Vorkurs Mathematik-Physik, Teil 8 c 2016 A. Kersch

Größe: px
Ab Seite anzeigen:

Download "Vorkurs Mathematik-Physik, Teil 8 c 2016 A. Kersch"

Transkript

1 Aufgaben Dynamik Vorkurs Mathematik-Physik, Teil 8 c 6 A. Kersch. Ein D-Zug (Masse 4t) fährt mit einer Geschwindigkeit von 8km/h. Er wird auf einer Strecke von 36m mit konstanter Verzögerung zum Stehen gebracht. Welche Bremskraft zwischen Schiene und Rad ist erforderlich? Lösung: F = ma a = konstant s = v t at v = v at Beim Stillstand in t = τ ist v =, also v = aτ s = 36m = v τ aτ v = v a ( a v ) v = a a a = v s = ( ) 8 m 36s =.5 m 36m s F = ma = 4 kg.5 m s = 5. 5 N. Die Haftreibungszahl zwischen den Reifen eines Wagens und einer horizontalen Straße sei µ H =.53. (a) Wie großist die maximale Beschleunigung des Wagens? (b) Wie großist der Bremsweg aus einer Geschwindigkeit von 84km/h mindestens? Lösung: Die Maximalkraft mit Haftung beträgt daher ist die maximal mögliche Beschleunigung µ H F g = µ H mg a = µ H g Der Bremsvorgang mit maximaler Verzögerung wird beschrieben durch v(t) = v at x(t) = v t at v(t b ) = = v at b = t b = v a x(t b ) = v t b v at b = v a ( a v a ) v = v ( ) m s a = µ H g =.53 m = 5.36m s 3. Das Hochschalten beim Beschleunigen eines Autos bewirkt, dass die beschleunigende Kraft F B mit wachsender Geschwindigkeit immer geringer wird. Näherungsweise kann man ansetzen F B (v) = P/(v+ v k ), wobei die P Motorleistung bezeichnet und v k das Einkuppeln beim Anfahren modelliert. Gesucht sind a(t) und v(t). Lösung: ma = m v = mẍ = P v + v k (v + v k ) dv = P m dt P m t = P m t = [ ṽ + v k ṽ ] v v = v + v k v v + v k v P m t = v = v k ± (ṽ + v k ) dṽ v k + P m t

2 Die physikalisch sinnvolle Lösung ist mit +. Die Beschleunigung ist 4. Schleifstein v(t) = v k + a(t) = P/m v(t) + v k = v k + P m t P/m vk + P m t Ein Schleifstein (m = 6kg, R =.m) rotiert mit einer konstanten Drehzahl von 8 U/ min. Die Achsenreibung wird vernachlässigt. Der Motor wird zum Zeitpunkt t abgeschaltet und die Scheibe dreht sich zunächst mit konstanter Drehzahl weiter. Zum Zeitpunkt t wird ein Werkstück über einen Hebel der Länge l =.4m mit der konstanten Kraft F = 3N an die rotierende Scheibe in der Position l =.m gepresst. Der Reibungskoeffizient zwischen Werkstück und Scheibe betrage µ =.6. (a) Bestimmen Sie das auf der Scheibe wirkenden Drehmoment (b) Wie lange dauert es, bis die Scheibe zum Stillstand kommt? (c) Zeichnen Sie das θ t, θ t, θ t und a n t Diagramm (a n =Zentripetalbeschleunigung am Rand der Scheibe) Lösung: (a) (b) (c) F l = F l M = µrf = µr l F =.6.m.4m 3N = 7.Nm l.m J θ = M θ() =, θ() = ω = 8 π 6s = 83.77s θ(t) = t M J t θ(t) = ω M J t θ(t) = M J t = J t = M = ω mr M = s θ = 6kg(.m) 7.Nm = 4s 6kg (.m) 7.Nm =.349s J EW : t = M = kg (.m) =.53s s 5Nm

3 5. Kran Eine Rampe der Steigung 33 und eine Zugmasse von M = kg wird als Lastzug benutzt, um eine Last von m = kg auf eine Höhe von h = 3m zu heben. Der Gleitreibungskoeffi zient auf der Rampe beträgt µ G =.3. Die Rolle ist ein Vollzylinder vom Radius R =.m und Masse M = kg (J =.5M R ) und wird schlupffrei bewegt. (a) Formulieren Sie die Bewegungsgleichung für die Position y(t) der Last m (b) Lösen Sie die Bewegungsgleichung mit der Anfangsbedingung y() =. (c) Wann ist die Last m in der Höhe y = h angekommen und welche Geschwindigkeit hat sie? (d) Wie großmußder Winkel θ sein, damit die Last m sich nach unten in Bewegung setzt? Lösung: in Bewegung versetzt : ẏ() = (a) Zugkraft F Z = M g sin θ, Normalkraft F N = M g cos θ Rolle: J = M R = (.) =. F R = D = Jα = J ÿ R (m + M ) ÿ = M g sin θ µ G M g cos θ mg J ÿ ÿ = a = a = R m + M + J/R (M g sin θ µ G M g cos θ mg) 9.8 sin 33π cos 33π / (.) =.7 m s

4 (b) y = at (c) t = h 3 a =.7 =.9s v = at =.7 m s.9s =.498m s (d) m + M (Mg sin θ µ GMg cos θ mg) M sin θ µ G M cos θ m 6. Atwood Fallmaschine mit Massenträgheitsmoment sin θ µ G cos θ m M ( m cos θ = M + µ G cos θ) x = (. +.3 x) θ = 8 arccos π = Bei der Atwood schen Fallmaschine wurde die Masse der Rolle vernachlässigt. Nun soll der Einfluss des Vollzylinders (M = kg, R =.m) berücksichtigt werden. In der Startposition hängen Masse und Masse (m = kg, m = 3kg) jeweils m über dem Boden. Das Hängeseil liegt ohne Schlupf auf der Rolle. Nach welcher Zeit berührt die Masse m den Boden, nachdem sie losgelassen wurden? (b) Stellen Sie die Bewegungsgleichung für den Fallvorgang auf ( (m + m ) R + J ) θ = R (m m ) g R (m m ) g θ = ( (m + m ) R + MR) = (m m ) ( g (m + m ) + M) = 39.4 s R (c) Wie lautet die Lösung dieser DGL mit den gegebenen Anfangsbedingungen? ( ) s = Rθ = R (m m ) ( g (m + m ) + M) t R t = ((m + m ) + M) (m m ) s g s = R a t Ersatz t Ersatz = s Ra

5 (d) Nach welcher Zeit berührt m den Boden? t = t Ersatz = ((m + m ) + M) (m m ) s θersatz R = s g = ((kg + 3kg) + m 5s.m =.6346 s kg) (3kg kg) m 9.8m/s =.739 s 7. Lösung der Bewegungsgleichung für eine Federschwingung Dazu wird gemäßdem. Newton schen Gesetz die M asse Beschleunigung gleich der Rückstellkraft gesetzt m d x dt = D x Mit der Abkürzung (diese Kreisfrequenz heisst auch Eigenfrequenz des Systems) ergibt sich die Bewegungsgleichung ω = D m d x dt + x = oder ẍ + ω x = Die Bewegungsgleichung lässt sich lösen, also die Bahnkurve der Bewegung finden, durch einen Ansatz x(t) = A sin( t + ϕ) (Der Ansatz x(t) = A cos( t + ϕ) wäre auch möglich). A bezeichnet die Amplitude der Schwingung, die Kreisfrequenz und ϕ die Phase. Die erste und die zweite Ableitung des Ansatzes sind ẋ(t) = A cos( t + ϕ) ẍ(t) = A ω sin( t + ϕ) Einsetzen in die Gleichung zeigt, dass der Ansatz tatsächlich eine Lösung ergibt A ω sin( t + ϕ) + ω (A sin( t + ϕ)) = Die Amplitude und die Phase sind jedoch noch nicht festgelegt. Wir suchen statt dieser allgemeinen Lösung nun die Lösung mit besonderen Anfangsbedingungen Stoß: der Oszillator erhält in der Ruhelage einen Stoßẋ(t = ) = v. Ruhelage heißt: x(t = ) = = A sin(ϕ) = ϕ = Stoßheißt ẋ(t = ) = v = A cos() = A = v Die spezielle Lösung mit Stoßlautet x(t) = v sin( t) Auslenkung: der Oszillator wird bei t = um x ausgelenkt und losgelassen. Seine Geschwindigkeit bei t = ist somit v(t = ) = ẋ(t = ) = = A cos(ϕ) ϕ = π Ausgelenkt heißt x(t = ) = x = A sin( π ) = A Die spezielle Lösung mit Auslenkung lautet x(t) = x sin( t + π ) = x cos( t)

6 Beispiel : Hänschen hat eine Steinschleuder, die er mit N um.5m auslenken kann. Der Stein hat eine Masse von g. (a) Wie schnell ist der Stein beim Nulldurchgang? (b) Wie hoch steigt der Stein unter Vernachlässigung von Luftreibung im Schwerefeld? Lösung: siehe Abbildung (a) Die Federkonstante beträgt D = F x = N.5m = N m Damit die Eigenfrequenz = D m = Nm =.kg s = 44.7 s Eingesetzt in die Lösung mit Auslenkung x(t null ) = x cos( t null ) = = t null = π ẋ(t null ) = x sin( t null ) = x =.5m s =.36m s (b) senkrechter Wurf nach oben z(t) = v t gt ż(t scheitel ) = v gt scheitel = = t scheitel = v g v z(t scheitel ) = v g ( ) g v = v g g = ( ). 36 m s 9.8ms = 5.485m Beispiel : Nun wird ein Fußball (m = 5g) an einer solchen Feder (D = N/m) befestigt und bekommt einen Elfmetertritt von km/h. Wie weit fliegt er an der Feder? Lösung: siehe Abbildung. Die Eigenfrequenz (andere Masse!) lautet D = m = Nm =.5kg s Die Lösung mit Stoßlautet Maximale Auslenkung heißt x(t) = v sin( t) ẋ(t max ) = v cos( t max ) = = t max = π x(t max ) = v sin( π ) = v = /3.6 ms s = m

7 Lösung mit x(t) = v sin( t) Lösung mit x(t) = x cos( t)

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an.

Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an. 1. Geschwindigkeiten (8 Punkte) Ein Schwimmer, der sich mit konstanter Geschwindigkeit v s = 1.25 m/s im Wasser vorwärts bewegen kann, möchte einen mit Geschwindigkeit v f = 0.75 m/s fließenden Fluß der

Mehr

Experimentalphysik 1

Experimentalphysik 1 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 16/17 Lösung 1 Ronja Berg (ronja.berg@tum.de) Katharina Scheidt (katharina.scheidt@tum.de) Aufgabe 1: Superposition

Mehr

Aufgabe 1: (18 Punkte)

Aufgabe 1: (18 Punkte) MODULPRÜFUNG TECHNISCHE MECHANIK IV (PO 2004) VOM 26.07.2011 Seite 1 Aufgabe 1: (18 Punkte) Zwei Massenpunkte m 1 = 5 kg und m 2 = 2 kg sind durch ein dehnstarres und massenloses Seil über eine reibungsfrei

Mehr

Musterlösung 2. Klausur Physik für Maschinenbauer

Musterlösung 2. Klausur Physik für Maschinenbauer Universität Siegen Sommersemester 2010 Fachbereich Physik Musterlösung 2. Klausur Physik für Maschinenbauer Prof. Dr. I. Fleck Aufgabe 1: Freier Fall im ICE Ein ICE bewege sich mit der konstanten Geschwindigkeit

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

1. Aufgabe: Impuls des Waggons beim Aufprall ist mit 1 2 mv2 = mgh und v = 2gh p = m v 1 = m 2gh

1. Aufgabe: Impuls des Waggons beim Aufprall ist mit 1 2 mv2 = mgh und v = 2gh p = m v 1 = m 2gh 3 Lösungen 1. Aufgabe: Impuls des Waggons beim Aufprall ist mit 1 2 mv2 = mgh und v = 2gh p = m v 1 = m 2gh 1 (a) Nach dem Aufprall m u 1 = p = m v 1 m u 1 = m 2gh 1 e 1 = 12664Ns e 1 F = p t (b) p 2 =

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 2 - Lösung Technische Universität München 1 Fakultät für Physik 1 Perle Eine Perle der Masse m gleite reibungsfrei auf einem vertikal stehenden Ring vom Radius

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Massenpunkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf

Mehr

3.2 Das physikalische Pendel (Körperpendel)

3.2 Das physikalische Pendel (Körperpendel) 18 3 Pendelschwingungen 32 Das physikalische Pendel (Körperpendel) Ein starrer Körper (Masse m, Schwerpunkt S, Massenträgheitsmoment J 0 ) ist um eine horizontale Achse durch 0 frei drehbar gelagert (Bild

Mehr

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor

3. Kreisbewegung. Punkte auf einem Rad Zahnräder, Getriebe Drehkran Turbinen, Hubschrauberrotor 3. Kreisbewegung Ein wichtiger technischer Sonderfall ist die Bewegung auf einer Kreisbahn. Dabei hat der Punkt zu jedem Zeitpunkt den gleichen Abstand vom Kreismittelpunkt. Beispiele: Punkte auf einem

Mehr

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06 Übungen zu: Theoretische Physik I klassische Mechanik W 13 Tobias Spranger - Prof. Tom Kirchner WS 005/06 http://www.pt.tu-clausthal.de/qd/teaching.html. Dezember 005 Übungsblatt 7 Lösungsvorschlag 4 Aufgaben,

Mehr

Allgemeine Bewegungsgleichung

Allgemeine Bewegungsgleichung Freier Fall Allgemeine Bewegungsgleichung (gleichmäßig beschleunigte Bewegung) s 0, v 0 Ableitung nach t 15 Freier Fall Sprung vom 5-Meter Turm s 0 = 0; v 0 = 0 (Aufprallgeschwindigkeit: v = -10m/s) Weg-Zeit

Mehr

Schwingungen. a. Wie lautet die Gleichung für die Position der Masse als Funktion der Zeit? b. Die höchste Geschwindigkeit des Körpers.

Schwingungen. a. Wie lautet die Gleichung für die Position der Masse als Funktion der Zeit? b. Die höchste Geschwindigkeit des Körpers. Schwingungen Aufgabe 1 Sie finden im Labor eine Feder. Wenn Sie ein Gewicht von 100g daran hängen, dehnt die Feder sich um 10cm. Dann ziehen Sie das Gewicht 6cm herunter von seiner Gleichgewichtsposition

Mehr

2. Freie Schwingungen

2. Freie Schwingungen 2. Freie Schwingungen Die einfachsten schwingungsfähigen Systeme sind lineare Systeme: Die Rückstellkräfte sind proportional zur Auslenkung. Die Dämpfungskräfte sind proportional zur Geschwindigkeit. Bei

Mehr

Übungen zu Experimentalphysik 1 für MSE

Übungen zu Experimentalphysik 1 für MSE Physik-Department LS für Funktionelle Materialien WS 2017/18 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Dr. Neelima Paul, Sebastian Grott, Lucas Kreuzer,

Mehr

TEIL I: KINEMATIK. 1 Eindimensionale Bewegung. 1.1 Bewegungsfunktion und s-t-diagramm

TEIL I: KINEMATIK. 1 Eindimensionale Bewegung. 1.1 Bewegungsfunktion und s-t-diagramm TEIL I: KINEMATIK Unter Kinematik versteht man die pure Beschreibung der Bewegung eines Körpers (oder eines Systems aus mehreren Körpern), ohne nach den Ursachen dieser Bewegung zu fragen. Letzteres wird

Mehr

Solution V Published:

Solution V Published: 1 Reibungskraft I Ein 25kg schwerer Block ist zunächst auf einer horizontalen Fläche in Ruhe. Es ist eine horizontale Kraft von 75 N nötig um den Block in Bewegung zu setzten, danach ist eine horizontale

Mehr

Lösungen zu Aufgaben Kräfte, Drehmoment c 2016 A. Kersch

Lösungen zu Aufgaben Kräfte, Drehmoment c 2016 A. Kersch Lösungen zu Aufgaben Kräfte, Drehmoment c 2016 A. Kersch Freischneiden Was zeigt die Waage? Behandeln Sie die Person auf der Plattform auf der Waage als eindimensionales Problem. Freischneiden von Person

Mehr

Klausur Physik I für Chemiker

Klausur Physik I für Chemiker Universität Siegen Wintersemester 2017/18 Naturwissenschaftlich-Technische Fakultät Department Physik Klausur Physik I für Chemiker Prof. Dr. M. Agio Lösung zu Aufgabe 1: Schiefe Ebene i) Siehe Zeichnung

Mehr

1. Zeichnen Sie das v(t) und das a(t)-diagramm für folgende Bewegung. 3 Der Körper fährt eine Strecke von 30 m mit seiner bisherigen

1. Zeichnen Sie das v(t) und das a(t)-diagramm für folgende Bewegung. 3 Der Körper fährt eine Strecke von 30 m mit seiner bisherigen Staatliche Technikerschule Waldmünchen Fach: Physik Häufig verwendete Formeln aus der Europa-Formelsammlung Lineare Bewegungen: Gleichförmige Bewegung: S. 11/ 2-7 Beschleunigte Bewegung: S. 12 / 2-20,

Mehr

Lösung III Veröentlicht:

Lösung III Veröentlicht: 1 Projektil Bewegung Lösung Ein Ball wird von dem Dach eines Gebäudes von 80 m mit einem Winkel von 80 zur Horizontalen und mit einer Anfangsgeschwindigkeit von 40 m/ s getreten. Sei diese Anfangsposition

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK Physik A/B1 A WS SS 17 13/14 Inhalt der Vorlesung A1 1. Einführung Methode der Physik Physikalische Größen Übersicht über die vorgesehenen Themenbereiche. Teilchen A. Einzelne Teilchen Beschreibung

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und

Mehr

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ. Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010

Mehr

Schwingwagen ******

Schwingwagen ****** 5.3.0 ****** Motivation Ein kleiner Wagen und zwei Stahlfedern bilden ein schwingungsfähiges System. Ein Elektromotor mit Exzenter lenkt diesen Wagen periodisch aus seiner Ruhestellung aus. Die Antriebsfrequenz

Mehr

Grundlagen der Physik 1 Lösung zu Übungsblatt 6

Grundlagen der Physik 1 Lösung zu Übungsblatt 6 Grundlagen der Physik 1 Lösung zu Übungsblatt 6 Daniel Weiss 20. November 2009 Inhaltsverzeichnis Aufgabe 1 - Massen auf schiefer Ebene 1 Aufgabe 2 - Gleiten und Rollen 2 a) Gleitender Block..................................

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2013 Probeklausur Technische Universität München 1 Fakultät für Physik 1 Kurze Fragen [20 Punkte] Beantworten Sie folgende Fragen. Für jede richtige Antwort

Mehr

Ballaufgabe. David Reichenbacher. 8. November 2015

Ballaufgabe. David Reichenbacher. 8. November 2015 Ballaufgabe David Reichenbacher 8. November 2015 Hausaufgabe aus der Vorlesung Höhere Mathematik für die Fachrichtung Physik Dozent: Dr. Ioannis Anapolitanos Dieses Dokument beinhaltet einen Lösungsvorschlag

Mehr

Klausur Physik I für Chemiker

Klausur Physik I für Chemiker Universität Siegen Wintersemester 2017/18 Naturwissenschaftlich-Technische Fakultät Prof. Dr. M. Agio Department Physik Klausur Physik I für Chemiker Lösung zu Aufgabe 1: Kurzfragen Lösung zu Aufgabe 2:

Mehr

1.Klausur LK Physik 12/2 - Sporenberg Datum:

1.Klausur LK Physik 12/2 - Sporenberg Datum: 1.Klausur LK Physik 12/2 - Sporenberg Datum: 28.03.2011 1.Aufgabe: I. Eine flache Spule (n 500, b 5 cm, l 7 cm, R 280 Ω) wird mit v 4 mm in der Abbildung aus der Lage I durch das scharf begrenzte Magnetfeld

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 1 Fakultät für Physik Technische Universität München Bernd Kohler & Daniel Singh Probeklausur WS 2014/2015 27.03.2015 Bearbeitungszeit: 90 Minuten Aufgabe 1: Romeo und Julia (ca. 15 min) Julia befindet

Mehr

Klausur zur Vorlesung Physik I für Chemiker (WS 2017/18)

Klausur zur Vorlesung Physik I für Chemiker (WS 2017/18) Universität Siegen Wintersemester 2017/18 Naturwissenschaftlich-Technische Fakultät Department Physik Klausur zur Vorlesung Physik I für Chemiker (WS 2017/18) Datum: Dienstag, 13.02.2017, 10:00-12:00 Prof.

Mehr

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen

Hochschule Düsseldorf University of Applied Sciences. 22. Dezember 2016 HSD. Physik. Schwingungen Physik Schwingungen Zusammenfassung Mechanik Physik Mathe Einheiten Bewegung Bewegung 3d Newtons Gesetze Energie Gravitation Rotation Impuls Ableitung, Integration Vektoren Skalarprodukt Gradient Kreuzprodukt

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre (c) Ulm University p. 1/1 Grundlagen der Physik 2 Schwingungen und Wärmelehre 07. 05. 2007 Othmar Marti othmar.marti@uni-ulm.de Experimentelle Physik Universität Ulm (c) Ulm University p. 2/1 Wellen in

Mehr

Kinematik von Punktmassen. Aufgabe 1. Die durchschnittliche Geschwindigkeit eines Elfmeters im Fußball ist 120 km/h.

Kinematik von Punktmassen. Aufgabe 1. Die durchschnittliche Geschwindigkeit eines Elfmeters im Fußball ist 120 km/h. Kinematik von Punktmassen Aufgabe 1. Die durchschnittliche Geschwindigkeit eines Elfmeters im Fußball ist 120 km/h. a. Wie lange braucht der Ball bis ins Tor? Lsg.: a) 0,333s Aufgabe 2. Ein Basketball-Spieler

Mehr

Klassische und relativistische Mechanik

Klassische und relativistische Mechanik Klassische und relativistische Mechanik Othmar Marti 13. 02. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und relativistische Mechanik

Mehr

Vorbereitung: Pendel. Marcel Köpke Gruppe

Vorbereitung: Pendel. Marcel Köpke Gruppe Vorbereitung: Pendel Marcel Köpke Gruppe 7 10.1.011 Inhaltsverzeichnis 1 Augabe 1 3 1.1 Physikalisches Pendel.............................. 3 1. Reversionspendel................................ 6 Aufgabe

Mehr

9. Periodische Bewegungen

9. Periodische Bewegungen Inhalt 9.1 Schwingungen 9.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 9.1.4 Erzwungene Schwingung 9.1 Schwingungen 9.1 Schwingungen Schwingung Zustand y wiederholt sich in bestimmten Zeitabständen

Mehr

Kraft und Bewegung. a. Zeichnen Sie einen Freischnitt für den Block.

Kraft und Bewegung. a. Zeichnen Sie einen Freischnitt für den Block. Kraft und Bewegung Aufgabe 1 Ein Block der Masse 4 kg liegt auf einem waagrechten Tisch mit rauer Oberfläche. Wenn eine horizontale Kraft von 10N angelegt wird, ist die Beschleunigung 2 m/s 2. a. Zeichnen

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD

Mehr

Lösung II Veröentlicht:

Lösung II Veröentlicht: 1 Momentane Bewegung I Die Position eines Teilchens auf der x-achse ist gegeben durch x = 6m 60(m/s)t + 4(m/s 2 )t 2, wobei x in Metern t in Sekunden ist (a) Wo ist das Teilchen zur Zeit t= 0 s? (2 Punkte)

Mehr

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06 Übungen zu: Theoretische Physik I klassische Mechanik W 3 Tobias Spranger - Prof. Tom Kirchner WS 5/6 http://www.pt.tu-clausthal.de/qd/teaching.html. Dezember 5 Übungsblatt 6 Lösungsvorschlag 3 ufgaben,

Mehr

TECHNISCHE MECHANIK III (DYNAMIK)

TECHNISCHE MECHANIK III (DYNAMIK) Klausur im Fach TECHNISCHE MECHANIK III (DYNAMIK) WS 2014 / 2015 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 Summe Punkte: 15 7 23 15 60 Davon erreicht Bearbeitungszeit: Hilfsmittel:

Mehr

Tutorium Physik 2. Schwingungen

Tutorium Physik 2. Schwingungen 1 Tutorium Physik 2. Schwingungen SS 16 2.Semester BSc. Oec. und BSc. CH 2 Themen 7. Fluide 8. Rotation 9. Schwingungen 10. Elektrizität 11. Optik 12. Radioaktivität 3 9. SCHWINGUNGEN 9.1 Bestimmen der

Mehr

Lösung zu Übungsblatt 12

Lösung zu Übungsblatt 12 PN - Physik für Cheiker und Biologen Prof. J. Lipfert WS 208/9 Übungsblatt 2 Lösung zu Übungsblatt 2 Aufgabe Reinhold Messner schwingt in den Bergen: Reinhold Messner öchte den Mount Everest besteigen

Mehr

Name: Gruppe: Matrikel-Nummer:

Name: Gruppe: Matrikel-Nummer: Theoretische Physik 1 (Theoretische Mechanik) SS08, Studienziel Bachelor (170 12/13/14) Dozent: J. von Delft Übungen: B. Kubala Nachklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 2008 (1. Oktober

Mehr

Vorkurs Mathematik-Physik, Teil 8 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 8 c 2016 A. Kersch Vorkurs Matheatik-Physik, Teil 8 c 26 A. Kersch Dynaik. Newton sche Bewegungsgleichung Reaktionsgesetz F geändert Der Bewegungszustand eines Körpers wird nur durch den Einfluss von (äußeren) Kräften F

Mehr

Prüfungsaufgaben der schriftlichen Matura 2010 in Physik (Profilfach)

Prüfungsaufgaben der schriftlichen Matura 2010 in Physik (Profilfach) Prüfungsaufgaben der schriftlichen Matura 2010 in Physik (Profilfach) Klasse 7Na (Daniel Oehry) Name: Diese Arbeit umfasst vier Aufgaben Hilfsmittel: Dauer: Hinweise: Formelsammlung, Taschenrechner (nicht

Mehr

Gekoppelte Schwingung

Gekoppelte Schwingung Versuch: GS Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: C. Blockwitz am 01. 07. 000 Bearbeitet: E. Hieckmann J. Kelling F. Lemke S. Majewsky i.a. Dr. Escher Aktualisiert: am 16. 09. 009

Mehr

Übung zu Mechanik 3 Seite 36

Übung zu Mechanik 3 Seite 36 Übung zu Mechanik 3 Seite 36 Aufgabe 61 Ein Faden, an dem eine Masse m C hängt, wird über eine Rolle mit der Masse m B geführt und auf eine Scheibe A (Masse m A, Radius R A ) gewickelt. Diese Scheibe rollt

Mehr

PN 1 Klausur Physik für Chemiker

PN 1 Klausur Physik für Chemiker PN 1 Klausur Physik für Chemiker Prof. T. Liedl Ihr Name in leserlichen Druckbuchstaben München 2011 Martrikelnr.: Semester: Klausur zur Vorlesung PN I Einführung in die Physik für Chemiker Prof. Dr. T.

Mehr

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe:

Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 7 vom Abgabe: Übungen zu Theoretische Physik I - Mechanik im Sommersemester 03 Blatt 7 vom 0.06.3 Abgabe: 7.06.3 Aufgabe 9 3 Punkte Keplers 3. Gesetz Das 3. Keplersche Gesetz für die Planetenbewegung besagt, dass das

Mehr

Aufgaben zur Übungsklausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/

Aufgaben zur Übungsklausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS2013/ Aufgaben zur Übungsklausur zur Vorlesung Einführung in die Physik für Natur- und Umweltwissenschaftler v. Issendorff, WS013/14 18.1.013 Diese Aufgaben entsprechen der Abschlußklausur, für die 1 ¾ Stunden

Mehr

Physik I Musterlösung 2

Physik I Musterlösung 2 Physik I Musterlösung 2 FS 08 Prof. R. Hahnloser Aufgabe 2.1 Flugzeug im Wind Ein Flugzeug fliegt nach Norden und zwar so dass es sich zu jedem Zeitpunkt genau über einer Autobahn befindet welche in Richtung

Mehr

4.2 Der Harmonische Oszillator

4.2 Der Harmonische Oszillator Dieter Suter - 208 - Physik B3, SS03 4.2 Der Harmonische Oszillator 4.2.1 Harmonische Schwingungen Die Zeitabhängigkeit einer allgemeinen Schwingung ist beliebig, abgesehen von der Periodizität. Die mathematische

Mehr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 27. Juli 2015, Uhr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 27. Juli 2015, Uhr KIT SS 05 Klassische Theoretische Physik II V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch Klausur Lösung 7. Juli 05, 6-8 Uhr Aufgabe : Kurzfragen (+4++3=0 Punkte) (a) Zwangsbedingungen beschreiben Einschränkungen

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 Karsten Kruse 2. Mechanische Schwingungen und Wellen - Theoretische Betrachtungen 2.1 Der harmonische Oszillator Wir betrachten eine lineare Feder mit der Ruhelänge l 0.

Mehr

Experimentalphysik I: Mechanik

Experimentalphysik I: Mechanik Ferienkurs Experimentalphysik I: Mechanik Wintersemester 15/16 Übung 1 - Lösung Technische Universität München 1 Fakultät für Physik 1 Stein fällt in Brunnen Ein Stein fällt in einen Brunnen. Seine Anfangsgeschwindigkeit

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 2013 Übung 4 - Angabe Technische Universität München 1 Fakultät für Physik 1 Trägheitstensor 1. Ein starrer Körper besteht aus den drei Massenpunkten mit

Mehr

(no title) Ingo Blechschmidt. 13. Juni 2005

(no title) Ingo Blechschmidt. 13. Juni 2005 (no title) Ingo Blechschmidt 13. Juni 2005 Inhaltsverzeichnis 0.1 Tests............................. 1 0.1.1 1. Extemporale aus der Mathematik...... 1 0.1.2 Formelsammlung zur 1. Schulaufgabe..... 2 0.1.3

Mehr

Klausur zu Theoretische Physik 2 Klassische Mechanik

Klausur zu Theoretische Physik 2 Klassische Mechanik Klausur zu Theoretische Physik 2 Klassische Mechanik 1. August 216 Prof. Marc Wagner Goethe-Universität Frankfurt am Main Institut für Theoretische Physik 5 Aufgaben mit insgesamt 25 Punkten. Die Klausur

Mehr

Theoretische Mechanik

Theoretische Mechanik Prof. Dr. R. Ketzmerick/Dr. R. Schumann Technische Universität Dresden Institut für Theoretische Physik Sommersemester 008 Theoretische Mechanik 4. Übung Lösungen 4. Spezielle Kraftgesetze Lösen Sie die

Mehr

Repetitorium D: Starrer Körper

Repetitorium D: Starrer Körper Fakultät für Physik T: Klassische Mechanik, SoSe 206 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_6/t_theor_mechanik/

Mehr

Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen! Kein zusätzliches Papier zugelassen!

Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen! Kein zusätzliches Papier zugelassen! Physik 1 / Klausur Anfang SS 0 Heift / Kurtz Name: Vorname: Matrikel-Nr.: Unterschrift: Formeln siehe letzte Rückseite! Hilfsmittel sind nicht zugelassen, auch keine Taschenrechner! Heftung nicht lösen!

Mehr

ÜBUNGSAUFGABEN PHYSIK KAPITEL M MECHANIK ZUR. Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl. IEUT 10/05 Kohl

ÜBUNGSAUFGABEN PHYSIK KAPITEL M MECHANIK ZUR. Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl. IEUT 10/05 Kohl ÜBUNGSAUFGABEN ZUR PHYSIK KAPITEL M MECHANIK Institut für Energie- und Umwelttechnik Prof. Dr. Wolfgang Kohl IEUT 10/05 Kohl I. Kinematik 10/2005 koh Bewegung auf gerader Bahn; Geschwindigkeit, Beschleunigung

Mehr

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II Physik Schwingungen II Ort, Geschwindigkeit, Beschleunigung x(t) = cos! 0 t v(t) =ẋ(t) =! 0 sin! 0 t t a(t) =ẍ(t) =! 2 0 cos! 0 t Energie In einem mechanischen System ist die Gesamtenergie immer gleich

Mehr

B.1 Lösungsskizzen der Übungsaufgaben zum Kapitel 1

B.1 Lösungsskizzen der Übungsaufgaben zum Kapitel 1 B sskizzen B.1 sskizzen der Übungsaufgaben zum Kapitel 1 Aufgabe 1 (Zeitabhängige Beschleunigung) Ein geladenes Teilchen (Ion) bewegt sich im Vakuum kräftefrei mit der Geschwindigkeit v x0 längs der x-achse.

Mehr

Eine allumfassende, No!iistische Formelsammlung. Ferdinand Ihringer

Eine allumfassende, No!iistische Formelsammlung. Ferdinand Ihringer Eine allumfassende, No!iistische Formelsammlung Ferdinand Ihringer 2. Juni 2004 Inhaltsverzeichnis I Physik 3 1 Mechanik des Massenpunktes 4 1.1 Grundlagen............................................ 4

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Sommer 013 Übung 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Trägheitstensor 1. Ein starrer Körper besteht aus den drei Massenpunkten mit

Mehr

Hochschule Düsseldorf University of Applied Sciences. 12. Januar 2017 HSD. Physik. Schwingungen III

Hochschule Düsseldorf University of Applied Sciences. 12. Januar 2017 HSD. Physik. Schwingungen III Physik Schwingungen III Wiederholung Komplexe Zahlen Harmonischer Oszillator DGL Getrieben Gedämpft Komplexe Zahlen Eulersche Formel e i' = cos ' + i sin ' Komplexe Schwingung e i!t = cos!t + i sin!t Schwingung

Mehr

Probeklausur zur T1 (Klassische Mechanik)

Probeklausur zur T1 (Klassische Mechanik) Probeklausur zur T1 (Klassische Mechanik) WS 006/07 Bearbeitungsdauer: 10 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

Übung zu Mechanik 4 Seite 17

Übung zu Mechanik 4 Seite 17 Übung zu Mechanik 4 Seite 17 Aufgabe 31 Gegeben sei der dargestellte, gedämpfte Schwinger. Die beiden homogenen Kreisscheiben (m B, r B und m C, r C ) sind fest miteinander verbunden und frei drehbar auf

Mehr

8. Periodische Bewegungen

8. Periodische Bewegungen 8. Periodische Bewegungen 8.1 Schwingungen 8.1.1 Harmonische Schwingung 8.1.2 Schwingungsenergie 9.1.3 Gedämpfte Schwingung 8.1.4 Erzwungene Schwingung 8. Periodische Bewegungen Schwingung Zustand y wiederholt

Mehr

Experimentalphysik 1. Probeklausur - Lösung

Experimentalphysik 1. Probeklausur - Lösung Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 216/17 Probeklausur - Lösung Aufgabe 1 Ein Ball soll vom Punkt P (x =, y = ) aus unter einem Winkel α = 45 zur Horizontalen

Mehr

VHS Floridsdorf elopa Manfred Gurtner Was ist der Differentialquotient in der Physik?

VHS Floridsdorf elopa Manfred Gurtner Was ist der Differentialquotient in der Physik? Was ist der Differentialquotient in der Physik? Ein Auto fährt auf der A1 von Wien nach Salzburg. Wir können diese Fahrt durch eine Funktion Y(T) beschreiben, die zu jedem Zeitpunkt T (Stunden oder Sekunden)

Mehr

Lösung II Veröffentlicht:

Lösung II Veröffentlicht: 1 Momentane Bewegung I Die Position eines Teilchens auf der x-achse, ist gegeben durch x = 3m 30(m/s)t + 2(m/s 3 )t 3, wobei x in Metern und t in Sekunden angeben wird (a) Die Position des Teilchens bei

Mehr

Bewegung und Skelettmechanik

Bewegung und Skelettmechanik Bewegung und Skelettmechanik Inst.f.Med.Physik & Biostatistik Grundlagen der Medizinischen Physik 1 Bezugssysteme Unsere Zeit Inst.f.Med.Physik & Biostatistik Grundlagen der Medizinischen Physik 2 Bezugssysteme

Mehr

Lösung Serie 3 (Modellieren (SIMULINK + MATLAB))

Lösung Serie 3 (Modellieren (SIMULINK + MATLAB)) Fachhochschule Nordwestschweiz (FHNW Hochschule für Technik Institut für Geistes- und Naturwissenschaft Lösung Serie 3 (Modellieren (SIMULINK + MATLAB Dozent: Roger Burkhardt Klasse: Studiengang ST Büro:

Mehr

Vordiplomsklausur in Physik Mittwoch, 23. Februar 2005, :00 Uhr für den Studiengang: Mb, Inft, Geol, Ciw

Vordiplomsklausur in Physik Mittwoch, 23. Februar 2005, :00 Uhr für den Studiengang: Mb, Inft, Geol, Ciw Institut für Physik und Physikalische Technologien 23.02.2005 der TU Clausthal Prof. Dr. W. Daum Vordiplomsklausur in Physik Mittwoch, 23. Februar 2005, 09.00-11:00 Uhr für den Studiengang: Mb, Inft, Geol,

Mehr

Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn

Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am werden sie von Herrn Stärkt Euch und bereitet Euch gut vor... Die Übungsaufgaben bitte in den nächsten Tagen (in Kleingruppen) durchrechnen! Am 4.11. werden sie von Herrn Hofstaetter in den Übungen vorgerechnet. Vom Weg zu

Mehr

Lösung zu Übungsblatt 11

Lösung zu Übungsblatt 11 PN1 - Physik 1 für Cheiker und Biologen Prof. J. Lipfert WS 2016/17 Übungsblatt 11 Lösung zu Übungsblatt 11 Aufgabe 1 Torsionspendel. Henry Cavendish nutzte zur Bestiung der Gravitationskonstante den unten

Mehr

Aufgabe 1: A. 7.7 kj B kj C. 200 kj D kj E. 770 J. Aufgabe 2:

Aufgabe 1: A. 7.7 kj B kj C. 200 kj D kj E. 770 J. Aufgabe 2: Aufgabe 1: Ein Autoreifen habe eine Masse von 1 kg und einen Durchmesser von 6 cm. Wir nehmen an, dass die gesamte Masse auf dem Umfang konzentriert ist (die Lauffläche sei also viel schwerer als die Seitenwände

Mehr

Übung zu Mechanik 3 Seite 21

Übung zu Mechanik 3 Seite 21 Übung zu Mechanik 3 Seite 21 Aufgabe 34 Ein Hebel wird mit der Winkelgeschwindigkeit ω 0 angetrieben. Bestimmen Sie für den skizzierten Zustand die momentane Geschwindigkeit des Punktes D! Gegeben: r,

Mehr

PN1 - Physik 1 für Chemiker und Biologen Prof. J. Lipfert

PN1 - Physik 1 für Chemiker und Biologen Prof. J. Lipfert PN1 - Physik 1 für Chemiker und Biologen Prof. J. Lipfert WS 2018/19 Übungsblatt 4 Lösung Übungsblatt 4 Lösung Aufgabe 1 Bungee-Jump revisited. Weil es einigen Menschen so gut gefällt von der Europabrücke

Mehr

Theoretische Physik I: Lösungen Blatt Michael Czopnik

Theoretische Physik I: Lösungen Blatt Michael Czopnik Theoretische Physik I: Lösungen Blatt 2 15.10.2012 Michael Czopnik Aufgabe 1: Scheinkräfte Nutze Zylinderkoordinaten: x = r cos ϕ y = r sin ϕ z = z Zweimaliges differenzieren ergibt: ẍ = r cos ϕ 2ṙ ϕ sin

Mehr

ZUGELASSENE HILFSMITTEL:

ZUGELASSENE HILFSMITTEL: ZUGELASSENE HILFSMITTEL: Täuschungsversuche führen zum Ausschluss und werden als Fehlversuch gewertet. Mobiltelefone und andere elektronische Geräte sind nicht zugelassen, bitte vom Tisch räumen. Mit Annahme

Mehr

Physik III im Studiengang Elektrotechnik

Physik III im Studiengang Elektrotechnik Physik III im Studiengang Elektrotechnik - harmonische Schwingungen - Prof. Dr. Ulrich Hahn WS 216/17 kinematische Beschreibung Auslenkungs Zeit Verlauf: ( t) ˆ cost Projektion einer gleichförmigen Kreisbewegung

Mehr

Übungen zu Lagrange-Formalismus und kleinen Schwingungen

Übungen zu Lagrange-Formalismus und kleinen Schwingungen Übungen zu Lagrange-Formalismus und kleinen Schwingungen Jonas Probst 22.09.2009 1 Teilchen auf der Stange Ein Teilchen der Masse m wird durch eine Zwangskraft auf einer masselosen Stange gehalten, auf

Mehr

2. Allgemeine ebene Bewegung

2. Allgemeine ebene Bewegung 2. Allgemeine ebene Bewegung 2.2 Arbeit und Energie Prof. Dr. Wandinger 4. Kinetik des starren Körpers TM 3 4.2-1 chwerpunktsatz: Aus dem chwerpunktsatz für Massenpunktsysteme folgt unmittelbar der chwerpunktsatz

Mehr

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert

PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert WS 015/16 Übungsblatt 6 Übungsblatt 6 Lösung Aufgabe 1 Gravitation. a) Berechnen Sie die Beschleunigung g auf der Sonnenoberfläche. Gegeben

Mehr

3. Erzwungene gedämpfte Schwingungen

3. Erzwungene gedämpfte Schwingungen 3. Erzwungene gedämpfte Schwingungen 3.1 Schwingungsgleichung 3.2 Unwuchtanregung 3.3 Weganregung 3.4 Komplexe Darstellung 2.3-1 3.1 Schwingungsgleichung F(t) m Bei einer erzwungenen gedämpften Schwingung

Mehr

Übungsblatt 9. a) Wie groß ist der Impuls des Autos vor und nach der Kollision und wie groß ist die durchschnittliche Kraft, die auf das Auto wirkt?

Übungsblatt 9. a) Wie groß ist der Impuls des Autos vor und nach der Kollision und wie groß ist die durchschnittliche Kraft, die auf das Auto wirkt? Aufgabe 32: Impuls Bei einem Crash-Test kollidiert ein Auto der Masse 2000Kg mit einer Wand. Die Anfangsund Endgeschwindigkeit des Autos sind jeweils v 0 = (-20m/s) e x und v f = (6m/s) e x. Die Kollision

Mehr

T0: Rechenmethoden WiSe 2011/12. Lösungen: Ergänzungsaufgaben zur Klausurvorbereitung Differentialgleichungen

T0: Rechenmethoden WiSe 2011/12. Lösungen: Ergänzungsaufgaben zur Klausurvorbereitung Differentialgleichungen T0: Rechenmethoden WiSe 20/2 Prof. Jan von Delft http://homepages.physik.uni-muenchen.de/~vondelft/lehre/2t0/ Lösungen: Ergänzungsaufgaben zur Klausurvorbereitung Differentialgleichungen Aufgabe. (**)

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Blatt 1. Kinematik- Lösungsvorschlag

Blatt 1. Kinematik- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 011 Blatt 1. Kinematik- Lösungsvorschlag Aufgabe 1.1. Schraubenlinie Die

Mehr