Datenqualität in medizinisch-betriebswirtschaftlichen Informationssystemen MedConf 2013

Größe: px
Ab Seite anzeigen:

Download "Datenqualität in medizinisch-betriebswirtschaftlichen Informationssystemen MedConf 2013"

Transkript

1 Datenqualität in medizinisch-betriebswirtschaftlichen Informationssystemen MedConf 2013 Endler Gregor,

2 Warum Datenqualität? 2002, USA: $ Y2k weltweit: $ Kosten Todesfälle durch Fehler Fehlende Info: bis 81% der Fälle 2

3 Was ist Datenqualität? Intuitiv klar Keine allgemein anerkannte Definition Viele verwandte Forschungsgebiete 3

4 Was ist Datenqualität? Generisch: Fitness for Use 1. Datenqualität ist subjektiv 4

5 Beispiel Felder vertauscht ungenau Duplikate fehlende Werte PID Name Vorname Geburtsjahr Telefon MgrZulage 9462 Hans Müller Müller Hans Mustermann Susanne Merkel Angela Becker Bris Tippfehler falscher Wert nicht plausibler Wert unmöglicher Wert 5

6 Was ist Datenqualität? Viele unterschiedliche Arten von Qualität 1. Datenqualität ist subjektiv 2. Datenqualität ist multidimensional 6

7 Korrektheit, Genauigkeit Korrektheit Übereinstimmung Datenwert - Realwelt Genauigkeit Abstand Datenwert - Realwelt Syntaktisch vs. Semantisch kontextunabhängig kontextabhängig 7

8 Vollständigkeit Schema Attribut Vollständigkeit Tupel Relation Population 8

9 Konsistenz Konsistenz Widerspruchsfreiheit Relationale Integritätsbedingungen Benutzerdefinierte Constraints 9

10 Zeitbezogene Dimensionen Aktualität Zeitnähe Daten veraltet? Zeitgerechte Bereitstellung? 10

11 Wechselwirkungen Sicherstellen von Korrektheit, Erfordert Zeit Zeitnähe gefährdet 11

12 Was ist Datenqualität? Wechselwirkungen zwischen Dimensionen 1. Datenqualität ist subjektiv 2. Datenqualität ist multidimensional 3. DQ-Dimensionen sind nicht unabhängig 12

13 Messen von Datenqualität

14 Referenzdaten 14

15 Maße Korrektheit Syntaktisch: Wertebereich, Rechtschreibung Semantisch: Realweltvergleich Genauigkeit Realweltvergleich Spezialfall Distanzmessung an Realobjekt Konsistenz # Tupel, die alle Integritätsbedingungen erfüllen # Tupel Zeitnähe Fehlende Daten für Arbeitsschritt? Prozessmonitoring 15

16 Messen von Vollständigkeit Vollständigkeit Attribut, Tupel, Relation: Anteil NULL Schema: Schema- & Bedarfsanalyse Populationsvollständigkeit: Expertenwissen, Realweltvergleich Wert existiert nicht NULL Wert existiert, ist aber nicht bekannt Nicht bekannt, ob Wert existiert 16

17 Messen von Aktualität Aktualisierungen Realweltobjekt Zeit Datenobjekt d Zeit Aktualität von d Zeit 17

18 Messen von Aktualität ctd. Realweltobjekt Volatilität? Zeit Datenobjekt d Zeit geschätzte Aktualität von d Zeit 18

19 Verbesserung von Datenqualität

20 DQ und Prozesskontrolle steuern Daten Prozesse erzeugen IT Geschäftsprozesse Unternehmensorganisation 20

21 Maßnahmenportfolio Maßnahmenportfolio zur Verbesserung der DQ [Redman 1996] hoch Änderungshäufigkeit der Realweltobjekte Proaktive Maßnahmen niedrig Laissez faire Reaktive Maßnahmen niedrig Bedeutung (Wichtigkeit) der Daten hoch 21

22 TDQM Zyklus Define Improve Measure Analyze TDQM: Wang et al: Data Quality, Kluwer,

23 Transparenz der DQ der Datenproduktion A1, QS1 A2, QS2 A3, QS3 w1, qw1 w2, qw2... QS2 q1 q2 qw2 qind1 qind2 23

24 Transparenz der DQ der Datenproduktion Provenance Why Where How 24

25 Maßnahmen Profiling Manuelle Korrektur (semi-)automatische Korrektur Attributanalyse Ausreißer Abhängigkeiten Identity Matching Fremdschlüsselbeziehungen Record Linkage Redundanzen 25

26 Datenqualität im Projekt MEDITALK

27 Kontext Gemeinschaftliche Behandlung Praxismanager Finanzielle Vorteile 27

28 Wo drückt der Schuh? 28

29 MVZ und Praxisnetz Heterogene Arztpraxis- Systeme (APS) APS A APS B Metadaten Repository Integration Integrierte Datenbank Neue Verwendung DQ-Monitoring Administrative Anwendungen (z.b. Controlling) ERP System des Zentrums Fitness for Use? 29

30 Pay-as-you-go DQ-Monitoring Pay-asyou-go neue Regeln neue Metriken Define Initiale Definition von Regeln, Metriken Benachrichtigung Bereinigung Improve Measure Monitor Monitoring Problemanzeige Analyze Moni tor Ursprung? Ursachen? TDQM: Wang et al: Data Quality, Kluwer,

31 Zusammenfassung Datenqualität ist subjektiv Datenqualität ist multidimensional DQ-Dimensionen sind nicht unabhängig Messen entlang der Dimensionen Oft kontinuierliches DQ-Management nötig 31

32 Kontakt Gregor Endler Lehrstuhl für Informatik 6 (Datenmanagement) FAU Erlangen-Nürnberg www6.cs.fau.de/people/greg/

33 Quellen Batini, C. and Scannapieco, M.: Data Quality. Concepts, Methodologies and Techniques, Springer, 2006 Eckerson, W.: Data Quality and the Bottom Line: Achieving Business Success through a Commitment to High Quality Data, The Data Warehouse Institute, Repost Series, 2002 Fisher, C.W. and Kingma, B.R.: Criticality of Data Quality as Exemplified in Two Disasters, Information Management, 2002 English, L.P.: Improving Data Warehouse and Business Information Quality, Wiley & Sons, 1999 Institute of Medicine: IOM Report 1999 IOM Report 2001 Lenz, R.Y.: Vorlesungsmaterial Evolutionäre Informationssysteme, 2012 Miller, D.W., et al.: Missing prenatal records at a birth center: A communication problem quantified, AMIA Annu. Symp. Proc., 2005 Redman, T.C.: Data Quality for the Information Age, Artech House, 1996 Wang, R. et.al.: Data Quality, Kluwer,

Orientierungsvorlesung. Vertiefungsrichtung Datenbanksysteme. Richard Lenz Februar 2014

Orientierungsvorlesung. Vertiefungsrichtung Datenbanksysteme. Richard Lenz Februar 2014 Orientierungsvorlesung Vertiefungsrichtung Datenbanksysteme Februar 2014 Lehrstuhl für Informatik 6 (Datenmanagement) Friedrich-Alexander-Universität Erlangen-Nürnberg Datenbanksysteme (1) 2 Techniken

Mehr

Orientierungsvorlesung. Vertiefungsrichtung Datenbanksysteme. Richard Lenz Dezember 2014

Orientierungsvorlesung. Vertiefungsrichtung Datenbanksysteme. Richard Lenz Dezember 2014 Orientierungsvorlesung Vertiefungsrichtung Datenbanksysteme Richard Lenz Dezember 2014 Lehrstuhl für Informatik 6 (Datenmanagement) Friedrich-Alexander-Universität Erlangen-Nürnberg Datenbanksysteme (1)

Mehr

Datenqualität: allgemeiner Überblick Waldemar Braun. Seminar Datenqualität OvGU Magdeburg 03.12.2009

Datenqualität: allgemeiner Überblick Waldemar Braun. Seminar Datenqualität OvGU Magdeburg 03.12.2009 Datenqualität: allgemeiner Überblick Waldemar Braun Seminar Datenqualität OvGU Magdeburg Gliederung 1. Einleitung 2. Motivation 3. Definition 4. DQ-Probleme 5. DQ-Dimensionen 6. DQ-Modelle 7. Messen der

Mehr

Quelle: Daten nach Russom, Philip: Taking Data Quality to the Enterprise through Data Governance, TDWI Report Series, The Data Warehouse Institute,

Quelle: Daten nach Russom, Philip: Taking Data Quality to the Enterprise through Data Governance, TDWI Report Series, The Data Warehouse Institute, Quelle: Daten nach Russom, Philip: Taking Data Quality to the Enterprise through Data Governance, TDWI Report Series, The Data Warehouse Institute, Chatsworth, 2006, S. 11. Schieder: Datenqualitätsmanagement

Mehr

Frühjahrsemester 2013. CS243 Datenbanken Kapitel 4: Datenqualität* H. Schuldt. Datenqualität

Frühjahrsemester 2013. CS243 Datenbanken Kapitel 4: Datenqualität* H. Schuldt. Datenqualität Frühjahrsemester 2013 CS243 Datenbanken Kapitel 4: Datenqualität* H. Schuldt * Folien basieren zum Teil auf Unterlagen von Dr. Diego Milano Datenqualität Datenqualität (DQ) beschreibt allgemein die (anwendungsspezifische)

Mehr

Motivation: Datenqualitätsprobleme in der Praxis (1/2) Mars Climate Orbiter. Chinesische Botschaft in Belgrad

Motivation: Datenqualitätsprobleme in der Praxis (1/2) Mars Climate Orbiter. Chinesische Botschaft in Belgrad Datenqualität mit dem DataFlux dfpower Studio 8.1 Tobias Jansen Zaferna-Hütte, 4. Januar 2009 Motivation: Datenqualitätsprobleme in der Praxis (1/2) Mars Climate Orbiter Nasa Marssonde Mars Climate Orbiter

Mehr

A Framework for Planing and Controlling Data Quality in Data-Warehouse-Systems

A Framework for Planing and Controlling Data Quality in Data-Warehouse-Systems A Framework for Planing and Controlling Data Quality in Data-Warehouse-Systems markus.helfert@unisg.ch Slide 2 Überblick Data-Warehouse-Systeme und Datenqualität Datenqualitätsmanagement Datenqualität

Mehr

Quality Point München Datenqualität

Quality Point München Datenqualität Quality Point München Datenqualität Paul, wie ist denn Eure Datenqualität? Nachdem ich bei der letzten Gehaltszahlung mit Frau... angeredet wurde, bin ich mir nicht mehr so sicher. Autor: W. Ulbrich IT&More

Mehr

Datenqualität. Werner Nutt. In Zusammenarbeit mit Simon Razniewski. Freie Universität Bozen

Datenqualität. Werner Nutt. In Zusammenarbeit mit Simon Razniewski. Freie Universität Bozen Datenqualität Werner Nutt In Zusammenarbeit mit Simon Razniewski Freie Universität Bozen Vorstellung Werner Nutt Professor für Informatik and der Freien Univ. Bozen Schwerpunkte in Lehre und Forschung:

Mehr

OLAP und Data Warehouses

OLAP und Data Warehouses OLP und Data Warehouses Überblick Monitoring & dministration Externe Quellen Operative Datenbanken Extraktion Transformation Laden Metadaten- Repository Data Warehouse OLP-Server nalyse Query/Reporting

Mehr

Data/Information Quality Management

Data/Information Quality Management Data/Information Quality Management Seminar WI/Informationsmanagement im Sommersemester 2002 Markus Berberov, Roman Eder, Peter Gerstbach 11.6.2002 Inhalt! Daten und Datenqualität! Einführung und Definition!

Mehr

Agenda. Einführung MS SQL Server Integration Services (SSIS) Oracle Data Warehouse Builder (OWB) Zusammenfassung Quellen. Einführung SSIS OWB

Agenda. Einführung MS SQL Server Integration Services (SSIS) Oracle Data Warehouse Builder (OWB) Zusammenfassung Quellen. Einführung SSIS OWB Agenda Einführung MS SQL Server Integration Services () Oracle Data Warehouse Builder () Quellen 10.12.2009 Martin Tobies - DQ Tools 2 Agenda Einführung MS SQL Server Integration Services () Oracle Data

Mehr

DIE DATEN IM ZENTRUM: SAS DATA MANAGEMENT

DIE DATEN IM ZENTRUM: SAS DATA MANAGEMENT DIE DATEN IM ZENTRUM: SAS DATA RAINER STERNECKER SOLUTIONS ARCHITECT SAS INSTITUTE SOFTWARE GMBH Copyr i g ht 2013, SAS Ins titut e Inc. All rights res er ve d. NEUE WEGE GEHEN SAS DATA GOVERNANCE & QUALITY

Mehr

Datenqualität erfolgreich managen

Datenqualität erfolgreich managen Consultants Intelligence Business White Paper Datenqualität erfolgreich managen Datenqualität ist essenziell. Sie ist der Schlüssel zur Akzeptanz von IT-Lösungen. Und: Schlechte Daten sind teuer. Unternehmen,

Mehr

Datenmanagement. Simone Unfried, Passau Vitaly Aleev, Passau Claus Schönleber, Passau. Strategisches Informationsmanagement 1 (01/2006)

Datenmanagement. Simone Unfried, Passau Vitaly Aleev, Passau Claus Schönleber, Passau. Strategisches Informationsmanagement 1 (01/2006) Simone Unfried, Passau Vitaly Aleev, Passau Claus Schönleber, Passau (01/2006) Strategisches Informationsmanagement 1 Definition Notwendige Vermaischung der Daten in der Vorstufe zur Destillation von hochprozentiger

Mehr

Brennpunkt Datenqualität

Brennpunkt Datenqualität Business t Brennpunkt Datenqualität Konzeption eines Datenqualitätsmanagements für ETL-Prozesse Seit Jahren genießt das Thema Datenqualität in IT-Abteilungen sowie auf Managementebene steigende Aufmerksamkeit.

Mehr

Kapitel II. Datenbereitstellung. II. Datenbereitstellung. II.1 Grundlagen. II. Datenbereitstellung. Collect Initial Data. II.

Kapitel II. Datenbereitstellung. II. Datenbereitstellung. II.1 Grundlagen. II. Datenbereitstellung. Collect Initial Data. II. II. bereitstellung Kapitel II bereitstellung 1 2 II. bereitstellung II.1 Grundlagen Collect Initial Data identify relevant attributes identify inconsistencies between sources Describe Data characterize

Mehr

Kapitel II. Datenbereitstellung 2004 AIFB / FZI 1. Vorlesung Knowledge Discovery

Kapitel II. Datenbereitstellung 2004 AIFB / FZI 1. Vorlesung Knowledge Discovery Kapitel II Datenbereitstellung 2004 AIFB / FZI 1 II. Datenbereitstellung 2004 AIFB / FZI 2 II. Datenbereitstellung Collect Initial Data identify relevant attributes identify inconsistencies between sources

Mehr

DB2 SQL, der Systemkatalog & Aktive Datenbanken

DB2 SQL, der Systemkatalog & Aktive Datenbanken DB2 SQL, der Systemkatalog & Aktive Datenbanken Lehr- und Forschungseinheit Datenbanken und Informationssysteme 1 Ziele Auf DB2 Datenbanken zugreifen DB2 Datenbanken benutzen Abfragen ausführen Den Systemkatalog

Mehr

Data Governance als Teil von IT Governance. Dr.Siegmund Priglinger spriglinger@informatica.com 18.Juni 2007

Data Governance als Teil von IT Governance. Dr.Siegmund Priglinger spriglinger@informatica.com 18.Juni 2007 1 Data Governance als Teil von IT Governance Dr.Siegmund Priglinger spriglinger@informatica.com 18.Juni 2007 2 Agenda Informatica - Allgemeiner Überblick Die Informatica Data Quality Lösungen im Überblick

Mehr

Agenda. Portfolioübersicht. Business-Case. Zusammenfassung. Das Ziel. SAP EIM Produktportfolio. Datenreorganisation mit SAP EIM

Agenda. Portfolioübersicht. Business-Case. Zusammenfassung. Das Ziel. SAP EIM Produktportfolio. Datenreorganisation mit SAP EIM Datenreorganisation > Effiziente und performante Stammdatenreorganisation mit SAP Data Services < Simon Hartstein / T-Systems Data Migration Consulting AG / Harmonization & Consolidation Mai 21, 2014 Agenda

Mehr

Metriken für ein ROI-basiertes Datenqualitätsmanagement

Metriken für ein ROI-basiertes Datenqualitätsmanagement Dr. Max Mustermann Referat Kommunikation & Marketing Verwaltung Metriken für ein ROI-basiertes Datenqualitätsmanagement Prof. Dr. Bernd Heinrich, Prof. Dr. Mathias Klier Institut für Wirtschaftsinformatik

Mehr

Sven Bosinger solution architect BI. Data Warehouse Architekturen Der Schlüssel zum Erfolg! DOAG 16.11.2007 1

Sven Bosinger solution architect BI. Data Warehouse Architekturen Der Schlüssel zum Erfolg! DOAG 16.11.2007 1 Sven Bosinger solution architect BI Data Warehouse Architekturen Der Schlüssel zum Erfolg! DOAG 16.11.2007 1 Agenda Kurze Vorstellung its-people Architektur als Erfolgsfaktor Verschiedene Architekturansätze

Mehr

Datenqualitätsmanagement im Customer Relationship Management

Datenqualitätsmanagement im Customer Relationship Management Wolfgang Leußer Datenqualitätsmanagement im Customer Relationship Management Verlag Dr. Kovac Hamburg 2011 Inhaltsverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Abkürzungsverzeichnis XVII XIX XXI

Mehr

Integritätsbedingungen / Normalformen- Beispiel: Kontoführung

Integritätsbedingungen / Normalformen- Beispiel: Kontoführung Technische Universität München WS 2003/04, Fakultät für Informatik Datenbanksysteme I Prof. R. Bayer, Ph.D. Lösungsblatt 8 Dipl.-Inform. Michael Bauer Dr. Gabi Höfling 12.01. 2004 Integritätsbedingungen

Mehr

Business Performance Management Next Generation Business Intelligence?

Business Performance Management Next Generation Business Intelligence? Business Performance Management Next Generation Business Intelligence? München, 23. Juni 2004 Jörg Narr Business Application Research Center Untersuchung von Business-Intelligence-Software am Lehrstuhl

Mehr

1 Datenqualität. 1.1 Daten

1 Datenqualität. 1.1 Daten 3 Der Begriff Datenqualität ist sehr stark subjektiv geprägt. Sowohl bei der Befragung von Fachleuten als auch in der Literatur erhält man zu diesem Thema sehr unterschiedliche Antworten. Viele Autoren

Mehr

Data Preprocessing 1. Thema: Bussiness Intelligence Teil 1: OLAP & Data Warehousing. von Christian Merker

Data Preprocessing 1. Thema: Bussiness Intelligence Teil 1: OLAP & Data Warehousing. von Christian Merker 1 Data Preprocessing 1 Thema: Bussiness Intelligence Teil 1: OLAP & Data Warehousing von Christian Merker 2 Gliederung Motivation Monitore Datenextraktion Schema- und Datenintegration Datenbereinigung

Mehr

Index- und Zugriffsstrukturen für. Holger Brämer, 05IND-P

Index- und Zugriffsstrukturen für. Holger Brämer, 05IND-P Index- und Zugriffsstrukturen für Data Warehousing Holger Brämer, 05IND-P Index- und Zugriffstrukturen für Data Warehousing Materialisierte Sichten Bitmap-Indexe Verbundindexe Materialisierte Sichten gehören

Mehr

Planung und Messung der Datenqualität in Data-Warehouse-Systemen

Planung und Messung der Datenqualität in Data-Warehouse-Systemen Planung und Messung der Datenqualität in Data-Warehouse-Systemen DISSERTATION der Universität St. Gallen, Hochschule für Wirtschafts-, Rechts- und Sozialwissenschaften (HSG) zur Erlangung der Würde eines

Mehr

Master Data Management - Wege aus der Datenkrise

Master Data Management - Wege aus der Datenkrise Master Data Management - Wege aus der Datenkrise Conect 2008-04-03 Dr. Siegmund Priglinger Business Application Research Center (BARC) Steinbachtal 2b D-97082 Würzburg +49-931-8806510 www.barc.de Agenda

Mehr

MOSAIC: Zentrales Datenmanagement als Methode zur Verbesserung der Nachnutzbarkeit medizinischer Forschungsdaten

MOSAIC: Zentrales Datenmanagement als Methode zur Verbesserung der Nachnutzbarkeit medizinischer Forschungsdaten MOSAIC: Zentrales Datenmanagement als Methode zur Verbesserung der Nachnutzbarkeit medizinischer Forschungsdaten Martin Bialke Institut für Community Medicine (Abt. VC) Universitätsmedizin Greifswald 25.

Mehr

In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden

In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden Jens Kaminski ERP Strategy Executive IBM Deutschland Ungebremstes Datenwachstum > 4,6 Millarden

Mehr

Planung und Effizienz durch optimale Datenqualität sicherstellen Frankfurt, März 2013

Planung und Effizienz durch optimale Datenqualität sicherstellen Frankfurt, März 2013 Planung und Effizienz durch optimale Datenqualität sicherstellen Frankfurt, März 2013 Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor Immer wieder: Datenqualität Begann es 1805?

Mehr

Themenblock: Erstellung eines Cube

Themenblock: Erstellung eines Cube Themenblock: Erstellung eines Cube Praktikum: Data Warehousing und Data Mining Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Idee Speicherung der Daten in Form von Tabellen

Mehr

Homogene standortübergreifende Prozesse mit Hilfe von IT Service Management. 25. April 2007

Homogene standortübergreifende Prozesse mit Hilfe von IT Service Management. 25. April 2007 Homogene standortübergreifende Prozesse mit Hilfe von IT Service Management e-business-akademie 25. April 2007 Referent Adrian Aerni Geschäftsführer OmniNet GmbH (Schweiz) Unterdorfstrasse 5 3072 Ostermundigen

Mehr

Datenqualität. Seminararbeit. Universität Karlsruhe (TH) Fakultät für Informatik Institut für Programmstrukturen und Datenorganisation (IPD)

Datenqualität. Seminararbeit. Universität Karlsruhe (TH) Fakultät für Informatik Institut für Programmstrukturen und Datenorganisation (IPD) Universität Karlsruhe (TH) Fakultät für Informatik Institut für Programmstrukturen und Datenorganisation (IPD) Hauptseminar Imperfektion und erweiterte Konzepte im Data Warehousing Datenqualität Seminararbeit

Mehr

Wie lässt sich Datenqualität messen?

Wie lässt sich Datenqualität messen? Wie lässt sich Datenqualität messen? Eine Leitline der Telematikplattform für Medizinische Forschungsnetze M. Nonnemacher, D. Weiland, J. Stausberg Institut für Medizinische Informatik, Biometrie und Epidemiologie

Mehr

IT-Compliance -... und die Realität. Was hat Datenqualität mit Compliance zu tun?

IT-Compliance -... und die Realität. Was hat Datenqualität mit Compliance zu tun? IT-Compliance -... und die Realität Was hat Datenqualität mit Compliance zu tun? Situation Stetiger Veränderungsdruck durch immer schnellere Marktveränderungen Auslöser für Veränderungen Globalisierung

Mehr

Referenzielle Integrität SQL

Referenzielle Integrität SQL Referenzielle Integrität in SQL aus Referential Integrity Is Important For Databases von Michael Blaha (Modelsoft Consulting Corp) VII-45 Referenzielle Integrität Definition: Referenzielle Integrität bedeutet

Mehr

Aufbau Datenportal Deutsche Meeresforschung

Aufbau Datenportal Deutsche Meeresforschung Aufbau Datenportal Deutsche Meeresforschung durch das Marine Network for Integrated Data Access MaNIDA MaNIDA-Team Datenintensive marine Forschung 2 26.04.2013 Angela Schäfer Überblick Impuls- und Vernetzungsfonds

Mehr

DGIQ Projekt IQ-Definition

DGIQ Projekt IQ-Definition DGIQ Projekt IQ-Definition Definition des Begriffsfeldes Informationsqualität bzw. Datenqualität Ein Projekt der DGIQ, 2007 Normen und Standards Dr. Jan Philipp Rohweder, Andrea Piro, Joachim Schmid GIQMC,

Mehr

Innovatives Reporting mit PM10: Analysen und Berichte mit Single Point of Truth 11.00 11.45 Uhr

Innovatives Reporting mit PM10: Analysen und Berichte mit Single Point of Truth 11.00 11.45 Uhr Copyright 2007 Infor. Alle Rechte vorbehalten. Innovatives Reporting mit PM10: Analysen und Berichte mit Single Point of Truth 11.00 11.45 Uhr Hubertus Thoma Presales Consultant PM Schalten Sie bitte während

Mehr

HMD. Wirtschaftsinformatik. Eine Datenqualitätsstrategie für große Organisationen am Beispiel der Bundeswehr. Praxis der

HMD. Wirtschaftsinformatik. Eine Datenqualitätsstrategie für große Organisationen am Beispiel der Bundeswehr. Praxis der HMD Heft 279 Sonderdruck Praxis der Wirtschaftsinformatik Christian Fürber Joachim Sobota Eine Datenqualitätsstrategie für große Organisationen am Beispiel der Bundeswehr Elektronischer Sonderdruck dpunkt.verlag

Mehr

Messung von Datenqualität bei Registern und Kohorten

Messung von Datenqualität bei Registern und Kohorten Messung von Datenqualität bei Registern und Kohorten Carsten Oliver Schmidt, Jürgen Stausberg, Ron Pritzkuleit, Thomas Schrader, Michael Nonnemacher DKVF 2013 QS Ziele Befunde sollen Intern und Extern

Mehr

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER INHALTSVERZEICHNIS 1. Datenbanken 2. SQL 1.1 Sinn und Zweck 1.2 Definition 1.3 Modelle 1.4 Relationales Datenbankmodell 2.1 Definition 2.2 Befehle 3.

Mehr

Configuration Management mit Verbosy 17.04.2013 OSDC 2013. Eric Lippmann www.netways.de

Configuration Management mit Verbosy 17.04.2013 OSDC 2013. Eric Lippmann www.netways.de Configuration Management mit Verbosy 17.04.2013 OSDC 2013 Eric Lippmann Kurzvorstellung NETWAYS Expertise OPEN SOURCE SYSTEMS MANAGEMENT OPEN SOURCE DATA CENTER Monitoring & Reporting Configuration Management

Mehr

Christian Kurze BI-Praktikum IBM WS 2008/09

Christian Kurze BI-Praktikum IBM WS 2008/09 Einführung in die multidimensionale Datenmodellierung e mit ADAPT BI-Praktikum IBM WS 2008/09 1 Gliederung Einführung multidimensionale Datenmodellierung 1. Multidimensionales Modell BI-Praktikum IBM WS

Mehr

Marketing Intelligence Schwierigkeiten bei der Umsetzung. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Schwierigkeiten bei der Umsetzung. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Schwierigkeiten bei der Umsetzung Josef Kolbitsch Manuela Reinisch Übersicht Schwierigkeiten bei der Umsetzung eines BI-Systems Schwierigkeiten der Umsetzung 1/13 Strategische Ziele

Mehr

Operational Excellence Effizienzoptimierung und Qualitätssteigerung mit Lean Sigma in der IT

Operational Excellence Effizienzoptimierung und Qualitätssteigerung mit Lean Sigma in der IT Christian Wagner Operational Excellence Effizienzoptimierung und Qualitätssteigerung mit Lean Sigma in der IT 1 Ziele und Herausforderungen im IT Service Management 2 Überblick über die Lean Sigma Methode

Mehr

Die Rolle des Stammdatenmanagements im digitalen Unternehmen

Die Rolle des Stammdatenmanagements im digitalen Unternehmen Dr. Wolfgang Martin Analyst und Mitglied im Boulder BI Brain Trust Die Rolle des Stammdatenmanagements im digitalen Unternehmen Frankfurt, April 2015 Die Digitalisierung der Welt Nach der Globalisierung

Mehr

Erfolgsfaktor SAP NetWeaver Master Data Management Infotag 2007

Erfolgsfaktor SAP NetWeaver Master Data Management Infotag 2007 als strategischer Erfolgsfaktor SAP NetWeaver Master Data Management Infotag 2007 Dr. Boris Otto Regensdorf, 20.06.2007 Agenda Motivation und Status quo Strategisches Gestaltungsfeld Corporate Data Quality

Mehr

Datenqualität erfolgreich steuern

Datenqualität erfolgreich steuern Edition TDWI Datenqualität erfolgreich steuern Praxislösungen für Business-Intelligence-Projekte von Detlef Apel, Wolfgang Behme, Rüdiger Eberlein, Christian Merighi 3., überarbeitete und erweiterte Auflage

Mehr

Einmal Pie-Chart und zurück: Manchmal ist mehr drin als man glaubt

Einmal Pie-Chart und zurück: Manchmal ist mehr drin als man glaubt Einmal Pie-Chart und zurück: Manchmal ist mehr drin als man glaubt Ian Perry Marco Lehmann Stefan Sander Darmstadt, 6.11.2012 Einmal Pie-Chart und zurück Ian Perry Sales Engineer - IP&S Client Technical

Mehr

Agenda. Themenblock: Data Warehousing (I) Referenzarchitektur. Eigenschaften eines Data Warehouse. Einführung Data Warehouse Data Access mit SQL

Agenda. Themenblock: Data Warehousing (I) Referenzarchitektur. Eigenschaften eines Data Warehouse. Einführung Data Warehouse Data Access mit SQL Themenblock: Data Warehousing (I) Praktikum: Data Warehousing und Data Mining 2 Eigenschaften eines Data Warehouse Referenzarchitektur Integrierte Sicht auf beliebige Daten aus verschieden Datenbanken

Mehr

Informatica Day 2010 Deutschland Best Practice: Data-Consolidation im SAP Umfeld bei Siemens. Frank Hincke, DIMQ, Köln 03/2010

Informatica Day 2010 Deutschland Best Practice: Data-Consolidation im SAP Umfeld bei Siemens. Frank Hincke, DIMQ, Köln 03/2010 Informatica Day 2010 Deutschland Best Practice: Data-Consolidation im Umfeld bei Siemens Frank Hincke, DIMQ, Köln 03/2010 Agenda Vorstellung Sprecher Programm ATLAS im Bereich Siemens Bereich Energie,

Mehr

FUSIONPLEX. Datenfusion mit. 1 Datenfusion 2 Multiplex 3 Fusionplex 4 Autoplex 5 Konkurrenzansatz

FUSIONPLEX. Datenfusion mit. 1 Datenfusion 2 Multiplex 3 Fusionplex 4 Autoplex 5 Konkurrenzansatz Datenfusion mit FUSIONPLEX Seminar Datenfusion in drei Schritten im Wintersemester 2006/2007 Kathleen Haucke Inhalt 1 Datenfusion 2 Multiplex 3 Fusionplex 4 Autoplex 5 Konkurrenzansatz 2 1 1 Datenfusion

Mehr

Definition und Begriffsabgrenzung

Definition und Begriffsabgrenzung Munich Business School Datenqualität in CRM-Systemen Munich Business School Working Paper 2005-12 Amparo Galinanes-Garcia Munich Business School Elsenheimerstraße 61 D-80687 München E-Mail: Amparo.Galinanes-Garcia@munich-business-school.de

Mehr

Eignung unterschiedlicher Faktenmodellierungen in Data Warehouse-Systemen

Eignung unterschiedlicher Faktenmodellierungen in Data Warehouse-Systemen Christoph Arnold (B. Sc.) Prof. Dr. Harald Ritz Eignung unterschiedlicher Faktenmodellierungen in Data Warehouse-Systemen AKWI-Tagung, 17.09.2012, Hochschule Pforzheim Christoph Arnold, Prof. Dr. Harald

Mehr

Notfallmanagement in Zeiten des Cloud Computing

Notfallmanagement in Zeiten des Cloud Computing Ihre IT ist unser Business Notfallmanagement in Zeiten des Cloud Computing Thomas Reichenberger Manager Business Unit Cloud Services, VCDX, CISA ACP IT Solutions AG ACP Gruppe I www.acp.de I www.acp.at

Mehr

Software-Engineering Einführung

Software-Engineering Einführung Software-Engineering Einführung 7. Übung (04.12.2014) Dr. Gergely Varró, gergely.varro@es.tu-darmstadt.de Erhan Leblebici, erhan.leblebici@es.tu-darmstadt.de Tel.+49 6151 16 4388 ES Real-Time Systems Lab

Mehr

Datenqualität und Datensicherheit

Datenqualität und Datensicherheit Datenqualität und Datensicherheit Thomas Wrba Medizinischen Universität Wien Zentrum für Medizinische Statistik, Informatik und Intelligente Systeme (CeMSIIS) 05.05.2014 1 Einleitung (1) Medizinischer

Mehr

ER-Modellierung am Beispiel der Universitätsdatenbank aus der DBIS-Vorlesung

ER-Modellierung am Beispiel der Universitätsdatenbank aus der DBIS-Vorlesung ER-Modellierung am Beispiel der Universitätsdatenbank aus der DBIS-Vorlesung Datenbank-Praktikum SS 2010 Prof. Dr. Georg Lausen Florian Schmedding ER-Modell: Wiederholung Entitäten E Beziehungen B Attribute

Mehr

Eine neue Generation für eine neue Zeit. Doing by Design

Eine neue Generation für eine neue Zeit. Doing by Design Das neue Doxis4 BPM Eine neue Generation für eine neue Zeit Doing by Design Normatives BPM einfach und effektiv bereit stellen: Prozessmanagement in Industriequalität ohne Entwicklungsprojekte. Einheit

Mehr

Metadatenmodellierung und -verwaltung in Data-Warehouse-Systemen

Metadatenmodellierung und -verwaltung in Data-Warehouse-Systemen Metadatenmodellierung und -verwaltung in Data-Warehouse-Systemen Michael Seiferle Fachbereich Informatik Universität Konstanz 12. Februar 2008 Michael Seiferle Metadatenmodellierung und -verwaltung in

Mehr

Reproduzierbare Messung von Datenqualität mit Hilfe des DQ-Messtools WestLB-DIME

Reproduzierbare Messung von Datenqualität mit Hilfe des DQ-Messtools WestLB-DIME Reproduzierbare Messung von Datenqualität mit Hilfe des DQ-Messtools WestLB-DIME Peter Caspers, Dr. Marcus Gebauer WestLB AG, Datenqualitätsmanagement, Düsseldorf, Germany Peter_Caspers@WestLB.de Marcus_Gebauer@WestLB.de

Mehr

Multidimensionales Datenmodell, Cognos

Multidimensionales Datenmodell, Cognos Data Warehousing (II): Multidimensionales Datenmodell, Cognos Praktikum: Data Warehousing und Mining Praktikum Data Warehousing und Mining, Sommersemester 2010 Vereinfachte Sicht auf die Referenzarchitektur

Mehr

Data Mining und Knowledge Discovery in Databases

Data Mining und Knowledge Discovery in Databases Data Mining und Knowledge Discovery in Databases Begriffsabgrenzungen... Phasen der KDD...3 3 Datenvorverarbeitung...4 3. Datenproblematik...4 3. Möglichkeiten der Datenvorverarbeitung...4 4 Data Mining

Mehr

SQL Tutorial. SQL - Tutorial SS 06. Hubert Baumgartner. INSO - Industrial Software

SQL Tutorial. SQL - Tutorial SS 06. Hubert Baumgartner. INSO - Industrial Software SQL Tutorial SQL - Tutorial SS 06 Hubert Baumgartner INSO - Industrial Software Institut für Rechnergestützte Automation Fakultät für Informatik Technische Universität Wien Inhalt des Tutorials 1 2 3 4

Mehr

Intelligente Unternehmens- und Prozesssteuerung durch CPM

Intelligente Unternehmens- und Prozesssteuerung durch CPM Intelligente Unternehmens- und Prozesssteuerung durch CPM 5. IIR Forum BI, Mainz, Sept. 2006 Dr. Wolfgang Martin Analyst, ibond Partner, Ventana Research Advisor und Research Advisor am Institut für Business

Mehr

Data Warehousing. Sommersemester 2005. Ulf Leser Wissensmanagement in der Bioinformatik

Data Warehousing. Sommersemester 2005. Ulf Leser Wissensmanagement in der Bioinformatik Data Warehousing Sommersemester 2005 Ulf Leser Wissensmanagement in der Bioinformatik ... Der typische Walmart Kaufagent verwendet täglich mächtige Data Mining Werkzeuge, um die Daten der 300 Terabyte

Mehr

Matthias Rottländer. Diplomarbeit im Fach Spezielle Wirtschaftsinformatik

Matthias Rottländer. Diplomarbeit im Fach Spezielle Wirtschaftsinformatik Matthias Rottländer Diplomarbeit im Fach Spezielle Wirtschaftsinformatik Eignung von Methoden des Datenqualitätsmanagement für Datentypen im Unternehmenskontext Themasteller: Univ.-Prof. Dr. Ali Sunyaev

Mehr

Nutzen und Nutzung aktueller Trends in der BI: Schwerpunkt Self Service BI. Hannover, 10. März 2014 Patrick Keller, Senior Analyst

Nutzen und Nutzung aktueller Trends in der BI: Schwerpunkt Self Service BI. Hannover, 10. März 2014 Patrick Keller, Senior Analyst Nutzen und Nutzung aktueller Trends in der BI: Schwerpunkt Self Service BI Hannover, 10. März 2014 Patrick Keller, Senior Analyst Business Application Research Center BARC Historie BARC ist der führende

Mehr

Hetero-Homogene Data Warehouses

Hetero-Homogene Data Warehouses Hetero-Homogene Data Warehouses TDWI München 2011 Christoph Schütz http://hh-dw.dke.uni-linz.ac.at/ Institut für Wirtschaftsinformatik Data & Knowledge Engineering Juni 2011 1 Data-Warehouse-Modellierung

Mehr

Star-Schema-Modellierung mit ERwin - eine kritische Reflexion der Leistungspotentiale und Anwendungsmöglichkeiten

Star-Schema-Modellierung mit ERwin - eine kritische Reflexion der Leistungspotentiale und Anwendungsmöglichkeiten Star-Schema-Modellierung mit ERwin - eine kritische Reflexion der Leistungspotentiale und Anwendungsmöglichkeiten Michael Hahne T&I GmbH Workshop MSS-2000 Bochum, 24. März 2000 Folie 1 Worum es geht...

Mehr

Vorlesung Einführung in die Bioinformatik

Vorlesung Einführung in die Bioinformatik Vorlesung Einführung in die Bioinformatik Dr. Uwe Scholz 19.05.2014 Wiederholung I Research Group Internal Data Sources >HY01A03T ATGCTCATG rlkfelfdglgal CCATGGCGT söglölgfllhfd ACAATGCAG löshlkhs TTGCAAGTC

Mehr

Kapitel 4: Data Warehouse Architektur

Kapitel 4: Data Warehouse Architektur Data Warehousing, Motivation Zugriff auf und Kombination von Daten aus mehreren unterschiedlichen Quellen, Kapitel 4: Data Warehousing und Mining 1 komplexe Datenanalyse über mehrere Quellen, multidimensionale

Mehr

Stammdatenmanagement im GKV Markt Bitmarck Kundentag 04.11.2014

Stammdatenmanagement im GKV Markt Bitmarck Kundentag 04.11.2014 Stammdatenmanagement im GKV Markt Bitmarck Kundentag 04.11.2014 Andreas Klaes Direktor Vertrieb Gesundheitswesen Stammdaten Definition & Abgrenzung Referenzdaten Kunde Länder, Währungen, Adressen,. Änderungshäufigkeit

Mehr

SAP BW + Microsoft Excel Viel genutzt, oft unterschätzt

SAP BW + Microsoft Excel Viel genutzt, oft unterschätzt Corporate Performance Management SAP BW + Microsoft Excel Viel genutzt, oft unterschätzt Martin Krejci, Manager CPM Matthias Schmidt, BI Consultant Kristian Rümmelin, Senior BI Consultant Braincourt GmbH

Mehr

Delegation von Datenmanagement in Szenarien verteilter Verantwortlichkeiten

Delegation von Datenmanagement in Szenarien verteilter Verantwortlichkeiten Delegation von Datenmanagement in Szenarien verteilter Verantwortlichkeiten Ralph Stuber OFFIS Institut für Informatik Escherweg 2 26121 Oldenburg +49 441 9722 141 stuber@offis.de ABSTRACT Um Daten aus

Mehr

erfolgreich steuern Datenqualität rä dpunkt.verlag Ldwi Praxislösungen für Business-Intelligence-Projekte Rüdiger Eberlein Edition TDWI

erfolgreich steuern Datenqualität rä dpunkt.verlag Ldwi Praxislösungen für Business-Intelligence-Projekte Rüdiger Eberlein Edition TDWI Detlef Apel Wolfgang Behme Rüdiger Eberlein Christian Merighi Datenqualität erfolgreich steuern Praxislösungen für Business-Intelligence-Projekte 3., überarbeitete und erweiterte Auflage Edition TDWI rä

Mehr

Generische Record-Kombinatoren mit statischer Typprüfung

Generische Record-Kombinatoren mit statischer Typprüfung System Generische mit statischer Typprüfung Brandenburgische Technische Universität Cottbus Lehrstuhl Programmiersprachen und Compilerbau Lehrstuhlkolloquium am 13. Januar 2010 Überblick System System

Mehr

Datawarehouse Architekturen. Einheitliche Unternehmenssicht

Datawarehouse Architekturen. Einheitliche Unternehmenssicht Datawarehouse Architekturen Einheitliche Unternehmenssicht Was ist Datawarehousing? Welches sind die Key Words? Was bedeuten sie? DATA PROFILING STAGING AREA OWB ETL OMB*PLUS SAS DI DATA WAREHOUSE DATA

Mehr

Roundtable. Dashboards und Management Information. Rüdiger Felke / Christian Baumgarten 29.11.2011

Roundtable. Dashboards und Management Information. Rüdiger Felke / Christian Baumgarten 29.11.2011 Roundtable Dashboards und Management Information Rüdiger Felke / Christian Baumgarten 29.11.2011 Agenda Behind the Dashboards Was ist ein Dashboard und was ist es nicht? SAP BusinessObjects Dashboards

Mehr

GPX Business CLOUD. GPX CLOUD Zusatzservices. www.inposia.com

GPX Business CLOUD. GPX CLOUD Zusatzservices. www.inposia.com GPX Business CLOUD GPX CLOUD Zusatzservices www.inposia.com EDI via GPX Business CLOUD Diese Broschüre zeigt Ihnen die Zusatzservices der GPX Business CLOUD auf. Rechnungsverarbeitung GPX einvoicing 3

Mehr

Datenqualitätsmanagement im CRM-Umfeld

Datenqualitätsmanagement im CRM-Umfeld Inhalt 1 Einführung... 3 2 Begriffliche Abgrenzungen... 3 3 Dimensionen der Datenqualität... 6 4 Datenqualitätsmanagement... 8 Datenqualitätsmanagement im CRM-Umfeld 4.1 Kosten / Nutzen der Datenqualität...

Mehr

Die virtuelle Forschungsumgebung WissKI Museumsdokumentation im Semantic Web. Georg Hohmann Germanisches Nationalmuseum g.hohmann@gnm.

Die virtuelle Forschungsumgebung WissKI Museumsdokumentation im Semantic Web. Georg Hohmann Germanisches Nationalmuseum g.hohmann@gnm. Die virtuelle Forschungsumgebung WissKI Museumsdokumentation im Semantic Web Georg Hohmann Germanisches Nationalmuseum g.hohmann@gnm.de WissKI Das Projekt WissKI = Abk. Wissenschaftliche KommunikationsInfrastruktur

Mehr

Analysen sind nur so gut wie die Datenbasis

Analysen sind nur so gut wie die Datenbasis Analysen sind nur so gut wie die Datenbasis Datenaufbereitung und Sicherung der Datenqualität durch den kontextbasierten MIOsoft Ansatz. Daten gelten längst als wichtiger Produktionsfaktor in allen Industriebereichen.

Mehr

Leitlinie zum adaptiven Management von Datenqualität in Kohortenstudien und Registern

Leitlinie zum adaptiven Management von Datenqualität in Kohortenstudien und Registern Leitlinie zum adaptiven Management von Datenqualität in Kohortenstudien und Registern M. Nonnemacher, D. Weiland, M. Neuhäuser, J. Stausberg Institut für Medizinische Informatik, Biometrie und Epidemiologie,

Mehr

Datenadminstrator, Datenbankdesigner, Systemanalytiker (für die logische Sicht zuständig)

Datenadminstrator, Datenbankdesigner, Systemanalytiker (für die logische Sicht zuständig) 1 Grundlagen Begriffe Daten bekannte zutreffende Tatsachen über die Domäne/Miniwelt DBS Einsatz eines DBMS für eine Datenbank, DBS besteht aus folgenden Komponenten: 1. DBMS 2. Datenbank DBMS Software

Mehr

Logische Modellierung von Data Warehouses

Logische Modellierung von Data Warehouses Logische Modellierung von Data Warehouses Vertiefungsarbeit von Karin Schäuble Gliederung. Einführung. Abgrenzung und Grundlagen. Anforderungen. Logische Modellierung. Methoden.. Star Schema.. Galaxy-Schema..

Mehr

1 Dataport 12.Juli 2007 Internationale Standards zu Identity Management. Deckblatt. Harald Krause

1 Dataport 12.Juli 2007 Internationale Standards zu Identity Management. Deckblatt. Harald Krause 1 Dataport 12.Juli 2007 Internationale Standards zu Identity Management Deckblatt Bremen, E-Government in medias res, 12. Juli 2007 Internationale Standards zu Identity Management 3 Dataport 12.Juli 2007

Mehr

Problemfeld Datenqualität. Wo kann IT helfen?

Problemfeld Datenqualität. Wo kann IT helfen? 10. Zittauer Umweltsymposium St. Marienthal in Ostritz, 21. April 2009 Problemfeld Datenqualität Wo kann IT helfen? Prof. Dr. -Ing. Axel Toll Hochschule für Technik und Wirtschaft Dresden Fakultät Informatik/Mathematik

Mehr

Data Governance Informationen kontrolliert managen

Data Governance Informationen kontrolliert managen make connections share ideas be inspired Data Governance Informationen kontrolliert managen Michael Herrmann SAS Copyright 2013, SAS Institute Inc. All rights reserved. DATA GOVERNANCE TRENDS UND TREIBER:

Mehr

Wege aus dem Datenlabyrinth

Wege aus dem Datenlabyrinth Wege aus dem Datenlabyrinth - Datenqualität auf dem Prüfstand - 17. November 2009 CEA v6.4 Studie IT-Trends 2009 in Deutschland: Das BI-Top-Thema ist Datenqualität Business Intelligence: Bedeutung einzelner

Mehr

Institut für Unternehmensinformatik Konzeption eines Service Repository zur Beschreibung von Services in der Cloud

Institut für Unternehmensinformatik Konzeption eines Service Repository zur Beschreibung von Services in der Cloud Institut für Unternehmensinformatik Konzeption eines Service Repository zur Beschreibung von Services in der Cloud Commit Clusterworkshop Datenmanagement Thomas Specht Mannheim, 22.10.2012 Hochschule Mannheim

Mehr

Konzeption eines Master-Data-Management-Systems. Sven Schilling

Konzeption eines Master-Data-Management-Systems. Sven Schilling Konzeption eines Master-Data-Management-Systems Sven Schilling Gliederung Teil I Vorstellung des Unternehmens Thema der Diplomarbeit Teil II Master Data Management Seite 2 Teil I Das Unternehmen Vorstellung

Mehr

Survival Guide für Ihr Business Intelligence-Projekt

Survival Guide für Ihr Business Intelligence-Projekt Survival Guide für Ihr Business Intelligence-Projekt Sven Bosinger Solution Architect BI Survival Guide für Ihr BI-Projekt 1 Agenda Was ist Business Intelligence? Leistungsumfang Prozesse Erfolgsfaktoren

Mehr

Notfallmanagement in Zeiten des Cloud Computing

Notfallmanagement in Zeiten des Cloud Computing Ihre IT ist unser Business Notfallmanagement in Zeiten des Cloud Computing Thomas Reichenberger Manager Business Unit Cloud Services, VCDX, CISA ACP IT Solutions AG ACP Gruppe I www.acp.de I www.acp.at

Mehr