Teil 1: Prozessorstrukturen

Größe: px
Ab Seite anzeigen:

Download "Teil 1: Prozessorstrukturen"

Transkript

1 Teil 1: Prozessorstrukturen Inhalt: Mikroprogrammierung Assemblerprogrammierung Motorola 6809: ein einfacher 8-Bit Mikroprozessor Mikrocontroller Koprozessoren CISC- und RISC-Prozessoren Intel Pentium 1

2 Motivation Hypothetische CPU weist einige Nachteile auf, aufgrund derer sie für reale Anwendungen ungeeignet ist: kein Zugriff auf die i-te Komponente eines ab der Startadresse a im Speicher abgelgten Datenfeldes, wenn i erst zur Laufzeit bekannt ist kein Arbeiten mit Zeigern möglich kein Aufruf von Unterprogrammen möglich Adressen können nur im b-bit Adreßfeld einer Instruktion kodiert werden ( Beschränkung auf Adreßraum mit 2 b Adressen) Datenwortbreite n ist fest und muß der Summe aus Instruktionslänge (8 Bit) und der Länge b des Adreßfeldes entsprechen einzelnes Datenregister erfordert häufige Zwischenspeicherung von temporären Ergebnissen im Speicher Aufgrund fehlender Programmunterbrechungen ( Interrupts ) ist die Implementierung von Betriebssystemen und E/A-Gerätetreibern schwierig 2

3 Motorola 6809: Übersicht 8-Bit Mikroprozessor Nachfolger von 6502, 6800 und Bit Datenbus 16-Bit Adreßbus Adreßraum von 64 kbyte addressierbar zwei 8-Bit Datenregister A und B, zum 16-Bit Datenregister D koppelbar zwei 16-Bit Indexregister X und Y zwei 16-Bit Stackpointer S und U 59 Instruktionen, 10 (!) Adressierungsarten (mit 24 Unterarten 1464 unterschiedliche Operationen) weitgehend orthogonaler Befehlssatz erster Mikroprozessor mit Bit Hardware-Multiplizierer Unterstützung von Interrupts 3

4 Aufbau des Motorola

5 Befehlssatz des 6809 Befehlsklassen: ALU-Befehle, Transfer-Befehle, Sprungbefehle, Stack-Befehle, System- und Sonstige Befehle Die meisten ALU-Befehle können angewandt werden auf: 8-Bit Akkumulator A (Mnemonik xxxa) 8-Bit Akkumulator B (Mnemonik xxxb) 16-Bit Akkumulator D (Mnemonik xxxd) eine beliebige 8-Bit Speicherstelle a (Mnemonik xxx) Bei zweistelligen ALU-Operationen (z.b. Addition) wird stets ein Speicherwert mit dem Inhalt von A, B oder D verknüpft Alle wichtigen Befehle sind in einem Byte kodiert; bei den übrigen Befehlen befindet sich zusätzliche Information (z.b. über die Adressierungsart) in einem Postbyte hinter dem Befehlsbyte 5

6 ALU-Befehle des 6809 (Auswahl) ADDA, ADDB, ADDD ADCA, ADCB SUBA, SUBB, SUBD CMPA, CMPB, CMPD SEX MUL INC, INCA, INCB DEC, DECA, DECB CLR, CLRA, CLRB TST, TSTA, TSTB BITA, BITB NEG, NEGA, NEGB COM, COMA, COMB ANDA, ANDB ORA, ORB EORA, EORB Addiere Speicherwert zu A, B oder D Addiere (mit Carry) Speicherwert zu A oder B Subtrahiere Speicherwert von A, B oder D dito, aber ohne Speicherung des Ergebnisses Fülle A mit Vorzeichen aus B ( Sign Extension ) Vorzeichenlose Multiplikation A B D Inkrementiere Speicherwert, A oder B Dekrementiere Speicherwert, A oder B Lösche Speicherwert, A oder B Teste Speicherwert M, A oder B auf negativ und 0 Teste M AND A bzw. M AND B auf negativ und 0 Zweierkomplement von Speicherwert, A oder B Einerkomplement von Speicherwert, A oder B Bitweises UND von Speicherwert und A bzw. B Bitweises ODER von Speicherwert und A bzw. B Bitweises XOR von Speicherwert und A bzw. B 6

7 ALU-Befehle des 6809 (Auswahl, Forts.) ASL, ASLA, ASLB ASR, ASRA, ASRB LSL, LSLA, LSLB LSR, LSRA, LSRB ROL, ROLA, ROLB ROR, RORA, RORB Arithmetischer Linksshift von Speicherwert, A oder B Arithmetischer Rechtsshift von Speicherwert, A oder B Logischer Linksshift von Speicherwert, A oder B Logischer Rechtsshift von Speicherwert, A oder B Rotation nach links von Speicherwert, A oder B Rotation nach rechts Speicherwert, A oder B Arbeitsweise der Shift-Befehle: (unter Verwendung des C-Flags aus dem CC-Register) 7

8 Transfer-Befehle des 6809 LDA, LDB LDD LDX, LDY, LDS, LDU STA, STB STD STX, STY, STS, STU EXG R1,R2 TFR R1,R2 Lade 8-Bit Wert aus Speicher in A oder B Lade 16-Bit Wert aus Speicher in Akkumulator D Lade 16-Bit Adresse aus Speicher in X,Y,S oder U Speichere 8-Bit Wert aus Akkumulator A oder B Speichere 16-Bit Wert aus Akkumulator D Speichere 16-Bit Adresse aus X,Y,S oder U Vertausche Inhalt zweier Register R1 und R2 Kopiere Inhalt von R1 nach R2 Hinweis: Bei den Befehlen EXG R1,R2 und TFR R1,R2 müssen Register R1 und R2 entweder beide ein 8-Bit Register (d.h. A, B, CC, DP) oder beide ein 16-Bit Register (d.h. X, Y, S, U, PC) repräsentieren! 8

9 Sprungbefehle des 6809 Sprungbefehle arbeiten mit relativen Sprüngen, bei denen das Sprungziel als Distanz zum aktuellen Stand des Befehlzählers (in Zweierkomplement) kodiert wird bei 8-Bit Operand sind Distanzen im Bereich von 128 bis 127 möglich bei 16-Bit Operand ( Long Relativ Branch, Mnemnonik LBxx) können Distanzen im Bereich von bis kodiert werden Einfache Sprungbefehle (abhängig von einzelnen Statusbits): BEQ, LBEQ BNE, LBNE BMI, LBMI BPL, LBPL BCS, LBCS BCC, LBCC BVS, LBVS BVC, LBVC Branch if Equal Branch if Not Equal Branch if Minus Branch if Plus Branch if Carry Set Branch if Carry Clear Branch if Overflow Set Branch if Overflow Clear (Sprung bei Z=1) (Sprung bei Z=0) (Sprung bei N=1) (Sprung bei N=0) (Sprung bei C=1) (Sprung bei C=0) (Sprung bei V=1) (Sprung bei V=0) 9

10 Sprung-Befehle des 6809 (Forts.) Bedingte Sprungbefehle nach Vergleich von zwei vorzeichenbehafteten ( signed ) 8-Bit oder 16-Bit Zahlen: BGT, LBGT BGE, LBGE BLE, LBLE BLT, LBLT Bedingte Sprungbefehle nach Vergleich von zwei positiven ( unsigned ) 8-Bit oder 16-Bit Zahlen: Unbedingter Sprung: Branch if Greater Than (Sprung bei Z+(N V)=0) Branch if Greater or Equal (Sprung bei N V=0) Branch if Less Than or Equal (Sprung bei Z+(N V)=1) Branch if Less Than (Sprung bei N V=1) BHI, LBHI Branch if Higher (Sprung bei C+Z=0) BHS, LBHS Branch if Higher or Same (Sprung bei C=0) BLS, LBLS Branch if Lower or Same (Sprung bei C+Z=1) BLO, LBLO Branch if Lower (Sprung bei C=1) BRA, LBRA Branch Always 10

11 Statusregister des 6809 Bit 7 E F H I N Z V Bit 0 C Bedeutung der Flags im Statusregister CC: C (Bit 0) bei aufgetretenem Überlauf ( Carry Flag ) V (Bit 1) bei aufgetretenem arithmetischem Überlauf ( Overflow Flag ) Z (Bit 2) gesetzt, wenn Ergebnis der letzten Operation Null ( Zero ) war N (Bit 3) höchstwertiges Bit der letzten Operation ( Negative Flag ) I (Bit 4) Maskierungsbit für IRQ (Interrupt gesperrt bei I=1) H (Bit 5) [4-Bit-Überlauf bei BCD-Arithmetik ( Half Carry Flag )] F (Bit 6) Maskierungsbit für FIRQ (Interrupt gesperrt bei F=1) E (Bit 7) [Alle Register auf Stack gesichert ( Entire Flag )] Hinweise: Jede Instruktion setzt nur bestimmte Flags! Bei den Befehlen SUB und CMP wird C-Flag komplementiert! 11

12 Speichermodell des 6809 hypothetische CPU ist eine wortorientierte CPU: benötigt einen wortadressierbaren Speicher aus n-bit Worten je n-bit Speicherzeile ein 8-Bit Befehlswort mit a Bit Adreßteil für einen großen Adreßraum wird ein langes Adreßfeld und somit auch eine hohe Speicherwortbreite benötigt großer Teil des Speichers bleibt ungenutzt, da auch für 8-Bit Daten oder Befehle ohne Operand (z.b. ASL ) ein n-bit Wort benötigt wird Motorola 6809 ist eine byteorientierte CPU: benötigt einen byteadressierbaren Speicher Ein Befehl belegt je nach Adressierungsart 1, 2 3 oder 4 aufeinanderfolgende Byte im Speicher für Befehlscode und Operanden 8-Bit Daten belegen ein Speicherbyte, 16-Bit Daten belegen zwei aufeinanderfolgende Speicherbyte (höherwertiges Byte auf kleinerer Adresse) 12

13 Adressierungsarten des 6809 Implizite Adressierung ( implied addressing ): Die Angabe des Operanden ist implizit im Befehlscode enthalten Beispiele: CLRA, NEGA, ASRB, ROLB Direkte oder absolute Adressierung ( extended addressing ): Die 16-Bit Speicheradresse (EA = Effektive Adresse) des Operanden befindet sich hinter dem Befehlscode Beispiel: LDA $1234 Unmittelbare Adressierung ( immediate addressing ): Der Operand befindet sich unmittelbar als sog. Literal hinter dem Befehlscode, entweder als 8-Bit Wert oder als 16-Bit Wert (2 Byte) Beispiele: LDA #59, LDD #$FFAA 13

14 Adressierungsarten des 6809 (Forts.) Direkte seitenbasierte Adressierung ( direct page addressing ): Nur die niedrigwertigen 8 Bit der EA befinden sich hinter dem Befehlscode; die höherwertigen 8 Bit werden dem Register DP entnommen. Beispiel: LDA $34 Register-Adressierung ( register addressing ): Das dem Befehlscode folgende Byte enthält die in jeweils 4 Bit kodierten Quell- und Zielregister R S und R D Beispiele: EXG X,Y TFR B,DP 14

15 Adressierungsarten des 6809 (Forts.) Indizierte Adressierung ( indexed addressing ): 1) ohne Offset ( zero offset indexed ) Die Speicheradresse EA wird unverändert einem der 16-Bit Register X,Y,U oder S entnommen. Beispiele: LDA,X oder STB 0,Y 2) mit konstantem Offset ( constant offset indexed ) Zum Inhalt eines der Register X,Y,U oder S wird eine konstante Distanzadresse addiert, die in 5 Bit (im Postbyte), in 8 Bit (im Byte hinter Postbyte) oder in 16 Bit (in 2 Bytes hinter Postbyte) kodiert ist. Beispiele: LDA -5,X LDY $300,S 15

16 Adressierungsarten des 6809 (Forts.) Indizierte Adressierung (Forts.): 3) mit Offset im Akkumulator ( accumulator offset indexed ) Zum Register X,Y,U oder S wird zur Bildung der EA der Inhalt von A,B oder D addiert. Beispiel: LDA B,X 4) mit Autoinkrement ( auto increment indexed ) wie bei 1), jedoch wird der Inhalt eines der Basisregisters X,Y,U und S nach der Berechnung der EA um 1 oder 2 erhöht Beispiel: LDA,X+ STD,Y++ 5) mit Autodekrement ( auto decrement indexed ) wie bei 1), jedoch wird der Inhalt des Basisregisters vor Berechnung der EA um 1 oder 2 erniedrigt Beispiel: LDA,-Y STD,--X 16

17 Adressierungsarten des 6809 (Forts.) Indirekte indizierte Adressierung ( indexed indirect ): Die indizierten Adressierungsarten können auch indirekt eingesetzt werden,d.h. die EA ergibt sich aus dem Inhalt der 2 Speicherbytes, deren Startadresse durch Addition von Basisadresse und Offset errechnet wird. Beispiele: LDA [B,Y] LDB [-6,X] LDD [,X++] Indirekte absolute Adressierung ( extended indirect ): Auch bei absoluter Adressierung von a ist eine Indirektion möglich, d.h. die EA ergibt sich aus dem Inhalt der 2 Speicherbytes an Adressen a und a+1 Beispiel: LDA [$FFEE] 17

18 Adressierungsarten des 6809 (Forts.) Relative Adressierung ( relative addressing ): Die Zieladressen bei den Sprung-Befehlen des 6809 werden immer relativ zum PC angegeben, entweder in einem Byte ( short relative, schnell) oder in zwei Bytes ( long relative, langsam). Beispiele: BEQ $F0 LBGT $0200 Hinweis: Bei einer Addition im long relative Format wird ein Überlauf ignoriert, d.h. alle Speicheradressen können erreicht werden! PC-relative Adressierung ( program counter relative ): Auch der PC kann als Indexregister eingesetzt werden, jedoch nur mit konstantem Offset. Hierdurch können positionsunabhängige Maschinenprogramme auf einfachem Wege implementiert werden. Beispiel: LDX table,pcr... table rmb

DATEN UND BEFEHLSFORMATE, ADDRESSIERUNGSARTEN UND MASCHINEN- PROGRAMMIERUNGSKONZEPTE

DATEN UND BEFEHLSFORMATE, ADDRESSIERUNGSARTEN UND MASCHINEN- PROGRAMMIERUNGSKONZEPTE D - CA - IV - AA - 1 HUMBOLDT-UNIVERSITÄT ZU BERLIN INSTITUT FÜR INFORMATIK Vorlesung 4 DATEN UND BEFEHLSFORMATE, ADDRESSIERUNGSARTEN UND MASCHINEN- PROGRAMMIERUNGSKONZEPTE Sommersemester 2003 Leitung:

Mehr

Technische Informatik 2 Adressierungsarten

Technische Informatik 2 Adressierungsarten Technische Informatik 2 Adressierungsarten Prof. Dr. Miroslaw Malek Sommersemester 2009 www.informatik.hu-berlin.de/rok/ca Thema heute X-Adressmaschine 0-Adressmaschine 1-Adressmaschine 2-Adressmaschine

Mehr

Die Mikroprogrammebene eines Rechners

Die Mikroprogrammebene eines Rechners Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl holen Befehl dekodieren Operanden holen etc.

Mehr

Mikroprozessor als universeller digitaler Baustein

Mikroprozessor als universeller digitaler Baustein 2. Mikroprozessor 2.1 Allgemeines Mikroprozessor als universeller digitaler Baustein Die zunehmende Integrationsdichte von elektronischen Schaltkreisen führt zwangsläufige zur Entwicklung eines universellen

Mehr

Instruktionssatz-Architektur

Instruktionssatz-Architektur Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2005/2006 Übersicht 1 Einleitung 2 Bestandteile der ISA 3 CISC / RISC Übersicht 1 Einleitung 2 Bestandteile

Mehr

Aufgabe I: Im einzelnen soll das Hauptprogramm:

Aufgabe I: Im einzelnen soll das Hauptprogramm: Aufgabe I: Gesucht ist ein Programm, das zwei Lauflichter realisiert. Das erste werde in der Siebensegment-Anzeige durch genau ein aktiviertes mittleres Segment g dargestellt, das von rechts nach links

Mehr

Technische Informatik 1

Technische Informatik 1 Technische Informatik 1 2 Instruktionssatz Lothar Thiele Computer Engineering and Networks Laboratory Instruktionsverarbeitung 2 2 Übersetzung Das Kapitel 2 der Vorlesung setzt sich mit der Maschinensprache

Mehr

Teil 1 Magic Disk 01/90

Teil 1 Magic Disk 01/90 Teil 1 Magic Disk 01/90 Einleitung: Dieser Assembler-Kurs soll allen BASIC-Programmierern den Einstieg in Assembler ermöglichen. Ich werde mich in der Folge darum bemühen, die komplizierten Fachbegriffe

Mehr

1. Übung - Einführung/Rechnerarchitektur

1. Übung - Einführung/Rechnerarchitektur 1. Übung - Einführung/Rechnerarchitektur Informatik I für Verkehrsingenieure Aufgaben inkl. Beispiellösungen 1. Aufgabe: Was ist Hard- bzw. Software? a Computermaus b Betriebssystem c Drucker d Internetbrowser

Mehr

Kap 4. 4 Die Mikroprogrammebene eines Rechners

Kap 4. 4 Die Mikroprogrammebene eines Rechners 4 Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten (Befehl holen, Befehl dekodieren, Operanden holen etc.).

Mehr

Prozessor HC680 fiktiv

Prozessor HC680 fiktiv Prozessor HC680 fiktiv Dokumentation der Simulation Die Simulation umfasst die Struktur und Funktionalität des Prozessors und wichtiger Baugruppen des Systems. Dabei werden in einem Simulationsfenster

Mehr

L3. Datenmanipulation

L3. Datenmanipulation L Datenmanipulation Aufbau eines Computers Prozessor, Arbeitsspeicher und system Maschinensprachen und Maschinenbefehle Beispiel einer vereinfachten Maschinensprache Ausführung des Programms und Befehlszyklus

Mehr

HC680 PROGRAMMER'S REFERENCE MANUAL

HC680 PROGRAMMER'S REFERENCE MANUAL HC680 PROGRAMMER'S REFERENCE MANUAL Programmieranleitung Mnemonic Assembler Maschinenbefehl Wirkung /Bedeutung Register (0 bis 3 allg. Reg.) Ope- Opcode/Binärcode - Adressierungsart - Nr Bez. xx Bin Art

Mehr

Assembler-Programmierung

Assembler-Programmierung Assembler-Programmierung Dr.-Ing. Volkmar Sieh Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 Assembler-Programmierung 1/48 2012-02-29 Assembler-Programmierung

Mehr

Fehlerkorrektur Bild 3.190 Demoprozessor

Fehlerkorrektur Bild 3.190 Demoprozessor 7 Prozessor 3 0 Flags C V N Z A IP 0 SP AB 8 MS W/R DB 4 00h..6Fh Daten Speicher 70h..70h PA 71h..71h PB 72h..73h PC 74h..76h PD 80h..FFh Programm Speicher Fehlerkorrektur Bild 3.190 Demoprozessor Die

Mehr

Technische Informatik 2: Addressierung und Befehle

Technische Informatik 2: Addressierung und Befehle Technische Informatik 2: Addressierung und Befehle Memory Map Programm Speicher: Adresse $000-$FFF max. 4096 Byte für kompiliertes Programm Data Memory: Adresse $0000-$FFFF 32 8Bit Register 64 I/O Register

Mehr

Programmierung von ATMEL AVR Mikroprozessoren am Beispiel des ATtiny13

Programmierung von ATMEL AVR Mikroprozessoren am Beispiel des ATtiny13 Programmierung von ATMEL AVR Mikroprozessoren am Beispiel des ATtiny13 Eine Einführung in Aufbau, Funktionsweise, Programmierung und Nutzen von Mikroprozessoren Teil II: Wat iss ene Bit, Byte un Word?

Mehr

Mikroprozessoren Grundlagen AVR-Controller Input / Output (I/O) Interrupt Mathematische Operationen

Mikroprozessoren Grundlagen AVR-Controller Input / Output (I/O) Interrupt Mathematische Operationen Mikroprozessoren Grundlagen Aufbau, Blockschaltbild Grundlegende Datentypen AVR-Controller Anatomie Befehlssatz Assembler Speicherzugriff Adressierungsarten Kontrollstrukturen Stack Input / Output (I/O)

Mehr

3 Rechnen und Schaltnetze

3 Rechnen und Schaltnetze 3 Rechnen und Schaltnetze Arithmetik, Logik, Register Taschenrechner rste Prozessoren (z.b. Intel 4004) waren für reine Rechenaufgaben ausgelegt 4 4-Bit Register 4-Bit Datenbus 4 Kbyte Speicher 60000 Befehle/s

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur ARM, x86 und ISA Prinzipien Übersicht Rudimente des ARM Assemblers Rudimente des Intel Assemblers ISA Prinzipien Grundlagen der Rechnerarchitektur Assembler 2 Rudimente

Mehr

Kurzübersicht MC68000 Mikroprozessor Dokumentversion 1.0 Sebastian Steinhorst

Kurzübersicht MC68000 Mikroprozessor Dokumentversion 1.0 Sebastian Steinhorst Hardwarearchitekturen und Rechensysteme Sommersemester 2009 Kurzübersicht MC68000 Mikroprozessor Dokumentversion 1.0 Sebastian Steinhorst Dieses Dokument erhebt keinen Anspruch auf Vollständigkeit, sondern

Mehr

Einführung in (Intel) 80x86 Assembler. Einführung in (Intel) 80x86 Assembler Wintersemester 2008/09 1 / 26

Einführung in (Intel) 80x86 Assembler. Einführung in (Intel) 80x86 Assembler Wintersemester 2008/09 1 / 26 Einführung in (Intel) 80x86 Assembler Einführung in (Intel) 80x86 Assembler Wintersemester 2008/09 1 / 26 1 Geschichte 2 Programmiermodell 3 Befehlssatz 4 Konventionen 5 Beispiele 6 SSE 7 Literatur Einführung

Mehr

Zahlendarstellungen und Rechnerarithmetik*

Zahlendarstellungen und Rechnerarithmetik* Zahlendarstellungen und Rechnerarithmetik* 1. Darstellung positiver ganzer Zahlen 2. Darstellung negativer ganzer Zahlen 3. Brüche und Festkommazahlen 4. binäre Addition 5. binäre Subtraktion *Die Folien

Mehr

Rechnerorganisation 2 TOY. Karl C. Posch. co1.ro_2003. Karl.Posch@iaik.tugraz.at 16.03.2011

Rechnerorganisation 2 TOY. Karl C. Posch. co1.ro_2003. Karl.Posch@iaik.tugraz.at 16.03.2011 Technische Universität Graz Institut tfür Angewandte Informationsverarbeitung und Kommunikationstechnologie Rechnerorganisation 2 TOY Karl C. Posch Karl.Posch@iaik.tugraz.at co1.ro_2003. 1 Ausblick. Erste

Mehr

Mikroprozessor bzw. CPU (Central Processing. - Steuerwerk (Control Unit) - Rechenwerk bzw. ALU (Arithmetic Logic Unit)

Mikroprozessor bzw. CPU (Central Processing. - Steuerwerk (Control Unit) - Rechenwerk bzw. ALU (Arithmetic Logic Unit) Der Demo-Computer besitzt einen 4Bit-Mikroprozessor. Er kann entsprechend Wörter mit einer Breite von 4 Bits in einem Schritt verarbeiten. Die einzelnen Schritte der Abarbeitung werden durch Lampen visualisiert.

Mehr

Technische Informatik 2 Maschinenprogrammierungskonzepte

Technische Informatik 2 Maschinenprogrammierungskonzepte Technische Informatik 2 Maschinenprogrammierungskonzepte Prof Dr Miroslaw Malek Sommersemester 2005 wwwinformatikhu-berlinde/rok/ca Thema heute Ausführung von Befehlen Ein-/Ausgabeprogrammierung Architekturen

Mehr

3.0 8051 Assembler und Hochsprachen

3.0 8051 Assembler und Hochsprachen 3.0 8051 Assembler und Hochsprachen Eine kurze Übersicht zum Ablauf einer Programmierung eines 8051 Mikrocontrollers. 3.1 Der 8051 Maschinencode Grundsätzlich akzeptiert ein 8051 Mikrocontroller als Befehle

Mehr

Prozessoren für mobile und. eingebettete Systeme I: Die ARM-Architektur. EMES: Eigenschaften mobiler und eingebetteter Systeme

Prozessoren für mobile und. eingebettete Systeme I: Die ARM-Architektur. EMES: Eigenschaften mobiler und eingebetteter Systeme EMES: Eigenschaften mobiler und eingebetteter Systeme Prozessoren für mobile und 00101111010010011101001010101 eingebettete Systeme I: Die ARM-Architektur Dipl. Inf. Jan Richling Wintersemester 2005/2006

Mehr

Mikrocomputertechnik. Einadressmaschine

Mikrocomputertechnik. Einadressmaschine technik Einadressmaschine Vorlesung 2. Mikroprozessoren Einführung Entwicklungsgeschichte Mikroprozessor als universeller Baustein Struktur Architektur mit Akku ( Nerdi) FH Augsburg, Fakultät für Elektrotechnik

Mehr

Rechnerarchitektur und Betriebssysteme (CS201): AVR-CPU und -Assembler

Rechnerarchitektur und Betriebssysteme (CS201): AVR-CPU und -Assembler Rechnerarchitektur und Betriebssysteme (CS201): AVR-CPU und -Assembler 1. Oktober 2013 Prof. Dr. Christian Tschudin Departement Mathematik und Informatik, Universität Basel Wiederholung / Diskussion 1.

Mehr

Computer-Architektur Ein Überblick

Computer-Architektur Ein Überblick Computer-Architektur Ein Überblick Johann Blieberger Institut für Rechnergestützte Automation Computer-Architektur Ein Überblick p.1/27 Computer-Aufbau: Motherboard Computer-Architektur Ein Überblick p.2/27

Mehr

Mikroprozessortechnik. 03. April 2012

Mikroprozessortechnik. 03. April 2012 Klausur 03. April 2012 Name:. Vorname Matr.-Nr:. Studiengang Hinweise: Bitte füllen Sie vor dem Bearbeiten der Aufgaben das Deckblatt sorgfältig aus. Die Klausur besteht aus 6 doppelseitig bedruckten Blättern.

Mehr

Teil 1: Prozessorstrukturen

Teil 1: Prozessorstrukturen Teil 1: Prozessorstrukturen Inhalt: Mikroprogrammierung Assemblerprogrammierung Motorola 6809: ein einfacher 8-Bit Mikroprozessor Mikrocontroller Koprozessoren CISC- und RISC-Prozessoren Intel Pentium

Mehr

x86 Assembler Praktische Einführung Sebastian Lackner Michael Müller 3. Juni 2013

x86 Assembler Praktische Einführung Sebastian Lackner Michael Müller 3. Juni 2013 x86 Assembler Praktische Einführung Sebastian Lackner Michael Müller 3. Juni 2013 1 / 53 Inhaltsverzeichnis 1 Einführung 2 Assembler Syntax, Register und Flags 3 Hauptspeicher 4 Stack 5 Assemblerbefehle

Mehr

bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke

bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke Rechnerarithmetik Rechnerarithmetik 22 Prof. Dr. Rainer Manthey Informatik II Übersicht bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke in diesem

Mehr

1 Einleitung zum RISC Prozessor

1 Einleitung zum RISC Prozessor 1 Einleitung zum RISC Prozessor Wesentliche Entwicklungsschritte der Computer-Architekturen [2, 3]: Familienkonzept von IBM mit System/360 (1964) und DEC mit PDP-8 (1965) eingeführt: Gleiche Hardware-Architekturen

Mehr

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2012 / 2013. Vorlesung 9, Dienstag 18.

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2012 / 2013. Vorlesung 9, Dienstag 18. Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2012 / 2013 Vorlesung 9, Dienstag 18. Dezember 2012 (Performance Tuning, Profiling, Maschinencode) Prof. Dr.

Mehr

4.2 Universalrechner: Schaltung unabhängig vom Problem 185

4.2 Universalrechner: Schaltung unabhängig vom Problem 185 4.2 Universalrechner: Schaltung unabhängig vom Problem 85 a) Geben Sie binär die Befehlsworte an, mit denen Sie die Eingänge a, b und c in die Register R, R2 und R übernehmen. K D M4 M M2 M Kommentar XXXXXXXXXXX

Mehr

Befehlssatz AVR RISC Controller

Befehlssatz AVR RISC Controller Befehlssatz AVR RISC Controller Design-Philosophie des AVR Befehlssatzes Assembler-Sprache AVR-Befehlssatz Philosophie RISC = Reduced Instruction Set Computing keine komplexen Befehle möglichst symmetrischer

Mehr

einfache PIC-Übungsprogramme

einfache PIC-Übungsprogramme einfache PIC-Übungsprogramme Schreibe in MPLAB für das PIC-Übungsboard 01 mit dem PIC16F88 folgendes Programm, assembliere und dokumentiere dieses, schreibe es anschließend mittels dem Programmiergerät

Mehr

Computerarithmetik (1)

Computerarithmetik (1) Computerarithmetik () Fragen: Wie werden Zahlen repräsentiert und konvertiert? Wie werden negative Zahlen und Brüche repräsentiert? Wie werden die Grundrechenarten ausgeführt? Was ist, wenn das Ergebnis

Mehr

Das Prinzip an einem alltäglichen Beispiel

Das Prinzip an einem alltäglichen Beispiel 3.2 Pipelining Ziel: Performanzsteigerung é Prinzip der Fließbandverarbeitung é Probleme bei Fließbandverarbeitung BB TI I 3.2/1 Das Prinzip an einem alltäglichen Beispiel é Sie kommen aus dem Urlaub und

Mehr

Midterm-Klausur Technische Grundlagen der Informatik

Midterm-Klausur Technische Grundlagen der Informatik Midterm-Klausur Technische Grundlagen der Informatik Prof. Dr. Arndt Bode Wintersemester 2002/2003 7. Dezember 2002 Name: Vorname: Matrikelnummer: Hörsaal: Platz: Unterschrift: Ergebnis: Aufgabe Punkte

Mehr

Mikrocomputertechnik mit Controllern der Atmel AVR-RISC-Familie

Mikrocomputertechnik mit Controllern der Atmel AVR-RISC-Familie Mikrocomputertechnik mit Controllern der Atmel AVR-RISC-Familie Programmierung in Assembler und C Schaltungen und Anwendungen von Günter Schmitt 5., völlig überarbeitete und erweiterte Auflage Oldenbourg

Mehr

Rechnerarchitektur. M. Jakob. 1. Februar 2015. Gymnasium Pegnitz

Rechnerarchitektur. M. Jakob. 1. Februar 2015. Gymnasium Pegnitz Rechnerarchitektur M. Jakob Gymnasium Pegnitz 1. Februar 2015 Inhaltsverzeichnis 1 Aufbau eines Computersystems Praktische Grundlagen Von-Neumann-Rechner 2 Darstellung und Speicherung von Zahlen 3 Registermaschinen

Mehr

Elementare logische Operationen

Elementare logische Operationen RECHNERARCHITEKTUR 2 - ELEMENTARE LOGISCHE OPERATIONEN 1 Elementare logische Operationen Modifizieren, Testen,Vergleichen In diesem Abschnitt wollen wir zeigen, wie man mit den elementaren logischen Verknüpfungen

Mehr

B1 Stapelspeicher (stack)

B1 Stapelspeicher (stack) B1 Stapelspeicher (stack) Arbeitsweise des LIFO-Stapelspeichers Im Kapitel "Unterprogramme" wurde schon erwähnt, dass Unterprogramme einen so genannten Stapelspeicher (Kellerspeicher, Stapel, stack) benötigen

Mehr

Wer in der Grundschule ein wenig aufgepasst hat, sollte in der Lage sein schriftlich eine Zahl durch eine zweite zu teilen.

Wer in der Grundschule ein wenig aufgepasst hat, sollte in der Lage sein schriftlich eine Zahl durch eine zweite zu teilen. Teilen binär Teil 1 - Vorzeichenlose Ganzzahlen ============ Irgendwann steht jeder Programmieren vor diesem Problem. Wie teile ich eine Binärzahl durch eine zweite? Wer in der Grundschule ein wenig aufgepasst

Mehr

5.BMaschinensprache und Assembler

5.BMaschinensprache und Assembler Die Maschinenprogrammebene eines Rechners Jörg Roth 268 5.BMaschinensprache und Assembler Die vom Prozessor ausführbaren Befehle liegen im Binärformat vor. Nur solche Befehle sind direkt ausführbar. So

Mehr

DLX Befehlsübersicht

DLX Befehlsübersicht DLX sübersicht 1 Instruktionen für den Daten-Transfer Daten können mit folgenden en zwischen Registern und dem Speicher oder zwischen Integer- und Fließkomma-Registern ausgetauscht werden. Der einzige

Mehr

Die Daten (Befehle und numerische Daten) werden in Form von BIT-Folgen verarbeitet.

Die Daten (Befehle und numerische Daten) werden in Form von BIT-Folgen verarbeitet. Übung Nr. 1b: MIKROPROZESSOR, Hewlett - Packard µ-lab en sind kleine Computer, die mit externen Geräten Daten austauschen können. Sie verfügen über Speicher, um Programme und Daten zu speichern und Eingangsund

Mehr

Zahlendarstellung Logikfunktionen Register Eingänge Infrarot senden TSOP-Effekte Weiterführendes U23 2008. Abend 3:

Zahlendarstellung Logikfunktionen Register Eingänge Infrarot senden TSOP-Effekte Weiterführendes U23 2008. Abend 3: #2 Abend 3: Alexander Neumann e.v. http://koeln.ccc.de Köln, 3.11.2008 Gliederung 1 Zahlendarstellung n-adische Darstellung natürlicher Zahlen negative Zahlen 2 Logikfunktionen 3 Register

Mehr

Übungen für die Einführung in die Assemblerprogrammierung mit dem Prozessor c515c

Übungen für die Einführung in die Assemblerprogrammierung mit dem Prozessor c515c Übungen für die Einführung in die Assemblerprogrammierung mit dem Prozessor c515c 1 Transportbefehle 1.1 Verwendung nur Akku und Register (R0, R1,... R7) 1.1.1 Kopieren Sie den Wert aus Register1 nach

Mehr

Algorithmen zur Integer-Multiplikation

Algorithmen zur Integer-Multiplikation Algorithmen zur Integer-Multiplikation Multiplikation zweier n-bit Zahlen ist zurückführbar auf wiederholte bedingte Additionen und Schiebeoperationen (in einfachen Prozessoren wird daher oft auf Multiplizierwerke

Mehr

Einführung in AVR-Assembler

Einführung in AVR-Assembler Einführung in AVR-Assembler Easterhack 2008 Chaos Computer Club Cologne Stefan Schürmans, BlinkenArea stefan@blinkenarea.org Version 1.0.4 Easterhack 2008 Einführung in AVR-Assembler 1 Inhalt Vorstellung

Mehr

68000 Assembler J. Teepe

68000 Assembler J. Teepe 68 Assembler J. Teepe 2 J. Teepe 68 Assembler Inhaltsverzeichnis I N H A L T S V E R Z E I C H N I S Kapitel Einführung... 7. Übersicht der Computersprachen... 7.. Maschinencode - Assembler... 8..2 Höhere

Mehr

Informationssysteme Semesterwoche 3

Informationssysteme Semesterwoche 3 Informationssysteme Semesterwoche 3 Teil 1: Zahlen und Logik A) Aufgaben zu den ganzen Zahlen 1. Konvertieren Sie die folgenden Zahlen in die Binärform: 1984 / 2 = 992 0 (LSB) / 2 = 496 0 / 2 = 248 0 /

Mehr

Teil VIII Von Neumann Rechner 1

Teil VIII Von Neumann Rechner 1 Teil VIII Von Neumann Rechner 1 Grundlegende Architektur Zentraleinheit: Central Processing Unit (CPU) Ausführen von Befehlen und Ablaufsteuerung Speicher: Memory Ablage von Daten und Programmen Read Only

Mehr

0 C (Carry) Überlauf des 8ten Bits. 1 DC (Digit Carry) Überlauf des 4ten Bits. Mnemonic Parameter Beschreibung Status-Flags.

0 C (Carry) Überlauf des 8ten Bits. 1 DC (Digit Carry) Überlauf des 4ten Bits. Mnemonic Parameter Beschreibung Status-Flags. 3. Assembler-Programmierung Der PIC 16F84A Microcontroller kennt 35 verschiedene Befehle. Für eine ausführliche Beschreibung aller Befehle siehe PIC16F84A-Datenblatt Kapitel 7.1. 3.1 Wichtige Flaggen im

Mehr

C. BABBAGE (1792 1871): Programmgesteuerter (mechanischer) Rechner

C. BABBAGE (1792 1871): Programmgesteuerter (mechanischer) Rechner Von-Neumann-Rechner (John von Neumann : 1903-1957) C. BABBAGE (1792 1871): Programmgesteuerter (mechanischer) Rechner Quelle: http://www.cs.uakron.edu/~margush/465/01_intro.html Analytical Engine - Calculate

Mehr

Funktionaler Aufbau eines Computers Untersuchung von Delphi-Compilaten

Funktionaler Aufbau eines Computers Untersuchung von Delphi-Compilaten Funktionaler Aufbau eines Computers Im Folgenden soll der Weg untersucht werden, wie ein Programm, das von einem Compiler/Interpreter in Maschinencode übertragen wurde, schließlich vom Prozessor abgearbeitet

Mehr

Programmieren. Kapitel 3: Wie funktioniert ein moderner Computer? Wintersemester 2008/2009. Prof. Dr. Christian Werner

Programmieren. Kapitel 3: Wie funktioniert ein moderner Computer? Wintersemester 2008/2009. Prof. Dr. Christian Werner Institut für Telematik Universität zu Lübeck Programmieren Kapitel 3: Wie funktioniert ein moderner Computer? Wintersemester 8/9 Prof. Dr. Christian Werner 3- Überblick Typische Merkmale moderner Computer

Mehr

Modul Computersysteme Prüfungsklausur SS 2011. Prof. Dr. J. Keller LG Parallelität und VLSI Prof. Dr.-Ing. W. Schiffmann LG Rechnerarchitektur

Modul Computersysteme Prüfungsklausur SS 2011. Prof. Dr. J. Keller LG Parallelität und VLSI Prof. Dr.-Ing. W. Schiffmann LG Rechnerarchitektur Modul Computersysteme Prüfungsklausur SS 2011 Lösungsvorschläge Prof. Dr. J. Keller LG Parallelität und VLSI Prof. Dr.-Ing. W. Schiffmann LG Rechnerarchitektur 1 Aufgabe 1 (12 Punkte): a) Gegeben ist das

Mehr

Binäre Division. Binäre Division (Forts.)

Binäre Division. Binäre Division (Forts.) Binäre Division Umkehrung der Multiplikation: Berechnung von q = a/b durch wiederholte bedingte Subtraktionen und Schiebeoperationen in jedem Schritt wird Divisor b testweise vom Dividenden a subtrahiert:

Mehr

Von-Neumann-Rechner auf dem Bildschirm CPU-Simulation mit dem Modellrechner DC 1

Von-Neumann-Rechner auf dem Bildschirm CPU-Simulation mit dem Modellrechner DC 1 Von-Neumann-Rechner auf dem Bildschirm CPU-Simulation mit dem Modellrechner DC 1 Horst Gierhardt Städtisches Gymnasium Bad Laasphe www.gierhardt.de Version vom 13. März 2014 1 Version 6.6 Inhaltsverzeichnis

Mehr

TIn 1: Feedback Laboratories. Lecture 4 Data transfer. Question: What is the IP? Institut für Embedded Systems. Institut für Embedded Systems

TIn 1: Feedback Laboratories. Lecture 4 Data transfer. Question: What is the IP? Institut für Embedded Systems. Institut für Embedded Systems Mitglied der Zürcher Fachhochschule TIn 1: Lecture 4 Data transfer Feedback Laboratories Question: What is the IP? Why do we NEED an IP? Lecture 3: Lernziele Moving data, the why s and wherefores Moving

Mehr

Kap.2 Befehlsschnittstelle. Prozessoren, externe Sicht

Kap.2 Befehlsschnittstelle. Prozessoren, externe Sicht Kap.2 Befehlsschnittstelle Prozessoren, externe Sicht 2.1 elementare Datentypen, Operationen 2.2 logische Speicherorganisation 2.3 Maschinenbefehlssatz 2.4 Klassifikation von Befehlssätzen 2.5 Unterbrechungen

Mehr

Name: ES2 Klausur Thema: ARM 25.6.07. Name: Punkte: Note:

Name: ES2 Klausur Thema: ARM 25.6.07. Name: Punkte: Note: Name: Punkte: Note: Hinweise für das Lösen der Aufgaben: Zeit: 95 min. Name nicht vergessen! Geben Sie alle Blätter ab. Die Reihenfolge der Aufgaben ist unabhängig vom Schwierigkeitsgrad. Erlaubte Hilfsmittel

Mehr

Daten, Informationen, Kodierung. Binärkodierung

Daten, Informationen, Kodierung. Binärkodierung Binärkodierung Besondere Bedeutung der Binärkodierung in der Informatik Abbildung auf Alphabet mit zwei Zeichen, in der Regel B = {0, 1} Entspricht den zwei möglichen Schaltzuständen in der Elektronik:

Mehr

Steuerungen. 4 Typen verbindungsprogrammierte Steuerung (VPS), speicherprogrammierte Steuerung (SPS), Mikrokontroller (MC) und Industrie-PCs (IPC)

Steuerungen. 4 Typen verbindungsprogrammierte Steuerung (VPS), speicherprogrammierte Steuerung (SPS), Mikrokontroller (MC) und Industrie-PCs (IPC) Steuerungen 4 Typen verbindungsprogrammierte Steuerung (VPS), speicherprogrammierte Steuerung (SPS), Mikrokontroller (MC) und Industrie-PCs (IPC) VPS - Funktion der Steuerung in der Schaltungstopologie

Mehr

Multitasking / virtuelle Maschinen mittels Atmel AVR- Mikrocontrollern (Simple & Stupid)

Multitasking / virtuelle Maschinen mittels Atmel AVR- Mikrocontrollern (Simple & Stupid) VM/AVR SIMPLE & STUPID 1 Multitasking / virtuelle Maschinen mittels Atmel AVR- Mikrocontrollern (Simple & Stupid) Stand: 26. 1. 2010 Zweck: Elementare Demonstration der Mehrprogrammausführung auf Grundlage

Mehr

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär Zahlensysteme Menschen nutzen zur Angabe von Werten und zum Rechnen vorzugsweise das Dezimalsystem Beispiel 435 Fische aus dem Teich gefischt, d.h. 4 10 2 + 3 10 1 +5 10 0 Digitale Rechner speichern Daten

Mehr

in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen

in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen Gleitkommazahlen in vielen technischen und wissenschaftlichen Anwendungen erforderlich: hohe Präzision große Dynamik möglich durch Verwendung von Gleitkommazahlen allgemeine Gleitkommazahl zur Basis r

Mehr

12. Maschinennahes Programmieren

12. Maschinennahes Programmieren 12. Maschinennahes Programmieren Der Kern jedes Computers oder jeder Microcontroller-gestützten Schaltung ist ein Prozessor: in Hochleistungsservern sind es 64-Bit-Prozessoren (z.b. vom Typ Spark oder

Mehr

TOTAL DIGITAL - Wie Computer Daten darstellen

TOTAL DIGITAL - Wie Computer Daten darstellen TOTAL DIGITAL - Wie Computer Daten darstellen Computer verarbeiten Daten unter der Steuerung eines Programmes, das aus einzelnen Befehlen besteht. Diese Daten stellen Informationen dar und können sein:

Mehr

Kapitel 2. Zahlensysteme, Darstellung von Informationen

Kapitel 2. Zahlensysteme, Darstellung von Informationen Kapitel 2 Zahlensysteme, Darstellung von Informationen 1 , Darstellung von Informationen Ein Computer speichert und verarbeitet mehr oder weniger große Informationsmengen, je nach Anwendung und Leistungsfähigkeit.

Mehr

Binäre Gleitkommazahlen

Binäre Gleitkommazahlen Binäre Gleitkommazahlen Was ist die wissenschaftliche, normalisierte Darstellung der binären Gleitkommazahl zur dezimalen Gleitkommazahl 0,625? Grundlagen der Rechnerarchitektur Logik und Arithmetik 72

Mehr

Atmel AVR für Dummies

Atmel AVR für Dummies Atmel AVR für Dummies fd0@koeln.ccc.de 29.12.2005 Übersicht 1 Hardware Kurzvorstellung Atmega8 Programmierkabel (Eigenbau vs. Kommerzlösung) Alternative: Bootloader (Programmieren via rs232) Software Speicher

Mehr

Rechner Architektur. Martin Gülck

Rechner Architektur. Martin Gülck Rechner Architektur Martin Gülck Grundlage Jeder Rechner wird aus einzelnen Komponenten zusammengesetzt Sie werden auf dem Mainboard zusammengefügt (dt.: Hauptplatine) Mainboard wird auch als Motherboard

Mehr

1.7 Assembler Programmierung

1.7 Assembler Programmierung 1.7 Assembler Programmierung Die nach außen sichtbare Programmierschnittstelle eines Prozessors ist der Befehlscode. Dies ist eine binäre Dateninformation, die vom Prozessor Byte für Byte abgearbeitet

Mehr

2.2 Rechnerorganisation: Aufbau und Funktionsweise

2.2 Rechnerorganisation: Aufbau und Funktionsweise 2.2 Rechnerorganisation: Aufbau und Funktionsweise é Hardware, Software und Firmware é grober Aufbau eines von-neumann-rechners é Arbeitsspeicher, Speicherzelle, Bit, Byte é Prozessor é grobe Arbeitsweise

Mehr

Der Assembler-Befehlssatz

Der Assembler-Befehlssatz Assembler-Befehlssatz 1 Der Assembler-Befehlssatz Anmerkung: Die kurzen Beispiele beziehen sich auf die Arbeit mit dem DEBUG-Assembler (links) sowie dem MASM, der symbolische Adressen verarbeiten kann

Mehr

N Bit binäre Zahlen (signed)

N Bit binäre Zahlen (signed) N Bit binäre Zahlen (signed) n Bit Darstellung ist ein Fenster auf die ersten n Stellen der Binär Zahl 0000000000000000000000000000000000000000000000000110 = 6 1111111111111111111111111111111111111111111111111101

Mehr

Arithmetik. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck

Arithmetik. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Arithmetik Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Übersicht Zahlendarstellung Addition und Subtraktion Multiplikation Division Fest- und Gleitkommazahlen

Mehr

Das Rechnermodell von John von Neumann

Das Rechnermodell von John von Neumann Das Rechnermodell von John von Neumann Historisches Die ersten mechanischen Rechenmaschinen wurden im 17. Jahhundert entworfen. Zu den Pionieren dieser Entwichlung zählen Wilhelm Schickard, Blaise Pascal

Mehr

1 Assembler. 2 LED-Steuerung

1 Assembler. 2 LED-Steuerung Inhaltsverzeichnis Inhaltsverzeichnis... 1 1 Assembler... 2 2 LED-Steuerung... 2 3 Taster Abfrage ( Port I/O)... 3 3.1 Zahlensysteme... 3 3.2 Ausgabe... 4 3.2.1 Assembler-Sourcecode... 4 3.2.2 Assemblieren...

Mehr

Maschinennahe Programmierung

Maschinennahe Programmierung Maschinennahe Programmierung Prof. Dr.-Ing. Andreas Meisel Zur Vorgehensweise Vortragsfolien downloadbar von www.informatik.haw-hamburg.de meisel Vertiefungen Tafel Übungsaufgaben Tafel 3..27 Meisel .

Mehr

Binärcodierung elementarer Datentypen: Darstellung negativer Zahlen

Binärcodierung elementarer Datentypen: Darstellung negativer Zahlen Binärcodierung elementarer Datentypen: Darstellung negativer Zahlen Statt positive Zahlen von 0 bis 2 n -1mit einem Bitmuster der Länge n darzustellen und arithmetische Operationen darauf auszuführen,

Mehr

2. Rechnerarchitektur 2.1 einfache Computer

2. Rechnerarchitektur 2.1 einfache Computer Fakultät Informatik Institut Systemarchitektur Professur Rechnernetze WS 2012 LV Informatik-I für Verkehrsingenieure 2. Rechnerarchitektur 2.1 einfache Computer Dr. rer.nat. D. Gütter Mail: WWW: Dietbert.Guetter@tu-dresden.de

Mehr

9.0 Komplexe Schaltwerke

9.0 Komplexe Schaltwerke 9.0 Komplexe Schaltwerke Die Ziele dieses Kapitels sind: Lernen komplexe Schaltwerke mittels kleinerer, kooperierender Schaltwerke zu realisieren Verstehen wie aufgabenspezifische Mikroprozessoren funktionieren

Mehr

Besprechung des 3. Übungsblattes MIMA-Interpreter MIMA-Aufgabe: Primzahltest Weitere MIMA-Aufgaben online

Besprechung des 3. Übungsblattes MIMA-Interpreter MIMA-Aufgabe: Primzahltest Weitere MIMA-Aufgaben online Themen heute Besprechung des 3. Übungsblattes MIMA-Interpreter MIMA-Aufgabe: Primzahltest Weitere MIMA-Aufgaben online Besprechung des 3. Übungsblattes Aufgabe 3 Speicherplätze für Mikrocode-Anweisungen

Mehr

Grundlagen der Technischen Informatik Wintersemester 12/13 J. Kaiser, IVS-EOS

Grundlagen der Technischen Informatik Wintersemester 12/13 J. Kaiser, IVS-EOS Gleit komma zahlen Gleitkommazahlen in vielen technischen und wissenschaftlichen Anwendungen wird eine große Dynamik benötigt: sowohl sehr kleine als auch sehr große Zahlen sollen einheitlich dargestellt

Mehr

Die Maschinenprogrammebene eines Rechners Jörg Roth 294

Die Maschinenprogrammebene eines Rechners Jörg Roth 294 Die Maschinenprogrammebene eines Rechners Jörg Roth 294 5.E Die SPIM-Umgebung SPIM ist ein Simulationswerkzeug für MIPS-Prozessoren Es enthält einen Assembler und eine Laufzeitumgebung Da das Wirtsystem

Mehr

Compiler: Vom Code zum Maschinen-Code. C Programmierung - Vorlesung 2 Hochschule Regensburg 19.03.2012 Universitätsstraße 31, 93053 Regensburg

Compiler: Vom Code zum Maschinen-Code. C Programmierung - Vorlesung 2 Hochschule Regensburg 19.03.2012 Universitätsstraße 31, 93053 Regensburg Compiler: Vom Code zum Maschinen-Code C Programmierung - Vorlesung 2 Hochschule Regensburg 19.03.2012 Universitätsstraße 31, 93053 Regensburg Prof. Dr. Jan Dünnweber Zusammenhänge: C und Assembler Hochsprachen

Mehr

Aufbau und Funktionsweise eines Computers

Aufbau und Funktionsweise eines Computers Aufbau und Funktionsweise eines Computers Thomas Röfer Hardware und Software von Neumann Architektur Schichtenmodell der Software Zahlsysteme Repräsentation von Daten im Computer Hardware Prozessor (CPU)

Mehr

Technische Informatik

Technische Informatik Technische Informatik Eine einführende Darstellung von Prof. Dr. Bernd Becker Prof. Dr. Paul Molitor Oldenbourg Verlag München Wien Inhaltsverzeichnis 1 Einleitung 1 1.1 Was ist überhaupt ein Rechner?

Mehr

Klausur. Technische Grundlagen der Informatik Prof. Dr. Arndt Bode

Klausur. Technische Grundlagen der Informatik Prof. Dr. Arndt Bode Klausur Technische Grundlagen der Informatik Prof. Dr. Arndt Bode Wintersemester 2000/2001 3. Februar 2001 Name: Vorname: Matrikelnummer: Geburtsdatum: Hörsaal: Platz: Unterschrift: Ergebnis: Aufgabe 1

Mehr

Hardwareaufbau der Mikrocontroller der 51er -Familie

Hardwareaufbau der Mikrocontroller der 51er -Familie Hardwareaufbau der Mikrocontroller der 51er -Familie Mikrocontroller (51er Familie) Quarz Port Timer A D Serielle Schnittst. CPU ROM RAM Ext. ROM Ext. RAM Programmspeicher (ROM) Datenspeicher (RAM) FFFFh

Mehr

Stephan Brumme, SST, 2.FS, Matrikelnr. 70 25 44

Stephan Brumme, SST, 2.FS, Matrikelnr. 70 25 44 Aufgabe 33 a) Der Pseudobefehl move $rd,$rs wird als addu $rd,$0,$rs übersetzt. Dabei macht sich SPIM zunutze, dass das Register $0 immer Null ist. Somit wird das Register $rd ersetzt durch $rd=0+$rs=$rs,

Mehr

Betriebssysteme Teil 6: Hardware-Schicht II

Betriebssysteme Teil 6: Hardware-Schicht II Betriebssysteme Teil 6: Hardware-Schicht II 13.11.15 1 Literatur [6-1] Engelmann, Lutz (Hrsg.): Abitur Informatik Basiswissen Schule. Duden-Verlag, 2003, S.43-53, 214-224, 239-242, S. 267-299,304-313 [6-2]

Mehr