Angewandte Mathematik3

Größe: px
Ab Seite anzeigen:

Download "Angewandte Mathematik3"

Transkript

1 Timischl Lechner Angewandte Mathematik3 Kompetenzliste

2 Inhaltsverzeichnis / Impressum Inhaltsverzeichnis Inhalts- und Handlungsbereiche des Kompetenzmodells in den durchgerechneten Beispielen der Angewandten Mathematik 3 3 Handlungsbereiche des Kompetenzmodells in den Aufgaben der Angewandten Mathematik Auflage, 2012 Alle Drucke sind im Unterricht parallel verwendbar. Satz, Grafik: imprint, Zusmarshausen Gesamtherstellung: Verlag E. DORNER GmbH, Wien Timischl, Lechner Angewandte Mathematik 3 Kompetenzliste Verlag E. DORNER GmbH Ungargasse 35, 1030 Wien Tel.: , Fax: [email protected] ISBN

3 Inhalts- und Handlungsbereiche des Kompetenzmodells in den durchgerechneten Beispielen der Angewandten Mathematik 3 Zur Kennzeichnung der Inhaltsbereiche: 1: Zahlen und Maße 2: Algebra und Geometrie 3: Funktionale Zusammenhänge 4: Analysis 5: Stochastik Beispiel 1 Finanzmathematik 1.1 Einfache Zinsrechnung Die Grundaufgaben der Zinseszinsrechnung Vorübung Äquivalenzprinzip Kontostand bei unregelmäßigen Zahlungen Effektivsatz eines Kredits Vergleich von Angeboten Kaufkraft bei Inflation Unterjährige Verzinsung Konformer unterjähriger Zinssatz Gemischte Verzinsung Theoretische Verzinsung Gemischte Verzinsung beim Sparbuch Endwert und Barwert einer nachschüssigen Rente Endwert und Barwert einer vorschüssigen Rente Berechnung der Rate einer Rente Berechnung der Laufzeit einer Rente Berechnung des Zinssatzes einer Rente Seite Inhaltsbereich(e) A Modellieren und Transferieren B Operieren und Technologieeinsatz C Interpretieren und Dokumentieren 1.19 Kapitalaufbau durch regelmäßige gleiche Zuflüsse (Sparplan) Kapitalabbau durch regelmäßige gleiche Entnahmen Veranlagung zur Vorsorge Kapitalaufbau durch eine vorschüssige Rente Unterjährige Rente Sparplan Leibrente Tilgungsplan bei Rückzahlung einer Schuld Zinsschuld Annuitätenschuld ohne Restzahlung Annuitätenschuld mit Restzahlung Unterjährige Tilgung nach der ISMA-Methode Effektivzinssatz eines Verbraucherkredits Effektivzinssatz beim Leasing Effektivzinssatz bei einem Ratengeschäft Zahlungsstrahl einer Anleihe Kurs und Rendite einer Anleihe Kapitalwertmethode D Argumentieren und Kommunizieren 3

4 Zur Kennzeichnung der Inhaltsbereiche: 1: Zahlen und Maße 2: Algebra und Geometrie 3: Funktionale Zusammenhänge 4: Analysis 5: Stochastik Beispiel 1.37 Vergleich von Investitionen Annuitätenmethode Interner Zinssatz r einer Investition Stetigkeit 2.1 Unstetige Funktionen Polstelle einer Funktion Sprungstelle einer Funktion Untersuchung auf Stetigkeit Anpassung auf Stetigkeit Einführendes Beispiel Ermittlung eines Grenzwertes Differentialrechnung 3.1 Einführung Ablesen von Ableitungen Tangente an den Graphen einer Funktion Ableitung und Tangente Geschwindigkeit einer ungleichförmigen Bewegung Ableitung einer Potenzfunktion Ableitung elementarer Funktionen Faktorregel Summenregel Produktregel Quotientenregel Verkettung von Funktionen Kettenregel Eine praktische Formel und ein Nachtrag Tangente an einen Kreis Höhere Ableitungen Anwendungen der Differentialrechnung 4.1 Monotonieverhalten Monotonie und Krümmungsverhalten Lokale Extrema und Wendepunkte Sattelpunkt als spezieller Wendepunkt Gestalt des Graphen einer kubischen Funktion Kurvendiskussion Bewegung eines Körpers Kubische Funktion mit vorgegebenen Eigenschaften Anwendungsorientierte Aufgabe Volumsgrößte offene Schachtel Vereinfachung der Zielfunktion Optimaler Querschnitt einer Wasserrinne Seite Inhaltsbereich(e) A Modellieren und Transferieren B Operieren und Technologieeinsatz C Interpretieren und Dokumentieren D Argumentieren und Kommunizieren 4

5 Zur Kennzeichnung der Inhaltsbereiche: 1: Zahlen und Maße 2: Algebra und Geometrie 3: Funktionale Zusammenhänge 4: Analysis 5: Stochastik Beispiel 4.13 Extremwertaufgabe mit Formvariablen Randextremum Kubische Gleichung Prüfen, ob es eine Lösung in einem bestimmten Intervall gibt 5 Kosten- und Preistheorie Seite Inhaltsbereich(e) A Modellieren und Transferieren B Operieren und Technologieeinsatz C Interpretieren und Dokumentieren D Argumentieren und Kommunizieren Interpretation der Ableitung Grenzkosten Ermittlung einer Gesamtkostenfunktion Ertragsgesetzliche Gesamtkostenfunktion Kostengünstigste Produktionsmenge Kostengünstigste Produktion ohne Fixkosten Stückkosten bei linearen Gesamtkosten Nachfragefunktion Vollständige Konkurrenz, ertragsgesetzlicher Kostenverlauf Vollständige Konkurrenz, linearer Kostenverlauf Monopol, ertragsgesetzlicher Kostenverlauf Elastizität einer Nachfragefunktion Berechnung der Elastizität

6 Handlungsbereiche des Kompetenzmodells in den Aufgaben der Angewandten Mathematik 3 1 Finanzmathematik 1.1 B 1.27 B 1.53 B 1.79 B C B C 1.2 B 1.28 A B 1.54 B 1.80 A B C B C 1.3 B 1.29 B 1.55 B C 1.81 A B C B C 1.4 B 1.30 B 1.56 B C 1.82 B C A B C 1.5 B 1.31 B 1.57 B C 1.83 B C A B C 1.6 B C 1.32 B C 1.58 A B C 1.84 B C A B C 1.7 B 1.33 B C 1.59 B C 1.85 B C A B C 1.8 B 1.34 B C 1.60 A B C 1.86 B C B C 1.9 A B C 1.35 B C 1.61 B C 1.87 C D B C 1.10 B 1.36 B 1.62 B C 1.88 B C B C 1.11 A B C 1.37 B C 1.63 B C 1.89 B C B C 1.12 A B C 1.38 B C 1.64 B C 1.90 A B C B C 1.13 B C 1.39 B C 1.65 B C 1.91 A B C B C 1.14 A B C 1.40 B C 1.66 B C 1.92 B C B C 1.15 A B C 1.41 B C 1.67 A B C 1.93 A B C B C 1.16 B C 1.42 B 1.68 A B C 1.94 B C B C 1.17 B C 1.43 B C 1.69 A B C 1.95 B C A B C 1.18 B C 1.44 B C 1.70 A B C 1.96 B C B C 1.19 B C 1.45 B C 1.71 B C 1.97 B C B C 1.20 B C 1.46 B C 1.72 B C 1.98 B C A B C 1.21 B C 1.47 B C 1.73 B C 1.99 B C B C 1.22 B C 1.48 B C 1.74 B C B C B C 1.23 B C 1.49 B C 1.75 A B C B C A B C 1.24 BC 1.50 B C 1.76 B B C A B C 1.25 A B C 1.51 B C 1.77 B C B C A B C 1.26 B D 1.52 C 1.78 B C 2 Stetigkeit 2.1 D 2.4 D 2.7 B C 2.10 D 2.12 B 2.2 D 2.5 B C 2.8 B C 2.11 D 2.13 B D 2.3 B C 2.6 B C 2.9 B 3 Differentialrechnung 3.1 C 3.9 B 3.16 B 3.23 B 3.30 B 3.2 B D 3.10 B C 3.17 B 3.24 B 3.31 B C D 3.3 B C 3.11 B 3.18 B C 3.25 B C 3.32 B C 3.4 B 3.12 B 3.19 A B 3.26 B C 3.33 B C D 3.5 B 3.13 B 3.20 A B 3.27 B 3.34 B 3.6 B 3.14 B 3.21 A B 3.28 B 3.35 B 3.7 B D 3.15 B 3.22 B 3.29 B 3.36 B 3.8 B D 6

7 4 Anwendungen der Differentialrechnung 4.1 D 4.13 A B 4.25 A B D 4.37 A B C D 4.49 A B D 4.2 D 4.14 A B 4.26 A B D 4.38 A B D 4.50 A B D 4.3 D 4.15 A B 4.27 A B D 4.39 A B D 4.51 A B D 4.4 D 4.16 A B 4.28 A B D 4.40 A B D 4.52 A B D 4.5 B D 4.17 A B C 4.29 A B D 4.41 A B D 4.53 A B D 4.6 B C 4.18 A B C 4.30 A B D 4.42 A B D 4.54 D 4.7 B D 4.19 A B C 4.31 A B D 4.43 A B D 4.55 B D 4.8 B D 4.20 A B C 4.32 A B D 4.44 A B D 4.56 B D 4.9 B D 4.21 A B C 4.33 A B D 4.45 A B D 4.57 A B 4.10 B D 4.22 B D 4.34 A B D 4.46 A B D 4.58 A B 4.11 B C 4.23 A B D 4.35 A B D 4.47 A B D 4.59 A B 4.12 A B C 4.24 A B D 4.36 A B D 4.48 A B D 4.60 A B 5 Kosten- und Preistheorie 5.1 B C 5.12 B C 5.23 B C 5.34 A B C D 5.45 B C D 5.2 B C 5.13 B C 5.24 A B C 5.35 B C D 5.46 B C D 5.3 B C 5.14 B C 5.25 A B C 5.36 A B C D 5.47 B C 5.4 D 5.15 B C 5.26 B C 5.37 A B C 5.48 B C 5.5 B 5.16 B C 5.27 A B C 5.38 B C D 5.49 A B C D 5.6 B 5.17 B C 5.28 A B C 5.39 B C D 5.50 B C 5.7 B 5.18 B C 5.29 B C 5.40 B C D 5.51 B C 5.8 B 5.19 C D 5.30 A B C D 5.41 B C D 5.52 B C 5.9 B C 5.20 B C 5.31 B C D 5.42 B C D 5.53 B C 5.10 A B C 5.21 B C 5.32 B C D 5.43 A B C D 5.54 B C 5.11 A B C 5.22 B C D 5.33 B C D 5.44 B C D 7

8 Timischl, Lechner Angewandte Mathematik 3 Kompetenzliste Verlag E. DORNER GmbH, Wien ISBN

MATHEMATIK & WIRTSCHAFT

MATHEMATIK & WIRTSCHAFT MATHEMATIK & WIRTSCHAFT 2 MATHEMATIK & WIRTSCHAFT 2 MATHEMATIK & WIRTSCHAFT Timischl Prugger 2 Kompetenzliste Inhaltsverzeichnis / Impressum Inhaltsverzeichnis Inhalts- und Handlungsbereiche des Kompetenzmodells

Mehr

Kompetenzliste 0503_US_wd.indd 1 15.06.2011 11:31:33

Kompetenzliste 0503_US_wd.indd 1 15.06.2011 11:31:33 Kompetenzliste 15.06.2011 11:31:33 Inhaltsverzeichnis / Impressum Inhaltsverzeichnis Inhalts- und Handlungsbereiche des Kompetenzmodells in den durchgerechneten Beispielen der Angewandten Mathematik 2

Mehr

Angewandte Mathematik4

Angewandte Mathematik4 Timischl Lechner Angewandte Mathematik4 Kompetenzliste Inhaltsverzeichnis / Impressum Inhaltsverzeichnis Inhalts- und Handlungsbereiche des Kompetenzmodells in den durchgerechneten Beispielen der Angewandten

Mehr

Timischl Prugger WIRTSCHAFT MATHEMATIK. Kompetenzliste

Timischl Prugger WIRTSCHAFT MATHEMATIK. Kompetenzliste Timischl Prugger MATHEMATIK WIRTSCHAFT & 4 Kompetenzliste Inhaltsverzeichnis / Impressum Inhaltsverzeichnis Inhalts- und Handlungsbereiche des Kompetenzmodells in den durchgerechneten Beispielen der Mathematik

Mehr

Kompetenzliste 0501_US_wd.indd :10:17

Kompetenzliste 0501_US_wd.indd :10:17 Kompetenzliste 16.06.2011 08:10:17 Inhaltsverzeichnis / Impressum Inhaltsverzeichnis Inhalts- und Handlungsbereiche des Kompetenzmodells in den durchgerechneten Beispielen der Angewandten Mathematik 1

Mehr

Dimensionen. Mathematik. Grundkompetenzen. für die neue Reifeprüfung

Dimensionen. Mathematik. Grundkompetenzen. für die neue Reifeprüfung Dimensionen Mathematik 7 GK Grundkompetenzen für die neue Reifeprüfung Inhaltsverzeichnis Buchkapitel Inhaltsbereiche Seite Komplexe Zahlen Algebra und Geometrie Grundbegriffe der Algebra (Un-)Gleichungen

Mehr

MATHEMATIK & WIRTSCHAFT

MATHEMATIK & WIRTSCHAFT Timischl Prugger MATHEMATIK & WIRTSCHAFT 1 Kompetenzliste Inhaltsverzeichnis / Impressum Inhaltsverzeichnis Inhalts- und Handlungsbereiche des Kompetenzmodells in den durchgerechneten Beispielen der Mathematik

Mehr

Brückenkurs Mathematik für Wirtschaftswissenschaftler

Brückenkurs Mathematik für Wirtschaftswissenschaftler VlEWEG+ TIUBNER Walter Purkert Brückenkurs Mathematik für Wirtschaftswissenschaftler Z, aktualisierte Auflage STUDIUM Inhaltsverzeichnis 1 Das Rechnen mit reellen Zahlen 1.1 Grundregeln des Rechnens....

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Walter Purkert 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Brückenkurs Mathematik für Wirtschaftswissenschaftler.

Mehr

Mit 119 Bildern, 368 Beispielen und 225 Aufgaben mit Lösungen

Mit 119 Bildern, 368 Beispielen und 225 Aufgaben mit Lösungen Mathematik für Wirtschaftswissenschaftler Ein Lehr- und Übungsbuch für Bachelors 2., aktualisierte Auflage Mit 119 Bildern, 368 Beispielen und 225 Aufgaben mit Lösungen Fachbuchverlag Leipzig im Carl Hanser

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Helge Röpcke Markus Wessler Wirtschaftsmathematik Methoden - Beispiele - Anwendungen Mit 84 Bildern, 113 durchgerechneten Beispielen und 94 Aufgaben mit ausführlichen Lösungen im Internet Fachbuchverlag

Mehr

1 Mathematische Zeichen und Symbole 1. 2 Logik 9. 3 Arithmetik 11

1 Mathematische Zeichen und Symbole 1. 2 Logik 9. 3 Arithmetik 11 IX 1 Mathematische Zeichen und Symbole 1 2 Logik 9 3 Arithmetik 11 3.1 Mengen 11 3.1.1 Allgemeines 11 3.1.2 Mengenrelationen 12 3.1.3 Mengenoperationen 12 3.1.4 Beziehungen, Gesetze, Rechenregeln 14 3.1.5

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Knut Sydsaeter Peter HammondJ Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 2., aktualisierte Auflage Inhaltsverzeichnis Vorwort 13 Vorwort zur zweiten Auflage 19 Kapitel 1 Einführung,

Mehr

Finanzmathematik. Intensivkurs. Von Prof. Dr. Holger Ihrig. und Prof. Dr. Peter Pflaumer. 6., verbesserte und erweiterte Auflage

Finanzmathematik. Intensivkurs. Von Prof. Dr. Holger Ihrig. und Prof. Dr. Peter Pflaumer. 6., verbesserte und erweiterte Auflage 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Finanzmathematik Intensivkurs Von Prof. Dr. Holger Ihrig und Prof.

Mehr

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57

Inhaltsverzeichnis. Vorwort Kapitel 1 Einführung, I: Algebra Kapitel 2 Einführung, II: Gleichungen... 57 Vorwort... 13 Vorwort zur 3. deutschen Auflage... 17 Kapitel 1 Einführung, I: Algebra... 19 1.1 Die reellen Zahlen... 20 1.2 Ganzzahlige Potenzen... 23 1.3 Regeln der Algebra... 29 1.4 Brüche... 34 1.5

Mehr

Mathematik für. Wirtschaftswissenschaftler. Basiswissen mit Praxisbezug. 4., aktualisierte und erweiterte Auflage

Mathematik für. Wirtschaftswissenschaftler. Basiswissen mit Praxisbezug. 4., aktualisierte und erweiterte Auflage Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 4., aktualisierte und erweiterte Auflage Knut Sydsaeter Peter Hammond mit Arne Strom Übersetzt und fach lektoriert durch Dr. Fred Böker

Mehr

Inhaltsverzeichnis Grundlegende Formeln und Bezeichnungen Mathematische Grundlagen Lineare Verzinsung

Inhaltsverzeichnis Grundlegende Formeln und Bezeichnungen Mathematische Grundlagen Lineare Verzinsung Inhaltsverzeichnis 1 Grundlegende Formeln und Bezeichnungen... 1 1.1 Wichtige Bezeichnungen... 1 1.2 Grundlegende Formeln... 2 1.3 Umrechnungstabelle der Grundgrößen p, i und q... 3 2 Mathematische Grundlagen...

Mehr

Mathematik anschaulich dargestellt

Mathematik anschaulich dargestellt Peter Dörsam Mathematik anschaulich dargestellt für Studierende der Wirtschaftswissenschaften 15. überarbeitete Auflage mit zahlreichen Abbildungen PD-Verlag Heidenau Inhaltsverzeichnis 1 Lineare Algebra

Mehr

Differential- und Integralrechnung

Differential- und Integralrechnung Brückenkurs Mathematik TU Dresden 2016 Differential- und Integralrechnung Schwerpunkte: Differentiation Integration Eigenschaften und Anwendungen Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik

Mehr

Startkapital. Erstellen Sie eine Zeitlinie zu diesem Zahlungsfluss. Berechnen Sie, über welchen Betrag Simon nach diesen 10 Jahren verfügen kann.

Startkapital. Erstellen Sie eine Zeitlinie zu diesem Zahlungsfluss. Berechnen Sie, über welchen Betrag Simon nach diesen 10 Jahren verfügen kann. Startkapital Aufgabennummer: B_146 Technologieeinsatz: möglich erforderlich S Simon möchte sich selbstständig machen. Er setzt für die Gründung seines Unternehmens als Startkapital seine Ersparnisse und

Mehr

2.1.2 Konkretisierte Unterrichtsvorhaben auf der Basis des Lehrwerks

2.1.2 Konkretisierte Unterrichtsvorhaben auf der Basis des Lehrwerks 2.1.2 Konkretisierte Unterrichtsv auf der Basis des Lehrwerks Einführungsphase 1 Buch: Bigalke, Dr. A., Köhler, Dr. N.: Mathematik Gymnasiale Oberstufe Nordrhein-Westfalen Einführungsphase, Berlin 2014,

Mehr

Mathematik im Betrieb

Mathematik im Betrieb Heinrich Holland/Doris Holland Mathematik im Betrieb Praxisbezogene Einführung mit Beispielen 7, überarbeitete Auflage GABLER Inhaltsverzeichnis Vorwort 1 Mathematische Grundlagen 1.1 Zahlbegriffe 1.2

Mehr

Mathematik im Betrieb

Mathematik im Betrieb Mathematik im Betrieb Praxisbezogene Einführung mit Beispielen von Heinrich Holland, Doris Holland 11., durchgesehene und korrigierte Auflage Springer Gabler Wiesbaden 2014 Verlag C.H. Beck im Internet:

Mehr

Inhaltsverzeichnis. Zeichenerklärung

Inhaltsverzeichnis. Zeichenerklärung Inhaltsverzeichnis Zeichenerklärung XIII 1 Grundlagen 1 1.1 Instrumente der Elementarmathematik 1 1.1.1 Zahlbereiche. Zahlendarstellung 1 1.1.2 Rechnen mit Zahlen 3 1.1.3 Bruchrechnung 7 1.1.4 Potenzrechnung

Mehr

Grundkompetenzen im gemeinsamen Kern

Grundkompetenzen im gemeinsamen Kern 1 Zahlen und Maße 1.1 mit natürlichen, ganzen, rationalen und reellen Zahlen rechnen, ihre Beziehungen argumentieren und auf der Zahlengeraden veranschaulichen 1.2 Zahlen in Fest- und Gleitkommadarstellung

Mehr

Merkblatt für externe Teilnehmer an der Feststellungsprüfung im Fach Mathematik

Merkblatt für externe Teilnehmer an der Feststellungsprüfung im Fach Mathematik Merkblatt für externe Teilnehmer an der Feststellungsprüfung im Fach Mathematik Das Studienkolleg der TU Berlin bietet die Möglichkeit an, eine Feststellungsprüfung (FSP) in Mathematik abzulegen, ohne

Mehr

Oberstufenmathematik leicht gemacht

Oberstufenmathematik leicht gemacht Peter Dörsam Oberstufenmathematik leicht gemacht Band 1: Differential- und Integralrechnung 5. überarbeitete Auflage mit zahlreichen Abbildungen und Beispielaufgaben PD-Verlag Heidenau Inhaltsverzeichnis

Mehr

Passerelle. Beschrieb der Fach-Module. von der Berufsmaturität. zu den universitären Hochschulen

Passerelle. Beschrieb der Fach-Module. von der Berufsmaturität. zu den universitären Hochschulen Passerelle von der Berufsmaturität zu den universitären Hochschulen Beschrieb der Fach-Module Fachbereich Mathematik Teilmodule Teilmodul 1: Analysis (Differential- und Integralrechnung) Teilmodul 2: Vektorgeometrie

Mehr

Inhaltsverzeichnis. 3 Folgen Achilles und die Schildkröte Grundbegriffe Fraktale... 49

Inhaltsverzeichnis. 3 Folgen Achilles und die Schildkröte Grundbegriffe Fraktale... 49 Inhaltsverzeichnis 1 Analytische Geometrie: Geraden 8 1.1 Lineare Gleichungen........................ 8 1.2 Die Hauptform einer linearen Gleichung............. 8 1.3 Wertetabellen............................

Mehr

Inhaltsverzeichnis. Teil I Grundlagen

Inhaltsverzeichnis. Teil I Grundlagen Inhaltsverzeichnis Teil I Grundlagen 1 Mengenlehre und Aussagenlogik... 3 1.1 Vorbemerkung... 3 1.2 Mengen... 4 1.2.1 Mengenoperationen..... 7 1.2.2 Mengengesetze... 10 1.2.3 Zahlenmengen... 12 1.3 Aussagenlogik...

Mehr

Inhaltsverzeichnis. Vorwort

Inhaltsverzeichnis. Vorwort Inhaltsverzeichnis Vorwort ix 1 Grundlagen 1 1.1 Zahlbereiche 1 1.2 Rundungen 3 1.3 Prozentrechnung 4 1.4 Potenzen 6 1.5 Wurzeln 10 1.6 Logarithmen 13 1.7 Spezielle Funktionen 17 1.7.1 Lineare Funktionen

Mehr

Mathematische Grundkompetenzen im gemeinsamen Kern gültig ab den Matura-Prüfungsterminen 2017/2018

Mathematische Grundkompetenzen im gemeinsamen Kern gültig ab den Matura-Prüfungsterminen 2017/2018 Mathematische Grundkompetenzen im gemeinsamen Kern 1 Stand: 9.1.2017 Mathematische Grundkompetenzen im gemeinsamen Kern gültig ab den Matura-Prüfungsterminen 2017/2018 1 Zahlen und Maße 1.1 1.2 1.3 1.4

Mehr

Bezüge zu den Bildungsstandards

Bezüge zu den Bildungsstandards Differentialrechnung Kinga Szűcs FSU Jena Fakultät für Mathematik und Informatik Abteilung Didaktik In Anlehnung an Prof. Dr. Bernd Zimmermanns Seminarpräsentationen Inhalt Bezüge zu den Bildungsstandards

Mehr

Ingenieur- Mathematik

Ingenieur- Mathematik Timischl Kaiser Ingenieur- Mathematik 1 Kompetenzliste Inhaltsverzeichnis / Impressum Inhaltsverzeichnis Das Kompetenzmodell / Ingenieur-Mathematik 1, neu, kompetenzorientiert 3 Inhalts- und Handlungsbereiche

Mehr

Differenzialrechnung. Mathematik-Repetitorium

Differenzialrechnung. Mathematik-Repetitorium Differenzialrechnung 5.1 Die Ableitung 5.2 Differentiation elementarer Funktionen 5.3 Differentiationsregeln 5.4 Höhere Ableitungen 5.5 Partielle Differentiation 5.6 Anwendungen Differenzialrechnung 1

Mehr

Merkblatt für externe Teilnehmer an der Feststellungsprüfung im Fach Mathematik

Merkblatt für externe Teilnehmer an der Feststellungsprüfung im Fach Mathematik Merkblatt für externe Teilnehmer an der Feststellungsprüfung im Fach Mathematik Das Studienkolleg der TU Berlin bietet die Möglichkeit an, eine Feststellungsprüfung (FSP) in Mathematik abzulegen, ohne

Mehr

.nzinn. :mni. Dldenbourg Verlag München Wien. 7, unveränderte Auflage. von Prof. Dr. Karl Bosch

.nzinn. :mni. Dldenbourg Verlag München Wien. 7, unveränderte Auflage. von Prof. Dr. Karl Bosch .nzinn :mni von Prof. Dr. Karl Bosch 7, unveränderte Auflage Dldenbourg Verlag München Wien Inhaltsverzeichnis Vorwort IX Kapitel 1: Mathematische Grundlagen 1 1.1. Die arithmetische Zahlenfolge 2 1.2.

Mehr

Raketenstart. t Zeit in Sekunden (s) s(t) zurückgelegter Weg in Metern (m) zum Zeitpunkt t

Raketenstart. t Zeit in Sekunden (s) s(t) zurückgelegter Weg in Metern (m) zum Zeitpunkt t Raketenstart Aufgabennummer: B_54 Technologieeinsatz: möglich S erforderlich Trägerraketen ermöglichen es, schwere Nutzlasten in die Erdumlaufbahn zu befördern. Ariane 5 ist die leistungsfähigste europäische

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Fred Böker Mathematik für Wirtschaftswissenschaftler Das Übungsbuch 2., aktualisierte Auflage Higher Education München Harlow Amsterdam Madrid Boston San Francisco Don Mills Mexico City Sydney a part of

Mehr

Teil 3 -Analysis TEIL 3: ANALYSIS

Teil 3 -Analysis TEIL 3: ANALYSIS Mathematik Workshop TEIL 3: ANALYSIS Basis Funktionen Funktionsuntersuchung Nullstellen pq-formel, Diskriminanten Polynomdivision Mehrere Veränderliche Differenzieren Idee Regeln zum Rechnen Anwendung

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Zwischenwertsatz Gegeben: f : [a, b] R stetig Dann gilt: f(a) < f(b) y [f(a), f(b)] x [a, b] mit f(x) = y 9.1. Grundbegriffe

Mehr

Grundkompetenzen im gemeinsamen Kern

Grundkompetenzen im gemeinsamen Kern Grundkompetenzen im gemeinsamen Kern Quelle: https://www.srdp.at/downloads/dl/kompetenz-und-begriffekataloge-fuer-angewandte-mathematik-gueltigab-den-matura-pruefungsterminen-1/ 1 Zahlen und Maße Formulierung

Mehr

Ist die Funktion f auf dem Intervall a; b definiert, dann nennt man. f(b) f(a) b a

Ist die Funktion f auf dem Intervall a; b definiert, dann nennt man. f(b) f(a) b a . Einführung in die Differentialrechnung ==================================================================. Differenzenquotient und mittlere Änderungsrate ------------------------------------------------------------------------------------------------------------------

Mehr

Johannes-Althusius-Gymnasium Emden

Johannes-Althusius-Gymnasium Emden Für jede Unterrichtseinheit ist die Kompetenzentwicklung der Schülerinnen und Schüler in allen prozessbezogenen Kompetenzbereichen maßgebend. Prozessbezogene Kompetenzbereiche Mathematisch argumentieren

Mehr

Formelsammlung für Mathematik, Handelsakademie Lehrplan 2004

Formelsammlung für Mathematik, Handelsakademie Lehrplan 2004 Inhalt Zinseszinsrechnung... 3 Endkapital... 3 Anfangskapital... 3 Zinssatz... 3 Laufzeit... 4 Rentenrechnung... 4 Endwert der nachschüssigen Rente... 4 Barwert der nachschüssigen Rente... 4 Endwert der

Mehr

Jahrgangscurriculum 11.Jahrgang

Jahrgangscurriculum 11.Jahrgang Jahrgangscurriculum 11.Jahrgang Koordinatengeometrie Geraden (Lage von Geraden; Schnittwinkel) Abstände im KOSY Kreise Kreise und Geraden Parabeln und quadratische Funktionen (Parabel durch 3 Punkte, Anwendungsaufgaben)

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Fred Böker Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug Das Übungsbuch ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney

Mehr

Infrarotheizung. Heutzutage werden immer häufiger Infrarotheizungen in Wohnräumen eingesetzt.

Infrarotheizung. Heutzutage werden immer häufiger Infrarotheizungen in Wohnräumen eingesetzt. Infrarotheizung Aufgabennummer: B-C1_30 Technologieeinsatz: möglich S erforderlich Heutzutage werden immer häufiger Infrarotheizungen in Wohnräumen eingesetzt. a) Der Erwärmungsvorgang des Heizleiters

Mehr

Lernsituation 3.2: Analysis (26 UStd.) Titel: Analysis- Einführung in die Differenzialrechnung

Lernsituation 3.2: Analysis (26 UStd.) Titel: Analysis- Einführung in die Differenzialrechnung Bildungsgang: Zweijährige Höhere Berufsfachschule (Höhere Handelsschule) Lernsituation 3.2: Analysis (26 UStd.) Titel: Analysis- Einführung in die Differenzialrechnung Einstiegsszenario 1 Lernergebnis

Mehr

Taschenbuch der Wirtschaftsmathematik

Taschenbuch der Wirtschaftsmathematik Taschenbuch der Wirtschaftsmathematik Bearbeitet von Wolfgang Eichholz, Eberhard Vilkner 6., aktualisierte Auflage 013. Buch. 396 S. Kartoniert ISBN 978 3 446 43535 3 Format B x L): 1,7 x 19,5 cm Gewicht:

Mehr

Thema: Eigenschaften von Funktionen (Wiederholung und Symmetrie, Nullstellen, Transformation)

Thema: Eigenschaften von Funktionen (Wiederholung und Symmetrie, Nullstellen, Transformation) 1. Halbjahr EF 2. Halbjahr EF Einführungsphase (EF) Vektoren, ein Schlüsselkonzept (Punkte, Vektoren, Rechnen mit Vektoren, Betrag) Eigenschaften von Funktionen (Wiederholung und Symmetrie, Nullstellen,

Mehr

Inhaltsverzeichnis. 1 Lineare Algebra 12

Inhaltsverzeichnis. 1 Lineare Algebra 12 Inhaltsverzeichnis 1 Lineare Algebra 12 1.1 Vektorrechnung 12 1.1.1 Grundlagen 12 1.1.2 Lineare Abhängigkeit 18 1.1.3 Vektorräume 22 1.1.4 Dimension und Basis 24 1.2 Matrizen 26 1.2.1 Definition einer

Mehr

Kernkompetenz Mathematik (Teil Analysis)

Kernkompetenz Mathematik (Teil Analysis) Beschreibung der Kernkompetenzen in Mathematik (Teil Analysis) Themen Mindestkompetenzen 1. Grundlagen 1.1 Aussagen und Aussageformen 1.2 Vollständige Induktion 1.3 Reelle Funktionen und Graphen 1.4 Bijektivität

Mehr

Hustensaft. Aufgabennummer: B_138. Technologieeinsatz: möglich erforderlich S

Hustensaft. Aufgabennummer: B_138. Technologieeinsatz: möglich erforderlich S Hustensaft Aufgabennummer: B_138 Technologieeinsatz: möglich erforderlich S Ein Unternehmen hat das Monopol auf den Vertrieb eines bestimmten Hustensafts. Der Hustensaft wird in kleinen Flaschen abgefüllt,

Mehr

Wirtschaftsmathematik und Statistik

Wirtschaftsmathematik und Statistik Beruf und Weiterbildung Walter Lagemann Wolf Rambatz Wirtschaftsmathematik und Statistik Ein Praktikum für die Weiterbildung zum Betriebswirt und zur Betriebswirtin Lehrbuch 2 HERAUSGEBER DR. RUDOLF RÖHR

Mehr

Dimensionen. Mathematik. Grundkompetenzen. für die neue Reifeprüfung. Stand April 2012

Dimensionen. Mathematik. Grundkompetenzen. für die neue Reifeprüfung. Stand April 2012 Dimensionen Mathematik 5 GK Grundkompetenzen für die neue Reifeprüfung Stand April 2012 Inhaltsverzeichnis Buchkapitel Inhaltsbereiche Seite Zahlen und Rechengesetze Funktionen Gleichungen Lineare Gleichungssysteme

Mehr

Analysis für Ingenieure

Analysis für Ingenieure Analysis für Ingenieure Eine, anwendungsbezogene Einführung mit Übungen Prof. Dr. Manfred Andrie Dipl.-Ing. Paul Meier 3. Auflage VMVERLX3 Inhaltsverzeichnis GRUNDLAGEN 1 Mengen 13 2 Zahlen 14 3 Übungen

Mehr

Mathematik für BWL-Bachelor

Mathematik für BWL-Bachelor Heidrun Matthäus Wolf-Gert Matthäus Mathematik für BWL-Bachelor Schritt für Schritt mit ausführlichen Lösungen 3., überarbeitete und erweiterte Auflage STUDIUM 4y Springer Gabler Inhaltsverzeichnis Teil

Mehr

Elementare Wirtschaftsmathematik

Elementare Wirtschaftsmathematik Rainer Göb Elementare Wirtschaftsmathematik Erster Teil: Funktionen von einer und zwei Veränderlichen Mit 87 Abbildungen Methodica-Verlag Veitshöchheim Inhaltsverzeichnis 1 Grundlagen: Mengen, Tupel, Relationen.

Mehr

Großes Lehrbuch der Mathematik für Ökonomen

Großes Lehrbuch der Mathematik für Ökonomen Großes Lehrbuch der Mathematik für Ökonomen Von Professor Dr. Karl Bosch o. Professor für angewandte Mathematik und Statistik an der Universität Stuttgart-Hohenheim und Professor Dr. Uwe Jensen R. Oldenbourg

Mehr

FINANZMATHEMATIK. Einführung. Weitere Begriffe. Einfache Verzinsung (unter 1 Jahr) Zinseszinsen

FINANZMATHEMATIK. Einführung. Weitere Begriffe. Einfache Verzinsung (unter 1 Jahr) Zinseszinsen FINANZMATHEMATIK Einführung Wenn man Geld auf die Bank legt, bekommt man Zinsen, wenn man sich Geld von der Bank ausleiht, muss man Zinsen bezahlen. Grundsätzlich unterscheidet man zwischen einfachen Zinsen

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Mathematik für Wirtschaftswissenschaftler Basiswissen mit Praxisbezug 4., aktualisierte und erweiterte Auflage Knut Sydsæter Peter Hammond mit Arne Strøm Übersetzt und fachlektoriert durch Dr. Fred Böker

Mehr

Formelsammlung. Mathematik für die Höhere Berufsfachschule Wirtschaft und Verwaltung. Ausgabe NRW

Formelsammlung. Mathematik für die Höhere Berufsfachschule Wirtschaft und Verwaltung. Ausgabe NRW Klaus Schilling, Jens Helling Formelsammlung Mathematik für die Höhere Berufsfachschule Wirtschaft und Verwaltung Ausgabe NRW 1. Auflage Bestellnummer 15662 Geometrie Finanzmathematik Lineare Algebra Stochastik

Mehr

Über die Autoren 9. Einführung 21

Über die Autoren 9. Einführung 21 Inhaltsverzeichnis Über die Autoren 9 Einführung 21 Über dieses Buch 21 Konventionen in diesem Buch 22 Törichte Annahmen über den Leser 22 Wie dieses Buch aufgebaut ist 22 Teil I: Einfache Algebra 23 Teil

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Unterjährige Raten und jährliche Verzinsung Aufteilung der Zinsperiode in mehrere gleich lange Rentenperioden, d.h.

Mehr

Stoffverteilungsplan Mathematik Oberstufe für Berlin und Brandenburg

Stoffverteilungsplan Mathematik Oberstufe für Berlin und Brandenburg Stoffverteilungsplan Mathematik Oberstufe für Berlin und Brandenburg Grundlagen: 1.) Rahmenstoffplan Mathematik für die gymnasiale Oberstufe, herausgegeben von der Senatsverwaltung für Bildung, Jugend

Mehr

F-Mathe-Klausur am

F-Mathe-Klausur am F-Mathe-Klausur am 19.07.2017 Aufgabe 1 Jemand zahlt bei 4% Zinsen p.a. im Zeitraum vom 01.01.2010 bis 31.12.2015 jeweils zu Beginn eines Monats 200 und im Zeitraum vom 01.01.2016 bis 31.12.2018 jeweils

Mehr

Mathematik 2 für Nichtmathematiker

Mathematik 2 für Nichtmathematiker Mathematik 2 für Nichtmathematiker Funktionen - Folgen und Reihen - Differential- und Integralrechnung - Differentialgleichungen - Ordnung und Chaos von Professor Dr. Manfred Precht Dipl.-Math. Karl Voit

Mehr

Schulinternes Curriculum Goethe-Oberschule Mathematik Sekundarstufe II

Schulinternes Curriculum Goethe-Oberschule Mathematik Sekundarstufe II Schulinternes Curriculum Goethe-Oberschule Mathematik Sekundarstufe II Auf Zeitangeben wurde bewusst verzichtet, da im kommenden Schuljahr 2010/2011 zum ersten Mal der Übergang von Klasse 10 ins Kurssystem

Mehr

Übungsaufgaben. Grundkurs Höhere Mathematik für Wirtschaftswissenschaftler. Teil 2: Analysis. Sommersemester

Übungsaufgaben. Grundkurs Höhere Mathematik für Wirtschaftswissenschaftler. Teil 2: Analysis. Sommersemester Übungsaufgaben Grundkurs Höhere Mathematik für Wirtschaftswissenschaftler Teil 2: Analysis Sommersemester Folgen und Reihen Aufgabe 1 Ein Betrieb erreiche im ersten Jahr einen Umsatz von 120 Mio e. Der

Mehr

Der Differenzenquotient

Der Differenzenquotient Der Differenzenquotient Von den linearen Funktionen kennen wir den Begriff des Differenzenquotienten k = y 2 y 1 x 2 x 1 mit dem die Steigung einer Geraden festgelegt wird. Der Begriff des Differentialkoeffizienten

Mehr

Stoffverteilungsplan Berufliches Gymnasium Unterrichtsfach Mathematik Einführungsphase in Rheinland-Pfalz

Stoffverteilungsplan Berufliches Gymnasium Unterrichtsfach Mathematik Einführungsphase in Rheinland-Pfalz e 11 Lambacher Schweizer für berufliche Gymnasien. Lambacher Schweizer Mathematik für berufliche Gymnasien Wirtschaft 11 Stoffverteilungsplan für das berufliche Gymnasium in Rheinland-Pfalz Stoffverteilungsplan

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Werner Helm Andreas Pfeifer Joachim Ohser Mathematik für Wirtschaftswissenschaftler Ein Lehr- und Übungsbuch für Bachelors !"#$%&"#'()*+,)-',#./$"*#.0'..%1./$"*#2%, !"#$%&'!"#$%&'()&*+'(,-+'.#&/0123/0145

Mehr

1 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 11

1 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 11 Inhalt A Differenzialrechnung 8 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 2 Ableitungsregeln 2 Potenzregel 2 Konstantenregel 3 Summenregel 4 Produktregel 4 Quotientenregel

Mehr

Inhaltsverzeichnis. Mathematische Zeichen und Abkürzungen 9

Inhaltsverzeichnis. Mathematische Zeichen und Abkürzungen 9 Inhaltsverzeichnis Mathematische Zeichen und Abkürzungen 9 1 Zahlenmengen und Anordnung der Zahlen auf der Zahlengeraden 11 1.1 Die Menge IN 0 der natürlichen Zahlen einschließlich der Null 11 1.2 Die

Mehr

Wirtschaftsmathematik verstehen und anwenden

Wirtschaftsmathematik verstehen und anwenden Wirtschaftsmathematik verstehen und anwenden Bearbeitet von Jürgen Stiefl 1. Auflage 2016. Buch. 291 S. Softcover ISBN 978 3 527 53029 8 Format (B x L): 17 x 24 cm Wirtschaft > Betriebswirtschaft: Theorie

Mehr

Smartphones 2 : 1 4 : 3 19 : 5 16 : 9 7 : 2

Smartphones 2 : 1 4 : 3 19 : 5 16 : 9 7 : 2 Smartphones Aufgabennummer: B_265 Technologieeinsatz: möglich erforderlich T a) Bei einem Smartphone mit einem rechtwinkeligen Display unterscheiden sich die Seitenlängen des Displays um 4,55 Zentimeter

Mehr

Expertengruppe A: Kostenfunktion

Expertengruppe A: Kostenfunktion Expertengruppe A: Kostenfunktion Gegeben ist eine Kostenfunktion 3. Grades K(x) = x 3 30x 2 + 400x + 512. 1. Lesen Sie aus obigem Funktionsgraphen ab: a) Schnittpunkt des Funktionsgraphen mit der y-achse:

Mehr

MATHE Matura Band 2: HAK

MATHE Matura Band 2: HAK Wolfgang Tschirk MATHE Matura Band 2: HAK Ergänzungen für berufsbildende höhere Schulen der Wirtschaft Inhaltsverzeichnis und Sachregister; und dazwischen zum Probelesen das Kapitel "Finanzmathematik"

Mehr

Stoffverteilungsplan Sek II

Stoffverteilungsplan Sek II Klasse 11 (3-stündig) Stoffverteilungsplan Sek II Analysis - Differenzialrechnung Inhalte Hinweise Schulbuch Funktionen - Begriff der Funktion 12-15 - Symmetrien 22-24 - Verhalten im Unendlichen 20-21

Mehr

Dierentialrechnung mit einer Veränderlichen

Dierentialrechnung mit einer Veränderlichen Dierentialrechnung mit einer Veränderlichen Beispiel: Sei s(t) die zum Zeitpunkt t zurückgelegte Wegstrecke. Dann ist die durchschnittliche Geschwindigkeit zwischen zwei Zeitpunkten t 1 und t 2 gegeben

Mehr

Mathematik. Merkur. Haarmann Wolpers. zur Erlangung der allgemeinen Hochschulreife Technische Fachrichtungen Band 1.

Mathematik. Merkur. Haarmann Wolpers. zur Erlangung der allgemeinen Hochschulreife Technische Fachrichtungen Band 1. Haarmann Wolpers Mathematik zur Erlangung der allgemeinen Hochschulreife Technische Fachrichtungen Band 1 Merkur Verlag Rinteln Wirtschaftswissenschaftliche Bücherei für Schule und Praxis Begründet von

Mehr

Grundkompetenzen + Beispiele

Grundkompetenzen + Beispiele Grundkompetenzen Beispiele 1.1) natürliche, ganze, rationale, reelle Zahlen + rechnen + veranschaulichen auf der Zahlengerade 1.2) Fest und Gleitkommdarstellung + umrechnen + rechnen Die Geschwindigkeit

Mehr

Wolfgang Kohn Riza Öztürk. Mathematik für Ökonomen. Ökonomische Anwendungen der linearen. Algebra und Analysis mit Scilab

Wolfgang Kohn Riza Öztürk. Mathematik für Ökonomen. Ökonomische Anwendungen der linearen. Algebra und Analysis mit Scilab Wolfgang Kohn Riza Öztürk Mathematik für Ökonomen Ökonomische Anwendungen der linearen Algebra und Analysis mit Scilab 3., erweiterte und überarbeitete Auflage ^ Springer Gabler Inhaltsverzeichnis Teil

Mehr

Themenkorb für die mündliche Reifeprüfung aus Mathematik 8B 2016/17

Themenkorb für die mündliche Reifeprüfung aus Mathematik 8B 2016/17 Themenkorb für die mündliche Reifeprüfung aus Mathematik 8B 2016/17 Thema 1: Zahlenbereiche und Rechengesetze Reflektieren über das Erweitern von Zahlenbereichen von den natürlichen Zahlen zu den ganzen,

Mehr

Finanzmathematik. von Francesco Grassi. Aufgaben einfach gelöst mit FinCalcPro. 1. Auflage. Seite 1

Finanzmathematik. von Francesco Grassi. Aufgaben einfach gelöst mit FinCalcPro. 1. Auflage.  Seite 1 Finanzmathematik Aufgaben einfach gelöst mit FinCalcPro 1. Auflage von Francesco Grassi www.educationalapps.ch Seite 1 Inhaltsverzeichnis VORWORT... 3 SYMBOLLISTE...4 FORMELSAMMLUNG... 5 Kap.1 Prozentrechnung...7

Mehr

Modul Grundbildung Analysis WiSe 10/11. A.: Wurde in diesem Kapitel behandelt. C.: Weitere Fragen (Nicht nur für die Klausur interessant)

Modul Grundbildung Analysis WiSe 10/11. A.: Wurde in diesem Kapitel behandelt. C.: Weitere Fragen (Nicht nur für die Klausur interessant) Modul Grundbildung Analysis WiSe 10/11 Im Folgenden bedeutet A: Wurde in diesem Kapitel behandelt B: Interessante Aufgaben C: Weitere Fragen (Nicht nur für die Klausur interessant) V1 Konvergenz, Grenzwert

Mehr

Basiswissen zu Investition und Finanzierung. 2. Auflage. von. Thomas Benesch Karin Schuch. Ende international

Basiswissen zu Investition und Finanzierung. 2. Auflage. von. Thomas Benesch Karin Schuch. Ende international Basiswissen zu Investition und Finanzierung 2. Auflage von Thomas Benesch Karin Schuch Ende international Vorwort 5 1. Finanzierung 11 1.1 Systematisierung und Charakterisierung der Finanzierungsfbrmen

Mehr

Vorlesungsskript. Finanzmathematik. Prof. Dr. Günter Hellmig

Vorlesungsskript. Finanzmathematik. Prof. Dr. Günter Hellmig Vorlesungsskript Finanzmathematik Prof. Dr. Günter Hellmig Prof. Dr. Günter Hellmig Vorlesungsskript Finanzmathematik Erstes Kapitel Das erste Kapitel beschäftigt sich mit den mathematischen und ökonomischen

Mehr

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014 Mathematik für Universität Trier Wintersemester 2013 / 2014 Inhalt der Vorlesung 1. Gleichungen und Summen 2. Grundlagen der Funktionslehre 3. Rechnen mit Funktionen 4. Optimierung von Funktionen 5. Funktionen

Mehr

Zusammenfassung der Kurvendiskussion

Zusammenfassung der Kurvendiskussion Zusammenfassung der Kurvendiskussion Diskussionspunkte 1 Größtmögliche Definitionsmenge D f 2 Symmetrieeigenschaften des Graphen G f 3 Nullstellen, Polstellen, Schnittpunkte mit der y-achse, Vielfachheit

Mehr

Basiswissen zu Investition und Finanzierung

Basiswissen zu Investition und Finanzierung Basiswissen zu Investition und Finanzierung Bearbeitet von Thomas Benesch, Karin Schuch 3., aktualisierte und erweiterte Auflage 2013. Buch. Rund 240 S. Kartoniert ISBN 978 3 7143 0246 2 Format (B x L):

Mehr

Schulinterner Lehrplan Mathematik Stufe EF

Schulinterner Lehrplan Mathematik Stufe EF Schulinterner Lehrplan Mathematik Stufe EF Thema Funktionstypen Inhaltsbezogene Kompetenzen: Die Schülerinnen und Schüler Funktionen und Analysis beschreiben die Eigenschaften einer Funktion und berechnen

Mehr

Themenpool teilzentrale Reifeprüfung Mathematik Europagymnasium Auhof, Aubrunnerweg 4, 4040 Linz; Schulkennzahl:

Themenpool teilzentrale Reifeprüfung Mathematik Europagymnasium Auhof, Aubrunnerweg 4, 4040 Linz; Schulkennzahl: Themenpool teilzentrale Reifeprüfung Mathematik Europagymnasium Auhof, Aubrunnerweg 4, 4040 Linz; Schulkennzahl: 401546 Thema 1: Zahlenbereiche und Rechengesetze Reflektieren über das Erweitern von Zahlenbereichen

Mehr

Dynamische Investitionsrechenverfahren. Charakteristika Verfahren Kritische Beurteilung

Dynamische Investitionsrechenverfahren. Charakteristika Verfahren Kritische Beurteilung Dynamische Investitionsrechenverfahren Charakteristika Verfahren Kritische Beurteilung Charakteristika Sie basieren auf Zahlungsströmen genauer: auf Aus- und Einzahlungen. Sie beziehen sich auf MEHRERE

Mehr

Kurvendiskussion. Mag. Mone Denninger 10. Oktober Extremwerte (=Lokale Extrema) 2. 5 Monotonieverhalten 3. 6 Krümmungsverhalten 4

Kurvendiskussion. Mag. Mone Denninger 10. Oktober Extremwerte (=Lokale Extrema) 2. 5 Monotonieverhalten 3. 6 Krümmungsverhalten 4 Mag. Mone Denninger 10. Oktober 2004 Inhaltsverzeichnis 1 Definitionsmenge 2 1.1 Verhalten am Rand und an den Lücken des Definitionsbereichs............................ 2 2 Nullstellen 2 3 Extremwerte

Mehr

Elementare Zinsrechnung

Elementare Zinsrechnung Elementare Zinsrechnung Zinssatz (Rendite) je Zinsperiode i = p% p =Prozentpunkte Zinsfaktor (Aufzinsungsfaktor) q = 1 + i Diskontfaktor (Abzinsungsfaktor) v = 1/(1 + i) = q 1 Laufzeit n Zinsperioden (Zeitintervalle)

Mehr

Basiswissen zu Investition und Finanzierung. 3., aktualisierte Auflage. von. Thomas Benesch Karin Schuch. Lnde. international

Basiswissen zu Investition und Finanzierung. 3., aktualisierte Auflage. von. Thomas Benesch Karin Schuch. Lnde. international Basiswissen zu Investition und Finanzierung 3., aktualisierte Auflage von Thomas Benesch Karin Schuch Lnde international Vorwort zur dritten Auflage 5 Vorwort zur zweiten Auflage 6 Vorwort zur ersten Auflage

Mehr