nach U.Wagner, OHG Tuttlingen

Größe: px
Ab Seite anzeigen:

Download "nach U.Wagner, OHG Tuttlingen"

Transkript

1 M T E E T M Wurzeln und Irrationalität nach U.Wagner, O Tuttlingen 2016/2017 Wurzeln und Irrationalität Folie 1

2 Rückblick: Standards 6 Standards 8: Wurzeln Standards 8: Irrationalität M T E E T M Inhaltsbezogene Kompetenzen: Standards 6 (3) Primfaktoren bestimmen (9) erläutern, dass zwischen zwei verschiedenen rationalen ahlen stets beliebig viele weitere rationale ahlen liegen (10) Brüche in Dezimalzahlen (abbrechend oder periodisch) und abbrechende Dezimalzahlen in Brüche umwandeln 2016/2017 Wurzeln und Irrationalität Folie 2

3 Rückblick: Standards 6 Standards 8: Wurzeln Standards 8: Irrationalität M T E E T M Irrationalität spiralcurricular vorbereiten Rationale ahlen liegen dicht, es drängen sich also sehr viele Brüche auf dem ahlenstrahl: Nichts an reellen ahlen ist beeindruckend, wenn nicht vorher die große ahl der Brüche beeindruckt hat! Brüche lassen sich in genau zwei rten von Dezimalzahlen umwandeln: abbrechend oder periodisch Dies ist der ufhänger für die Notwendigkeit der ahlbereichserweiterung! 2016/2017 Wurzeln und Irrationalität Folie 3

4 Rückblick: Standards 6 Standards 8: Wurzeln Standards 8: Irrationalität M T E E T M Inhaltsbezogene Kompetenzen: Standards 8 u den Wurzeln: (11) den usammenhang zwischen Wurzelziehen und Quadrieren erklären (12) den Wert der Quadratwurzel einer ahl in einfachen Fällen mithilfe benachbarter Quadratzahlen abschätzen (13) ahlterme mit Quadratwurzeln vereinfachen, auch durch teilweises Wurzelziehen (14) anhand eines Beispiels erklären, dass im llgemeinen a + b a + b ist, aber ab = a b ist 2016/2017 Wurzeln und Irrationalität Folie 4

5 Rückblick: Standards 6 Standards 8: Wurzeln Standards 8: Irrationalität M T E E T M nmerkungen zum Rechnen mit Wurzeln bschätzen mit Quadratzahlen nur bei Kenntnis dieser (aus Klasse 5/6) möglich (Spiralcurriculum!) Inwieweit thematisiert man a 2 = a? Differenzierung? Vereinfachung von ahltermen und v.a. teilweises Wurzelziehen nicht als Selbstzweck, z.b.: Schätze 1000 ab Begründe mit Wurzeldefinition, dass 16 = /2017 Wurzeln und Irrationalität Folie 5

6 Rückblick: Standards 6 Standards 8: Wurzeln Standards 8: Irrationalität M T E E T M nmerkungen zum Rechnen mit Wurzeln Nenner rational machen in Fällen wie 2 2 = 2? Oder sogar 6 2 = 3 2? Binnendifferenziert? ar nicht? Beispielerklärungen zu Rechenregeln nicht nur mit Quadratzahlen oder pythagoräischen ahlentripeln durchführen? = = 7 aber = 25 = = = 8 aber = 34 < > = 7 aber = 35 < 6 Mögliche Methodik: Sternchenaufgaben 2016/2017 Wurzeln und Irrationalität Folie 6

7 Standards 8: Wurzeln Standards 8: Irrationalität Näherungsverfahren M T E E T M Inhaltsbezogene Kompetenzen: Standards 8 ur Irrationalität: (16) anhand geeigneter Beispiele die Unvollständigkeit der rationalen ahlen beschreiben und die Notwendigkeit der ahlbereichserweiterung auf reelle ahlen begründen (17) Beispiele für irrationale ahlen angeben (18) ein iteratives Verfahren zur Bestimmung einer Wurzel durchführen 2016/2017 Wurzeln und Irrationalität Folie 7

8 Standards 8: Wurzeln Standards 8: Irrationalität Näherungsverfahren M T E E T M nmerkungen zur Irrationalität Inhalte gelten nur für das E-Niveau, sind also gymnasial, wenn nicht sogar identitätsstiftend! Irrationale ahlen sollten nicht nur auf Wurzeln beschränkt werden, andere Beispiele helfen bei der Begründung der Notwenigkeit einer ahlbereichserweiterung: 0, , Jede weitere Nachkommastelle wird gewürfelt 2016/2017 Wurzeln und Irrationalität Folie 8

9 Standards 8: Wurzeln Standards 8: Irrationalität Näherungsverfahren M T E E T M Einführung der Wurzel: Quadratverdoppelung 2016/2017 Wurzeln und Irrationalität Folie 9

10 Standards 8: Irrationalität Näherungsverfahren Beweis der Irrationalität M T E E T M Intervallhalbierungsverfahren Möglicher Einstieg: Ich denke mir eine zweistellige ahl, die Du mit möglichst wenigen Versuchen erraten sollst. Ich sage Dir jeweils, ob Du zu hoch oder zu tief liegst. Vorgehen: Wähle durch bschätzung benachbarte ganze ahlen als Intervallgrenzen, halbiere das Intervall und entscheide durch Quadrieren der Mitte, ob die obere oder untere älfte des Intervalls als neues Intervall dient. 2016/2017 Wurzeln und Irrationalität Folie 10

11 Standards 8: Irrationalität Näherungsverfahren Beweis der Irrationalität M T E E T M Intervallhalbierungsverfahren Vor- und Nachteile: Leicht durchschaubar und am ahlenstrahl darstellbar uf andere Probleme (Logarithmus) übertragbar, aber schwerfällig Liefert durch fortgesetztes Quadrieren die Einsicht, dass Wurzeln von Nicht-Quadratzahlen nicht abbrechen können (Periodizität ist aber noch nicht auszuschließen!) 2016/2017 Wurzeln und Irrationalität Folie 11

12 Standards 8: Irrationalität Näherungsverfahren Beweis der Irrationalität M T E E T M Intervall- oder Tabellenverfeinerung Intervall wird in ehntelschritten quadriert, mit dem ersten Wert über dem Radikanten erhält man ein neues Intervall Neues Intervall wird in undertstelschritten quadriert 1 < 2 < 2 denn 1 2 < 2 < 2 2 1,4 < 2 < 1,5 denn 1,4 2 < 2 < 1,5 2 1,41 < 2 < 1,42 denn 1,41 2 < 2 < 1,42 2 Vor- und Nachteile: weniger schwerfällig, weniger anschaulich usätzlich: Vorgriff auf das Tabellen-Vorgehen bei Tests 2016/2017 Wurzeln und Irrationalität Folie 12

13 Standards 8: Irrationalität Näherungsverfahren Beweis der Irrationalität M T E E T M eronverfahren Man nähert ein Rechteck durch fortgesetzte Mittelwertbildung schrittweise an ein flächengleiches Quadrat an. 7cm² 1,75cm 7cm² 2,43cm 4cm 2,88cm Eine Seite ist Mittelwert der anfänglichen: = 4 Die andere Seite stellt die richtige Fläche her: 7 4 = 1,75 Insgesamt ergibt sich die Formel: x n+1 = 1 2 x n + a x n 2016/2017 Wurzeln und Irrationalität Folie 13

14 Standards 8: Irrationalität Näherungsverfahren Beweis der Irrationalität M T E E T M eronverfahren Nachteile: Einsichten am ahlenstrahl und durch Quadrieren bleiben verborgen Vorteile: eometrisch darstellbar und sehr schnell Spezialfall des Newtonverfahrens für f x = x 2 a Mit f x = x k a auch Übertragung auf k-te Wurzeln möglich: x n+1 = 1 k (k 1)x n + a x n k 1 Es reicht auch x n+1 = 1 2 x n + a x n k 1, falls φ (x 0 ) < /2017 Wurzeln und Irrationalität Folie 14

15 Standards 8: Irrationalität Näherungsverfahren Beweis der Irrationalität M T E E T M Babylonisches Näherungsverfahren Tontafel Nr Interpretation im 60er-System: Ergebnis 1, weicht um ca von 2 ab! Spektakuläre enauigkeit ca Jahre vor Pythagoras! 2016/2017 Wurzeln und Irrationalität Folie 15

16 Standards 8: Irrationalität Näherungsverfahren Beweis der Irrationalität M T E E T M Babylonisches Näherungsverfahren Vorgehen für a : Wähle (nahe) Quadratzahl n 2 und zeichne zwei zentrumsgleiche Quadrate mit Seitenlängen a und n und deren Differenz ist 2d = a n Die Rahmenfläche r wird durch die vier Rechtecke angenähert: r 4nd lso ist a = n + 2d n + r und r = a n 2 2n 2016/2017 Wurzeln und Irrationalität Folie 16

17 Standards 8: Irrationalität Näherungsverfahren Beweis der Irrationalität M T E E T M Vorgehen für 2 : Babylonisches Näherungsverfahren Man wählt: n = 1, damit r = 1, also: = 1,5 Verfahren ist nicht auf ganzzahlige n beschränkt und iterierbar: 2.Schritt: n = 1,5, damit r = 0,25, also: 2 1,5 0,25 3 = 1,41 6 Nachteil: komplex, nur binnendifferenziert möglich? Vorteile: reichhaltige geschichtliche Bezüge möglich, Vorgriff auf Infinitesimalrechnung Vergleich der Näherungsverfahren 2016/2017 Wurzeln und Irrationalität Folie 17

18 Näherungsverfahren Beweis der Irrationalität Das Fazit M T E E T M Beweisverfahren für die Irrationalität von 2 Beweis gar nicht im Unterricht thematisieren? Für mich indiskutabel: ymnasiale Identität! Beweis nur binnendifferenziert für WiMint-Schüler? Ja: Beweis ist anspruchsvoll und erfolgt zu früh Nein: Wenn Schüler Notwendigkeit der ahlbereichserweiterung begründen, wollen sie auch wissen, ob und warum 2 irrational ist 2016/2017 Wurzeln und Irrationalität Folie 18

19 Näherungsverfahren Beweis der Irrationalität Das Fazit M T E E T M Beweisverfahren für die Irrationalität von 2 Vorentlastung: Beweis durch Widerspruch im lltag : nnahme: Daniel ist ein netter Schüler (fiktiver (?) Querulant) Dann ist Daniel auch nett zu Menschen Da Lehrer auch Menschen sind (echt?) ist Daniel nett zu Lehrern Widerspruch! Daniel ist kein netter Schüler! usätzliche Empfehlung: Nichtabbrechen der Primzahlfolge nach Euklid (auch zum Wiederaufgreifen: P III) 2016/2017 Wurzeln und Irrationalität Folie 19

20 Näherungsverfahren Beweis der Irrationalität Das Fazit M T E E T M Einschub: Nichtabbrechen der Primzahlfolge nach Euklid nnahme: es gibt eine größte Primzahl p Dann definieren wir die ahl m = p + 1 Dann ist m durch keine Primzahl teilbar (Rest ist stets 1) Dann ist m entweder selbst eine Primzahl größer als p oder durch eine ahl größer als p teilbar, die selbst Primzahl ist Widerspruch: p ist nicht die größte Primzahl! nmerkung: usprobieren lehrreich! 2+1 prim, prim, prim, prim aber: = /2017 Wurzeln und Irrationalität Folie 20

21 Näherungsverfahren Beweis der Irrationalität Das Fazit M T E E T M Teilerwiderspruch nach Euklid, klassisch (Song) nnahme: 2 ist rational, also 2 = p q, vollständig gekürzt lso ist 2 = p2 q 2 oder 2q2 = p 2 lso ist p 2 gerade und damit p gerade (Vorentlasten!) lso kann man setzen: p = 2r (Vorentlasten!) Somit 2q 2 = (2r) 2 = 4r 2 oder q 2 = 2r 2 lso ist q 2 gerade und damit auch q gerade (s.o.) Widerspruch zum vollständig gekürzten Bruch! nnahme falsch, 2 ist irrational 2016/2017 Wurzeln und Irrationalität Folie 21

22 Näherungsverfahren Beweis der Irrationalität Das Fazit M T E E T M Teilerwiderspruch nach Euklid Der analoge Beweis lässt sich auch mit 5 und 10 durchführen: aus p 2 durch 5 bzw. 10 teilbar folgt p durch 5 bzw. 10 teilbar erfolgt wieder durch Endstellenbetrachtung! um Kontrast sollte man auch zeigen, dass sich bei 4 kein Widerspruch einstellt: aus p 2 durch 4 teilbar folgt nur p gerade! Methodik: Vorbeweisen, Beweispuzzle, Lückentext 2016/2017 Wurzeln und Irrationalität Folie 22

23 Näherungsverfahren Beweis der Irrationalität Das Fazit M T E E T M Teilerwiderspruch nach Euklid Wie beweist man die Irrationalität anderer Wurzeln? lternative 1: nzahl Primfaktoren verdoppelt sich beim Quadrieren leich bis 2q 2 = p 2 links ungerade, rechts gerade nzahl des Primfaktors 2 lternative 2: teilerfremde ahlen sind nach Quadrieren teilerfremd, weil weder in ähler noch im Nenner neue Primfaktoren entstehen leiche nnahme, weil 1< 2<2 gilt: q>1 Dann ist 2 = p 2 vollständig gekürzt mit q 2 > 1, also nicht q natürlich 2016/2017 Wurzeln und Irrationalität Folie 23

24 Näherungsverfahren Beweis der Irrationalität Das Fazit M T E E T M (Unendlicher) bstieg nach Fermat nnahme: 2 = p q, p, q sind kleinstmögliche natürliche ahlen lso 2 = p2 q 2 oder 2q2 = p 2, damit ist p 2 > q 2 und p > q und 2q 2 > 2q 2 = p 2 ist 2q > p Wir definieren: n = p q < q und m = 2q p < p, beide natürlich Es gilt: mq = 2q p q = 2q 2 pq = p 2 pq und np = p q p = p 2 pq = mq, also: m n = p q, Widerspruch! Konkreter: m n = 2q p Oder Nachrechnen: p q = 2 p = 2 2 (2 2)( 2+1) = p q q = ( 2 1)( 2+1) = 2 = 2 (?) also 2 2 = ( 2 1) 2 (!) 2016/2017 Wurzeln und Irrationalität Folie 24

25 Näherungsverfahren Beweis der Irrationalität Das Fazit M T E E T M (Unendlicher) bstieg nach Fermat Beweis so für chtklässler zu heftig, kann aber anschaulich ( rückwärts ) geführt werden! Oder mit Spielsteinen (Schülermaterial nach Ordowski) Oder mit Dreieckskonstruktion (nach Ordowski) Oder mit Ähnlichkeitskonstruktion Oder durch Falten mit DIN-Formaten (Schülermaterial nach Messner) Oder durch Kombination mit Euklid und damit Vermeidung von m und n (nächste Folie) 2016/2017 Wurzeln und Irrationalität Folie 25

26 Näherungsverfahren Beweis der Irrationalität Das Fazit M T E E T M Kombination von Euklid und Fermat nnahme: 2 ist rational, also 2 = p q, p, q natürliche ahlen lso ist 2 = p2 q 2 oder 2q2 = p 2 Damit gilt einerseits: p 2 > q 2 ber auch: p 2 gerade und damit auch p gerade: p = 2r Somit 2q 2 = (2r) 2 = 4r 2 oder q 2 = 2r 2 lso andererseits: q 2 > r 2 und q gerade Damit insgesamt: p 2 > q 2 > r 2 > Widerspruch: unendlich absteigende Folgen nat. ahlen sind unmöglich 2016/2017 Wurzeln und Irrationalität Folie 26

27 Näherungsverfahren Beweis der Irrationalität Das Fazit M T E E T M Fazit Wurzeln bieten Möglichkeiten zur Binnendifferenzierung nach oben Näherungsverfahren bieten reichhaltige Möglichkeiten zur Binnendifferenzierung nach oben Es wäre schade, sich auf Intervallhalbierung zu beschränken ls Regelstandard ist aber ein Verfahren ausreichend, dies kann aber auch z.b. das eron-verfahren sein Bei Thematisierung mehrerer Verfahren muss die Wahl in Klassenarbeiten freigestellt und fair sein 2016/2017 Wurzeln und Irrationalität Folie 27

28 Näherungsverfahren Beweis der Irrationalität Das Fazit M T E E T M Fazit Beweisverfahren bieten noch mehr: Spiraliges ufgreifen von Teilbarkeit, Primzahlen und faktoren sowie ufzeigen geometrischer usammenhänge Sehr reichhaltige Möglichkeiten zur Binnendifferenzierung Beweisen ist kein Regelstandard, aber das Beweisen soll sich als prozessbezogene Kompetenz durch alle Klassen und Inhalte ziehen hier ist eine großartige Möglichkeit, pk 1 (Begründen) zu bedienen (v.a. die Teilkompetenzen 10., 12. und 13.) Es wäre sehr schade, wenn man hier nichts machen würde 2016/2017 Wurzeln und Irrationalität Folie 28

Mathematik Quadratwurzel und reelle Zahlen

Mathematik Quadratwurzel und reelle Zahlen Mathematik Quadratwurzel und reelle Zahlen Grundwissen und Übungen a : a a Stefan Gärtner 1999 004 Gr Mathematik elementare Algebra Seite Inhalt Inhaltsverzeichnis Seite Grundwissen Definition Quadratwurzel

Mehr

J Quadratwurzeln Reelle Zahlen

J Quadratwurzeln Reelle Zahlen J Quadratwurzeln Reelle Zahlen J Quadratwurzeln Reelle Zahlen 1 Quadratwurzeln Ein Quadrat habe einen Flächeninhalt von 64 cm. Will man wissen, wie lang die Seiten des Quadrates sind, so muss man herausfinden,

Mehr

1.Rationale und irrationale Zahlen. Quadratwurzel.

1.Rationale und irrationale Zahlen. Quadratwurzel. 1.Rationale und irrationale Zahlen 1.1Quadratwurzeln Die Quadratwurzel aus einer rationalen Zahl 5 = 5; denn 5 = 5 und 5 > 0 r > 0 (geschrieben r ) ist diejenige nichtnegative Zahl, deren Quadrat r ergibt.

Mehr

1.2 Mengenlehre-Einführung in die reellen Zahlen

1.2 Mengenlehre-Einführung in die reellen Zahlen .2 Mengenlehre-Einführung in die reellen Zahlen Inhaltsverzeichnis Repetition 2 2 Dezimalzahlen 3 3 weitere irrationale Zahlen 4 3. Zusatz: Der Beweis, dass 2 irrational ist.......................... 5

Mehr

Reelle Zahlen (R)

Reelle Zahlen (R) Reelle Zahlen (R) Bisher sind bekannt: Natürliche Zahlen (N): N {,,,,,6... } Ganze Zahlen (Z): Z {...,,,0,,,... } Man erkennt: Rationale Zahlen (Q):.) Zwischen den natürlichen Zahlen befinden sich große

Mehr

1.2 Mengenlehre I-Einführung in die reellen Zahlen

1.2 Mengenlehre I-Einführung in die reellen Zahlen .2 Mengenlehre I-Einführung in die reellen Zahlen Inhaltsverzeichnis Checkliste 2 2 Repetition 2 3 Dezimalzahlen 3 4 Die Darstellung von Brüchen als Dezimalzahlen 3 5 irrationale Zahlen 4 6 Beispiele von

Mehr

a heißt Radikand Das (Quadrat-)Wurzelziehen ist die Umkehrung des Quadrierens. Das Quadrieren ist die Umkehrung des (Quadrat-)Wurzelziehens.

a heißt Radikand Das (Quadrat-)Wurzelziehen ist die Umkehrung des Quadrierens. Das Quadrieren ist die Umkehrung des (Quadrat-)Wurzelziehens. 1 Reelle Zahlen - Quadratwurzeln Wir kennen den Flächeninhalt A = 49 m 2 eines Quadrats und möchten seine Seitenlänge x berechnen Es ist also jene Zahl x zu ermitteln, die mit sich selbst multipliziert

Mehr

Die Menge C der komplexen Zahlen wird im Kapitel Weitere Themen behandelt.

Die Menge C der komplexen Zahlen wird im Kapitel Weitere Themen behandelt. 1 1 Funktionen 1.1 Grundlegende Zahlenmengen Georg Cantor (1845-1918) hat den Begriff der Menge eingeführt. Man versteht darunter die Zusammenfassung einzelner Dinge, welche Elemente genannt werden, zu

Mehr

2.2 Quadratwurzeln. e) f) 8

2.2 Quadratwurzeln. e) f) 8 I. Quadratwurzeln Rechne im Kopf und erkläre, wie du vorgegangen bist!, H a) 7 8 b) 5 6 c) 9 d) 6 9 e) 0 _ f) 8 _ g) 7 _ 00 h) 5 _ 69 Teilweises Wurzelziehen ist dann möglich, wenn sich eine Zahl so zerlegen

Mehr

Tandembogen und Irrgarten eine Einführung der irrationalen Zahlen. Irmgard Letzner, Berlin. M 1 Die rationalen Zahlen Brüche würfeln und berechnen

Tandembogen und Irrgarten eine Einführung der irrationalen Zahlen. Irmgard Letzner, Berlin. M 1 Die rationalen Zahlen Brüche würfeln und berechnen S 1 Tandembogen und Irrgarten eine Einführung der irrationalen Zahlen Irmgard Letzner, Berlin M 1 Die rationalen Zahlen Brüche würfeln und berechnen Ein Würfelspiel für 2 Spieler Materialien r 2 Würfel

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 2. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 2. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN Bisher kennen wir bereits folgende Zahlenbereiche: N Natürliche Zahlen Z Ganze Zahlen Q Rationale Zahlen Bei

Mehr

2 ist Teiler von p² fl 2 ist Teiler von p, p kann also geschrieben werden als p=2a

2 ist Teiler von p² fl 2 ist Teiler von p, p kann also geschrieben werden als p=2a Station Der Beweis, dass irrational ist ufgabe 1 Hört euch auf youtube von DorFuchs den Song Die Wurzel aus ist irrational an. Der Link dazu ist http://www.youtube.com/watch?v=tpfneby9r0. Notiert euch

Mehr

Eine löchrige Gerade Eins ist ganz klar: Es gibt unendlich viele rationale Zahlen, und es wird nicht möglich sein, auf der Zahlgeraden irgendein Intervall zu finden, in dem sich keine einzige rationale

Mehr

Demo-Text für Quadratwurzeln ALGEBRA. Teil 1. Einführung und Grundeigenschaften. (Klasse 8 / 9) Friedrich W.

Demo-Text für  Quadratwurzeln ALGEBRA. Teil 1. Einführung und Grundeigenschaften. (Klasse 8 / 9) Friedrich W. Teil 1 Einführung und Grundeigenschaften (Klasse 8 / 9) Datei Nr. 101 Friedrich W. Buckel Stand: 1. Mai 014 ALGEBRA Quadratwurzeln INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Vorwort Die Einführung des 1-jährigen

Mehr

Kryptographie und Codierungstheorie

Kryptographie und Codierungstheorie Proseminar zur Linearen Algebra Kryptographie und Codierungstheorie Thema: Faktorisierungsalgorithmen (nach der Fermat'schen Faktorisierungsmethode) Kettenbruchalgorithmus (Continued Fraction Method) Quadratisches

Mehr

Arbeitsblatt 2 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen H. Strade, B. Werner WiSe 06/

Arbeitsblatt 2 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen H. Strade, B. Werner WiSe 06/ 14. November 2006 Arbeitsblatt 2 Übungen zu Mathematik I für das Lehramt an der Grund- und Mittelstufe sowie an Sonderschulen H. Strade, B. Werner WiSe 06/07 31.10.06 Präsenzaufgaben: 1) Welche rationale

Mehr

Mathematik-Dossier Potenzen und Wurzeln Stoffsicherung und repetition.

Mathematik-Dossier Potenzen und Wurzeln Stoffsicherung und repetition. Name: Mathematik-Dossier Potenzen und Wurzeln Stoffsicherung und repetition. Inhalt: Potenzen Die zweite Wurzel (Quadratwurzel) Verwendung: Dieses Dossier dient der Repetition und Festigung innerhalb der

Mehr

A N A L Y S I S I F Ü R T P H, U E ( ) 1. Übungstest (FR, ) (mit Lösung )

A N A L Y S I S I F Ü R T P H, U E ( ) 1. Übungstest (FR, ) (mit Lösung ) Institut für Analysis und Scientific Computing TU Wien W. Auzinger WS 05/6 A N A L Y S I S I F Ü R T P H, U E (03.088). Übungstest (FR, 6..05) (mit Lösung ) Aufgabe. a ) Wandeln Sie die periodische Dezimalzahl

Mehr

Didaktik der Zahlbereichserweiterungen

Didaktik der Zahlbereichserweiterungen Jürgen Roth Didaktik der Zahlbereichserweiterungen Modul 5: Fachdidaktische Bereiche Kapitel 5: Reelle Zahlen R 5.1 Didaktik der Zahlbereichserweiterungen 1 Ziele und Inhalte 2 Natürliche Zahlen N 3 Ganze

Mehr

3 Zahlen und Arithmetik

3 Zahlen und Arithmetik In diesem Kapitel werden Zahlen und einzelne Elemente aus dem Bereich der Arithmetik rekapituliert. Insbesondere werden die reellen Zahlen eingeführt und einige Rechenregeln wie Potenzrechnung und Logarithmieren

Mehr

Quadratwurzel. Wie lassen sich die Zahlen auf dem oberen und unteren Notizzettel einander sinnvoll zuordnen?

Quadratwurzel. Wie lassen sich die Zahlen auf dem oberen und unteren Notizzettel einander sinnvoll zuordnen? 1. Zahlenpartner Quadratwurzel Wie lassen sich die Zahlen auf dem oberen und unteren Notizzettel einander sinnvoll zuordnen? Quelle: Schnittpunkt 9 (1995) Variationen: (a) einfachere Zahlen (b) ein weiteres

Mehr

Rationale, irrationale und reelle Zahlen. 4-E Vorkurs, Mathematik

Rationale, irrationale und reelle Zahlen. 4-E Vorkurs, Mathematik Rationale, irrationale und reelle Zahlen 4-E Vorkurs, Mathematik Rationale Zahlen Der Grund für die Einführung der rationalen Zahlen ist der, dass wir mit ihnen auch Gleichungen der Form q x = p lösen

Mehr

Zahlentheorie I - Tipps & Lösungen. Aktualisiert: 15. Oktober 2016 vers Teilbarkeit

Zahlentheorie I - Tipps & Lösungen. Aktualisiert: 15. Oktober 2016 vers Teilbarkeit Schweizer Mathematik-Olympiade smo osm Zahlentheorie I - Tipps & Lösungen Aktualisiert: 15. Oktober 2016 vers. 1.2.0 1 Teilbarkeit Einstieg 1.1 Zeige, dass 900 ein Teiler von 10! ist. Tipp: Schreibe 900

Mehr

Einführung der Quadratwurzel

Einführung der Quadratwurzel Einführung der Quadratwurzel In den 90er Jahren wurde als Werbemaßnahme ein Bungeespringen aus der Eibsee- Seilbahn veranstaltet. Die Gondel wurde direkt über der Riffelriss zum Stehen gebracht, sodass

Mehr

Eine kurze Tabelle soll uns erste Einsichten erleichtern. Der Strich heißt, dass es eine solche Darstellung nicht gibt.

Eine kurze Tabelle soll uns erste Einsichten erleichtern. Der Strich heißt, dass es eine solche Darstellung nicht gibt. Summen von Quadraten 1 Physikalische Motivation Eine schwingende Saite hat eine Grundfrequenz F, die von Länge, Dicke, Beschaffenheit der Saite und so fort abhängt Neben dieser Grundfrequenz gibt es auch

Mehr

numerische Berechnungen von Wurzeln

numerische Berechnungen von Wurzeln numerische Berechnungen von Wurzeln. a) Berechne x = 7 mit dem Newtonverfahren und dem Startwert x = 4. Mache die Probe nach jedem Iterationsschritt. b) h sei eine kleine Zahl, d.h. h. Wir suchen einen

Mehr

Prof. S. Krauter Dezimalbruchdarstellung rationaler Zahlen DezDarst.doc. Über die Darstellung von rationalen Zahlen als Dezimalbrüche.

Prof. S. Krauter Dezimalbruchdarstellung rationaler Zahlen DezDarst.doc. Über die Darstellung von rationalen Zahlen als Dezimalbrüche. 1 Prof. S. Krauter Dezimalbruchdarstellung rationaler Zahlen DezDarst.doc Über die Darstellung von rationalen Zahlen als Dezimalbrüche. Anmerkung: Die Beschränkung auf die Dezimaldarstellung ist unnötig.

Mehr

Probabilistische Primzahltests

Probabilistische Primzahltests 23.01.2006 Motivation und Überblick Grundsätzliches Vorgehen Motivation und Überblick Als Primzahltest bezeichnet man ein mathematisches Verfahren, mit dem ermittelt wird, ob eine gegebene Zahl eine Primzahl

Mehr

IV. Zahlbereichserweiterung

IV. Zahlbereichserweiterung IV. Zahlbereichserweiterung 5./6. Klasse: Natürliche Zahlen;nach dem neuen Bildungslan auch negative ganze Zahlen 6. Klasse: Bruchzahlen 7. Klasse: Rationale Zahlen 9. Klasse: Reelle Zahlen (3) Z ganze

Mehr

Übungsbuch Algebra für Dummies

Übungsbuch Algebra für Dummies ...für Dummies Übungsbuch Algebra für Dummies von Mary Jane Sterling, Alfons Winkelmann 1. Auflage Wiley-VCH Weinheim 2012 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 527 70800 0 Zu Leseprobe

Mehr

Buch Medien / Zuordnung zu den Kompetenzbereichen Seite Methoden inhaltsbezogen prozessbezogen

Buch Medien / Zuordnung zu den Kompetenzbereichen Seite Methoden inhaltsbezogen prozessbezogen Quadratwurzel Reelle Zahlen Quadratwurzeln Reelle Zahlen Zusammenhang zwischen Wurzelziehen und Quadrieren Rechenregeln Umformungen (Bd. Kl. 9) 7 46 8 18 19 20 21 24 25 29 30 34 + 2 mit Excel Beschreiben

Mehr

Reell : rational irrational 13

Reell : rational irrational 13 Reell : rational irrational -0 5 Mögliche : Reelle Zahlen sind alle Zahlen innerhalb des dunkelblauen Ovals. azu gehören also auch alle rationalen Zahlen. Rationale Zahlen sind alle Zahlen innerhalb des

Mehr

Zahlen und elementares Rechnen (Teil 1)

Zahlen und elementares Rechnen (Teil 1) und elementares Rechnen (Teil 1) Dr. Christian Serpé Universität Münster 6. September 2010 Dr. Christian Serpé (Universität Münster) und elementares Rechnen (Teil 1) 6. September 2010 1 / 40 Gliederung

Mehr

Anzahl der Punkte auf Kreis und Gerade

Anzahl der Punkte auf Kreis und Gerade Anzahl der Punkte auf Kreis und Gerade Ein Kreis hat sicher einen viel kürzeren Umfang als eine unendliche Gerade. Trotzdem besteht ein Kreis (ohne seinen obersten Punkt) aus gleich vielen Punkten wie

Mehr

Zuordnung von gemeinen Brüchen zu Dezimalbrüchen

Zuordnung von gemeinen Brüchen zu Dezimalbrüchen Zuordnung von gemeinen Brüchen zu Dezimalbrüchen Durch schriftliche Division kann ein gemeiner Bruch in einen Dezimalbruch umgewandelt werden. Hierbei können zwei verschiedene Fälle betrachtet werden:

Mehr

A = 2 a = 2 Flächeninhalt des Quadrates. Was verbirgt sich hinter 2? Wie sieht die Zahl aus? Wie kann man sie hinschreiben? Kann man sie hinschreiben?

A = 2 a = 2 Flächeninhalt des Quadrates. Was verbirgt sich hinter 2? Wie sieht die Zahl aus? Wie kann man sie hinschreiben? Kann man sie hinschreiben? C:\Eigene Dateien\Unterricht\Mathe 9M 000-001\Wurzel \Wurzel - irrationale Zahl.doc Seite 1 von 1 Die Fläche eines uadratischen Sandsiellatzes soll so verdoelt werden, dass wieder ein Quadrat entsteht.

Mehr

Zahlen und elementares Rechnen

Zahlen und elementares Rechnen und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3

Mehr

2. Bereich der reellen Zahlen IR

2. Bereich der reellen Zahlen IR Fachinternes Curriculum für das Fach Mathematik (letzte Aktualisierung: 14.03.2014) Ab Schuljahr: 14/15 Jahrgang: 9 Die dritte Klassenarbeit wird in Klasse 9 über 90 Minuten geschrieben. Zeitraum Pflichtmodul

Mehr

Komplexe Zahlen. Bekannte Zahlenmengen. Natürliche Zahlen. Die Zahlenmenge ist IN = {0, 1, 2, 3,...}. Es gelten die folgenden Gesetze:

Komplexe Zahlen. Bekannte Zahlenmengen. Natürliche Zahlen. Die Zahlenmenge ist IN = {0, 1, 2, 3,...}. Es gelten die folgenden Gesetze: Mathematik/Informatik Gierhardt Komplexe Zahlen Komplexe Zahlen Bekannte Zahlenmengen Natürliche Zahlen Die Zahlenmenge ist IN = {0,,,,} Es gelten die folgenden Gesetze: Addition: a + b IN, wenn a,b IN

Mehr

und (c) ( 1 2 ) und (c) 2 x + z y

und (c) ( 1 2 ) und (c) 2 x + z y Teil II: Übungen 59 Übung 1 1. Berechne (((4/3+5/2) 6/5) 2/5) 5/2. 2. Berechne (a) 1 ( 2 ( ( 2 3 ) ( 3 4 ) ), (b) 1 und (c) ( 1 2 ) 4 ) ( 3 ). 4 3. Vereinfache: (a) ( 4 xy + 3 4z yz )( xy 2 y ),(b) x y

Mehr

3. Diskrete Mathematik

3. Diskrete Mathematik Diophantos von Alexandria um 250 Georg Cantor 1845-1918 Pythagoras um 570 v. Chr Pierre de Fermat 1607/8-1665 Seite 1 Inhalt der Vorlesung Teil 3: Diskrete Mathematik 3.1 Zahlentheorie: Abzählbarkeit,

Mehr

Wurzelgleichungen. 1.1 Was ist eine Wurzelgleichung? 1.2 Lösen einer Wurzelgleichung. 1.3 Zuerst die Wurzel isolieren

Wurzelgleichungen. 1.1 Was ist eine Wurzelgleichung? 1.2 Lösen einer Wurzelgleichung. 1.3 Zuerst die Wurzel isolieren 1.1 Was ist eine Wurzelgleichung? Wurzelgleichungen Beispiel für eine Wurzelgleichung Eine Wurzelgleichung ist eine Gleichung bei der in mindestens einem Radikanten (Term unter der Wurzel) die Unbekannte

Mehr

2 Polynome und rationale Funktionen

2 Polynome und rationale Funktionen Gleichungen spielen auch in der Ingenieurmathematik eine große Rolle. Sie beschreiben zum Beispiel Bedingungen, unter denen Vorgänge ablaufen, Gleichgewichtszustände, Punktmengen. Gleichungen für eine

Mehr

Erster Zirkelbrief: Komplexe Zahlen

Erster Zirkelbrief: Komplexe Zahlen Matheschülerzirkel Universität Augsburg Schuljahr 04/05 Erster Zirkelbrief: Komplexe Zahlen Inhaltsverzeichnis Zahlenbereiche. Natürliche Zahlen................................. Ganze Zahlen...................................3

Mehr

Zahlenmengenerweiterung Von den rationalen Zahlen zu den irrationalen Zahlen

Zahlenmengenerweiterung Von den rationalen Zahlen zu den irrationalen Zahlen Zahlenmengenerweiterung Von den rationalen Zahlen zu den irrationalen Zahlen Inhalte Heron-Verfahren Iteration Näherungsverfahren Irrationale Zahlen Überprüfungsmöglichkeiten Themenbereich Heron -Verfahren

Mehr

Fachcurriculum Mathematik (G8) MPG Klassen 5 und 6. Bildungsplan Bildungsstandards für Mathematik. Kern- und Schulcurriculum Klassen 5 und 6

Fachcurriculum Mathematik (G8) MPG Klassen 5 und 6. Bildungsplan Bildungsstandards für Mathematik. Kern- und Schulcurriculum Klassen 5 und 6 Bildungsplan 2004 Bildungsstandards für Mathematik Kern- und Klassen 5 und 6 Max-Planck-Gymnasium Böblingen 1 UE 1: Rechnen mit großen Zahlen UE 2: Messen und Auswerten natürliche Zahlen einfache Zehnerpotenzen

Mehr

4 Wurzeln, Dezimalzahlen und schon wieder eine neue Menge Die reellen Zahlen

4 Wurzeln, Dezimalzahlen und schon wieder eine neue Menge Die reellen Zahlen Ma th ef it 4 Wurzeln, Dezimalzahlen und schon wieder eine neue Menge Die reellen Zahlen Tom und Sara werden jeden Tag von einem Schüler/innen-Lotsen über einen Zebrastreifen vor der Schule geleitet. Sara

Mehr

Quadratzahlen, Quadratwurzeln und Potenzen

Quadratzahlen, Quadratwurzeln und Potenzen Patrick Pirklbauer Matrikelnummer: 1011616 Quadratzahlen, Quadratwurzeln und Potenzen Mathematisches Seminar für LAK 621.416 Kursleiterin: Univ.-Prof. Dr.phil. Karin Baur Institut für Mathematik und wissenschaftliches

Mehr

/ Nur zur privaten Verwendung! Musterausdruck! Skript und Übungsaufgaben Die Satzgruppe des Pythagoras

/  Nur zur privaten Verwendung! Musterausdruck! Skript und Übungsaufgaben Die Satzgruppe des Pythagoras Skript und Übungsaufgaben Die Satzgruppe des Pythagoras DER SATZ DES PYTHAGORAS DEFINITION UND BEWEIS AUFGABEN ZUM SATZ DES PYTHAGORAS MIT MUSTERLÖSUNGEN 5 DER KATHETENSATZ DES EUKLID 7 DEFINITION UND

Mehr

Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2016

Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2016 Logik und Beweise Logik und Beweise Vorsemesterkurs SoSe16 Ronja Düffel 21. März 2016 Logik und Beweise Wozu Beweise in der Informatik?... um Aussagen wie 1 Das Programm erfüllt die gewünschte Aufgabe.

Mehr

2 Rationale und reelle Zahlen

2 Rationale und reelle Zahlen 2 Rationale und reelle Zahlen 2.1 Körper Ein Körper ist eine Struktur der Form à = (K,0,1,+, mit einer Grundmenge K, zwei zweistelligen Operationen + und, für die die Körperaxiome gelten: (K1 (K, 0, +

Mehr

Vokabelliste FB Mathematik Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II. Mengenbegriffe:

Vokabelliste FB Mathematik Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II. Mengenbegriffe: Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II Mathematik Symbol, Definition Deutsch Erklärung Mengenbegriffe: natürlichen Zahlen natürlichen Zahlen inkl. der 0 ganzen Zahlen rationalen

Mehr

Kern- und Schulcurriculum Mathematik Klasse 5/6. Stand Schuljahr 2009/10

Kern- und Schulcurriculum Mathematik Klasse 5/6. Stand Schuljahr 2009/10 Kern- und Schulcurriculum Mathematik Klasse 5/6 Stand Schuljahr 2009/10 Klasse 5 UE 1 Natürliche en und Größen Große en Zweiersystem Römische en Anordnung, Vergleich Runden, Bilddiagramme Messen von Länge

Mehr

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler Kapitel 3: Die Sätze von Euler, Fermat und Wilson In diesem Kapitel wollen wir nun die eulersche -Funktion verwenden, um einen berühmten Satz von Euler zu formulieren, aus dem wir dann mehrere interessante

Mehr

Schulcurriculum Mathematik

Schulcurriculum Mathematik Fachkonferenz Mathematik Schulcurriculum Mathematik Schuljahrgang 5 Lehrwerk: Fundamente der Mathematik 5, Schroedel-Verlag, ISBN 978-3-06-040348-6 Das Schulcurriculum ist auf Grundlange des Stoffverteilungsplans

Mehr

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand:

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand: M 9.1 Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: Quadratwurzeln sind nur für positive Zahlen definiert: ; ; ; ; M 9.2 Reelle Zahlen

Mehr

Man weiß, dass zwischen zwei aufeinanderfolgenden Quadratzahlen immer mindestens eine Primzahl liegt:

Man weiß, dass zwischen zwei aufeinanderfolgenden Quadratzahlen immer mindestens eine Primzahl liegt: Primzahlgeheimnis 1 Man weiß, dass zwischen zwei aufeinanderfolgenden Quadratzahlen immer mindestens eine Primzahl liegt: Vervollständige die Quadrate und kringele alle Primzahlen ein: 1 2 5 10 17 26 37

Mehr

Wiederholung der Algebra Klassen 7-10

Wiederholung der Algebra Klassen 7-10 PKG Oberstufe 0.07.0 Wiederholung der Algebra Klassen 7-0 06rr5 4. (a) Kürze so weit wie möglich: 4998 (b) Schreibe das Ergebnis als gemischte Zahl und als Dezimalbruch: (c) Schreibe das Ergebnis als Bruch:

Mehr

Tag der Mathematik 2016

Tag der Mathematik 2016 Tag der Mathematik 016 Mathematischer Wettbewerb, Klassenstufe 9 10 30. April 016, 9.00 1.00 Uhr Aufgabe 1 Der Mittelwert von 016 (nicht unbedingt verschiedenen) natürlichen Zahlen zwischen 1 und 0 16

Mehr

Schuleigener Arbeitsplan Fach: Mathematik Jahrgang: 5

Schuleigener Arbeitsplan Fach: Mathematik Jahrgang: 5 Stand:.0.206 Sommerferien Zahlen und Operationen» Zahlen sachangemessen runden» große Zahlen lesen und schreiben» konkrete Repräsentanten großer Zahlen nennen» Zahlen auf der Zahlengeraden und in der Stellenwerttafel

Mehr

1 Vorbereitung: Potenzen 2. 2 Einstieg und typische Probleme 3

1 Vorbereitung: Potenzen 2. 2 Einstieg und typische Probleme 3 Das vorliegende Skript beschäftigt sich mit dem Thema Rechnen mit Kongruenzen. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft (MSG) im Jahr 2013. Die vorliegende

Mehr

Didaktik der Analysis in der Sek II- Reelle Zahlen. Humboldt-Universität zu Berlin Institut für Mathematik

Didaktik der Analysis in der Sek II- Reelle Zahlen. Humboldt-Universität zu Berlin Institut für Mathematik Humboldt-Universität zu Berlin Institut für Mathematik Abgeordnete Lehrer: G. Neumann, H. Rodner Sommersemester 2011 Rodner/Neumann 1 Die reellen Zahlen Historische Bemerkungen Zugänge zu den reellen Zahlen

Mehr

z. B. Packung c) Nenne einen Gegenstand, der etwa 1 kg wiegt. Zucker, Mehl, Milch d) Zeichne ein Quadrat mit dem Flächeninhalt 9 cm².

z. B. Packung c) Nenne einen Gegenstand, der etwa 1 kg wiegt. Zucker, Mehl, Milch d) Zeichne ein Quadrat mit dem Flächeninhalt 9 cm². Einsetzbar ab Lerneinheit Zuordnungen a) Runde 34,92 auf Zehntel. 35,0 b) Berechne: 3 5 11 3 +. = 1 4 8 8 8 z. B. Packung c) Nenne einen Gegenstand, der etwa 1 kg wiegt. Zucker, Mehl, Milch d) Zeichne

Mehr

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56 5 Beweistechniken Übersicht 5.1 Drei wichtige Beweistechniken................................. 55 5. Erklärungen zu den Beweistechniken............................ 56 Dieses Kapitel ist den drei wichtigsten

Mehr

Suche nach einer dezimalen Darstellung von d

Suche nach einer dezimalen Darstellung von d Didaktik der Algebra und Analysis SS 2011 Bürker, 10. 6. 2011 3.5 Zahlbereichserweiterung Q R Thema: Wurzel aus 2 ist keine rationale Zahl Vorwissen: Die Schüler müssen wissen, dass die Menge der rationalen

Mehr

Teil (E) Auseinandersetzung mit Mathematik

Teil (E) Auseinandersetzung mit Mathematik Teil (E) Auseinandersetzung mit Mathematik Meist geht es nicht primär darum, einen Beweis zu "erlernen", sondern einen solchen zu verstehen und selber Beweise zu entwickeln. Das Verstehen oder Entwickeln

Mehr

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra

Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra A. Filler Folie 1 /15 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 2. Die reellen Zahlen A. Filler Humboldt-Universität zu Berlin, Institut für Mathematik Sommersemester 2016

Mehr

Primzahlen. Herbert Koch Mathematisches Institut Universität Bonn Die Primfaktorzerlegung. a = st

Primzahlen. Herbert Koch Mathematisches Institut Universität Bonn Die Primfaktorzerlegung. a = st Primzahlen Herbert Koch Mathematisches Institut Universität Bonn 12.08.2010 1 Die Primfaktorzerlegung Wir kennen die natürlichen Zahlen N = 1, 2,..., die ganzen Zahlen Z, die rationalen Zahlen (Brüche

Mehr

Schulinterner Lehrplan Mathematik Klasse 6

Schulinterner Lehrplan Mathematik Klasse 6 Gesamtschule Gescher Schulinterner Lehrplan Mathematik Klasse 6 Als Lehrwerk wird das Buch Mathematik real 6, Differenzierende Ausgabe Nordrhein-Westfalen benutzt. Auf den Seiten Noch fit? können die Schülerinnen

Mehr

1 Mengen und Mengenoperationen

1 Mengen und Mengenoperationen 1 Mengen und Mengenoperationen Man kann verschiedene Objekte mit gemeinsamen Eigenschaften zu Mengen zusammenfassen. In der Mathematik kann man z.b. Zahlen zu Mengen zusammenfassen. Die Zahlen 0; 1; 2;

Mehr

Vorkurs Mathematik. Vorlesung 5. Cauchy-Folgen

Vorkurs Mathematik. Vorlesung 5. Cauchy-Folgen Prof. Dr. H. Brenner Osnabrück WS 2014/2015 Vorkurs Mathematik Vorlesung 5 Cauchy-Folgen Ein Problem des Konvergenzbegriffes ist, dass zur Formulierung der Grenzwert verwendet wird, den man unter Umständen

Mehr

Stunden/Seiten Inhaltsbereiche gemäß Lehrplan Eigene Bemerkungen. Inhalte von Maßstab Band 10 ISBN: Stunden

Stunden/Seiten Inhaltsbereiche gemäß Lehrplan Eigene Bemerkungen. Inhalte von Maßstab Band 10 ISBN: Stunden Von den Rahmenvorgaben des Lehrplans zum Schulcurriculum Anregungen für Mathematik in Hauptschule und Regionaler Schule in Rheinland-Pfalz auf der Grundlage von Maßstab 10 Der Stoffverteilungsplan geht

Mehr

Mengen und Abbildungen

Mengen und Abbildungen 1 Mengen und bbildungen sind Hilfsmittel ( Sprache ) zur Formulierung von Sachverhalten; naive Vorstellung gemäß Georg Cantor (1845-1918) (Begründer der Mengenlehre). Definition 1.1 Eine Menge M ist eine

Mehr

Das Jahr der Mathematik

Das Jahr der Mathematik Das Jahr der Mathematik Eine mathematische Sammlung - kinderleicht Thomas Ferber Forschung und Lehre Sun Microsystems GmbH Die Themen 1 2 Sind die Zahlen universell? π-day 3 Die Eine Million $-Frage 4

Mehr

Stunden/Seiten Inhaltsbereiche gemäß Lehrplan Eigene Bemerkungen. Inhalte von Maßstab Band 9 ISBN:

Stunden/Seiten Inhaltsbereiche gemäß Lehrplan Eigene Bemerkungen. Inhalte von Maßstab Band 9 ISBN: Von den Rahmenvorgaben des Lehrplans zum Schulcurriculum Anregungen für Mathematik in Hauptschule und Regionaler Schule in Rheinland-Pfalz auf der Grundlage von Maßstab 9 Der Stoffverteilungsplan geht

Mehr

Minimalziele Mathematik

Minimalziele Mathematik Jahrgang 5 o Kopfrechnen, Kleines Einmaleins o Runden und Überschlagrechnen o Schriftliche Grundrechenarten in den Natürlichen Zahlen (ganzzahliger Divisor, ganzzahliger Faktor) o Umwandeln von Größen

Mehr

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand:

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert. unter der Wurzel heißt Radikand: M 9.1 Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: Quadratwurzeln sind nur für positive Zahlen definiert: ; ; ; ; M 9.2 Reelle Zahlen

Mehr

Zahlen und Funktionen

Zahlen und Funktionen Kapitel Zahlen und Funktionen. Mengen und etwas Logik Aufgabe. : Kreuzen Sie an, ob die Aussagen wahr oder falsch sind:. Alle ganzen Zahlen sind auch rationale Zahlen.. R beschreibt die Menge aller natürlichen

Mehr

Dem Anschein nach werden diese Zahlen kleiner und kleiner und streben gegen Null. Was sollen sie sonst auch tun? Aber der Begriff

Dem Anschein nach werden diese Zahlen kleiner und kleiner und streben gegen Null. Was sollen sie sonst auch tun? Aber der Begriff 47 5 Irrationales 5.1 Folgen, Konvergenz und Vollständigkeit Eine Abbildung a : N R definiert eine Folge von reellen Werten a 1 = a(1), a 2 = a(2), a 3 = a(3),... Solche Zahlenfolgen werden uns dazu dienen,

Mehr

Back to the Roots. Hans-Jürgen Elschenbroich

Back to the Roots. Hans-Jürgen Elschenbroich Back to the Roots Heron Pythagoras Die Medienberatung NRW ist ein Angebot des Medienzentrums Rheinland und des Westfälischen Landesmedienzentrums. 2 Zitat Willst du mehr wissen, so suche morgen aus der

Mehr

Kettenbrüche. Bodo Werner Probevorlesung für Erstsemester 16. April Vorwort 1

Kettenbrüche. Bodo Werner Probevorlesung für Erstsemester 16. April Vorwort 1 Kettenbrüche Bodo Werner Probevorlesung für Erstsemester mailto:werner@math.uni-hamburg.de 6. April 2008 Inhaltsverzeichnis Vorwort 2 Einführung 2 3 Dezimalbrüche 4 4 Endliche und unendliche Kettenbrüche

Mehr

Zahlenfolgen. Aufgabe 1 (Streichholzfiguren)

Zahlenfolgen. Aufgabe 1 (Streichholzfiguren) Zahlenfolgen Aufgabe (Streichholzfiguren) a) Wie viele Streichhölzer benötigt man für die 0. Figur? b) Gib für die Streichholzfolge eine rekursive und eine explizite Berechnungsvorschrift an. Aufgabe (Quadratzahlen)

Mehr

1 3 Z 1. x 3. x a b b. a weil a 0 0. a 1 a weil a 1. a ist nicht erlaubt! 5.1 Einführung Die Gleichung 3 x 9 hat die Lösung 3.

1 3 Z 1. x 3. x a b b. a weil a 0 0. a 1 a weil a 1. a ist nicht erlaubt! 5.1 Einführung Die Gleichung 3 x 9 hat die Lösung 3. 5 5.1 Einführung Die Gleichung 3x 9 hat die Lösung 3. 3x 9 3Z 9 x 3 3 Die Gleichung 3x 1 hat die Lösung 1 3. 3x 1 1 3 Z 1 x 3 Definition Die Gleichung bx a, mit a, b Z und b 0, hat die Lösung: b x a a

Mehr

Quadratwurzeln. Reelle Zahlen

Quadratwurzeln. Reelle Zahlen M 9. Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: = Quadratwurzeln sind nur für positive Zahlen definiert: 0 25 = 5; 8 = 9; 0,25 = =

Mehr

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper 32 Andreas Gathmann 3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper Wir haben bisher von den reellen Zahlen nur die Körpereigenschaften, also die Eigenschaften der vier Grundrechenarten ausgenutzt

Mehr

JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen

JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen JAHRGANGSSTUFE 5 Prozessbezogene Kompetenzen Inhaltsbezogene Kompetenzen ELEMENTE DER MATHEMATIK 5 Schroedel Verlag Argumentieren Problemlösen Modellieren Werkzeuge Arithmetik/ Algebra Funktionen Geometrie

Mehr

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand:

Quadratwurzeln. ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: M 9.1 Quadratwurzeln ist diejenige nicht negative Zahl, die quadriert ergibt: Die Zahl unter der Wurzel heißt Radikand: Quadratwurzeln sind nur für positive Zahlen definiert: 0 25 5; 81 9; 0,25 0,5; 0,0081

Mehr

Wurzeln als Potenzen mit gebrochenen Exponenten. Vorkurs, Mathematik

Wurzeln als Potenzen mit gebrochenen Exponenten. Vorkurs, Mathematik Wurzeln als Potenzen mit gebrochenen Exponenten Zur Einstimmung Wir haben die Formel benutzt x m n = x m n nach der eine Exponentialzahl potenziert wird, indem man die Exponenten multipliziert. Dann sollte

Mehr

Fachcurriculum. Mathematik Klassen 7 und 8

Fachcurriculum. Mathematik Klassen 7 und 8 Fachcurriculum Mathematik Klassen 7 und 8 Ab Schuljahr 2006/07 (überarbeitet 2013/14) Mathematik 7/8 Seite 1 Themenbereich 7.1 Prozent- und Zinsrechnung Absoluter und relativer Vergleich - Anteile in Prozent.

Mehr

inhaltsbezogene Kompetenzen Die SuS... Kapitel I: Natürliche Zahlen

inhaltsbezogene Kompetenzen Die SuS... Kapitel I: Natürliche Zahlen prozessbezogene Kompetenzen Die SuS... Kapitel I: Natürliche Zahlen inhaltsbezogene Kompetenzen Die SuS... Kapitel I: Natürliche Zahlen konkrete Umsetzung zur Zielerreichung Die SuS können... Kapitel I:

Mehr

Vokabelliste FB Mathematik Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II. Mengenbegriffe:

Vokabelliste FB Mathematik Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II. Mengenbegriffe: Vokabeln 7./8. Klasse // Vokabeln 9./10. Klasse // Vokabeln Sek II Mathematik Symbol, Definition N N 0 Z Q Z + + Q 0 A = {a 1,, a n } Deutsch Erklärung Mengenbegriffe: natürlichen Zahlen natürlichen Zahlen

Mehr

Lehrwerk: Lambacher Schweizer, Klett Verlag

Lehrwerk: Lambacher Schweizer, Klett Verlag Lerninhalte 6 Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Thema 1: Rationale Zahlen 1 Teilbarkeit 2 Brüche und Anteile 3 ggt und kgv 4 Kürzen und Erweitern 5 Brüche auf der Zahlengeraden 6

Mehr

2 Rationale und reelle Zahlen

2 Rationale und reelle Zahlen 2 reelle Es gibt Mathematik mit Grenzwert (Analysis) und Mathematik ohne Grenzwert (z.b Algebra). Grenzwerte existieren sicher nur dann, wenn der Zahlbereich vollständig ist, also keine Lücken aufweist

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Das Pizza-Problem - ein Einstieg in die Kreisberechnung

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Das Pizza-Problem - ein Einstieg in die Kreisberechnung Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Das Pizza-Problem - ein Einstieg in die Kreisberechnung Das komplette Material finden Sie hier: School-Scout.de S 1 Das Pizza-Problem

Mehr

LAF Mathematik. Näherungsweises Berechnen von Nullstellen von Funktionen

LAF Mathematik. Näherungsweises Berechnen von Nullstellen von Funktionen LAF Mathematik Näherungsweises Berechnen von Nullstellen von Funktionen von Holger Langlotz Jahrgangsstufe 12, 2002/2003 Halbjahr 12.1 Fachlehrer: Endres Inhalt 1. Vorkenntnisse 1.1 Nicht abbrechende Dezimalzahlen;

Mehr

Studienmaterial Einführung in das Rechnen mit Resten

Studienmaterial Einführung in das Rechnen mit Resten Studienmaterial Einführung in das Rechnen mit Resten H.-G. Gräbe, Institut für Informatik, http://www.informatik.uni-leipzig.de/~graebe 12. April 2000 Die folgenden Ausführungen sind aus Arbeitsmaterialien

Mehr

Repetition Mathematik 6. Klasse (Zahlenbuch 6)

Repetition Mathematik 6. Klasse (Zahlenbuch 6) Repetition Mathematik 6. Klasse (Zahlenbuch 6) Grundoperationen / Runden / Primzahlen / ggt / kgv / Klammern 1. Berechne schriftlich: 2'097 + 18 6 16'009 786 481 274 69 d.) 40'092 : 78 2. Die Summe von

Mehr

I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE

I. Reelle Zahlen GRUNDWISSEN MATHEMATIK - 9. KLASSE I. Reelle Zahlen 1. Die Menge der rationalen Zahlen und die Menge der irrationalen Zahlen bilden zusammen die Menge der reellen Zahlen. Nenne Beispiele für rationale und irrationale Zahlen.. Aus negativen

Mehr

Das HeronVerfahren für root(a) (Babilonisches Wurzelziehen)

Das HeronVerfahren für root(a) (Babilonisches Wurzelziehen) Das HeronVerfahren für root(a) (Babilonisches Wurzelziehen) Ein weiteres Annäherungsverfahren für das Wurzelziehen Ein Spezialfall des Newton Verfahrens von Bieker Sebastian 11038605 Gruppe F Grün Geschichte:

Mehr

Lösungen der Aufgaben

Lösungen der Aufgaben Lösungen der Aufgaben Aufgabe 1.3.1 Es gibt 42 mögliche Verschlüsselungen. Aufgabe 2.3.4 Ergebnisse sind 0, 4 und 4 1 = 4. Aufgabe 2.3.6 Da in Z 9 10 = 1 ist, erhalten wir x = c 0 + + c m = c 0 + + c m.

Mehr