Zusammenfassung Performancegesetze

Größe: px
Ab Seite anzeigen:

Download "Zusammenfassung Performancegesetze"

Transkript

1 Zusammenfassung Performancegesetze Utilization Law Forced Flow Law Service Demand Law Little s Law Response Time Law 0 i i X V X Z X M/ A 0 i i i S X U 0 i i i i X / U S V D X A N

2 Leistungsmodelle System- und Komponentenebene

3 Modell auf Systemebene bestimmen (zeithomogene) Markovkette mit Übergangswahrscheinlichkeiten oder stochastische Prozesse Allgemeine Lösungen mit Hilfe von Übergangswahrscheinlichkeiten Performancemetriken Inhalt

4 Vergleich von Modellen Modelle können in unterschiedlichen Genauigkeitsstufen hergestellt werden Systemebene im Vergleich zur Komponentenebene Durchsatz X 0 (k) [Anfragen/s] Ein Webserver #Anfragen k an das System Systemebene Komponentenebene

5 Modelle auf Systemebene System wird als black box betrachtet Interne Details der Box werden nicht explizit modelliert Nur Ein- und Ausgabemerkmale zählen Eingabe: Eintreffen von Anfragen Ausgabe: Durchsatz

6 Leistungsmodell Beispiel: Webserver

7 Beispiel: Webserver Angabe Situationsbeschreibung Arbeitslast: Ein Webserver erhält 10 Anfragen/s. Maximale Anzahl an Anfragen im Server ist 3. Anfragen, die eintreffen, wenn bereits drei verarbeitet werden, werden abgelehnt. Gemessener Durchsatz Anzahl der Anfragen Durchsatz [Anfragen/s]

8 Beispiel: Webserver Fragen Nun ergeben sich einige Fragen Frage 1: Wie hoch ist die Wahrscheinlichkeit, dass eine eintreffende Anfrage abgelehnt wird? Frage 2: Wie hoch ist die durchschnittl. Anzahl von Anfragen im Webserver? Frage 3: Wie hoch ist der durchschnittliche Durchsatz des Webservers? Frage 4: Welche durchschnittliche Zeitdauer verbringt eine HTTP Anfrage im Webserver?

9 Beispiel: Webserver Annahmen Beschreibung des Systems durch dessen Zustand z.b.: Zustand k k Anfragen im System (Web Server) Annahmen (für stochastische Prozesse) Homogene Arbeitslast: alle Anfragen sind gleichwertig Markoveigenschaft ( ohne Gedächtnis ): Zustand des Systems zum nächsten Zeitpunkt m+1 hängt nur vom momentanen Zustand (Zeitpunkt m) ab Wie das System diesen Zustand m erreicht hat, ist irrelevant Operatives Gleichgewicht: # Anfragen zu Beginn = # behandelte Anfragen am Ende

10 Beispiel: Webserver Modell Zustand: k Anfragen im Webserver Eintreffen von Anfragen 10 Anfragen / s 10 Anfragen / s 10 Anfragen / s Anfragen / s 15 Anfragen / s 16 Anfragen / s Verarbeitung von Anfragen

11 Beispiel: Webserver Annahme Angenommen, es wäre möglich, Werte für P k = Zeitanteil, in dem sich k Anfragen im Webserver befinden zu finden. Frage: Können nun die vorher gestellten Fragen als Funktion der P K beantwortet werden?

12 Beispiel: Webserver Frage 1 Frage 1: Wie hoch ist die Wahrscheinlichkeit, dass eine eintreffende Anfrage abgelehnt wird? Antwort: Sie ist gleich der Wahrscheinlichkeit, dass eine Anfrage eintrifft, wenn bereits drei Anfragen behandelt werden = P 3

13 Beispiel: Webserver Frage 2 Frage 2: Wie hoch ist die durchschnittliche Anzahl von Anfragen im Webserver? Antwort: Nach der Definition des Erwartungswertes erhält man n Anfragen = 0 x P x P x P x P 3 mögliche Anzahl an Anfragen im Webserver

14 Beispiel: Webserver Frage 3 Frage 3: Wie hoch ist der durchschnittliche Durchsatz des Webservers? Anwort: Es wird wiederum der Erwartungswert berechnet X = 0 x P x P x P x P 3 Durchsatz in jedem möglichen Zustand

15 Beispiel: Webserver Frage 4 Frage 4: Wie lange ist die durchschnittliche Zeit, die eine HTTP Anfrage im Webserver verbringt? Antwort Es handelt sich um eine Funktion, die von der durchschnittlichen Anzahl an Anfragen n Anfragen und dem durchschnittlichen Durchsatz X abhängt ( Little s Law!). Später wird diese Frage genauer beantwortet!

16 Beispiel: Webserver P K berechnen Das operative Gleichgewicht wird verwendet 10 Anfragen / s 10 Anfragen / s 10 Anfragen / s Anfragen / s 15 Anfragen / s 16 Anfragen / s # Anfragen zu Beginn = # behandelten Anfragen am Ende incoming 12 x P 1 = 10 x P 0 outgoing

17 Beispiel: Webserver P K berechnen Gleichung für Bereich 1 wird aufgestellt 10 Anfragen / s 10 Anfragen / s 10 Anfragen / s Anfragen / s 15 Anfragen / s 16 Anfragen / s #Anfragen zu Beginn = # behandelten Anfragen am Ende incoming 15 x P 2 = 10 x P 1 outgoing

18 Beispiel: Webserver P K berechnen Gleichung für Bereich 2 wird aufgestellt 10 Anfragen / s 10 Anfragen / s 10 Anfragen / s Anfragen / s 15 Anfragen / s 16 Anfragen / s #Anfragen zu Beginn = # behandelten Anfragen am Ende incoming 16 x P 3 = 10 x P 2 outgoing

19 Beispiel: Webserver P K berechnen Somit erhaltene Gleichungen 12 x P 1 = 10 x P 0 15 x P 2 = 10 x P 1 16 x P 3 = 10 x P 2 P 1 = 10 / 12 x P 0 P 1 = 10 / 12 x P 0 P 2 = 10 / 15 x P 1 P 2 = 10 x 10 / (12 x 15) P 0 P 3 = 10 / 16 x P 2 P 3 = 10 x 10 x 10 / (12 x 15 x 16) P 0

20 Beispiel: Webserver P K berechnen Die Summe der Zeitanteile (Wahrscheinlichkeiten) aller möglichen Zustände ist gleich 1 P 0 + P 1 + P 2 + P 3 = 1 Nun werden die vorher berechneten Werte von P 1, P 2, P 3 in diese Gleichung eingesetzt k P K 0 0, , , ,127

21 Beispiel: Webserver Antworten Frage 1: Wie hoch ist die Wahrscheinlichkeit, dass eine eintreffende Anfrage abgelehnt wird? Antwort: P 3 = 0,127 Frage 2: Wie hoch ist die durchschnittl. Anzahl von Anfragen im Webserver? Antwort: n Anfragen = 1 x 0, x 0, x 0,127 = 1,092 [Anfragen]

22 Beispiel: Webserver Antworten Frage 3: Wie hoch ist der durchschnittliche Durchsatz des Webservers? Antwort: X = 12 x 0, x 0, x 0,127 = 8,737 [Anfragen pro Sekunde] Frage 4: Wie lange ist die durchschnittliche Zeit, die eine HTTP Anfrage im Webserver verbringt?

23 Beispiel: Web Server Antworten Web Server X = 8,737 N = n Anfragen = 1,092 N A X A =? Bekannt sind N = n Anfragen und X. Daraus folgt A = N / X = 1,092 / 8,737 = 0,125 [Sekunden]

24 Verallgemeinerung des Beispiels Modellierungsvorgang Zustände des Systems festlegen/bestimmen Numerieren der Zustände: Zustandsvektor Übergangsraten festlegen Gleichungen mit Hilfe des operativen Gleichgewichts aufstellen Gleichungssystem lösen: stationäre Verteilung P k Auf Leistungsmetriken schließen

25 Systemmodelle Typen

26 Typen von Systemmodellen Bevölkerungsgröße Unendlich (Internet) oder endlich Servicerate Fix oder variabel Maximale Größe der Warteschlange Unbegrenzt: keine Ablehnung Begrenzt: Verwerfung, wenn bereits W Anfragen in der Warteschlange sind

27 Leistungsmodell Unendliche Bevölkerung

28 (A) Unbegrenzte Warteschlange Unendliche Bevölkerung # der Clients wird als unendlich angenommen Ankunftsrate hängt nicht von der Anzahl der Anfragen im System ab z.b. Anfragen, die vom Internet zu einem öffentlichen Webserver gelangen Birth Ankunftsrate Anfragen/s SERVER Birth-Death Prozess Death ausgeführte Anfragen

29 Unbegrenzte Warteschlange λ λ λ λ λ k μ μ μ μ μ Eingabefluss = Ausgabefluss μ P 1 = μ P 2 = μ P k = λ P 0 λ P 1 λ P k-1 P 1 = λ / μ P 0 P 2 = (λ / μ) 2 P 0 P k = (λ / μ) k P 0 Σ i P i = 1

30 Lösung 0, 1,2,... k k k P P k P j j 0 P k = Zeitanteil, wo sich k Anfragen im Server befinden wobei

31 Beispiel: Unendliche Bevölkerung unbegrenzte Warteschlange Ein DB Server erhält 30 Anfragen pro Sek. Eine Anfrage wird in 0,02 Sek. verarbeitet Zu untersuchen: Wie ist die durchschnittl. Aufenthaltszeit der Anfragen im DB Server? Wie ist die durchschnittliche Antwortzeit bei gegebenem DB Server wenn der Server doppelt so schnell ist wenn der Server doppelt so schnell ist und doppelt soviele Anfragen eintreffen

32 (B) Begrenzte Warteschlange λ λ λ λ W μ μ μ μ Erreichen Anfragen den Server im Zustand W, so werden sie verworfen.

33 Lösung 0, 1,2,..., k k k P P k W 1 W 1 1 W 1 W 1 j j P P k = Zeitanteil, wo sich k Anfragen im Server befinden wobei

34 Beispiel: Unendliche Bevölkerung begrenzte Warteschlange Ein DB Server erhält 30 Anfragen pro Sek. Eine Anfrage wird in 0,02 Sek. verarbeitet Die Warteschlange umfaßt höchstens 4 Anfragen Zu untersuchen: Wie ist die durchschnittl. Aufenthaltszeit der Anfragen im DB Server? Wie ist die durchschnittliche Antwortzeit im gegebenen DB Server wenn der Server doppelt so schnell ist wenn der Server doppelt so schnell ist und doppelt so viele Anfragen kommen

35 Verallgemeinerung (variable Service-/Ankunftsrate) λ 0 λ 1 λ 2 λ μ 1 μ 2 μ 3 μ 4 Wieder mithilfe des operativen Gleichgewichts Eingabefluss = Ausgabefluss gelöst

36 Lösung der Verallgemeinerung P k = Zeitanteil, wo sich k Anfragen im Server befinden wobei k 1 P j k j0 j1 P 0 k1 P k1 j0 j1 j 0 1

37 Lösung der Verallgemeinerung 0 1 U P Serverauslastung: 1 k k k X P ø Durchsatz: 1 1 k k k k k k P N A X P ø Anzahl an Anfragen im Server: 1 k k N k P ø Aufenthaltszeit im Server:

38 Variable Servicerate Der Durchsatz hängt von der Anzahl an zu bearbeitenden Anfragen ab Durchsatz Lineare Steigung Saturierung Geringe Arbeitslast (kein Stau ) Hohe Arbeitslast Anfragen im System

39 Beispiel Angabe: Ein Webserver erhält 30 Anfragen pro Sek. Die Warteschlange ist mit 5 Anfragen begrenzt Der Durchsatz ist gegeben durch: Fragen: #Anfragen Durchsatz [Anfragen/Sek.] oder mehr 50 Wie hoch ist die Auslastung? Der ø Durchsatz? Die ø Anzahl an Anfragen? Die ø Antwortzeit? Der Anteil an abgelehnten Anfragen?

40 Resultate Lösungsformeln der Verallgemeinerung (variable Servicerate Menasce, S. 337) Bei der Berechnung von P 0 wird eine endliche Summe berechnet (max. Warteschlange = 5) Durchschnittliche Anzahl an Anfragen 1,85 Server Auslastung (1 P 0 ) x 100 = 82,7% Durchschnittlicher Durchsatz 28,4 Anfragen pro Sekunde Anteil an verworfenen Anfragen P 5 = 0,05343 Aus Little s Law erhält man ø Antwortzeit = ø Anzahl an Anfragen / ø Durchsatz = 1,85 / 28,4 = 0,065 Sekunden

41 Variation der Warteschlangengröße Ziel: Wie verhalten sich die Parameter, wenn man die Größe der Warteschlange verändert? Max. Warteschlangengröße Durchschnittliche Anzahl an Anfragen 1,433 1,85 2,212 2,264 Server Auslastung 79,81% 82,7% 83,9% 83,96% Durchschnittl.Durchsatz (Anfragen/s) 24,8 28,4 29,9 30 Anteil an verworfenen Anfragen 0, , ,0039 0,0003 Durchschnittliche Antwortzeit (s) 0,058 0,065 0,074 0,075

42 Variation der Warteschlangengröße Wie verhält sich der Anteil verworfener Anfragen in Bezug auf die Warteschlangengröße? Anteil verworfener Anfragen 0,2 0,15 0,1 0,05 Warteschlangengröße

43 Leistungsmodell Endliche Bevölkerung

44 Endliche Bevölkerung Anzahl der Clients ist beschränkt Die Ankunftsrate der Anfragen ist daher von der Anzahl der bereits angekommenen Anfragen abhängig z.b.: Intranet Webserver mit einer bekannten Anzahl an Clients

45 Endliche Bevölkerung Endliche Bevölkerung 1 2 SERVER Verarbeitete Anfragen M Mehr später

46 Zusammenfassung Arten von Modellen auf Systemebene Bevölkerung Service-/Ankrate Warteschlange unendlich fix unbegrenzt unendlich fix begrenzt unendlich variabel unbegrenzt unendlich variabel begrenzt endlich fix unbegr./ begrenzt endlich variabel unbegr./ begrenzt

47 Zusammenfassung Modelle auf Systemebene fassen einen Server/Netzwerk als eine black box auf. Nur die Ankunftsrate und der Durchsatz dieser black box sind relevant. Verwendung von Übergangswahrscheinlichkeiten für die Berechnung des Zeitanteils, in welchem sich genau k Anfragen im System befinden. Man setzt Eingabefluss = Ausgabefluss (operatives Gleichgewicht). Die Aufenthaltszeit/Antwortzeit läßt sich mithilfe von Little s Law berechnen. SysMod.xls von

Vernetzte Systeme. Übungsstunde Adrian Schüpbach 09. Juni 2006

Vernetzte Systeme. Übungsstunde Adrian Schüpbach 09. Juni 2006 Vernetzte Systeme Übungsstunde 09.06.2006 Adrian Schüpbach scadrian@student.ethz.ch 09. Juni 2006 Adrian Schüpbach (ETH Zürich) Vernetzte Systeme SS 2006 1 / 28 Übersicht 1 TCP-Zustandsdiagramm 2 Proxy

Mehr

3. Prozesse mit kontinuierlicher Zeit

3. Prozesse mit kontinuierlicher Zeit 3. Prozesse mit kontinuierlicher Zeit 3.1 Einführung Wir betrachten nun Markov-Ketten (X(t)) t R +. 0 Wie beim Übergang von der geometrischen zur Exponentialverteilung können wir uns auch hier einen Grenzprozess

Mehr

Probeklausur zur Vorlesung Statistik II für Studierende der Soziologie und Nebenfachstudierende

Probeklausur zur Vorlesung Statistik II für Studierende der Soziologie und Nebenfachstudierende Probeklausur zur Vorlesung Statistik II für Studierende der Soziologie und Nebenfachstudierende im Sommersemester 2012 Prof. Dr. H. Küchenhoff, J. Brandt, G. Schollmeyer, G. Walter Aufgabe 1 Betrachten

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Wiederholung Eine Menge von Vektoren a 1, a 2,, a k heisst linear unabhängig, wenn eine Linearkombination c 1 a 1 + c 2 a 2 + + c k a k = k c i a i (1) i=1 nur dann Null sein

Mehr

Kombinatorik BEISPIEL: WIE VIELE MÖGLICHKEITEN GIBT ES, EINE DREISTELLIGE ZAHL MIT DEN ZIFFERN 3

Kombinatorik BEISPIEL: WIE VIELE MÖGLICHKEITEN GIBT ES, EINE DREISTELLIGE ZAHL MIT DEN ZIFFERN 3 Kombinatorik Die Kombinatorik beschäftigt sich damit, verschiedene mögliche Auswahlen und Anordnungen von Elementen aus endlichen Mengen zu untersuchen. Insbesondere wird die Anzahl dieser berechnet. BEISPIEL:

Mehr

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren

(a) Zunächst benötigen wir zwei Richtungsvektoren der Ebene E; diese sind zum Beispiel gegeben durch die Vektoren Aufgabe Gegeben seien die Punkte A(,,, B(,,, C(,,. (a Geben Sie die Hesse-Normalform der Ebene E, welche die drei Punkte A, B und C enthält, an. (b Bestimmen Sie den Abstand des Punktes P (,, 5 zur Ebene

Mehr

Kapitel 12: Markov-Ketten

Kapitel 12: Markov-Ketten Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse 21.01.2016 Kapitel 12: Markov-Ketten Ab jetzt betrachten wir stochastische Prozesse (X n ) n N0 mit 1. diskreter Zeit N 0 = {0,1,2,...},

Mehr

Zeigen Sie mittles vollständiger Induktion, dass für jede natürliche Zahl n 1 gilt: n (2k 1) = n 2.

Zeigen Sie mittles vollständiger Induktion, dass für jede natürliche Zahl n 1 gilt: n (2k 1) = n 2. Aufgabe 1. (5 Punkte) Zeigen Sie mittles vollständiger Induktion, dass für jede natürliche Zahl n 1 gilt: n k=1 (2k 1) = n 2. Aufgabe 2. (7 Punkte) Gegeben sei das lineare Gleichungssystem x + 2z = 0 ay

Mehr

Lineare Algebra und analytische Geometrie

Lineare Algebra und analytische Geometrie TI voyage 200 Kompaktwissen Lineare Algebra und analytische Geometrie Eine kleine Hilfe für Schüler der DSB Seite 2 TI voyage 200 Kompaktwissen Algebra/Geometrie Diese Anleitung soll helfen, Aufgaben aus

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. ausmultiplizieren. Anwenden von Potenzgesetzen, Wurzelgesetzen, Logarithmengesetzen

Corinne Schenka Vorkurs Mathematik WiSe 2012/13. ausmultiplizieren. Anwenden von Potenzgesetzen, Wurzelgesetzen, Logarithmengesetzen 3. Algebraische Grundlagen 3.1. Termumformungen Begriff Term: mathematischer Ausdruck, der aus Zahlen, Variablen, Rechenzeichen oder Klammern besteht Termumformungen dienen der Vereinfachung von komplexen

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik 00 Baden-Württemberg (ohne CAS) Haupttermin Pflichtteil - Aufgaben Aufgabe : ( VP) Bilden Sie die Ableitung der Funktion f mit Aufgabe : ( VP) f() e =. Bestimmen Sie eine Stammfunktion

Mehr

Lineare Gleichungssysteme mit zwei Unbekannten

Lineare Gleichungssysteme mit zwei Unbekannten Lineare Gleichungssysteme mit zwei Unbekannten Wie beginnen mit einem Beispiel: Gesucht ist die Lösung des folgenden Gleichungssystems: (I) 2x y = 4 (II) x + y = 5 Hier stehen eine Reihe von Verfahren

Mehr

Satz 90 Sei A = (Q, Σ, δ, q 0, F ) ein DFA. Der Zeitaufwand des obigen Minimalisierungsalgorithmus ist O( Q 2 Σ ).

Satz 90 Sei A = (Q, Σ, δ, q 0, F ) ein DFA. Der Zeitaufwand des obigen Minimalisierungsalgorithmus ist O( Q 2 Σ ). Satz 90 Sei A = (Q, Σ, δ, q 0, F ) ein DFA. Der Zeitaufwand des obigen Minimalisierungsalgorithmus ist O( Q 2 Σ ). Beweis: Für jedes a Σ muss jede Position in der Tabelle nur konstant oft besucht werden.

Mehr

Lösen einer Gleichung

Lösen einer Gleichung Zum Lösen von Gleichungen benötigen wir: mindestens einen Term eine Definition der in Frage kommenden Lösungen (Grundmenge) Die Grundmenge G enthält all jene Zahlen, die als Lösung für eine Gleichung in

Mehr

Der Trainer einer Fußballmannschaft stellt die Spieler seiner Mannschaft auf. Insgesamt besteht der Kader seiner Mannschaft aus 23 Spielern.

Der Trainer einer Fußballmannschaft stellt die Spieler seiner Mannschaft auf. Insgesamt besteht der Kader seiner Mannschaft aus 23 Spielern. Aufgabe 1 (2 + 1 + 2 + 2 Punkte) Der Trainer einer Fußballmannschaft stellt die Spieler seiner Mannschaft auf. Insgesamt besteht der Kader seiner Mannschaft aus 23 Spielern. a) Wieviele Möglichkeiten hat

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Binomialverteilung und Bernoulli- Experiment

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Binomialverteilung und Bernoulli- Experiment Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Binomialverteilung und Bernoulli- Experiment Das komplette Material finden Sie hier: Download bei School-Scout.de TOSSNET Der persönliche

Mehr

Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse

Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse Folie zur Vorlesung Wahrscheinlichkeitsrechnung und Stoch. Prozesse Zu Markov-Prozessen: Bemerkungen: 17.01.2013 Wir betrachten im Folgenden eine Markovkette (X n ) n N0, wobei jedes X n Werte in Z = {0,1,2,...,s}

Mehr

Berufsreifeprüfung Mathematik Lehrplan laut Berufsreifeprüfungscurriculaverordnung Volkshochschule Floridsdorf Sommertermin 2013

Berufsreifeprüfung Mathematik Lehrplan laut Berufsreifeprüfungscurriculaverordnung Volkshochschule Floridsdorf Sommertermin 2013 BRP Mathematik VHS Floridsdorf 15.6.2013 Seite 1/6 Gruppe A Berufsreifeprüfung Mathematik Lehrplan laut Berufsreifeprüfungscurriculaverordnung Volkshochschule Floridsdorf Sommertermin 2013 Notenschlüssel:

Mehr

Kapitel I. Lineare Gleichungssysteme

Kapitel I. Lineare Gleichungssysteme Kapitel I Lineare Gleichungsssteme Lineare Gleichungen in zwei Unbestimmten Die Grundaufgabe der linearen Algebra ist das Lösen von linearen Gleichungssstemen Beispiel : Gesucht sind alle Lösungen des

Mehr

Von der Zählweise beim Tennis

Von der Zählweise beim Tennis Von der Zählweise beim Tennis Die meisten Menschen haben im Fernsehen schon einmal die Übertragung eines Tennis-Matches verfolgt. Die Spannung, wenn wenige Punkte über Sieg oder Niederlage entscheiden,

Mehr

Fahrzeugfolgemodelle I

Fahrzeugfolgemodelle I Christoph Berkholz Eckart Stets SE Verkehrssimulation und Optimierung, 29.10.2008 Es gibt kein einheitliches Verkehrsmodell. Dafür aber viele Ansätze. Heute: klassische mikroskopische Fahrzeugfolgemodelle,

Mehr

Ü b u n g s b l a t t 15

Ü b u n g s b l a t t 15 Einführung in die Stochastik Sommersemester 07 Dr. Walter Oevel 2. 7. 2007 Ü b u n g s b l a t t 15 Hier ist zusätzliches Übungsmaterial zur Klausurvorbereitung quer durch die Inhalte der Vorlesung. Eine

Mehr

4 Effizienz und Komplexität 3.1 1

4 Effizienz und Komplexität 3.1 1 4 Effizienz und Komplexität 3.1 1 Effizienz (efficiency): auf den Ressourcen-Verbrauch bezogene Programmeigenschaft: hohe Effizienz bedeutet geringen Aufwand an Ressourcen. Typische Beispiele: Speichereffizienz

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 0.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

Übung 4. SS 2013 Übung - Einführung in die Verbrennung - Methling, Özuylasi 1

Übung 4. SS 2013 Übung - Einführung in die Verbrennung - Methling, Özuylasi 1 Ziel: Grundlagen der chemischen Reaktionskinetik verstehen Verstehen qualitativer Reaktionsverläufe Aufstellung des Zeitgesetzes Umgang mit nicht reagierenden Stoßpartner (M) Berechnung Geschwindigkeitskoeffizient

Mehr

Übungsaufgaben zur Linearen Funktion

Übungsaufgaben zur Linearen Funktion Übungsaufgaben zur Linearen Funktion Aufgabe 1 Bestimmen Sie den Schnittpunkt der beiden Geraden mit den Funktionsgleichungen f 1 (x) = 3x + 7 und f (x) = x 13! Aufgabe Bestimmen Sie den Schnittpunkt der

Mehr

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst.

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst. Aufgabe 1 (2 + 4 + 2 + 1 Punkte) Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen X und Y : { 2x + 2y für 0.5 x 0.5, 1 y 2 f(x, y) = 3 0 sonst. a) Berechnen

Mehr

Zentralübung Diskrete Wahrscheinlichkeitstheorie (zur Vorlesung Prof. Esparza)

Zentralübung Diskrete Wahrscheinlichkeitstheorie (zur Vorlesung Prof. Esparza) SS 2013 Zentralübung Diskrete Wahrscheinlichkeitstheorie (zur Vorlesung Prof. Esparza) Dr. Werner Meixner Fakultät für Informatik TU München http://www14.in.tum.de/lehre/2013ss/dwt/uebung/ 10. Mai 2013

Mehr

Klausurenkurs zum Staatsexamen (WS 2014/15): Lineare Algebra und analytische Geometrie 1

Klausurenkurs zum Staatsexamen (WS 2014/15): Lineare Algebra und analytische Geometrie 1 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 204/5): Lineare Algebra und analytische Geometrie. (Herbst 2005, Thema, Aufgabe ) Bestimmen Sie alle reellen Lösungen des folgenden linearen Gleichungssystems:.2

Mehr

0.1 GPS und Verwandte

0.1 GPS und Verwandte 0.1 GPS und Verwandte 0.1.1 2D Die eigenen (zu ermittelnden) Koordinaten seien x und y. Zwei Signale gehen von dem Ort (x, y) mit den Geschwindigkeiten v 1 und v 2 zum Zeitpunkt t 1 und t 2 aus. An den

Mehr

Dämpfung in der Quantenmechanik: Quanten-Langevin-Gleichung Seminar Quantenoptik und nichtlineare Optik Vortrag von Christian Cop

Dämpfung in der Quantenmechanik: Quanten-Langevin-Gleichung Seminar Quantenoptik und nichtlineare Optik Vortrag von Christian Cop Dämpfung in der Quantenmechanik: Quanten-Langevin-Gleichung Seminar Quantenoptik und nichtlineare Optik Vortrag von Christian Cop 2. Februar 2011 Prof. Dr. Halfmann, Prof. Dr. Walser Quantenoptik und nichtlineare

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Fakultät Grundlagen Juli 2015 Fakultät Grundlagen Übersicht Lineare Gleichungssystem mit 2 Variablen 1 Lineare Gleichungssystem mit 2 Variablen Beispiele 2 Fakultät Grundlagen Folie: 2 Beispiel I Lineare

Mehr

Wirtschaftsmathematik-Klausur vom 03.07.2014 und Finanzmathematik-Klausur vom 11.07.2014 und

Wirtschaftsmathematik-Klausur vom 03.07.2014 und Finanzmathematik-Klausur vom 11.07.2014 und Wirtschaftsmathematik-Klausur vom 03.07.2014 und Finanzmathematik-Klausur vom 11.07.2014 und Bearbeitungszeit: W-Mathe 60 Minuten, F-Mathe 45 Minuten Aufgabe 1 a) Gegeben ist das folgende Gleichungssystem:

Mehr

DWT 2.3 Ankunftswahrscheinlichkeiten und Übergangszeiten 400/467 Ernst W. Mayr

DWT 2.3 Ankunftswahrscheinlichkeiten und Übergangszeiten 400/467 Ernst W. Mayr 2. Ankunftswahrscheinlichkeiten und Übergangszeiten Bei der Analyse von Markov-Ketten treten oftmals Fragestellungen auf, die sich auf zwei bestimmte Zustände i und j beziehen: Wie wahrscheinlich ist es,

Mehr

M 10.1. Kreissektoren und Bogenmaß

M 10.1. Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß Wie berechnet man in einem Kreis mit Radius die Länge des Kreisbogens für einen Kreissektor mit Mittelpunktswinkel? Wie berechnet man in einem Kreis mit Radius den Flächeninhalt

Mehr

M 10.1. Kreissektoren und Bogenmaß

M 10.1. Kreissektoren und Bogenmaß M 10.1 Kreissektoren und Bogenmaß Wie berechnet man in einem Kreis mit Radius die Länge des Kreisbogens für einen Kreissektor mit Mittelpunktswinkel? Wie berechnet man in einem Kreis mit Radius den Flächeninhalt

Mehr

Konfidenzintervall für den Anteilswert θ. Konfidenzintervalle. Jost Reinecke. Universität Bielefeld. 13. Juni 2005

Konfidenzintervall für den Anteilswert θ. Konfidenzintervalle. Jost Reinecke. Universität Bielefeld. 13. Juni 2005 Universität Bielefeld 13. Juni 2005 Einführung Einführung Wie kann die Kenntnis der Wahrscheinlichkeitsverteilung der Parameter einer Stichprobe dazu verhelfen auf die wahren Werte der Grundgesamtheit

Mehr

durch Ratengleichungen der Form t t = F 2 N 1 t, N 2 t d N 1 t

durch Ratengleichungen der Form t t = F 2 N 1 t, N 2 t d N 1 t 5. Wechselwirkungen zwischen verschiedenen Spezies Allgemein kann man die zeitliche Entwicklung zweier Spezies N 1 und N 2 durch Ratengleichungen der Form d N 1 t d N 2 t = F 1 N 1 t, N 2 t, t = F 2 N

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG KLAUSUR ZUR LINEAREN ALGEBRA I Wiederholungsprüfung MUSTERLÖSUNG. April 2008 Name: Studiengang: Aufgabe 2 3 4 5 6 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter

Mehr

QueueTraffic und Warteschlangen

QueueTraffic und Warteschlangen QueueTraffic und Warteschlangen + Warteschlangen im Alltag Du bist sicher schon einmal in einer Warteschlange gestanden. Wo? Worin unterscheiden sie sich? Bei Skiliften, Ticketautomaten, Kassen, beim Arzt,

Mehr

Abitur - Übung 1 Glege 9/11

Abitur - Übung 1 Glege 9/11 Abitur - Übung 1 Glege 9/11 Aufgabe 1.1) ganz-rationale Funktion 1.1.a) Bestimmen Sie eine ganz-rationale Funktion 3.Grades, deren Graph bei =4 die -Achse berührt und an deren Punkt (2/f(2)) die Tangente

Mehr

Kenngrößen von Zufallsvariablen

Kenngrößen von Zufallsvariablen Kenngrößen von Zufallsvariablen Die Wahrscheinlichkeitsverteilung kann durch die sogenannten Kenngrößen beschrieben werden, sie charakterisieren sozusagen die Verteilung. Der Erwartungswert Der Erwartungswert

Mehr

Rechnen mit Vektoren, analytische Geometrie

Rechnen mit Vektoren, analytische Geometrie Dr. Alfred Eisler Rechnen mit Vektoren, analytische Geometrie Themenbereich Vektorrechnung, analytische Geometrie Inhalte Eingabe von Vektoren Rechnen mit Vektoren Normalvektoren im R 2 Vektorielles Produkt

Mehr

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 1

Klausurenkurs zum Staatsexamen (WS 2016/17): Lineare Algebra und analytische Geometrie 1 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 206/7): Lineare Algebra und analytische Geometrie. (Herbst 2005, Thema, Aufgabe ) Bestimmen Sie alle reellen Lösungen des folgenden linearen Gleichungssystems:.2

Mehr

Rechnen mit rationalen Zahlen

Rechnen mit rationalen Zahlen Rechnen mit rationalen Zahlen a ist die Gegenzahl von a und ( a) a Subtraktionsregel: Statt eine rationale Zahl zu subtrahieren, addiert man ihre Gegenzahl. ( 8) ( ) ( 8) + ( + ) 8 + 7, (,6) 7, + ( +,6)

Mehr

Statistik für Betriebswirte I 1. Klausur Wintersemester 2014/

Statistik für Betriebswirte I 1. Klausur Wintersemester 2014/ Statistik für Betriebswirte I 1. Klausur Wintersemester 2014/2015 13.02.2015 BITTE LESERLICH IN DRUCKBUCHSTABEN AUSFÜLLEN Nachname:................................................................... Vorname:....................................................................

Mehr

Diese Fragen sollten Sie auch ohne Skript beantworten können: Was beschreibt der Differenzenquotient? Wie kann man sich die Steigung im vorstellen? Wa

Diese Fragen sollten Sie auch ohne Skript beantworten können: Was beschreibt der Differenzenquotient? Wie kann man sich die Steigung im vorstellen? Wa 103 Diese Fragen sollten Sie auch ohne Skript beantworten können: Was beschreibt der Differenzenquotient? Wie kann man sich die Steigung im vorstellen? Was bedeutet das für die Ableitungen? Was ist eine

Mehr

So berechnen Sie einen Schätzer für einen Punkt

So berechnen Sie einen Schätzer für einen Punkt htw saar 1 EINFÜHRUNG IN DIE STATISTIK: SCHÄTZEN UND TESTEN htw saar 2 Schätzen: Einführung Ziel der Statistik ist es, aus den Beobachtungen eines Merkmales in einer Stichprobe Rückschlüsse über die Verteilung

Mehr

Kurzzusammenstellung der in der Vorlesung behandelten impliziten Gleichungen und deren Ableitungen

Kurzzusammenstellung der in der Vorlesung behandelten impliziten Gleichungen und deren Ableitungen Kurzzusammenstellung der in der Vorlesung behandelten impliziten Gleichungen und deren Ableitungen Einleitung: Funktion mit einer Veränderlichen Als Einleitung haben wir folgende Funktion besprochen: y

Mehr

QM III Normalverteilung Aufgabe 10.1 Die Lebensdauer (in Jahren) von KFZ-Batterien des Typs

QM III Normalverteilung Aufgabe 10.1 Die Lebensdauer (in Jahren) von KFZ-Batterien des Typs Technische Hochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 1, Tel 3914 jutta.arrenberg@th-koeln.de QM III Normalverteilung Aufgabe 10.1 Die Lebensdauer (in Jahren)

Mehr

Bayessches Lernen Aufgaben

Bayessches Lernen Aufgaben Bayessches Lernen Aufgaben martin.loesch@kit.edu (0721) 608 45944 Aufgabe 1: Autodiebstahl-Beispiel Wie würde man ein NB-Klassifikator für folgenden Datensatz aufstellen? # Color Type Origin Stolen? 1

Mehr

Schreiben Sie unbedingt auf, was Ihre Unbekannte bedeutet! Seien Sie dabei so präzis wie möglich, geben Sie die Einheiten für die Unbekannte an.

Schreiben Sie unbedingt auf, was Ihre Unbekannte bedeutet! Seien Sie dabei so präzis wie möglich, geben Sie die Einheiten für die Unbekannte an. 10 10.1 Einleitung zum Thema Feststellung Viele Lernenden haben Probleme beim Lösen von. Die Erfahrung zeigt, dass oft falsch angepackt werden. Wird das Problem unsystematisch angepackt, so erscheint der

Mehr

Wirtschaftsstatistik Normalverteilung

Wirtschaftsstatistik Normalverteilung Fachhochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 1, Tel 39 14 jutta.arrenberg@fh-koeln.de Wirtschaftsstatistik Normalverteilung Aufgabe 10.1 Die Lebensdauer

Mehr

Zusammenfassung Vektorrechnung und Komplexe Zahlen

Zusammenfassung Vektorrechnung und Komplexe Zahlen Zusammenfassung Vektorrechnung und Komplexe Zahlen Michael Goerz 8. April 006 Inhalt Vektoren, Geraden und Ebenen. Länge eines Vektors.......................... Skalarprodukt..............................

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

Anhang B. Regression

Anhang B. Regression Anhang B Regression Dieser Anhang rekapituliert die in der Analysis und Statistik wohlbekannte Methode der kleinsten Quadrate, auch Regression genannt, zur Bestimmung von Ausgleichsgeraden Regressionsgeraden

Mehr

2. Rechnen mit Wahrscheinlichkeiten

2. Rechnen mit Wahrscheinlichkeiten 2. Rechnen mit Wahrscheinlichkeiten 2.1 Axiome der Wahrscheinlichkeitsrechnung Die Wahrscheinlichkeitsrechnung ist ein Teilgebiet der Mathematik. Es ist üblich, an den Anfang einer mathematischen Theorie

Mehr

Literatur zu Kapitel 4 der Vorlesung. Diskrete Ereignissysteme, Kapitel 4. Stochastische Prozesse. Weitere Literatur

Literatur zu Kapitel 4 der Vorlesung. Diskrete Ereignissysteme, Kapitel 4. Stochastische Prozesse. Weitere Literatur Diskrete Ereignissysteme, Kapitel 4 Literatur zu Kapitel 4 der Vorlesung 4. Stochastische diskrete Ereignissysteme 4.1 Grundbegriffe der Wahrscheinlichkeitsrechnung 4.2 Stochastische Prozesse in diskreter

Mehr

Pr[X t+1 = k] = Pr[X t+1 = k X t = i] Pr[X t = i], also. (q t+1 ) k = p ik (q t ) i, bzw. in Matrixschreibweise. q t+1 = q t P.

Pr[X t+1 = k] = Pr[X t+1 = k X t = i] Pr[X t = i], also. (q t+1 ) k = p ik (q t ) i, bzw. in Matrixschreibweise. q t+1 = q t P. 2.2 Berechnung von Übergangswahrscheinlichkeiten Wir beschreiben die Situation zum Zeitpunkt t durch einen Zustandsvektor q t (den wir als Zeilenvektor schreiben). Die i-te Komponente (q t ) i bezeichnet

Mehr

[FREIER FALL MIT UND OHNE LUFTWIDERSTAND] 10. Oktober 2010

[FREIER FALL MIT UND OHNE LUFTWIDERSTAND] 10. Oktober 2010 Inhalt Freier Fall ohne Luftwiderstand... 1 Herleitung des Luftwiderstandes... 3 Freier Fall mit Luftwiderstand... 4 Quellen... 9 Lässt man einen Körper aus einer bestimmt Höhe runter fallen, so wird er

Mehr

Lineare Gleichungen mit 2 Variablen

Lineare Gleichungen mit 2 Variablen Lineare Gleichungen mit 2 Variablen Lineare Gleichungen mit 2 Variablen sind sehr eng verwandt mit linearen Funktionen. Die Funktionsgleichung einer linearen Funktion f(x) = m x+q m: Steigung, q: y Achsenabschnitt

Mehr

Multivariate Analysis

Multivariate Analysis Kapitel Multivariate Analysis Josef Leydold c 6 Mathematische Methoden I Multivariate Analysis / 38 Lernziele Funktionen in mehreren Variablen Graph und Niveaulinien einer Funktion in zwei Variablen Partielle

Mehr

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19 Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, 2016 6:34 P.M. Page 11 Inhaltsverzeichnis Über die Übersetzerin 9 Einleitung 19 Was Sie hier finden werden 19 Wie dieses Arbeitsbuch aufgebaut ist

Mehr

Physik & Musik. Schallgeschwindigkeit. 1 Auftrag

Physik & Musik. Schallgeschwindigkeit. 1 Auftrag Physik & Musik 7 Schallgeschwindigkeit 1 Auftrag Physik & Musik Schallgeschwindigkeit Seite 1 Schallgeschwindigkeit Bearbeitungszeit: 30 Minuten Sozialform: Einzel- oder Partnerarbeit Einleitung Haben

Mehr

Eine kurze Methode, Summen unendlicher Reihen durch Differentialformeln zu untersuchen

Eine kurze Methode, Summen unendlicher Reihen durch Differentialformeln zu untersuchen Eine kurze Methode, Summen unendlicher Reihen durch Differentialformeln zu untersuchen Leonhard Euler Auch wenn ich diesen Gegenstand schon des Öfteren betrachtet habe, sind die meisten Dinge, die sich

Mehr

Messung von Rendite und Risiko. Finanzwirtschaft I 5. Semester

Messung von Rendite und Risiko. Finanzwirtschaft I 5. Semester Messung von Rendite und Risiko Finanzwirtschaft I 5. Semester 1 Messung von Renditen Ergebnis der Anwendung der Internen Zinsfuß- Methode ist die Rentabilität des Projekts. Beispiel: A0-100.000 ZÜ1 54.000

Mehr

Kaufmännische Berufsmatura 2012

Kaufmännische Berufsmatura 2012 Kaufmännische Berufsmatura 0 Serie : Lösungen Serie - Lösungen Prüfungsdauer: Max. zahl: 50 Minuten 00 Bewertungshinweise: Mehrfachlösungen sind nicht gestattet. Als Resultate gelten nur eindeutig gekennzeichnete

Mehr

Kosten- und Leistungsrechnung Relative Deckungsbeitragsrechnung

Kosten- und Leistungsrechnung Relative Deckungsbeitragsrechnung Teil I: Relativer ohne Berücksichtigung von Mindestproduktionsmengen Aufgabe I.01 Ein Unternehmen stellt drei Produkte her, für die die folgenden Angaben gelten: Produkt A B C / Stück 400,00 300,00 350,00

Mehr

PFLICHTTEIL FRANZ LEMMERMEYER

PFLICHTTEIL FRANZ LEMMERMEYER PFLICHTTEIL FRANZ LEMMERMEYER ( Bestimmen Sie die erste Ableitung der Funktion f(x mit f(x = (3x x + und Vereinfachen Sie so weit wie möglich. ( Bestimmen Sie diejenige Stammfunktion F (x von ( π f(x =

Mehr

Demoseiten für

Demoseiten für Lineare Ungleichungen mit Variablen Anwendung (Vorübungen für das Thema Lineare Optimierung) Datei Nr. 90 bzw. 500 Stand 0. Dezember 009 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 90 / 500 Lineare Ungleichungen

Mehr

Statistisches Testen

Statistisches Testen Statistisches Testen Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Differenzen Anteilswert Chi-Quadrat Tests Gleichheit von Varianzen Prinzip des Statistischen Tests Konfidenzintervall

Mehr

Klausur Statistik Lösungshinweise

Klausur Statistik Lösungshinweise Klausur Statistik Lösungshinweise Prüfungsdatum: 13. Januar 2017 Prüfer: Etschberger, Jansen, Ivanov, Wins Studiengang: IM, BW, Inf und W-Inf Punkte: 21, 18, 12, 12, 11, 16 ; Summe der Punkte: 90 Aufgabe

Mehr

) (1 BE) 1 2 ln 2. und somit

) (1 BE) 1 2 ln 2. und somit 1 Aufgaben aus dem Aufgabenpool 1 1.1 Analysis A1_1 Eine Funktion f ist durch 1 x f(x) e 1, x IR, gegeben. Ermitteln Sie die Nullstelle der Funktion f. ( ) b) Die Tangente an den Graphen von f im Punkt

Mehr

Statistik I für Betriebswirte Vorlesung 3

Statistik I für Betriebswirte Vorlesung 3 Statistik I für Betriebswirte Vorlesung 3 Dr. Andreas Wünsche TU Bergakademie Freiberg Institut für Stochastik 15. April 2019 Dr. Andreas Wünsche Statistik I für Betriebswirte Vorlesung 3 Version: 1. April

Mehr

Grundwissen. 2.Aufstellen von Geradengleichungen: Man nimmt einen Startvektor und bildet aus 2 Punkten einen Richtungsvektor!

Grundwissen. 2.Aufstellen von Geradengleichungen: Man nimmt einen Startvektor und bildet aus 2 Punkten einen Richtungsvektor! Grundwissen 1.Aufstellen eines Vektors: Merkregel: Spitze minus Fuß! 2.Aufstellen von Geradengleichungen: Man nimmt einen Startvektor und bildet aus 2 Punkten einen Richtungsvektor! 3.Aufstellen von Ebenengleichungen

Mehr

Bem. Die mittlere Geschwindigkeit hängt i.a. nicht nur von t, sondern auch von t ab.

Bem. Die mittlere Geschwindigkeit hängt i.a. nicht nur von t, sondern auch von t ab. 40 8. Anwendungen der Differentialrechnung Beispiele aus der Phsik: Momentangeschwindigkeit Die Bewegung eines Massenpunktes wird mathematisch durch die zugrundeliegende Weg- Zeitfunktion beschrieben,

Mehr

Analysis I: Übungsblatt 1 Lösungen

Analysis I: Übungsblatt 1 Lösungen Analysis I: Übungsblatt 1 Lösungen Verständnisfragen 1. Was ist Mathematik? Mathematik ist eine Wissenschaft, die selbstgeschaffene, abstrakte Strukturen auf ihre Eigenschaften und Muster hin untersucht.

Mehr

TEIL 13: DIE EINFACHE LINEARE REGRESSION

TEIL 13: DIE EINFACHE LINEARE REGRESSION TEIL 13: DIE EINFACHE LINEARE REGRESSION Die einfache lineare Regression Grundlagen Die einfache lineare Regression ist ebenfalls den bivariaten Verfahren für metrische Daten zuzuordnen 1 Sie hat einen

Mehr

1 Grundprinzipien statistischer Schlußweisen

1 Grundprinzipien statistischer Schlußweisen Grundprinzipien statistischer Schlußweisen - - Grundprinzipien statistischer Schlußweisen Für die Analyse zufallsbehafteter Eingabegrößen und Leistungsparameter in diskreten Systemen durch Computersimulation

Mehr

a 2 (a b)(a + b) h 1 := h, n N h n+1 := h h n. (2) Die Regeln für das Rechnen mit Potenzen übertragen sich dann weitgehend:

a 2 (a b)(a + b) h 1 := h, n N h n+1 := h h n. (2) Die Regeln für das Rechnen mit Potenzen übertragen sich dann weitgehend: 1.1.2 Symbolisches Rechnen Taschenrechner und mathematische Software wie Matlab arbeiten in der Regel numerisch, das heißt das Ergebnis eines Rechenausdrucks zum Beispiel der Form (1 1 4 ) 4 9 wird etwa

Mehr

Prozesse dieser Art sind in der Informatik z.b. bei der Untersuchung der Auslastung von Servern wichtig (Warteschlangenmodelle).

Prozesse dieser Art sind in der Informatik z.b. bei der Untersuchung der Auslastung von Servern wichtig (Warteschlangenmodelle). 77 Markowketten 77 Motivation Der Zustand eines Systems zur Zeit n N werde durch eine Zufallsvariable X n beschrieben und soll nur von X n abhängen (nicht jedoch von früheren Zuständen X n, X n 3, ) Wir

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 7 1 Inhalt der heutigen Übung Statistik und Wahrscheinlichkeitsrechnung Vorrechnen der Hausübung D.9 Gemeinsames Lösen der Übungsaufgaben D.10: Poissonprozess

Mehr

Die Stochastischen Eigenschaften von OLS

Die Stochastischen Eigenschaften von OLS Die Stochastischen Eigenschaften von OLS Das Bivariate Modell Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Wiederholung

Mehr

Wiederholungsklausur zur Veranstaltung Industrielle Produktionssysteme im Sommersemester 2015

Wiederholungsklausur zur Veranstaltung Industrielle Produktionssysteme im Sommersemester 2015 Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Wiederholungsklausur zur Veranstaltung Industrielle Produktionssysteme im Sommersemester

Mehr

Institut für Betriebswirtschaftslehre Service Management: Operations, Strategie und e- Services

Institut für Betriebswirtschaftslehre Service Management: Operations, Strategie und e- Services Service Management: Operations, Strategie und e- Services Prof. Dr. Helmut M. Dietl Übersicht 1. Nachfrageprognose 2. Variabilitätsmanagement und Service-Profit-Chain 3. Servicedesign, Serviceinnovation

Mehr

Nach der Theorie der Partialbruchzerlegung kann der Bruch auf der linken Seite in Teilbrüche zerlegt werden: = + =

Nach der Theorie der Partialbruchzerlegung kann der Bruch auf der linken Seite in Teilbrüche zerlegt werden: = + = ist ( 6.4 Logistisches Wachstum Ein Nachteil des Modells vom beschränkten Wachstum besteht darin, dass für kleine t die Funktion ungefähr linear statt exponentiell wächst. Diese chwäche wird durch das

Mehr

Aufgaben. d) Seien X und Y Poissonverteilt mit Parameter µ, X, Y P(µ). 2. Dann ist die Summe auch Poissonverteilt mit (X + Y ) P(2µ).

Aufgaben. d) Seien X und Y Poissonverteilt mit Parameter µ, X, Y P(µ). 2. Dann ist die Summe auch Poissonverteilt mit (X + Y ) P(2µ). Aufgaben 1. Bei den folgenden 10 Fragen ist jeweils genau eine Antwort richtig. Es gibt pro richtig beantwortete Frage 1 Punkt und pro falsche Antwort 1/2 Punkt Abzug. Minimal erhält man für die gesamte

Mehr

Staatsexamensaufgabe 2001/II,1 Teilaufgabe 3

Staatsexamensaufgabe 2001/II,1 Teilaufgabe 3 Staatsexamensaufgabe 2001/II,1 Teilaufgabe 3 Entwickeln Sie eine Unterrichtseinheit, in der exponentielles und lineares Wachstum gegenübergestellt werden! Sachanalyse Diese finden Sie in einem ausgeführten

Mehr

Teil 1: Grundkompetenzen

Teil 1: Grundkompetenzen Übungsbeispiele für die 1. Schularbeit! Seite 1 von 5 Teil 1: Grundkompetenzen Aufgabe 1 Eine Karte für eine Sommerrodelbahn kostet s Euro. Für Pensionisten kostet die Karte nur ⅔ des Normalpreises, für

Mehr

11 Stochastisches Integral und Itô-Formel

11 Stochastisches Integral und Itô-Formel 11 Stochastisches Integral und Itô-Formel Im diskreten Finanzmodell bei selbstfinanzierender Strategie ϑ = {ϑ n n=,...,n mit Anfangswert V gilt : Ṽ n ϑ = V + n ϑ T j S j. j=1 Dieser diskontierte Wertprozess

Mehr

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 1

Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 1 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 2014): Lineare Algebra und analytische Geometrie 1 1.1 (Herbst 2005, Thema 1, Aufgabe 1) Bestimmen Sie alle reellen Lösungen des folgenden linearen

Mehr

OPERATIONS MANAGEMENT

OPERATIONS MANAGEMENT OPERATIONS MANAGEMENT - Kurzfristige Kapazitätsplanung - Helmut M. Dietl 1 Lernziele Nach dieser Veranstaltung sollten Sie wissen, welcher Trade-off zwischen Warte- und Servicekosten besteht wovon das

Mehr

Service Management: Operations, Strategie und e-services Prof. Dr. Helmut M. Dietl

Service Management: Operations, Strategie und e-services Prof. Dr. Helmut M. Dietl Service Management: Operations, Strategie und e-services Universität Zürich Institut für Strategie und Unternehmensökonomik Services- und Operationsmanagement Übersicht 1. Nachfrageprognose 2. Variabilitätsmanagement

Mehr

Vorlesung HM2 - Master KI Melanie Kaspar, Prof. Dr. B. Grabowski 1

Vorlesung HM2 - Master KI Melanie Kaspar, Prof. Dr. B. Grabowski 1 Melanie Kaspar, Prof. Dr. B. Grabowski 1 Melanie Kaspar, Prof. Dr. B. Grabowski 2 Melanie Kaspar, Prof. Dr. B. Grabowski 3 Markovketten Markovketten sind ein häufig verwendetes Modell zur Beschreibung

Mehr

Biometrieübung 10 Lineare Regression. 2. Abhängigkeit der Körpergröße von der Schuhgröße bei Männern

Biometrieübung 10 Lineare Regression. 2. Abhängigkeit der Körpergröße von der Schuhgröße bei Männern Biometrieübung 10 (lineare Regression) - Aufgabe Biometrieübung 10 Lineare Regression Aufgabe 1. Düngungsversuch In einem Düngeversuch mit k=9 Düngungsstufen x i erhielt man Erträge y i. Im (X, Y)- Koordinatensystem

Mehr

Aufgabe 1 (LGS mit Parameter): Bestimmen Sie die Lösungsmengen des folgenden LGS in Abhängigkeit vom Parameter :

Aufgabe 1 (LGS mit Parameter): Bestimmen Sie die Lösungsmengen des folgenden LGS in Abhängigkeit vom Parameter : Mathematik MB Übungsblatt Termin Lösungen Themen: Grundlagen Vektoren und LGS ( Aufgaben) DHBW STUTTGART WS / Termin SEITE VON Aufgabe (LGS mit Parameter): Bestimmen Sie die Lösungsmengen des folgenden

Mehr

Differentialrechnung bei Funktionen mehreren Variablen

Differentialrechnung bei Funktionen mehreren Variablen Kap. 6 Differentialrechnung bei Funktionen mehreren Variablen Im folgenden geht es um Funktionen des Typsf :R n R X... Y =f(x,...,x n ) X n Eine Weiterentwicklung der Differentialrechnung für solche Funktionen

Mehr

Übergangsmatrizen. October 27, 2014

Übergangsmatrizen. October 27, 2014 Übergangsmatrizen October 27, 214 Der Begriff Übergangsmatrix wird (unter anderem) für die Matrizen, die das Wechselverhalten von z.b. Käufern oder Wählern darstellen. Bei Wikipedia wird eine Übergangsmatrix

Mehr

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch

Stetige Verteilungen. A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch 6 Stetige Verteilungen 1 Kapitel 6: Stetige Verteilungen A: Beispiele Beispiel 1: a) In den folgenden Abbildungen sind die Dichtefunktionen von drei bekannten Verteilungen graphisch dargestellt. 0.2 6

Mehr