Beschreibung von Beschleunigung und Trajektorien, die sich aus den Gelenkund Kontaktkräften ergeben

Größe: px
Ab Seite anzeigen:

Download "Beschreibung von Beschleunigung und Trajektorien, die sich aus den Gelenkund Kontaktkräften ergeben"

Transkript

1 Dynamk

2 Dynamk eschrebung von eschleungung und Trajektoren, de sch aus den Gelenkund Kontaktkräften ergeben Inverse Dynamk (nverse knematcs) erechnung der notwendgen Kräfte um ener vorgegeben Trajektore zu folgen nwendung: Roboterkontrolle Drekte Dynamk / Vorwärtsknematk (forward knematcs) erechnung der Trajektoren als Funkton der anlegenden Kräfte nwendung: Smulaton

3 Spatal Vector Notaton Es gbt kenen enhetlchen Standard zur eschrebung von Roboterdynamken (3D Vektoren, 4x4 Matrzen, ) In deser Vorlesung wrd de spacal vector notaton verwendet, wel se ene kompakte Notaton betet. Dadurch braucht man auch wenger Glechungen, wenger erechnungen und st wenger fehleranfällg assvektoren v =(v x, v y, v z ) v = xv x + yv y + zv z x = (,, ) y = (,, ) z = (,, ) v = (, 2, 3) =x +2y +3z

4 Spacal Velocty d x, d y, d z d Ox, d Oy, d Oz Enhetstranslaton entlang der chsen Ox,Oy,Oz, des kartesschen Koordnatensystems O Enhetsrotaton entlang der chsen Ox,Oy,Oz, des kartesschen Koordnatensystems O v = d Ox! x + d Oy! y + d Oz! z + d x v Ox + d y v Oy + d z v Oz (! x,! y,! z, v Ox, v Oy, v Oz ) kartesschen Koordnaten von ω und v n dem Koordnatensystem OXYZ! x! y v O =! z! v Ox = v Oy v Oz

5 Spacal Force e Ox, e Oy, e Oz e x, e y, e z Enhetskraft entlang der chsen Ox,Oy,Oz, des kartesschen Koordnatensystems O Enhetsdrehmoment entlang der chsen Ox,Oy,Oz, des kartesschen Koordnatensystems O f = e x n Ox + e y n Oy + e z n Oz + e Ox f x + e Oy f y + e Oz f z (n Ox, n Oy, n Oz, f x, f y, f z ) kartesschen Koordnaten von n und f n dem Koordnatensystem OXYZ n Ox n Oy f O = n Oz n f x = f y f z

6 Rechenoperatonen auf spacal vectors ddton: Kräfte und Geschwndgketen lassen sch komponentenwese adderen und subtraheren. Wenn f und f2 auf enen Körper wrken, dann st de Gesamtkraft f = f + f2. Wenn sch en Körper mt v bewegt und en anderer mt v2, dann st de relatve Geschwndgket v = v - v2. Skalarprodukt Das Skalarprodukt st nur zwschen Geschwndgkets- und Kraftvektoren defnert und drückt de aufgewendete rbet aus (work) m f = m T f

7 Koordnatentransformaton Seen und zwe Koordnatensysteme und m, m, f, f 2 R 6 Geschwndgkets- und Kraftvektoren n desen Koordnatensysteme, dann glt m = X m und f = X F f X F =( X ) T =( X ) T Inverse: X = S(p) = S( p X = R R R p z p y p z p x p y p x R S( p ) R p 3x3 Rotatonsmatrx Poston von Frame relatv zu Frame

8 Vektorprodukt Für spacal vectors snd zwe rten von Vektorprodukten defnert:. Produkt zweer Geschwndgketsvektoren: m m 2 = m m O m2 m 2O = m m 2 m m 2O + m O m 2 Ergebns st en Geschwndgketsvektor 2. Produkt enes Geschwndgketsvektors mt enem Kraftvektor m f = m mo fo f = m fo + m O f m f Das Ergebns st en Kraftvektor Dese Formeln werden später be den bletungen und lgorthmen benötgt

9 bletungen De bletung enes spacal vectors st defnert als d dx s(x) = lm x! s(x + x) x s(x) s belebger spacal vector De bletung enes bewegten Koordnatensystems st defnert als d dt s = d dt s + v s Wenn sch nur das Koordnatensystem bewegt, dann glt d dt s = v s

10 eschleungung Spacal cceleraton st defnert als de Änderung der spacal velocty. De Defnton unterschedet sch von der klassschen Defnton Zusammenhang st gegeben durch: Vortel: a =! vo spacal a =! v O klasssch Spacal acceleraton st enfacher n der Handhabung. Seen und 2 zwe Körper mt Geschwndgketen und se v2 = v + vrel, dann folgt daraus, dass d.h. eschleungungen lassen sch enfach adderen. Es braucht kene besondere ehandlung der orols- und Zentrfugalkräften. a = a + v O v O bletung mt O fest m Raum bletung mt O fest m Körper! v O d dt (v 2 = v + v rel )=a 2 = a + a rel

11 Spacal Momentum & Inerta (Räumlcher Impuls & Träghet) Körper mt Masse m und Schwerpunkt Rotatonsträghet um st defnert als ewegung des Körpers Lnearer Impuls I cm = mr 2! v = v h = mv Intrnsscher Rotatonsmpuls Spacal Momentum h = h = I mc! h I = cm! h mv Wenn der Impuls ncht auf wrkt, sondern um enen belebgen Punkt O, dann glt ho S(c) h O = h + c h, h O = = h h

12 Spacal Inerta (Räumlche Träghet) Das spacal momentum st das Produkt der spacal nerta und der spacal velocty: h = I v Daraus folgt (sehe vorherge Fole) für de Träghet an der Koordnate des Massenpunkts: I cm I = m De Träghet von n den Punkt O läßt sch nun we folgt beschreben: h O = = S(c) I cm v m = I cm + ms(c)s(c) T ms(c) ms(c) T m S(c) v O I cm m S(c) T v O h O = I O v O I I O = cm + ms(c)s(c) T ms(c) T Ī I O = O ms(c) ms(c) T m ms(c) m Ī O = I cm + ms(c)s(c) T

13 Spacal Inerta (Räumlche Träghet) Koordnatentransformaton I = X F I X I =( X ) T I X Träghet von zwe verbundenen Körpern: I tot = I + I 2 Vortel: Lösen von dre Glechungen n ener:. erechnung der gemensamen Masse 2. erechnung des gemensamen Schwerpunkts 3. erechnung des Rotatonsmpulses ewegungsglechung: f = d (Iv) =Ia + İv = Ia + v Iv dt

14 Dynamsches Modell für Starrkörper (Rgd-odes) En Starrkörpermodell besteht aus ver Komponenten:. Verbndungsgraph 2. Gelenk- und Segmentparameter 3. Gelenkträghetsparameter 4. Gelenkmodelle Verbndungsgraph: En Verbndungsgraph st en ungerchteter Graph n dem de Segmente (Starrkörper) durch Knoten und de Gelenke durch de Kanten repräsentert werden. e moblen Roboter wrd zusätzlch en 6DOF Gelenk und ene weteres Segment (Fxed ase) hnzugefügt.

15 Verbndungsgraph espel: Mobler humanoder Roboter ass (Fxed ase) hat de Nummer Segmente werden n aufstegender Rehenfolge nummerert regular numberng scheme Gelenk verbndet Segment mt dessen Vorgänger e ener Schlefenstruktur muss man sch auf ene aumstruktur für de Nummererung festlegen

16 Verbndungsgraph N nzahl der Segmente NJ nzahl der Gelenke Loop-closng Gelenke erhalten Nummern n belebger Rehenfolge mt N + NJ p() Vorgängersegment (parent, predecessor) c() Menge der Nachfolgersegmente (successor, chldren)

17 Verbndungsgraph ody c() Loop 2, ,, Loop 2 3 Loop-closng jont k p(k) 6 s(k) 5 3 Root

18 Inverse Dynamk Gegeben: Gelenkparameterq (Wnkel / Poston) Gelenkgeschwndgket (lnear / rotatorsch) eschleungung q (lnear / rotatorsch) q Gewünscht: De Kraft, de jedes Gelenke aufbrngen muss

19 Prsmatsches Gelenk Rotatorsches Gelenk Schraubengelenk Zylndrsches Gelenk ewegungsmatrx Φ v rel = (ż) ż v rel = ( ) h, v rel = ( ) h v rel = ż ż 6 n Matrx q n Vektor

20 eschleungung De eschleungung ergbt sch aus der bletung der Geschwndgket a = v t a rel = q + v t = mestens = t + v =dag(v)

21 De eschleungung ergbt sch aus der bletung der Geschwndgket espel: Prsmatsches Gelenk: eschleungung a = v t a rel = q + = t + v t mestens = v =dag(v) v ż

22 Inverse Dynamk Gelenkkräfte aus Gelenkparametern berechnen ( q, q, q ). Recursve Newton-Euler lgorthm (RNE) hat ene Laufzet von O(n) esteht aus zwe Rekursonsschlefen:. Geschwndgketen und eschleungungen von der ass aus berechnen 2. Notwendge Kräfte von dem Endeffektor aus berechnen

23 Recursve Newton-Euler lgorthm (coordnate free) Schrtt : Geschwndgketen und eschleungungen für alle Segmente berechnen v = X v = j= j q j Rekursv: v = v + q eschleungung: a = a + q + v q

24 Recursve Newton-Euler lgorthm (coordnate free) Schrtt 2: Für jedes Gelenk, berechne de Kraft, de sch aus der Geschwndgket und eschleungung ergbt: f a = I a + v I v Schrtt 3: erechnung der lokalen Kraft für jedes Gelenk

25 Recursve Newton-Euler lgorthm (coordnate free) Schrtt 3: f a = f e + f X j2c() f j f f e f j De Kraft, de durch das Gelenk ausgeübt wrd lle externe Kräfte, de auf das Segment wrken Kräfte de auf de Nachfolger übertragen werden Durch Umformen erhält man f = f a f e + X f j j2c()

26 Recursve Newton-Euler lgorthm (coordnate free) Schrtt 2: Für jedes Gelenk, berechne de Kraft, de sch aus der Geschwndgket und eschleungung ergbt: f a = I a + v I v Schrtt 3: erechnung der lokalen Kraft für jedes Gelenk f = f a f e {z} I a +v I v + X j2c() Schrtt 4: erechnung der Gelenkkräfte = T f f j

27 Recursve Newton-Euler lgorthm (coordnate free) Schrtt 2: Für jedes Gelenk, berechne de Kraft, de sch aus der Geschwndgket und eschleungung ergbt: f a = I a + v I v Schrtt 3: erechnung der lokalen Kraft für jedes Gelenk f = f a f e {z} I a +v I v + X j2c() Schrtt 4: erechnung der Gelenkkräfte = T f f j

28 Recursve Newton-Euler lgorthm (coordnate free) nputs: q, q, q output: jont force varables v = a = a g for =ton do v = v p() + q a = a p() + q + q f = I a + v I v f e end for for = N to do = T f f p() 6= then f p() = f p() + f end f end for Formulerung n Gelenkkoordnaten: Glechungen, de mehr als en Gelenk umfassen müssen umgeschreben werden: v = X p() v p() + a = X p() a p() + f = f a X F f e q q + q + X Xj F f j j2c()

29 Recursve Newton-Euler lgorthm nputs: q, q, q,model, f e outputs: model data: N, jtype(), p(), I v = a = a g for =ton do X p() = xjcalc(jtype(), q ) = pcalc(jtype(), q ) v = X p() v p() + q a = X p() a p() + q + v q f = I a + v I v X T f e [ X F = X T ] end for for = N to do = T f f p() 6= then f p() = f p() + Xp() T f end f end for jtype() Gelenkttyp(prsmatsch,...) xjcalc() Transformatonsmatrx des Gelenks pcalc() erechnet

30 Vorwärtsdynamk Gegeben: Poston, Geschwndgket und Kraft/Drehmoment für jedes Gelenk ( q, q, ) usgabe: eschleungungen der Gelenke nwendung: Smulaton Kerndee des rtculated-ody lgorthm () [Laufzet von O(n)] De Interakton zwschen Segment p() und dem restlchen Telbaum fndet nur über de Kraft f statt ngenommen, das Gelenk wurde durchtrennt, dann glt f = I a + p us f läßt sch a berechnen

31 rtculated ody lgorthm / Herletungen us folgt f = I a + p, = T f, a = a p() + q + q = T f = T (I (a p() + q + q )+p ) ) q = D (u U T a p() ) U = I D =( T U ) =( T I ) u = U T T p eschleungung der Gelenkparater st ene Funkton der eschleungung des Vorgängersegments = ˆ q = q q + v q I und p I können nun rekursv berechnet werden: = I + X (Ij U j D j Uj T ) p = p + X j2c() j2c() p = v I v (pj + Ij j + U j D j u j ) f e

32 rtculated ody lgorthm nputs: q, q,, model, f e output: q model data: N, jtype(), p(), I v = a = a g for =ton do X p() = xjcalc(jtype(), q ) = pcalc(jtype(), q ) v = X p() v p() + q = v q I = I p = v I v X T end for f e for =ton do U = I D =( T U ) u = U T T p f p() 6= then Ip() = I p() + Xp() T (I U D U T ) X p() pp() = p p() + Xp() T (p + I + U D u ) end f end for for =ton do a = X p() a p() q = D (u U T a ) a = a + q + end for

18. Vorlesung Sommersemester

18. Vorlesung Sommersemester 8. Vorlesung Sommersemester Der Drehmpuls des starren Körpers Der Drehmpuls des starren Körpers st etwas komplzerter. Wenn weder de Wnkelgeschwndgket um de feste Rotatonsachse st, so wrd mt Hlfe des doppelten

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder - Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole

Mehr

Dynamik starrer Körper

Dynamik starrer Körper Dynamk starrer Körper Bewegungen starrer Körper können n Translaton und Rotaton zerlegt werden. De Rotaton stellt enen nneren Frehetsgrad des Körpers dar, der be Punktmassen ncht exstert. Der Schwerpunkt

Mehr

Kreisel. koerperfestes KS. z y. raumfestes KS. Starrer Körper: System von Massepunkten m i, deren Abstände r i r j untereinander konstant sind.

Kreisel. koerperfestes KS. z y. raumfestes KS. Starrer Körper: System von Massepunkten m i, deren Abstände r i r j untereinander konstant sind. Kresel z y koerperfestes KS z y x raumfestes KS x Starrer Körper: System von Massepunkten m, deren Abstände r r j unterenander konstant snd. Der Zustand läßt sch beschreben durch: Poston des Schwerpunktes,

Mehr

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr

Physik A VL11 ( )

Physik A VL11 ( ) Physk A VL11 (0.11.01) Dynamk der Rotatonsbewegung I Kresbewegung und Kräfte Drehmoment und räghetsmoment Kresbewegung und Kräfte en Massepunkt (Schwerpunkt) führt nur ene ranslatonsbewegung aus ausgedehnte

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Unverstät Bochum Lehrstuhl für Kryptologe und IT-Scherhet Prof. Dr. Alexander May M. Rtzenhofen, M. Mansour Al Sawad, A. Meurer Lösungsblatt zur Vorlesung Dskrete Mathematk 1 WS 2008/09 Blatt 7 /

Mehr

Statistik und Wahrscheinlichkeit

Statistik und Wahrscheinlichkeit Regeln der Wahrschenlchketsrechnung tatstk und Wahrschenlchket Regeln der Wahrschenlchketsrechnung Relatve Häufgket n nt := Eregnsalgebra Eregnsraum oder scheres Eregns und n := 00 Wahrschenlchket Eregnsse

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher. PV - Hausaugabe Nr. 7.. Berechnen Se eakt und verglechen Se de Werte ür de Nullstelle, de mttels dem Verahren von Newton, der Regula als und ener Mttelung zu erhalten snd von der! Funkton: ( ) Lösungs

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

Gruppe. Lineare Block-Codes

Gruppe. Lineare Block-Codes Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung

Mehr

Prof. Dr.- Ing. Herzig Vorlesung "Grundlagen der Elektrotechnik 1" 1etv3-4

Prof. Dr.- Ing. Herzig Vorlesung Grundlagen der Elektrotechnik 1 1etv3-4 Prof. Dr.- ng. Herzg.6 Spezelle erechnungsverfahren lnearer Netzwerke.6. Überlagerungsverfahren Der Lernende kann - den Überlagerungssatz und das darauf beruhende erechnungsprnzp lnearer Netzwerke erklären

Mehr

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt:

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt: Informatk I 6. Kaptel Raner Schrader Zentrum für Angewandte Informatk Köln 4. Jun 008 Wr haben bsher behandelt: Suchen n Lsten (lnear und verkettet) Suchen mttels Hashfunktonen jewels unter der Annahme,

Mehr

Netzsicherheit I, WS 2008/2009 Übung 3. Prof. Dr. Jörg Schwenk 27.10.2008

Netzsicherheit I, WS 2008/2009 Übung 3. Prof. Dr. Jörg Schwenk 27.10.2008 Netzscherhet I, WS 2008/2009 Übung Prof. Dr. Jörg Schwenk 27.10.2008 1 Das GSM Protokoll ufgabe 1 In der Vorlesung haben Se gelernt, we sch de Moble Staton (MS) gegenüber dem Home Envroment (HE) mt Hlfe

Mehr

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com.

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com. Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, sultanow@gmal.com Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener

Mehr

MOD-01 LAGRANGE FORMALISMUS -- TEIL 1

MOD-01 LAGRANGE FORMALISMUS -- TEIL 1 MOD- LAGRAGE FORMALISMUS -- EIL. Zustandsfunktonen Defnton -: Zustandsfunkton Ene Zustandsfunkton W( () t, t) = W(, t) bzw. W ( ) st jede belebge skalare Funkton der Zustandsgrößen () t und der Zet t,

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

Vermessungskunde für Bauingenieure und Geodäten

Vermessungskunde für Bauingenieure und Geodäten Vermessungskunde für Baungeneure und Geodäten Übung 4: Free Statonerung (Koordnatentransformaton) und Flächenberechnung nach Gauß Mlo Hrsch Hendrk Hellmers Floran Schll Insttut für Geodäse Fachberech 13

Mehr

Spiele und Codes. Rafael Mechtel

Spiele und Codes. Rafael Mechtel Spele und Codes Rafael Mechtel Koderungstheore Worum es geht Über enen Kanal werden Informatonen Übertragen. De Informatonen werden dabe n Worte über enem Alphabet Q übertragen, d.h. als Tupel w = (w,,

Mehr

Einführung in die Finanzmathematik

Einführung in die Finanzmathematik 1 Themen Enführung n de Fnanzmathematk 1. Znsen- und Znsesznsrechnung 2. Rentenrechnung 3. Schuldentlgung 2 Defntonen Kaptal Betrag n ener bestmmten Währungsenhet, der zu enem gegebenen Zetpunkt fällg

Mehr

Neuronale Netze. M. Gruber (1) ausgeloste Reiz ist x (1) = (1) (s (1) ) mit (1) (s) = 1 sgn(s 1 ) sgn(s 2 ) T. .

Neuronale Netze. M. Gruber (1) ausgeloste Reiz ist x (1) = (1) (s (1) ) mit (1) (s) = 1 sgn(s 1 ) sgn(s 2 ) T. . Neuronale Netze M. Gruber 7.11.015 Begnnen wr mt enem Bespel. Bespel 1 Wr konstrueren enen Klasskator auf der Menge X = [ 1; 1], dessen Wrkung man n Abb.1 rechts sehen kann. Auf der blauen Telmenge soll

Mehr

1.4 Dynamik, Newton sche Axiome ( Postulate) der klassischen (Punkt)Mechanik

1.4 Dynamik, Newton sche Axiome ( Postulate) der klassischen (Punkt)Mechanik Woche.doc, 1/.1.14 1.4 Dynamk, Newton sche Aome ( Postulate) der klassschen (Punkt)Mechank Ausgangspunkt: De Knematk sagt nchts über de Ursache der Bewegung von Körpern n Raum und Zet. In der Dynamk wrd

Mehr

1.1 Das Prinzip von No Arbitrage

1.1 Das Prinzip von No Arbitrage Fnanzmärkte H 2006 Tr V Dang Unverstät Mannhem. Das Prnzp von No Arbtrage..A..B..C..D..E..F..G..H Das Framework Bespele Das Fundamental Theorem of Fnance Interpretaton des Theorems und Zustandsprese No

Mehr

3.3 Lineare Abbildungen und Matrizen

3.3 Lineare Abbildungen und Matrizen 33 LINEARE ABBILDUNGEN UND MATRIZEN 87 33 Lneare Abbldungen und Matrzen Wr wollen jetzt de numersche Behandlung lnearer Abbldungen zwschen Vektorräumen beschreben be der vorgegebene Basen de Hauptrolle

Mehr

1. Schaltungsbeschreibung - Netzwerktopologie. Regeln der Schaltwerktheorie:

1. Schaltungsbeschreibung - Netzwerktopologie. Regeln der Schaltwerktheorie: 1. Schaltungsbeschrebung - Netzwerktopologe Regeln der Schaltwerktheore: Krchhoffsche Spannungsregel Krchhoffsche Stromregel + Zweg- (bzw. Element-) Funktonen De Netzwerktopologe beschrebt de Verknüpfung

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 5 Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen

Mehr

Methoden der innerbetrieblichen Leistungsverrechnung

Methoden der innerbetrieblichen Leistungsverrechnung Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

Zinseszinsformel (Abschnitt 1.2) Begriffe und Symbole der Zinsrechnung. Die vier Fragestellungen der Zinseszinsrechnung 4. Investition & Finanzierung

Zinseszinsformel (Abschnitt 1.2) Begriffe und Symbole der Zinsrechnung. Die vier Fragestellungen der Zinseszinsrechnung 4. Investition & Finanzierung Znsesznsformel (Abschntt 1.2) 3 Investton & Fnanzerung 1. Fnanzmathematk Unv.-Prof. Dr. Dr. Andreas Löffler (AL@wacc.de) t Z t K t Znsesznsformel 0 1.000 K 0 1 100 1.100 K 1 = K 0 + K 0 = K 0 (1 + ) 2

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

2 Vektoren. 2.1 Vektorraum 2 VEKTOREN 1

2 Vektoren. 2.1 Vektorraum 2 VEKTOREN 1 2 VEKTOREN 1 2 Vektoren 2.1 Vektorraum In der Physk unterscheden wr skalare Grössen von vektorellen. En Skalar st ene reelle Messgrösse, mathematsch enfach ene Zahl, phykalsch ene dmensonsbehaftete Zahl.

Mehr

Einführung in Origin 8 Pro

Einführung in Origin 8 Pro Orgn 8 Pro - Enführung 1 Enführung n Orgn 8 Pro Andreas Zwerger Orgn 8 Pro - Enführung 2 Überscht 1) Kurvenft, was st das nochmal? 2) Daten n Orgn mporteren 3) Daten darstellen / plotten 4) Kurven an Daten

Mehr

5. Gruppenübung zur Vorlesung. Höhere Mathematik 1. Wintersemester 2012/2013

5. Gruppenübung zur Vorlesung. Höhere Mathematik 1. Wintersemester 2012/2013 O. Alaya, S. Demrel M. Fetzer, B. Krnn M. Wed 5. Gruppenübung zur Vorlesung Höhere Mathematk Wntersemester /3 Dr. M. Künzer Prof. Dr. M. Stroppel Lösungshnwese zu den Hausaufgaben: Aufgabe H 6. Darstellungen

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb S N De amte Erschenng der magnetschen Feldlnen bezechnet man als magnetschen Flss. = V s = Wb Kraftflssdchte oder magnetsche ndkton B. B d da B = Wb/m = T Für homogene Magnetfelder, we se m nneren von

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem

Mehr

Lineare Optimierung Dualität

Lineare Optimierung Dualität Kaptel Lneare Optmerung Dualtät D.. : (Dualtät ) Folgende Aufgaben der lnearen Optmerung heßen symmetrsch dual zuenander: und { z = c x Ax b x } max, 0 { Z b A c } mn =, 0. Folgende Aufgaben der lnearen

Mehr

Lagrangesche Mechanik

Lagrangesche Mechanik Kaptel Lagrangesche Mechank De Newtonsche Mechank hat enge Nachtele. 1) De Bewegungsglechungen snd ncht kovarant, d.h. se haben n verschedenen Koordnatensystemen verschedene Form. Z.B., zwedmensonale Bewegungsglechungen

Mehr

Ko- und kontravariante Darstellung

Ko- und kontravariante Darstellung Ko- und kontravarante Darstellung Physkalsche Sachverhalte snd vom verwendeten Koordnatensystem unabhängg. Sehr oft st es snnvoll, se n verschedenen Koordnatensystemen darzustellen. Berets erwähnt wurden

Mehr

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik)

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik) Kredtpunkte-Klausur zur Lehrveranstaltung Projektmanagement (nkl. Netzplantechnk) Themensteller: Unv.-Prof. Dr. St. Zelewsk m Haupttermn des Wntersemesters 010/11 Btte kreuzen Se das gewählte Thema an:

Mehr

Übungen zu Algorithmen

Übungen zu Algorithmen Insttut für Informatk Unverstät Osnabrück, 06.12.2016 Prof. Dr. Olver Vornberger http://www-lehre.nf.uos.de/~anf Lukas Kalbertodt, B.Sc. Testat bs 14.12.2016, 14:00 Uhr Nls Haldenwang, M.Sc. Übungen zu

Mehr

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct? We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche ϕ-funktion, RSA

Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche ϕ-funktion, RSA Klener Fermatscher Satz, Chnesscher Restsatz, Eulersche ϕ-funkton, RSA Manfred Gruber http://www.cs.hm.edu/~gruber SS 2008, KW 15 Klener Fermatscher Satz Satz 1. Se p prm und a Z p. Dann st a p 1 mod p

Mehr

Universität Karlsruhe (TH)

Universität Karlsruhe (TH) Unverstät Karlsruhe (TH) Forschungsunverstät gegründet 825 Parallele Algorthmen I Augaben und Lösungen Pro. Dr. Walter F. Tchy Dr. Vctor Pankratus Davd Meder Augabe () Gegeben se en N-elementger Zahlenvektor

Mehr

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar.

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar. . Nullstellensuche Enes der ältesten numerschen Probleme stellt de Bestmmung der Nullstellen ener Funkton = dar. =c +c =c +c +c =Σc =c - sn 3 Für ene Gerade st das Problem trval, de Wurzel ener quadratschen

Mehr

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten Versuch r. 1: achwes des Hook schen Gesetzes und Bestmmung der Federkonstanten achwes des Hookeschen Gesetzes und Bestmmung der Federkonstanten Klasse : ame1 : ame 2 : Versuchszel: In der Technk erfüllen

Mehr

Unter der Drehgruppe verstehen wir diegruppe der homogenen linearen Transformationen

Unter der Drehgruppe verstehen wir diegruppe der homogenen linearen Transformationen Darstellunstheore der SO() und SU() Powtschnk Alexander. Defnton Darstellun Ene Darstellun ener Gruppe G st homomorphe Abbldun von deser Gruppe auf ene Gruppe nchtsnulärer lnearer Operatoren auf enem Vektorraum

Mehr

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct? We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de

Mehr

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen 196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen

Mehr

ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG INSTITUT FÜR INFORMATIK

ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG INSTITUT FÜR INFORMATIK ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG INSTITUT FÜR INFORMATIK Arbetsgruppe Autonome Intellgente Systeme Prof. Dr. Wolfram Burgard Lernen von Lnenmodellen aus Laserscannerdaten für moble Roboter Dplomarbet

Mehr

ω 0 = Protokoll zu Versuch E6: Elektrische Resonanz

ω 0 = Protokoll zu Versuch E6: Elektrische Resonanz Protokoll zu Versuch E6: Elektrsche esonanz. Enletung En Schwngkres st ene elektrsche Schaltung, de aus Kapaztät, Induktvtät und ohmschen Wderstand besteht. Stmmt de Frequenz der anregenden Wechselspannung

Mehr

Boost-Schaltwandler für Blitzgeräte

Boost-Schaltwandler für Blitzgeräte jean-claude.feltes@educaton.lu 1 Boost-Schaltwandler für Bltzgeräte In Bltzgeräten wrd en Schaltwandler benutzt um den Bltzkondensator auf ene Spannung von engen 100V zu laden. Oft werden dazu Sperrwandler

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 2 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 7: (B. Fredmans Urnenmodell)

Mehr

p : Impuls in Ns v : Geschwindigkeit in m/s

p : Impuls in Ns v : Geschwindigkeit in m/s -I.C9-4 Impuls 4. Impuls und Kraftstoß 4.. Impuls De Bewegung enes Körpers wrd bespelswese durch de Geschwndgket beschreben. Um de Bewegung enes Körpers zu ändern braucht man ene Kraft (Abb.). Dese führt

Mehr

6. Hilbertraum und lineare Operatoren (mathematische Grundlagen QM)

6. Hilbertraum und lineare Operatoren (mathematische Grundlagen QM) 6. Hlbertraum und lneare Operatoren (mathematsche Grundlagen QM) 6.1 Hlbertraum Raum = mathematsches Konstrukt: Vektorraum a) Der lneare komplexe Raum st de Menge von mathematschen Objekten mt folgenden

Mehr

Standortplanung. Positionierung von einem Notfallhubschrauber in Südtirol. Feuerwehrhaus Zentrallagerpositionierung

Standortplanung. Positionierung von einem Notfallhubschrauber in Südtirol. Feuerwehrhaus Zentrallagerpositionierung Standortplanung Postonerung von enem Notfallhubschrauber n Südtrol Postonerung von enem Feuerwehrhaus Zentrallagerpostonerung 1 2 Postonerung von enem Notfallhubschrauber n Südtrol Zu bekannten Ensatzorten

Mehr

Free Riding in Joint Audits A Game-Theoretic Analysis

Free Riding in Joint Audits A Game-Theoretic Analysis . wp Wssenschatsorum, Wen,8. Aprl 04 Free Rdng n Jont Audts A Game-Theoretc Analyss Erch Pummerer (erch.pummerer@ubk.ac.at) Marcel Steller (marcel.steller@ubk.ac.at) Insttut ür Rechnungswesen, Steuerlehre

Mehr

Optische Systeme. Inhalte der Vorlesung. Hausaufgabe: Reflexion mit Winkel. Vergleichen Sie Ihre Rechnung mit einem Experiment! n = tan. sin.

Optische Systeme. Inhalte der Vorlesung. Hausaufgabe: Reflexion mit Winkel. Vergleichen Sie Ihre Rechnung mit einem Experiment! n = tan. sin. Inhalte der Vorlesung 3. Optsche Systeme Martna Gerken 05..007. Grundlagen der Wellenoptk. De Helmholtz-Glechung. Lösungen der Helmholtz-Glechung: Ebene Wellen und Kugelwellen.3 Das Huygenssche Prnzp.4

Mehr

tutorial N o 1a InDesign CS4 Layoutgestaltung Erste Schritte - Anlegen eines Dokumentes I a (Einfache Nutzung) Kompetenzstufe keine Voraussetzung

tutorial N o 1a InDesign CS4 Layoutgestaltung Erste Schritte - Anlegen eines Dokumentes I a (Einfache Nutzung) Kompetenzstufe keine Voraussetzung Software Oberkategore Unterkategore Kompetenzstufe Voraussetzung Kompetenzerwerb / Zele: InDesgn CS4 Layoutgestaltung Erste Schrtte - Anlegen enes Dokumentes I a (Enfache Nutzung) kene N o 1a Umgang mt

Mehr

mit der Anfangsbedingung y(a) = y0

mit der Anfangsbedingung y(a) = y0 Numersce Lösung von Dfferentalglecungen De n den naturwssenscaftlc-tecnscen Anwendungen auftretenden Dfferentalglecungen snd n den wengsten Fällen eplzt lösbar. Man st desalb auf Näerungsverfaren angewesen.

Mehr

ERP Cloud Tutorial. E-Commerce ECM ERP SFA EDI. Backup. Preise erfassen. www.comarch-cloud.de

ERP Cloud Tutorial. E-Commerce ECM ERP SFA EDI. Backup. Preise erfassen. www.comarch-cloud.de ERP Cloud SFA ECM Backup E-Commerce ERP EDI Prese erfassen www.comarch-cloud.de Inhaltsverzechns 1 Zel des s 3 2 Enführung: Welche Arten von Presen gbt es? 3 3 Beschaffungsprese erfassen 3 3.1 Vordefnerte

Mehr

8 Logistische Regressionsanalyse

8 Logistische Regressionsanalyse wwwstatstkpaketde 8 Logstsche Regressonsanalyse De logstsche Regressonsanalyse dent der Untersuchung des Enflusses ener quanttatven Varable auf ene qualtatve (n unserem Fall dchotomen Varable Wr gehen

Mehr

Kennlinienaufnahme des Transistors BC170

Kennlinienaufnahme des Transistors BC170 Kennlnenufnhme des Trnsstors 170 Enletung polre Trnsstoren werden us zwe eng benchbrten pn-übergängen gebldet. Vorrusetzung für ds Funktonsprnzp st de gegensetge eenflussung beder pn-übergänge, de nur

Mehr

1. Kristallographisches Rechnen ohne Computer

1. Kristallographisches Rechnen ohne Computer 1 1. Krstallographsches Rechnen ohne Computer Peter G. Jones TU Braunschweg Insttut für Anorgansche und Analytsche Cheme Hagenrng 30 38106 Braunschweg E-Mal: p.jones@tu-bs.de Lteratur Gacovazzo, Fundamentals

Mehr

50 Matrixnormen und Eigenwertabschätzungen

50 Matrixnormen und Eigenwertabschätzungen 50 Matrxnormen und Egenwertabschätzungen 501 Motvaton De Berechnung der Egenwerte ener Matrx st aufwändg (vgl Kaptel 45, Kaptel 51) Kann man de Egenwerte ener Matrx mt gerngem Aufwand abschätzen? Des spelt

Mehr

Rotation in kartesischen Koordinaten

Rotation in kartesischen Koordinaten Rotaton n kartesschen Koordnaten Generell gbt es dre Frehetsgrade für de Orenterung m Raum und es werden mest zwe Verfahren zur Beschrebung der Orenterung angewandt: Euler-Wnkel (Mechank, ) Roll, Ptch,

Mehr

Klassische Gatter und Logikelemente. Seminarvortrag zu Ausgewählte Kapitel der Quantentheorie Quantenalgorithmen

Klassische Gatter und Logikelemente. Seminarvortrag zu Ausgewählte Kapitel der Quantentheorie Quantenalgorithmen Klasssche Gatter und Logkelemente Semnarvortrag zu Ausgewählte Kaptel der Quantentheore Quantenalgorthmen Gerd Ch. Krzek WS 2003 I. Grundlagen und Methoden der Logk: Im folgenden soll de Konstrukton und

Mehr

Kapitel 8: Graph-Strukturierte Daten

Kapitel 8: Graph-Strukturierte Daten Ludwg Maxmlans Unerstät München Insttut für Informatk Lehr- und Forschungsenhet für Datenbanksysteme Skrpt zur Vorlesung Knowledge Dscoery n Dtb Databases II m Wntersemester 2011/2012 Kaptel 8: Graph-Strukturerte

Mehr

FORMELSAMMLUNG STATISTIK (I)

FORMELSAMMLUNG STATISTIK (I) Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen

Mehr

Beschreibende Statistik Mittelwert

Beschreibende Statistik Mittelwert Beschrebende Statstk Mttelwert Unter dem arthmetschen Mttel (Mttelwert) x von n Zahlen verstehen wr: x = n = x = n (x +x +...+x n ) Desen Mttelwert untersuchen wr etwas genauer.. Zege für n = 3: (x x )

Mehr

Hefte zur Logistik Prof. Dr. Siegfried Jetzke. Heft 1 Begriffsdefinitionen

Hefte zur Logistik Prof. Dr. Siegfried Jetzke. Heft 1 Begriffsdefinitionen Hefte zur Logstk Prof. Dr. Segfred Jetzke Heft 1 Begrffsdefntonen Jun 2010 Deses Heft st urheberrechtlch geschützt. Wenn Se de Quelle angeben, können Se gerne deses Heft wetergeben, Tele koperen oder aus

Mehr

Vorlesung 1. Prof. Dr. Klaus Röder Lehrstuhl für BWL, insb. Finanzdienstleistungen Universität Regensburg. Prof. Dr. Klaus Röder Folie 1

Vorlesung 1. Prof. Dr. Klaus Röder Lehrstuhl für BWL, insb. Finanzdienstleistungen Universität Regensburg. Prof. Dr. Klaus Röder Folie 1 Vorlesung Entschedungslehre h SS 205 Prof. Dr. Klaus Röder Lehrstuhl für BWL, nsb. Fnanzdenstlestungen Unverstät Regensburg Prof. Dr. Klaus Röder Fole Organsatorsches Relevante Informatonen önnen Se stets

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

Einführung in geostatistische Methoden der Datenauswertung

Einführung in geostatistische Methoden der Datenauswertung MUC 2.3 und MC 2.1.1 Praktkum Umweltanalytk II Enführung n geostatstsche Methoden der Datenauswertung Enführung n geostatstsche Methoden der Datenauswertung Zel: Anwendung der geostatstschen Methoden Semvarogrammanalyse

Mehr

Formeln und Aufgaben Zins- und Rentenrechnung

Formeln und Aufgaben Zins- und Rentenrechnung Foreln und ufgaben Zns- und Rentenrechnung Detrch Baugarten «14. Januar 014 Inhaltsverzechns 1 Rentenrechnung 1 1.1 Zusaenfassung............................... 1 1. Bespele....................................

Mehr

Hydrosystemanalyse: Finite-Elemente-Methode (FEM)

Hydrosystemanalyse: Finite-Elemente-Methode (FEM) Hydrosystemanalyse: Prof. Dr.-Ing. habl. Olaf Koldtz 1 Helmholtz Centre for Envronmental Research UFZ, Lepzg 2 Technsche Unverstät Dresden TUD, Dresden Dresden, 03. Jul 2015 1/31 Prof. Dr.-Ing. habl. Olaf

Mehr

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale 3. De Kennzechnung von Patkeln 3..1 Patkelmekmale De Kennzechnung von Patkeln efolgt duch bestmmte, an dem Patkel mess bae und deses endeutg beschebende physka lsche Gößen (z.b. Masse, Volumen, chaaktestsche

Mehr

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt -

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt - Flußnetzwerke - Strukturbldung n der natürlchen Umwelt - Volkhard Nordmeer, Claus Zeger und Hans Joachm Schlchtng Unverstät - Gesamthochschule Essen Das wohl bekannteste und größte exsterende natürlche

Mehr

Finanzwirtschaft. Kapitel 3: Simultane Investitions- und Finanzplanung. Lehrstuhl für Finanzwirtschaft - Universität Bremen 1

Finanzwirtschaft. Kapitel 3: Simultane Investitions- und Finanzplanung. Lehrstuhl für Finanzwirtschaft - Universität Bremen 1 Fnanzwrtschaft Kaptel 3: Smultane Investtons- und Fnanzplanung Prof. Dr. Thorsten Poddg Lehrstuhl für Allgemene Betrebswrtschaftslehre, nsbes. Fnanzwrtschaft Unverstät Bremen Hochschulrng 4 / WW-Gebäude

Mehr

1.1 Grundbegriffe und Grundgesetze 29

1.1 Grundbegriffe und Grundgesetze 29 1.1 Grundbegrffe und Grundgesetze 9 mt dem udrtschen Temperturkoeffzenten 0 (Enhet: K - ) T 1 d 0. (1.60) 0 dt T 93 K Betrchtet mn nun den elektrschen Wderstnd enes von enem homogenen elektrschen Feld

Mehr

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t + " I ) = 0 $ " I

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t +  I ) = 0 $  I Wechselstrom Dr. F. Raemy Wechselspannung und Wechselstrom können stets we folgt dargestellt werden : U t = U 0 cos (! t + " U ) ; I ( t) = I 0 cos (! t + " I ) Wderstand m Wechselstromkres Phasenverschebung:!"

Mehr

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm): Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.

Mehr

Seminar über Algorithmen. Load Balancing. Slawa Belousow Freie Universität Berlin, Institut für Informatik SS 2006

Seminar über Algorithmen. Load Balancing. Slawa Belousow Freie Universität Berlin, Institut für Informatik SS 2006 Semna übe Algothmen Load Balancng Slawa Belousow Fee Unvestät Beln, Insttut fü Infomatk SS 2006 1. Load Balancng was st das? Mt Load Balancng ode Lastvetelung weden Vefahen bescheben, um be de Specheung,

Mehr

Bilderbuch zur Vorlesung Experimentalphysik -1. Struktur der Materie. Verhalten von Materie und Strahlung. Wintersemester 2012/13

Bilderbuch zur Vorlesung Experimentalphysik -1. Struktur der Materie. Verhalten von Materie und Strahlung. Wintersemester 2012/13 Fragestellung der Physk Blderbuch zur Vorlesung Expermentalphysk - Struktur der Matere Verhalten von Matere und Strahlung Wntersemester / Prof. Dr. Hanspeter Helm Un-Freburg quanttatve Beobachtung (Messung)

Mehr

Werkstoffmechanik SS11 Baither/Schmitz. 5. Vorlesung

Werkstoffmechanik SS11 Baither/Schmitz. 5. Vorlesung Werkstoffmechank SS11 Bather/Schmtz 5. Vorlesung 0.05.011 4. Mkroskopsche Ursachen der Elastztät 4.1 Energeelastztät wrd bestmmt durch de Wechselwrkungspotentale zwschen den Atomen, oft schon auf der Bass

Mehr

Ionenselektive Elektroden (Potentiometrie)

Ionenselektive Elektroden (Potentiometrie) III.4.1 Ionenselektve Elektroden (otentometre) Zelstellung des Versuches Ionenselektve Elektroden gestatten ene verhältnsmäßg enfache und schnelle Bestmmung von Ionenkonzentratonen n verschedenen Meden,

Mehr

Netzwerkstrukturen. Entfernung in Kilometer:

Netzwerkstrukturen. Entfernung in Kilometer: Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.

Mehr

Kommentierte Linkliste

Kommentierte Linkliste Mobbng Kommenterte Lnklste Mobbng fndet sch n allen sozalen Schchten und Altersgruppen: auch be Kndern und Jugendlchen. Aktuelle Studen kommen zu dem Ergebns, dass jede/r verte österrechsche SchülerIn

Mehr

Protokoll zum Grundversuch Mechanik

Protokoll zum Grundversuch Mechanik Protokoll zum Grundversuch Mechank 3.6. In desem Grundversuch zur Mechank werden dre verschedene Arten von Pendeln untersucht. Das Reversonspendel, das Torsonspendel und gekoppelte Pendel. A. Das Reversonspendel

Mehr

4. Energie, Arbeit, Leistung, Impuls

4. Energie, Arbeit, Leistung, Impuls 34 35 4. Energe, Arbet, Lestung, Ipuls Zentrale Größen der Physk: Energe E, Enhet Joule ( [J] [N] [kg /s ] Es gbt zwe grundsätzlche Foren on Energe: knetsche Energe: entelle Energe: Arbet, Enhet Joule

Mehr

Thema 7: Übungsaufgaben

Thema 7: Übungsaufgaben Thema 7: Übungsaufgaben Übungsaufgabe 1: a) Kaptalangebotskurve (Skzze): (S) (H) 0 280 F Der endogene Kalkulatonsznsfuß beträgt mndestens (H) = 9 % und maxmal (S) = 16 %. Damt sollten alle Investtonsprojekte

Mehr

1 BWL 4 Tutorium V vom 15.05.02

1 BWL 4 Tutorium V vom 15.05.02 1 BWL 4 Tutorum V vom 15.05.02 1.1 Der Tlgungsfaktor Der Tlgungsfaktor st der Kehrwert des Endwertfaktors (EWF). EW F (n; ) = (1 + )n 1 T F (n; ) = 1 BWL 4 TUTORIUM V VOM 15.05.02 (1 ) n 1 Mt dem Tlgungsfaktor(TF)

Mehr