Klausur Mathematik 2, Teil Statistik und Finanzmathematik Lösungen

Größe: px
Ab Seite anzeigen:

Download "Klausur Mathematik 2, Teil Statistik und Finanzmathematik Lösungen"

Transkript

1 Fachhochschule Ravensburg-Weingarten, Fachbereich Elektrotechnik und Informatik Klausur Mathematik 2, Teil Statistik und Finanzmathematik Lösungen Aufgaben (Punkte) 1. Für eine Voraussage der Bürgermeisterwahl einer großen Stadt soll das Wahlverhalten der Bürger durch Stichproben vorab analysiert werden. Die Anteile der Kandidaten Frau Abner, Herr Bols, Herr Christens und Herr Dost seien mit a, b, c bzw. d bezeichnet. Ein Meinungsforschungsinstitut gibt nun folgende Zahlen bekannt: a = 0,36; b = 0,22; c = 0,1; d = 0,3; Warum können diese Zahlen aus mathematischer Sicht nicht stimmen? (4) Die Summe der obigen Wahrscheinlichkeiten ergibt 1,08 > 1. Da die Ereignisse disjunkt sind, darf man die Wahrscheinlichkeiten zusammenzählen. Wahrscheinlichkeiten dürfen aber nur zwischen 0 und 1 liegen, hier würde die Wahrscheinlichkeit dafür, dass ein Bürger für irgendeinen der 4 Kandidaten stimmen würde, aber 1,08 sein, also gar keine gültige Wahrscheinlichkeit. Ändern Sie d so ab, dass die Angaben mathematisch korrekt werden. Mit d = 0,27 ist die Summe aller Wahrscheinlichkeiten gerade Eine zufällig befragte Person gibt lautstark bekannt, dass sie niemals eine Frau als Bürgermeisterin wählen würde. Berechnen Sie mit der Formel von Bayes die Wahrscheinlichkeit, dass diese Person Herrn Bols wählen würde. (8) Ereignis M = "Befragter wählt keine Frau" Ereignisse Abner (Bols, Christens bzw. Dost) = "Befragter wählt Frau Abner (Herrn Bols, Herrn Christens bzw. Herrn Dost)" Es gilt pm ( Abner ) = 0, da ein Befragter nicht gleichzeitig Frau Abner aber keine Frau wählen kann. Es gilt p( M Bols) = p( M Christens) = p( M Dost) = 1, da ein Befragter, der Herrn Bols, Herrn Christens oder Herrn Dost wählt, sicher einen Mann wählt. p( Bols M ) = pm ( Bols) b p( M Abner) a + p( M Bols) b + p( M Christens) c + p( M Dost) d 1 b 0,22 = = = 0, a+ 1 b+ 1 c+ 1 d 0,64 3. Betrachten Sie nur die beiden Ereignisse: "Stimme für Frau Abner" und "Stimme nicht für Frau Abner". Die Zufallsvariable A ordnet dem ersten Ereignis eine 1 zu, dem zweiten eine 0. Damit ist A eine Bernoulli-Variable. Der Erwartungswert dieser Zufallsvariablen ist E(A) = a = 0,36. Wie groß ist die Wahrscheinlichkeit, dass bei 10 zufällig befragten Personen (wobei eine Person prinzipiell auch mehrfach befragt werden könnte) genau 3 angeben, für Frau Abner zu stimmen? Geben Sie auch die Formel an, nicht nur den berechneten Zahlenwert! () ! 3 7 a (1 a) = 0,36 0, 64 = 0, ! 7! Wie nennt man diese Verteilung? Geometrische Verteilung Hypergeometrische Verteilung

2 Prüfung Mathematik 2, 19. Juli 2002, «Name» «Vorname», «MatrikelNr» -2- Poisson-Verteilung t-verteilung von Student Binomialverteilung Exponentialverteilung Gleichverteilung χ 2 -Verteilung 4. Herr Dost wirft nach dem Vorfall mit der falschen Statistik (siehe Aufgabe 1) dem Meinungsforschungsinstitut Wahlbeeinflussung zugunsten von Frau Abner vor. Er veranlasst eine Umfrage bei 1000 zufällig ausgewählten Personen. Davon antworten 337, dass sie Frau Abner wählen wollen. Kann die Hypothese a 0,36 bei einer Irrtumswahrscheinlichkeit von α = 0,0 aufrecht erhalten werden, oder muss man der Alternative von Herrn Dost a < 0,36 folgen? Gehen Sie bei Ihrer Antwort davon aus, dass die Zufallsvariable 1 A= ( A1 + A2 + + A1000 ) nach dem zentralen Grenzwertsatz annähernd 1000 normalverteilt ist, wobei die A i Kopien der Zufallsvariablen A sind. Für den Erwartungswert und die Varianz gilt: E( A ) = a = 0,36 (zu testen) und Var( A ) = 0, Um die Aufgabe zu lösen, dürfen Sie entweder die Tabelle der Verteilungsfunktion der Standardnormalverteilung oder die Tabelle der Verteilungsfunktion der Normalverteilung mit µ = 0,36 und σ = 0,00023 auf der letzten Seite benutzen. Es handelt sich hier um einen einseitigen Test. Die Testvariable A ist normalverteilt. Suche die Grenze g mit Φ ( g, µ = 0,36, σ = 0,00023) = 0,0. Ist das Stichprobenmittel als Realisierung von E( A ) kleiner als g, so liegt die Stichprobe im kritischen Bereich und muss verworfen werden. In der Tabelle liest man ab g =Φ 1 (0,0; µ = 0,36; σ = 0,00023) = 0,33. Das Stichprobenmittel ist 337/1000 = 0,337 > 0,33 = g. Damit wird die Hypothese angenommen. Andere Lösung mit Normierung auf Standardnormalverteilung: Es handelt sich hier um einen einseitigen Test. Die Zufallsvariable A ist normalverteilt mit µ = 0,36 und σ = 0, Bilde daraus die normierte 1 1 Testvariable T : = ( A µ ) = ( 0,36) 6,938( 0,36) σ 0, A = A ; sie ist standardnormalverteilt. Suche die Grenze g mit Φ ( g, µ = 0, σ = 1) = 0,0. Ist das normierte Stichprobenmittel T( x) = 6,938( x 0,36) kleiner als g, so liegt die Stichprobe im kritischen Bereich und muss verworfen werden. In der Tabelle liest man ab g =Φ (0,0; µ = ; σ = 1) = 1,6448. Das Stichprobenmittel x = = 0, und das normierte Stichprobenmittel T( x ) = 6,938(0,337 0,36) = 1,166 > -1,6448 = g. Damit wird die Hypothese angenommen. (8). Ein Sparer kauft für 1000 Anteile an einem Aktienfond. Zusätzlich muss er beim Kauf % Ausgabeaufschlag (d. h. % Gebühren) bezahlen. Nach 7 Jahren verkauft er seine Anteile für Dabei fallen wiederum Gebühren von 1% an. () a) Wie viel Kapital muss der Sparer am Anfang einsetzen?

3 Prüfung Mathematik 2, 19. Juli 2002, «Name» «Vorname», «MatrikelNr» -3- Ausgabeaufschlag = 1000 * 0,0 = 70 eingesetztes Kapital = =170 Der Sparer muss 170 einsetzen. b) Wie viel Geld bekommt der Sparer am Ende? Endgebühren = 2000 * 0,01 = 20 Endkapital = = 2470 Der Sparer bekommt nach 7 Jahren 2470 ausbezahlt. c) Wie hoch ist der effektive Jahreszins, d. h. mit welchem Zinssatz müsste ein Sparvertrag verzinst werden (Zinseszins, jährlich nachschüssige Zinszahlungen), damit der Sparer bei gleichem Kapitaleinsatz das gleiche Ergebnis erzielt? i = 1 = 0, Der effektive Jahreszins beträgt 6,67% Ein mittelständisches Unternehmen hat für seinen DV-Bedarf für die nächsten Jahre zwei Alternativen. Alternative 1: Vergabe an ein externes Rechenzentrum Kosten pro Jahr jeweils zum Jahresbeginn 0000 Alternative 2: Eigene Lösung Kauf der Hardware und Software sofort für ; Kosten für einen zusätzlichen Mitarbeiter jährlich (Kosten sind bereits auf das Ende eines Jahres bezogen, auch wenn das Gehalt monatlich ausbezahlt wird); Wartungskosten für die Hard- und Software jährlich zu Ende des Jahres 000 Berechnen Sie nach der Kapitalwertmethode den Wert beider Alternativen nach Jahren mit einem Kalkulationszinssatz von 0,04. Welche Alternative ist günstiger? (10) Alternative 1: Alle Zahlungen werden verzinst und damit auf einen gemeinsamen Zeitpunkt bezogen. Die ersten 0000 werden mal verzinst, die zweiten nur noch 4 mal usw., die letzten nur noch 1 mal. Nach der Rentenformel für vorschüssige Ratenzahlungen ergibt sich j 1, (1 + 0,04) = ,04 = ,77, d. h. ein Kapitalwert von 0,04 j= ,77. Alternative 2: Die Anschaffungskosten werden mal verzinst: K = 30000( ) = 36499,9 Pro Jahr fallen am Ende des Jahres 4000 regelmäßige Zahlungen an. Die ersten werden 4 mal verzinst, die zweiten nur noch 3 mal usw., die letzten nur noch 0 mal. Nach der Rentenformel für nachschüssige Ratenzahlungen ergibt sich 4 j 1, (1 + 0,04) = 4000 = ,2 0,04 j= 0 Die verzinsten Anschaffungskosten und regelmäßigen Kosten werden zusammengezählt, es ergibt sich ein Kapitalwert von 36499, ,2 = ,11 Da ,11 > ,77, ist der Kapitalwert von Alternative 2 größer und damit

4 Prüfung Mathematik 2, 19. Juli 2002, «Name» «Vorname», «MatrikelNr» -4- ist Alternative 2 günstiger, wenn auch nicht viel. Schon bei kleinen Änderungen der Randbedingungen kann man ein anderes Ergebnis erhalten.

5 Prüfung Mathematik 2, 19. Juli 2002, «Name» «Vorname», «MatrikelNr» -- x Φ 1 ( x, µ = 0, σ = 1) Φ 1 ( x, µ = 0,36, σ = 0,00023) 0,02-1,9996 0,3302 0,0-1,6448 0, ,07-1,4393 0, ,1-1,281 0, ,12-1,103 0, ,1-1, , ,17-0, , ,2-0, , ,22-0,741 0, ,2-0, , ,27-0,9776 0, ,3-0, ,3204 0,32-0, , ,3-0,3832 0,3411 0,37-0, ,3163 0,4-0, ,3614 0,42-0, , ,4-0, , ,47-0, , , 0 0,36 0,2 0, , , 0, , ,7 0, , ,6 0, , ,62 0, , ,6 0,3832 0, ,67 0, , ,7 0, , ,72 0,9776 0, ,7 0, , ,77 0,741 0, ,8 0, , ,82 0, , ,8 1, , ,87 1,103 0, ,9 1,281 0, ,92 1,4393 0, ,9 1,6448 0, ,97 1,9996 0,3897

Wahrscheinlichkeitstheorie und Statistik

Wahrscheinlichkeitstheorie und Statistik Wahrscheinlichkeitstheorie und Statistik Definitionen und Sätze Prof. Dr. Christoph Karg Studiengang Informatik Hochschule Aalen Sommersemester 2018 2.5.2018 Diskrete Wahrscheinlichkeitsräume Diskreter

Mehr

Wichtige Definitionen und Aussagen

Wichtige Definitionen und Aussagen Wichtige Definitionen und Aussagen Zufallsexperiment, Ergebnis, Ereignis: Unter einem Zufallsexperiment verstehen wir einen Vorgang, dessen Ausgänge sich nicht vorhersagen lassen Die möglichen Ausgänge

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Stetige Zufallsvariable Verteilungsfunktion: Dichtefunktion: Integralrechnung:

Mehr

70 Wichtige kontinuierliche Verteilungen

70 Wichtige kontinuierliche Verteilungen 70 Wichtige kontinuierliche Verteilungen 70. Motivation Zufallsvariablen sind nicht immer diskret, sie können oft auch jede beliebige reelle Zahl in einem Intervall [c, d] einnehmen. Beispiele für solche

Mehr

Klausur zur Mathematik für Biologen

Klausur zur Mathematik für Biologen Mathematisches Institut der Heinrich-Heine-Universität DÜSSELDORF WS 2002/2003 12.02.2003 (1) Prof. Dr. A. Janssen / Dr. H. Weisshaupt Klausur zur Mathematik für Biologen Bitte füllen Sie das Deckblatt

Mehr

Wahrscheinlichkeit und Statistik: Zusammenfassung

Wahrscheinlichkeit und Statistik: Zusammenfassung HSR Hochschule für Technik Rapperswil Wahrscheinlichkeit und Statistik: Zusammenfassung beinhaltet Teile des Skripts von Herrn Hardy von Lukas Wilhelm lwilhelm.net 12. Januar 2007 Inhaltsverzeichnis 1

Mehr

5. Spezielle stetige Verteilungen

5. Spezielle stetige Verteilungen 5. Spezielle stetige Verteilungen 5.1 Stetige Gleichverteilung Eine Zufallsvariable X folgt einer stetigen Gleichverteilung mit den Parametern a und b, wenn für die Dichtefunktion von X gilt: f x = 1 für

Mehr

3 Grundlagen statistischer Tests (Kap. 8 IS)

3 Grundlagen statistischer Tests (Kap. 8 IS) 3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung

Mehr

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler

Philipp Sibbertsen Hartmut Lehne. Statistik. Einführung für Wirtschafts- und. Sozialwissenschaftler. 2., überarbeitete Auflage. 4^ Springer Gabler Philipp Sibbertsen Hartmut Lehne Statistik Einführung für Wirtschafts- und Sozialwissenschaftler 2., überarbeitete Auflage 4^ Springer Gabler Inhaltsverzeichnis Teil I Deskriptive Statistik 1 Einführung

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Spezielle Verteilungen Noémie Becker & Dirk Metzler http://evol.bio.lmu.de/_statgen 7. Juni 2013 1 Binomialverteilung 2 Normalverteilung 3 T-Verteilung

Mehr

Statistik I für Betriebswirte Vorlesung 14

Statistik I für Betriebswirte Vorlesung 14 Statistik I für Betriebswirte Vorlesung 14 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 11. Juli 016 Prof. Dr. Hans-Jörg Starkloff Statistik I für Betriebswirte Vorlesung

Mehr

2 Aufgaben aus [Teschl, Band 2]

2 Aufgaben aus [Teschl, Band 2] 20 2 Aufgaben aus [Teschl, Band 2] 2.1 Kap. 25: Beschreibende Statistik 25.3 Übungsaufgabe 25.3 a i. Arithmetisches Mittel: 10.5 ii. Median: 10.4 iii. Quartile: x 0.25 Y 4 10.1, x 0.75 Y 12 11.1 iv. Varianz:

Mehr

1 Dichte- und Verteilungsfunktion

1 Dichte- und Verteilungsfunktion Tutorium Yannick Schrör Klausurvorbereitungsaufgaben Statistik Lösungen Yannick.Schroer@rub.de 9.2.26 ID /455 Dichte- und Verteilungsfunktion Ein tüchtiger Professor lässt jährlich 2 Bücher drucken. Die

Mehr

Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1

Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Aufgabe 1: Wieviele der folgenden Variablen sind quantitativ stetig? Schulnoten, Familienstand, Religion, Steuerklasse, Alter, Reaktionszeit, Fahrzeit,

Mehr

Auswertung und Lösung

Auswertung und Lösung Dieses Quiz soll Ihnen helfen, Kapitel 4.6 und 4.7 besser zu verstehen. Auswertung und Lösung Abgaben: 59 / 265 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: 0 Durchschnitt: 4.78 1 Frage

Mehr

3) Testvariable: T = X µ 0

3) Testvariable: T = X µ 0 Beispiel 4.9: In einem Molkereibetrieb werden Joghurtbecher abgefüllt. Der Sollwert für die Füllmenge dieser Joghurtbecher beträgt 50 g. Aus der laufenden Produktion wurde eine Stichprobe von 5 Joghurtbechern

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/52 Biostatistik, Sommer 2017 Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 02.06.2017 2/52 Inhalt 1 Wahrscheinlichkeit Bayes sche Formel 2 Diskrete Stetige 3/52 Wahrscheinlichkeit Bayes

Mehr

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik

Statistik. Sommersemester Stefan Etschberger. für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Stefan Etschberger für Betriebswirtschaft, Internationales Management, Wirtschaftsinformatik und Informatik Sommersemester 2017 Normalverteilung Eine Zufallsvariable X mit einer Dichtefunktion f(x) =

Mehr

Stichproben Parameterschätzung Konfidenzintervalle:

Stichproben Parameterschätzung Konfidenzintervalle: Stichproben Parameterschätzung Konfidenzintervalle: Beispiel Wahlprognose: Die Grundgesamtheit hat einen Prozentsatz p der Partei A wählt. Wenn dieser Prozentsatz bekannt ist, dann kann man z.b. ausrechnen,

Mehr

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen

Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Wahrscheinlichkeitsrechnung und Statistik für Biologen Wiederholung: Verteilungen Noémie Becker & Dirk Metzler 31. Mai 2016 Inhaltsverzeichnis 1 Binomialverteilung 1 2 Normalverteilung 2 3 T-Verteilung

Mehr

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management

Statistik. Sommersemester Prof. Dr. Stefan Etschberger Hochschule Augsburg. für Betriebswirtschaft und internationales Management für Betriebswirtschaft und internationales Management Sommersemester 2015 Prof. Dr. Stefan Etschberger Hochschule Augsburg Normalverteilung Eine Zufallsvariable X mit einer Dichtefunktion und σ > 0 heißt

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 Wahrscheinlichkeitstheorie:, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 7. Vorlesung: 09.12.2011 1/58 Inhalt 1 2 Kenngrößen von Lagemaße 2/58 mit Dichte Normalverteilung

Mehr

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2002

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2002 Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2002 1. Ein Chemiestudent hat ein Set von 10 Gefäßen vor sich stehen, von denen vier mit Salpetersäure Stoff A), vier mit Glyzerin Stoff

Mehr

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)

Mehr

Statistik I für Betriebswirte Vorlesung 14

Statistik I für Betriebswirte Vorlesung 14 Statistik I für Betriebswirte Vorlesung 14 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 13. Juli 017 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 14 Version: 8. Juli

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 6. Stock, Taubertsberg 2 R. 06-206 (Persike) R. 06-214 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de http://psymet03.sowi.uni-mainz.de/

Mehr

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation

Teil VIII. Zentraler Grenzwertsatz und Vertrauensintervalle. Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle. Lernziele. Typische Situation Woche 6: Zentraler Grenzwertsatz und Vertrauensintervalle Patric Müller ETHZ Teil VIII Zentraler Grenzwertsatz und Vertrauensintervalle WBL 17/19, 29.05.2017 Wahrscheinlichkeit

Mehr

Probeklausur zu Mathematik 3 für Informatik Lösungshinweise (ohne Garantie auf Fehlefreiheit)

Probeklausur zu Mathematik 3 für Informatik Lösungshinweise (ohne Garantie auf Fehlefreiheit) Gunter Ochs 9. Juni 05 Probeklausur zu Mathematik für Informatik Lösungshinweise ohne Garantie auf Fehlefreiheit. Sei fx x x. a Bestimmen Sie den Grenzwert lim x fx. Da an der Stelle x Zähler Nenner Null

Mehr

Klausur vom

Klausur vom UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Dominik Faas Stochastik Wintersemester 00/0 Klausur vom 09.06.0 Aufgabe (++4=9 Punkte) Bei einer Umfrage wurden n Personen befragt, an wievielen Tagen

Mehr

Deckblatt. Name der Kursleiterin/des Kursleiters, bei der Sie angemeldet sind: Annelie Gebert. Nur einen Studiengang ankreuzen!!!

Deckblatt. Name der Kursleiterin/des Kursleiters, bei der Sie angemeldet sind: Annelie Gebert. Nur einen Studiengang ankreuzen!!! Deckblatt Name Vorname Matrikelnr. Name in Druckbuchstaben Name der Kursleiterin/des Kursleiters, bei der Sie angemeldet sind: Annelie Gebert Nur einen Studiengang ankreuzen!!! Bachelorstudiengang Sozialökonomie

Mehr

( x i 1 ; x i ] \(ỹ j 1 ; ỹ j ]

( x i 1 ; x i ] \(ỹ j 1 ; ỹ j ] Aufgabe 1 Die Befragung von 100 mittelständischen Dienstleistungsunternehmen einer Metropolregion nach ihren Umsätzen sowie Werbeausgaben im Jahre 2008 erbrachte folgende Häufigkeitsfunktion: ( x i 1 ;

Mehr

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009

Übung zu Empirische Ökonomie für Fortgeschrittene SS 2009 Übung zu Empirische Ökonomie für Fortgeschrittene Steen Elstner, Klaus Wohlrabe, Steen Henzel SS 9 1 Wichtige Verteilungen Die Normalverteilung Eine stetige Zufallsvariable mit der Wahrscheinlichkeitsdichte

Mehr

Angewandte Statistik 1

Angewandte Statistik 1 Angewandte Statistik 1 Beschreibende und Explorative Statistik - Wahrscheinlichkeitsrechnung - Zufallsvariablen und Statistische Maßzahlen -Wichtige Verteilungen - Beurteilende Statistik -Vertrauensintervalle

Mehr

Deckblatt. Name der Kursleiterin/des Kursleiters, bei der Sie angemeldet sind: Annelie Gebert. Nur einen Studiengang ankreuzen!!!

Deckblatt. Name der Kursleiterin/des Kursleiters, bei der Sie angemeldet sind: Annelie Gebert. Nur einen Studiengang ankreuzen!!! Deckblatt Name Vorname Matrikelnr. Name in Druckbuchstaben Name der Kursleiterin/des Kursleiters, bei der Sie angemeldet sind: Annelie Gebert Nur einen Studiengang ankreuzen!!! Bachelorstudiengang Sozialökonomie

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe

Statistische Tests. Kapitel Grundbegriffe. Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe Kapitel 4 Statistische Tests 4.1 Grundbegriffe Wir betrachten wieder ein parametrisches Modell {P θ : θ Θ} und eine zugehörige Zufallsstichprobe X 1,..., X n. Wir wollen nun die Beobachtung der X 1,...,

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Sommersemester 2013 Aufgabe 1 In einer Urne

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 240/476 c Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 240/476 c Ernst W. Mayr 1.4.4 Laplace-Prinzip in kontinuierlichen Wahrscheinlichkeitsräumen Das folgende Beispiel zeigt, dass im kontinuierlichen Fall die Bedeutung von gleichwahrscheinlich nicht immer ganz klar sein muss. Bertrand

Mehr

Aufgaben. d) Seien X und Y Poissonverteilt mit Parameter µ, X, Y P(µ). 2. Dann ist die Summe auch Poissonverteilt mit (X + Y ) P(2µ).

Aufgaben. d) Seien X und Y Poissonverteilt mit Parameter µ, X, Y P(µ). 2. Dann ist die Summe auch Poissonverteilt mit (X + Y ) P(2µ). Aufgaben 1. Bei den folgenden 10 Fragen ist jeweils genau eine Antwort richtig. Es gibt pro richtig beantwortete Frage 1 Punkt und pro falsche Antwort 1/2 Punkt Abzug. Minimal erhält man für die gesamte

Mehr

Übungsscheinklausur,

Übungsscheinklausur, Mathematik IV für Maschinenbau und Informatik (Stochastik) Universität Rostock, Institut für Mathematik Sommersemester 27 Prof. Dr. F. Liese Übungsscheinklausur, 3.7.27 Dipl.-Math. M. Helwich Name:...

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Stochastik Marco Boßle Jörg Hörner Mathematik Online Frühjahr 2011 PV-Kurs HM 3 Stochastik 1-1 Zusammenfassung Wahrscheinlichkeitsraum (WR): Menge der Elementarereignisse

Mehr

Biostatistik, Sommer 2017

Biostatistik, Sommer 2017 1/51 Biostatistik, Sommer 2017 Wahrscheinlichkeitstheorie: Verteilungen, Kenngrößen Prof. Dr. Achim Klenke http://www.aklenke.de 8. Vorlesung: 09.06.2017 2/51 Inhalt 1 Verteilungen Normalverteilung Normalapproximation

Mehr

Chi-Quadrat-Verteilung

Chi-Quadrat-Verteilung Chi-Quadrat-Verteilung Wikipedia http://de.wikipedia.org/wiki/chi-quadrat-verteilung 1 von 7 6/18/2009 6:13 PM Chi-Quadrat-Verteilung aus Wikipedia, der freien Enzyklopädie Die Chi-Quadrat-Verteilung ist

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr 1.4.2 Kontinuierliche Zufallsvariablen als Grenzwerte diskreter Zufallsvariablen Sei X eine kontinuierliche Zufallsvariable. Wir können aus X leicht eine diskrete Zufallsvariable konstruieren, indem wir

Mehr

Statistik II. Statistische Tests. Statistik II

Statistik II. Statistische Tests. Statistik II Statistik II Statistische Tests Statistik II - 12.5.2006 1 Test auf Anteilswert: Binomialtest Sei eine Stichprobe unabhängig, identisch verteilter ZV (i.i.d.). Teile diese Stichprobe in zwei Teilmengen

Mehr

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen

Zusammenfassung Mathe II. Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zusammenfassung Mathe II Themenschwerpunkt 2: Stochastik (ean) 1. Ein- und mehrstufige Zufallsexperimente; Ergebnismengen Zufallsexperiment: Ein Vorgang, bei dem mindestens zwei Ereignisse möglich sind

Mehr

Mathematische Statistik Aufgaben zum Üben. Schätzer

Mathematische Statistik Aufgaben zum Üben. Schätzer Prof. Dr. Z. Kabluchko Wintersemester 2016/17 Philipp Godland 14. November 2016 Mathematische Statistik Aufgaben zum Üben Keine Abgabe Aufgabe 1 Schätzer Es seien X 1,..., X n unabhängige und identisch

Mehr

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente...

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente... Inhaltsverzeichnis 0 Einführung 1 1 Zufallsvorgänge und Wahrscheinlichkeiten 5 1.1 Zufallsvorgänge.......................... 5 1.1.1 Ergebnismengen..................... 6 1.1.2 Ereignisse und ihre Verknüpfung............

Mehr

Zufallsvariablen [random variable]

Zufallsvariablen [random variable] Zufallsvariablen [random variable] Eine Zufallsvariable (Zufallsgröße) X beschreibt (kodiert) die Versuchsausgänge ω Ω mit Hilfe von Zahlen, d.h. X ist eine Funktion X : Ω R ω X(ω) Zufallsvariablen werden

Mehr

Prüfungsvorbereitungskurs Höhere Mathematik 3

Prüfungsvorbereitungskurs Höhere Mathematik 3 Prüfungsvorbereitungskurs Höhere Mathematik 3 Stochastik Marco Boßle Jörg Hörner Marcel Thoms Mathematik Online Herbst 211 PV-Kurs HM 3 Stochastik 1-1 Zusammenfassung Wahrscheinlichkeitsraum (WR): Menge

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Wahrscheinlichkeitsfunktionen

Mehr

Wahrscheinlichkeit und Statistik BSc D-INFK

Wahrscheinlichkeit und Statistik BSc D-INFK Prof. Dr. M. Schweizer ETH Zürich Sommer Wahrscheinlichkeit und Statistik BSc D-INFK. a) (iii) b) (ii) c) (i) d) (ii) e) (ii) f) (iii) g) (ii) h) (i) i) (ii) j) (i). Für ein heruntergeladenes Dokument

Mehr

Probeklausur zu Mathematik 3 für Informatik

Probeklausur zu Mathematik 3 für Informatik Gunter Ochs Juli 0 Probeklausur zu Mathematik für Informatik Lösungshinweise wie immel ohne Galantie auf Fehreleiheit Sei f ln a Berechnen Sie die und die Ableitung f und f Mit der Produktregel erhält

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun http://blog.ruediger-braun.net Heinrich-Heine-Universität Düsseldorf 16. Januar 2015 1 Verteilungsfunktionen Definition Binomialverteilung 2 Stetige Zufallsvariable,

Mehr

Wahrscheinlichkeitsrechnung und schließende Statistik

Wahrscheinlichkeitsrechnung und schließende Statistik Springer-Lehrbuch Wahrscheinlichkeitsrechnung und schließende Statistik Bearbeitet von Karl Mosler, Friedrich Schmid 4., verb. Aufl. 2010. Taschenbuch. XII, 347 S. Paperback ISBN 978 3 642 15009 8 Format

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 23. Dezember 2011 1 Stetige Zufallsvariable, Normalverteilungen Der zentrale Grenzwertsatz und die 3-Sigma Regel

Mehr

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential

Zufallsvariablen. Diskret. Stetig. Verteilung der Stichprobenkennzahlen. Binomial Hypergeometrisch Poisson. Normal Lognormal Exponential Zufallsvariablen Diskret Binomial Hypergeometrisch Poisson Stetig Normal Lognormal Exponential Verteilung der Stichprobenkennzahlen Zufallsvariable Erinnerung: Merkmal, Merkmalsausprägung Deskriptive Statistik:

Mehr

Häufigkeitsverteilungen

Häufigkeitsverteilungen Häufigkeitsverteilungen Eine Häufigkeitsverteilung gibt die Verteilung eines erhobenen Merkmals an und ordnet jeder Ausprägung die jeweilige Häufigkeit zu. Bsp.: 100 Studenten werden gefragt, was sie studieren.

Mehr

Eine Zufallsvariable X sei stetig gleichverteilt im Intervall [0,5]. Die Wahrscheinlichkeit P(2< x <4) ist dann

Eine Zufallsvariable X sei stetig gleichverteilt im Intervall [0,5]. Die Wahrscheinlichkeit P(2< x <4) ist dann 4. Übung Themenkomplex: Zufallsvariablen und ihre Verteilung Aufgabe 1 Für eine stetige Zufallsvariable gilt: a) P (x = t) > 0 b) P (x 1) = F (1) c) P (x = 1) = 0 d) P (x 1) = 1 F(1) e) P (x 1) = 1 F(1)

Mehr

Stochastik für Ingenieure

Stochastik für Ingenieure Otto-von-Guericke-Universität Magdeburg Fakultät für Mathematik Institut für Mathematische Stochastik Stochastik für Ingenieure (Vorlesungsmanuskript) von apl.prof. Dr. Waltraud Kahle Empfehlenswerte Bücher:

Mehr

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1

0 sonst. a) Wie lautet die Randwahrscheinlichkeitsfunktion von Y? 0.5 y = 1 Aufgabe 1 (2 + 2 + 2 + 1 Punkte) Gegeben sei folgende gemeinsame Wahrscheinlichkeitsfunktion f(x, y) = P (X = x, Y = y) der Zufallsvariablen X und Y : 0.2 x = 1, y = 1 0.3 x = 2, y = 1 f(x, y) = 0.45 x

Mehr

Statistik für Ingenieure Vorlesung 5

Statistik für Ingenieure Vorlesung 5 Statistik für Ingenieure Vorlesung 5 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 28. November 2017 3.4 Wichtige stetige Verteilungen 3.4.1 Exponentialverteilung Parameter:

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

Statistisches Testen

Statistisches Testen Statistisches Testen Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Differenzen Anteilswert Chi-Quadrat Tests Gleichheit von Varianzen Prinzip des Statistischen Tests Konfidenzintervall

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003 Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003. Eine seltene Krankheit trete mit Wahrscheinlichkeit : 0000 auf. Die bedingte Wahrscheinlichkeit, dass ein bei einem Erkrankten durchgeführter

Mehr

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments

73 Hypothesentests Motivation Parametertest am Beispiel eines Münzexperiments 73 Hypothesentests 73.1 Motivation Bei Hypothesentests will man eine gewisse Annahme über eine Zufallsvariable darauf hin überprüfen, ob sie korrekt ist. Beispiele: ( Ist eine Münze fair p = 1 )? 2 Sind

Mehr

Klassifikation von Signifikanztests

Klassifikation von Signifikanztests Klassifikation von Signifikanztests nach Verteilungsannahmen: verteilungsabhängige = parametrische Tests verteilungsunabhängige = nichtparametrische Tests Bei parametrischen Tests werden im Modell Voraussetzungen

Mehr

5. Seminar Statistik

5. Seminar Statistik Sandra Schlick Seite 1 5. Seminar 5. Seminar Statistik 30 Kurztest 4 45 Testen von Hypothesen inkl. Übungen 45 Test- und Prüfverfahren inkl. Übungen 45 Repetitorium und Prüfungsvorbereitung 15 Kursevaluation

Mehr

Statistik Einführung // Stichprobenverteilung 6 p.2/26

Statistik Einführung // Stichprobenverteilung 6 p.2/26 Statistik Einführung Kapitel 6 Statistik WU Wien Gerhard Derflinger Michael Hauser Jörg Lenneis Josef Leydold Günter Tirler Rosmarie Wakolbinger Statistik Einführung // 6 p.0/26 Lernziele 1. Beschreiben

Mehr

Über den Autor 7. Einführung 21

Über den Autor 7. Einführung 21 Inhaltsverzeichnis Über den Autor 7 Einführung 21 Über dieses Buch oder:» für Dummies«verpflichtet! 21 Wie man dieses Buch benutzt 22 Wie ich Sie mir vorstelle 22 Wie dieses Buch aufgebaut ist 23 Teil

Mehr

Stellen Sie den Sachverhalt durch eine geeignete Vierfeldertafel mit relativen Häufigkeiten

Stellen Sie den Sachverhalt durch eine geeignete Vierfeldertafel mit relativen Häufigkeiten Bei der Bearbeitung der Aufgabe dürfen alle Funktionen des Taschenrechners genutzt werden. Aufgabe 4: Stochastik Vorbemerkung: Führen Sie stets geeignete Zufallsvariablen und Namen für Ereignisse ein.

Mehr

Statistische Tests für unbekannte Parameter

Statistische Tests für unbekannte Parameter Konfidenzintervall Intervall, das den unbekannten Parameter der Verteilung mit vorgegebener Sicherheit überdeckt ('Genauigkeitsaussage' bzw. Zuverlässigkeit einer Punktschätzung) Statistischer Test Ja-Nein-Entscheidung

Mehr

Goethe-Universität Frankfurt

Goethe-Universität Frankfurt Goethe-Universität Frankfurt Fachbereich Wirtschaftswissenschaft PD Dr. Martin Biewen Dr. Ralf Wilke Sommersemester 2006 Klausur Statistik II 1. Alle Aufgaben sind zu beantworten. 2. Bitte runden Sie Ihre

Mehr

Statistik, Datenanalyse und Simulation

Statistik, Datenanalyse und Simulation Dr. Michael O. Distler distler@kph.uni-mainz.de Mainz, 2. November 2009 Poisson-Verteilung Die Poisson-Verteilung ist gegeben durch: P(r) = µr e µ r! Der Mittelwert ist: r = µ Die Varianz ergibt sich aus

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 9. Dezember 2010 1 Konfidenzintervalle Idee Schätzung eines Konfidenzintervalls mit der 3-sigma-Regel Grundlagen

Mehr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr

DWT 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen 330/467 Ernst W. Mayr 2.1 Maximum-Likelihood-Prinzip zur Konstruktion von Schätzvariablen Wir betrachten nun ein Verfahren zur Konstruktion von Schätzvariablen für Parameter von Verteilungen. Sei X = (X 1,..., X n ). Bei X

Mehr

Statistik für NichtStatistiker

Statistik für NichtStatistiker Statistik für NichtStatistiker Zufall und Wahrscheinlichkeit von Prof. Dr. Karl Bosch 5., verbesserte Auflage R. Oldenbourg Verlag München Wien Inhaltsverzeichnis 1. ZufalLsexperimente und zufällige Ereignisse

Mehr

10. Die Normalverteilungsannahme

10. Die Normalverteilungsannahme 10. Die Normalverteilungsannahme Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Bisher haben wir vorausgesetzt, daß die Beobachtungswerte normalverteilt sind. In diesem Fall kann man

Mehr

Über dieses Buch Die Anfänge Wichtige Begriffe... 21

Über dieses Buch Die Anfänge Wichtige Begriffe... 21 Inhalt Über dieses Buch... 12 TEIL I Deskriptive Statistik 1.1 Die Anfänge... 17 1.2 Wichtige Begriffe... 21 1.2.1 Das Linda-Problem... 22 1.2.2 Merkmale und Merkmalsausprägungen... 23 1.2.3 Klassifikation

Mehr

Biomathematik für Mediziner

Biomathematik für Mediziner Institut für Medizinische Biometrie, Informatik und Epidemiologie der Universität Bonn (Direktor: Prof. Dr. Max P. Baur) Biomathematik für Mediziner Klausur SS 2002 Aufgabe 1: Franz Beckenbauer will, dass

Mehr

1. Nennen Sie den für das Merkmal X geeigneten Skalentyp und begründen Sie Ihre Antwort.

1. Nennen Sie den für das Merkmal X geeigneten Skalentyp und begründen Sie Ihre Antwort. Aufgabe 1 150 Personen gaben bei einer Befragung an, wie viel Geld sie in diesem Jahr für Weihnachtsgeschenke ausgegeben haben. Die Ergebnisse der Befragung sind in nachfolgender Tabelle zusammengefasst,

Mehr

Bio- Statistik 1. mit 87 Abbildungen, 40 Tabellen und 102 Beispielen

Bio- Statistik 1. mit 87 Abbildungen, 40 Tabellen und 102 Beispielen Bio- Statistik 1 Beschreibende und explorative Statistik - Wahrscheinlichkeitsrechnung und Zufallsvariablen - Statistische Maßzahlen - Wichtige Verteilungen - Beurteilende Statistik - Vertrauensintervalle

Mehr

Biostatistik, Winter 2011/12

Biostatistik, Winter 2011/12 Biostatistik, Winter 2011/12 : Binomial, Gauß Prof. Dr. Achim Klenke http://www.aklenke.de 10. Vorlesung: 20.01.2012 1/31 Inhalt 1 Einführung Binomialtest 2/31 Beispiel Einführung Bohnenlieferant liefert

Mehr

Deckblatt. Name der Kursleiterin/des Kursleiters, bei der Sie angemeldet sind: Annelie Gebert. Nur einen Studiengang ankreuzen!!!

Deckblatt. Name der Kursleiterin/des Kursleiters, bei der Sie angemeldet sind: Annelie Gebert. Nur einen Studiengang ankreuzen!!! Deckblatt Name Vorname Matrikelnr. Name in Druckbuchstaben Name der Kursleiterin/des Kursleiters, bei der Sie angemeldet sind: Annelie Gebert Nur einen Studiengang ankreuzen!!! Bachelorstudiengang Sozialökonomie

Mehr

Wahrscheinlichkeit und Statistik BSc D-INFK

Wahrscheinlichkeit und Statistik BSc D-INFK Prof. Dr. P. Bühlmann ETH Zürich Sommer 2010 Wahrscheinlichkeit und Statistik BSc D-INFK 1. (10 Punkte) Bei den folgenden 10 Fragen ist jeweils genau eine Antwort richtig. Es gibt pro richtig beantwortete

Mehr

Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz

Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz Grundlage: Zweiseitiger Test für den unbekannten Mittelwert µ einer Normalverteilung bei unbekannter Varianz Die Testvariable T = X µ 0 S/ n genügt der t-verteilung mit n 1 Freiheitsgraden. Auf der Basis

Mehr

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung

Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Wichtige Begriffe und Sätze aus der Wahrscheinlichkeitsrechnung Version: 22. September 2015 Evelina Erlacher 1 Mengen Es sei Ω eine Menge (die Universalmenge ) und A, B seien Teilmengen von Ω. Dann schreiben

Mehr

Vorname: Nachname: Matrikel-Nr.: Klausur Statistik

Vorname: Nachname: Matrikel-Nr.: Klausur Statistik Vorname: Nachname: Matrikel-Nr.: Klausur Statistik Prüfer Etschberger, Heiden, Jansen Prüfungsdatum 21. Januar 2016 Prüfungsort Augsburg Studiengang IM und BW Bearbeitungszeit: 90 Minuten Punkte: 90 Die

Mehr

Klausur zu,,einführung in die Wahrscheinlichkeitstheorie

Klausur zu,,einführung in die Wahrscheinlichkeitstheorie Institut für angewandte Mathematik Wintersemester 2009/10 Andreas Eberle, Matthias Erbar, Bernhard Hader Klausur zu,,einführung in die Wahrscheinlichkeitstheorie Bitte diese Felder in Druckschrift ausfüllen

Mehr

1. Grundbegri e der Stochastik

1. Grundbegri e der Stochastik Wiederholung von Grundwissen der Stochastik. Grundbegri e der Stochastik Menge der Ereignisse. Die Elemente! der Menge heißen Elementarereignisse und sind unzerlegbare Ereignisse. Das Ereignis A tritt

Mehr

Institut für Stochastik Prof. Dr. N. Henze Dipl.-Math. V. Riess

Institut für Stochastik Prof. Dr. N. Henze Dipl.-Math. V. Riess Institut für Stochastik Prof. Dr. N. Henze Dipl.-Math. V. Riess Name: Vorname: Matrikelnummer: Lösungsvorschlag zur Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik (Stochastik) Datum: 07.

Mehr

Mathematik für Biologen

Mathematik für Biologen Mathematik für Biologen Prof. Dr. Rüdiger W. Braun Heinrich-Heine-Universität Düsseldorf 21. Dezember 2011 1 Definition Binomialverteilung Geometrische Verteilung Poissonverteilung 2 Standardisierte Verteilung

Mehr

4.1. Nullhypothese, Gegenhypothese und Entscheidung

4.1. Nullhypothese, Gegenhypothese und Entscheidung rof. Dr. Roland Füss Statistik II SS 8 4. Testtheorie 4.. Nullhypothese, Gegenhypothese und Entscheidung ypothesen Annahmen über die Verteilung oder über einzelne arameter der Verteilung eines Merkmals

Mehr

Übungsblatt 9 (25. bis 29. Juni)

Übungsblatt 9 (25. bis 29. Juni) Statistik 2 Dr. Andrea Beccarini Dipl.-Vw. Dipl.-Kffr. Heike Bornewasser-Hermes Sommersemester 2012 Übungsblatt 9 (25. bis 29. Juni) Stetiges Verteilungsmodell und Gemeinsame Verteilung Stetiges Verteilungsmodell

Mehr

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Studiengang Schließende Statistik Sommersemester Namensschild

Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Studiengang Schließende Statistik Sommersemester Namensschild Wirtschaftswissenschaftliches Prüfungsamt Bachelor-Studiengang Schließende Statistik Sommersemester 2010 Namensschild Prof. Dr. Ralph Friedmann / Dr. Martin Becker Hinweise für die Klausurteilnehmer ˆ

Mehr

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ),

Der Erwartungswert E[g(X)] von g(x) ist definiert. g(x k )w(x = x k ), 2.5 Parameter einer Verteilung 2.5. Erwartungswert X eine Zufallsvariable, g : R R stetig. Der Erwartungswert E[g(X)] von g(x) ist definiert durch: E[g(X)] := k g(x k )w(x = x k ), falls X diskret ist

Mehr