Kapitel 6: Programmierbare Logik

Mehr

Grundlagen der Technischen Informatik. 5. Übung

Grundlagen der Technischen Informatik. 5. Übung Grundlagen der Technischen Informatik 5. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 5. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Aufgabe 5: Boolesche Algebra

Mehr

Minimierung nach Quine Mc Cluskey

Minimierung nach Quine Mc Cluskey Minimierung nach Quine Mc Cluskey F(A,B,C,D) =!A!B!C!D +!A!B!C D +!A B!C!D +!A B!C D +!A B C!D +!A B C D + A!B!C!D + A!B!C D + A!B C D + A B C D Notiere die Funktion als # A B C D Gruppe Binärelemente

Mehr

Schaltalgebra in der Schule

Schaltalgebra in der Schule Proseminararbeit Angewandte Mathematik WS 2002/03 Schaltalgebra in der Schule Lisi Karner 0006698 Elisabeth Lehner 0001277 Nicole Senft 0048777 1 Inhaltsverzeichnis Einleitung 1. Theoretischer Teil 1.1.

Mehr

12. Vorlesung. Logix Schaltungsanalyse Elektrische Schaltelemente Logikschaltungen Diode Transistor Multiplexer Aufbau Schaltungsrealisierung

12. Vorlesung. Logix Schaltungsanalyse Elektrische Schaltelemente Logikschaltungen Diode Transistor Multiplexer Aufbau Schaltungsrealisierung 2. Vorlesung Logix Schaltungsanalyse Elektrische Schaltelemente Logikschaltungen Diode Transistor Multiplexer Aufbau Schaltungsrealisierung Campus-Version Logix. Vollversion Software und Lizenz Laboringenieur

Mehr

Formale Grundlagen der Informatik 1 Kapitel 15 Normalformen und Hornformeln

Formale Grundlagen der Informatik 1 Kapitel 15 Normalformen und Hornformeln Formale Grundlagen der Informatik 1 Kapitel 15 Normalformen und Frank Heitmann heitmann@informatik.uni-hamburg.de 30. Mai 2016 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/42 Zusammenfassung Syntax

Mehr

Zusammenfassung Syntax: Formale Grundlagen der Informatik 1 Kapitel 15 Normalformen und Hornformeln. Zusammenfassung

Zusammenfassung Syntax: Formale Grundlagen der Informatik 1 Kapitel 15 Normalformen und Hornformeln. Zusammenfassung Formale der Informatik 1 Kapitel 15 und Frank Heitmann heitmann@informatik.uni-hamburg.de 30. Mai 2016 Zusammenfassung Syntax Zusammenfassung Syntax: Motivation Definition der Syntax: Alphabet, Junktor

Mehr

Minimierung nach Quine Mc Cluskey

Minimierung nach Quine Mc Cluskey Minimierung nach Quine Mc Cluskey F(A,B,C,D) =!A!B!C!D +!A!B!C D +!A B!C!D +!A B!C D +!A B C!D +!A B C D + A!B!C!D + A!B!C D + A!B C D + A B C D Notiere die Funktion als # A B C D Gruppe Binärelemente

Mehr

Syntax. 1 Jedes A AS AL ist eine (atomare) Formel. 2 Ist F eine Formel, so ist auch F eine Formel. 3 Sind F und G Formeln, so sind auch

Syntax. 1 Jedes A AS AL ist eine (atomare) Formel. 2 Ist F eine Formel, so ist auch F eine Formel. 3 Sind F und G Formeln, so sind auch Formale der Informatik 1 Kapitel 15 Folgerbarkeit, Äquivalenzen und Normalformen Frank Heitmann heitmann@informatik.uni-hamburg.de 8. Juni 2015 Syntax Definition (Syntax der Aussagenlogik) Mit AS AL sei

Mehr

Grundlagen der Rechnerarchitektur. Binäre Logik und Arithmetik

Grundlagen der Rechnerarchitektur. Binäre Logik und Arithmetik Grundlagen der Rechnerarchitektur Binäre Logik und Arithmetik Übersicht Logische Operationen Addition, Subtraktion und negative Zahlen Logische Bausteine Darstellung von Algorithmen Multiplikation Division

Mehr

Grundlagen der Technischen Informatik. 8. Übung

Grundlagen der Technischen Informatik. 8. Übung Grundlagen der Technischen Informatik 8. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 8. Übungsblatt Themen Aufgabe : Aufgabe : Aufgabe : Aufgabe : KMF, Nelson/Petrick-Verfahren Quine/McCluskey-Verfahren

Mehr

Rechnerstrukturen WS 2012/13

Rechnerstrukturen WS 2012/13 Rechnerstrukturen WS 202/3 Boolesche Funktionen und Schaltnetze Repräsentationen boolescher Funktionen (Wiederholung) Normalformen boolescher Funktionen (Wiederholung) Repräsentation boolescher Funktionen

Mehr

Vorkurs Mathematik für Informatiker 5 Logik, Teil 1

Vorkurs Mathematik für Informatiker 5 Logik, Teil 1 5 Logik, Teil 1 Michael Bader, Thomas Huckle, Stefan Zimmer 1. 9. Oktober 2008 Kap. 5: Logik, Teil 1 1 Aussagenlogik Rechnen mit Wahrheitswerten: true und false Kap. 5: Logik, Teil 1 2 Aussagenlogik Rechnen

Mehr

Minimierung von logischen Schaltungen

Minimierung von logischen Schaltungen Minimierung von logischen Schaltungen WAS SIND LOGISCHE SCHALTUNGEN Logische Verknüpfungszeichen: & = Logisches Und-Verknüpfung (Konjunktion). V = Logische Oder-Verknüpfung (Disjunktion). - = Nicht (Negation).

Mehr

Grundlagen der Technischen Informatik. 7. Übung

Grundlagen der Technischen Informatik. 7. Übung Grundlagen der Technischen Informatik 7. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 7. Übungsblatt Themen Aufgabe : Aufgabe : Aufgabe : Aufgabe : KMF, Nelson/Petrick-Verfahren Quine/McCluskey-Verfahren

Mehr

Schaltalgebra und kombinatorische Logik

Schaltalgebra und kombinatorische Logik Schaltalgebra und kombinatorische Logik. Digitale elektrische Schaltungen 2. Beschreibung durch logische Ausdrücke 3. Boolesche Algebra 4. Schaltfunktionen 5. Synthese von Schaltungen 6. Schaltnetze *Die

Mehr

Vorbemerkung. [disclaimer]

Vorbemerkung. [disclaimer] Vorbemerkung Dies ist ein abgegebenes Praktikumsprotokoll aus dem Modul physik313. Dieses Praktikumsprotokoll wurde nicht bewertet. Es handelt sich lediglich um meine Abgabe und keine Musterlösung. Alle

Mehr

8 Boolesche Algebra. 8.1 Grundlegende Operationen und Gesetze

8 Boolesche Algebra. 8.1 Grundlegende Operationen und Gesetze 82 8 Boolesche Algebra Die Boolesche Algebra ist eine Algebra der Logik, die George Boole (1815 1864) als erster entwickelt hat. Sie ist die Grundlage für den Entwurf von elektronischen Schaltungen und

Mehr

N Bit binäre Zahlen (signed)

N Bit binäre Zahlen (signed) N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101

Mehr

Grundbegriffe aus Logik und Mengenlehre

Grundbegriffe aus Logik und Mengenlehre Prof. Dr. B. Niethammer Dr. C. Seis, R. Schubert Institut fr Angewandte Mathematik Universitt Bonn Grundbegriffe aus Logik und Mengenlehre Wir wollen im Folgenden eine kurze Einführung in die Grundbegriffe

Mehr

5. Tutorium Digitaltechnik und Entwurfsverfahren

5. Tutorium Digitaltechnik und Entwurfsverfahren 5. Tutorium Digitaltechnik und Entwurfsverfahren Tutorium Nr. 13 Alexis Tobias Bernhard Fakultät für Informatik, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

1. Logische Verknüpfungen

1. Logische Verknüpfungen 1. Logische Verknüpfungen 1.1 UND - Verknüpfung Mathematik: X = A Schaltzeichen: A & X Wahrheitstabelle: A X 0 0 0 0 1 0 1 0 0 1 1 1 Am Ausgang eines UND Gliedes liegt nur dann der Zustand 1, wenn an allen

Mehr

Übungsklausur - Beispiellösung

Übungsklausur - Beispiellösung Digitale Systeme Übungsklausur - Beispiellösung Aufgabe 1 (a) Benutzt man n Bit für die Darstellung im 2-Komplement, so deckt man den Wertebereich von 2 n 1 bis 2 n 1 1 ab. Also ergibt sich der abgedeckte

Mehr

Konjunktive und disjunktive Normalformen

Konjunktive und disjunktive Normalformen Konjunktive und disjunktive Normalformen Nachdem gesprochen wurde, wie man Boolesche Terme unter einer Belegung der Variablen interpretiert und dass somit jeder Boolesche Term eine Boolesche Funktion repräsentiert,

Mehr

FAKULTÄT FÜR INFORMATIK

FAKULTÄT FÜR INFORMATIK FAKULTÄT FÜR INFORMATIK TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Rechnertechnik und Rechnerorganisation Prof. Dr. Martin Schulz Einführung in die Rechnerarchitektur Wintersemester 2017/2018 Ztralübung

Mehr

Logische Aussagen können durch die in der folgenden Tabelle angegebenen Operationen verknüpft werden.

Logische Aussagen können durch die in der folgenden Tabelle angegebenen Operationen verknüpft werden. Logische Operationen Logische ussagen können durch die in der folgenden Tabelle angegebenen Operationen verknüpft werden. ezeichnung Schreibweise (Sprechweise) wahr, genau dann wenn Negation (nicht ) falsch

Mehr

Aussagenlogik. Formale Methoden der Informatik WiSe 2010/2011 teil 7, folie 1 (von 50)

Aussagenlogik. Formale Methoden der Informatik WiSe 2010/2011 teil 7, folie 1 (von 50) Aussagenlogik Formale Methoden der Informatik WiSe 2/2 teil 7, folie (von 5) Teil VII: Aussagenlogik. Einführung 2. Boolesche Funktionen 3. Boolesche Schaltungen Franz-Josef Radermacher & Uwe Schöning,

Mehr

Darstellung von negativen binären Zahlen

Darstellung von negativen binären Zahlen Darstellung von negativen binären Zahlen Beobachtung für eine beliebige Binärzahl B, z.b. B=110010: B + NOT(B) ---------------------------------------------- = B + NOT(B) 1 + (Carry) ----------------------------------------------

Mehr

Kleine lateinische Buchstaben wie z. B. p, q, r, s t, usw.

Kleine lateinische Buchstaben wie z. B. p, q, r, s t, usw. 1.1 Aussagenlogik Grundlagen der Mathematik 1 1.1 Aussagenlogik Definition: Aussage Eine Aussage im Sinne der Logik ist ein formulierter Tatbestand, der sich bei objektiver Prüfung immer eindeutig als

Mehr

3 Verarbeitung und Speicherung elementarer Daten

3 Verarbeitung und Speicherung elementarer Daten 3 Verarbeitung und Speicherung elementarer Daten 3.1 Boolsche Algebra Definition: Eine Boolsche Algebra ist eine Menge B mit den darauf definierten zweistelligen Verknüpfungen (+,*) sowie der einstelligen

Mehr

Kapitel 1: Grundbegriffe

Kapitel 1: Grundbegriffe Kapitel 1: Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) 1 / 20 Gliederung 1 Logik Ein ganz kurzer Ausflug in die Kombinatorik Stefan Ruzika (KO) 2

Mehr

GTI ÜBUNG 9. Multiplexer, demultiplexer, shifter, cmos und pal FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG JAN SPIECK 1

GTI ÜBUNG 9. Multiplexer, demultiplexer, shifter, cmos und pal FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG JAN SPIECK 1 GTI ÜBUNG 9 Multiplexer, demultiplexer, shifter, cmos und pal FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG JAN SPIECK AUFGABE CMOS Beschreibung: Sei die Schaltfunktion f x 3, x 2, x, x 0 = x 0 x x

Mehr

5. Tutorium Digitaltechnik und Entwurfsverfahren

5. Tutorium Digitaltechnik und Entwurfsverfahren 5. Tutorium Digitaltechnik und Entwurfsverfahren Tutorium Nr. 9 Alexis Tobias Bernhard Fakultät für Informatik, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

8. Tutorium Digitaltechnik und Entwurfsverfahren

8. Tutorium Digitaltechnik und Entwurfsverfahren 8. Tutorium Digitaltechnik und Entwurfsverfahren Tutorium Nr. 9 Alexis Tobias Bernhard Fakultät für Informatik, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

2. Vorlesung: Boolesche Algebra

2. Vorlesung: Boolesche Algebra 2. Vorlesung: Boolesche Algebra Wiederholung Codierung, Decodierung Boolesche Algebra UND-, ODER-Verknüpfung, Negation Boolesche Postulate Boolesche Gesetze 1 Wiederholung 2 Bits und Bitfolgen Bit: Maßeinheit

Mehr

2. Tutorium Digitaltechnik und Entwurfsverfahren

2. Tutorium Digitaltechnik und Entwurfsverfahren 2. Tutorium Digitaltechnik und Entwurfsverfahren Tutorium Nr. 9 Alexis Tobias Bernhard Fakultät für Informatik, KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Technische Grundlagen der Informatik

Technische Grundlagen der Informatik Technische Grundlagen der Informatik WS 2008/2009 6. Vorlesung Klaus Kasper WS 2008/2009 Technische Grundlagen der Informatik Inhalt Wiederholung Boolesche Gesetze Boolesche Kürzungsregeln Antivalenz und

Mehr