Über fixe Kosten und Elastizitäten von Produktionsprogrammen

Größe: px
Ab Seite anzeigen:

Download "Über fixe Kosten und Elastizitäten von Produktionsprogrammen"

Transkript

1 - -. Über fixe Kosten und Elastizitäten von Produktionsprogrammen Bei Produktionsprogrammen kommen zwei Zielfunktionen in Frage die Deckungsbeitragsfunktion (DB), die Gewinnfunktion (G), die man erhält, wenn man die fixen Kosten von der DB-Funktion abzieht. a. Zeigen Sie, daß der Abzug der Fixkosten die Lage des Optimums nicht tangieren kann, wohl aber die Höhe der Optimums: Absolute Glieder spielen bei der Ermittlung von Optima wegen der Differentialrechnung keine Rolle, beeinflussen aber sehr wohl die Höhe des Funktionswertes. DB(b i ) x > G(b i ) x = DB(b i ) x K f, G (b i ) = DB (b i ) b. In dem folgenden Koordinatensystem ist exemplarisch die Funktion des (maximalen) Deckungsbeitrags in Abhängigkeit von der Kapazität b i (die als Variable aufgefaßt wird) dargestellt: Z [GE] 00 0 DB(b i ) 50 G(b i ) 0 0 b i Begründen Sie - warum die Funktion degressiv ist: Die Kapazität wird in Reihenfolge der Gewinnträchtigkeit eingesetzt, je mehr b i, desto geringer die Zuwächse. - warum die Funktion in aller Regel proportional beginnt: Sie beginnt im Nullpunkt, da normalerweise die erste Einheit gewinnträchtig ist, zugleich ist sie stückweise linear proportional. - warum die Funktion mit einer Steigung von Null endet: Weitere Kapazitäten bringen keinen weiteren Zuwachs DB (b i )= 0. Zeichnen Sie die G(b i )-Funktion ein. Die Fixkosten betragen 80 GE! Siehe oben. c. Zeichnen Sie in das im weiteren gegebene Koordinatensystem den ungefähren Verlauf der Elastizitätsfunktionen E(DB) und E(G) in zwei verschiedenen Farben ein: Fortsetzung nächstes Blatt

2 - - E 5 E(DB) b i E(G) - Mit welcher Elastizität beginnt die Funktion E(DB)? - Welche Eigenschaft hat die E(DB)- bzw. die E(G)-Funktion, wenn die DB(bi)- bzw. die G(bi)-Funktion einen Knick hat? Einen Sprung - Wie verhält sich die E(G)-Funktion in der Umgebung der Gewinnschwelle? Sie springt von nach +.

3 - -. Über Lineare Gleichungssysteme mit dem Lösungsvektor,,... Ein Prof. will seinen Studenten in Erläuterung des Gauß schen Algorithmus ein -Gleichungssystem vorrechnen. Um zu dokumentieren, daß der Algorithmus für (nahezu) jedes beliebige Gleichungssystem funktioniert, läßt er sich die Koeffizienten bis auf einen pro Zeile zurufen. In dieser Weise bekommt er das folgende Gleichungssystem x x x RS, ,5-5 - a. Der Prof hat den Ehrgeiz, daß bei seinen Gleichungssystemen immer der Lösungsvektor,,... herauskommt. Welche Koeffizienten muß er in die Leerfelder (schattiert) einsetzen, damit der gewünschte Lösungsvektor entsteht? Tragen Sie diese Koeffizienten in das obigen Gleichungssystem ein! b. Mindestens einer der Studenten war ganz schlau, denn der Prof. erlebt sein Waterloo. Warum? Die dritte Zeile ist von den ersten beiden Zeilen linear abhängig:. Zeile. Zeile =. Zeile unterbestimmtes Gleichungssystem

4 Optimalitätsbedingungen für kombinatorische Optimierungsprobleme Probleme, die mit Methoden der vollständigen Enumeration gelöst werden, werden auch als kombinatorische Optimierungsprobleme bezeichnet. Im Gegensatz zu Differentialrechnungsverfahren kann man für kombinatorische Optimierungsprobleme keine Optimalkriterien angeben, d.h. Kriterien, mit denen man die Optimalität konstatieren kann, ohne den Rechenweg zu kennen. Andererseits kann man jedes kombinatorische Problem in die Differentialrechnung schieben, wie? Man bildet die konvexe Hülle (Polyeder= über die Alternativen (Fourier Motzkin). Danach kann man mit dem Simplex optimieren. Dann müßte es auch möglich sein, für kombinatorische Probleme ein Optimalkriterium anzugeben, wie? Man braucht nur die Restriktionen zu formulieren, die im Optimum bindend sind, dann würde insoweit Kuhn Tucker anwendbar sein.

5 Reduktion von Emissionen Die Schadstoffemissionen eines Stahlunternehmens sollen um folgende Mengen pro Jahr reduziert werden: Schadstoffart zu reduzierende Jahresmenge in t Staub Schwefeloxide Kohlenwasserstoffe Schadstoffverursacher sind zwei Hochöfen. In Ofen wird das Roheisen erschmolzen, in Ofen wird das Roheisen zu Stahl weiterverarbeitet. Für beide Öfen gibt es drei Verfahren zur Schadstoffreduktion Erhöhung der Schornsteine, Einbau von Filtern, Verwendung sauberer Brennstoffe. Die Schadstoffmenge der Öfen kann durch die einzelnen Reduktionsarten maximal um folgende Jahresmenge reduziert werden: Schadstoffart Schornstein Filter Brennstoff Ofen Ofen Ofen Ofen Ofen Ofen Staub (St) Schwefel (Sw) Kohlenwasserstoffe (Kw) Bei maximaler Ausnutzung des jeweiligen Verfahrens ergeben sich folgende Kosten in GE pro Jahr Ofen Ofen Schornstein Filter Brennstoff Im übrigen ist die Reduktion der Kosten proportional zur Schadstoffminderung. Formulieren Sie den zugehörigen Simplexansatz.

6 - 7-0 Kohlenwasserstoff Schwefel Staub Z min Schornstein Filter Brennstoff Ofen Ofen Ofen Ofen Ofen Ofen RS St Sw Kw St Sw Kw St Sw Kw St Sw Kw St Sw Kw St Sw Kw = = = = 0 Rel

7 Zum Cutting Plane-Verfahren zur Lösung eines Ganzzahligen LP s Das folgende LP ist gegeben, das ganzzahlig optimiert werden soll: x x +6x 5 6x +5x 7 5 x Die nichtganzzahlige Optimallösung liegt im Schnittpunkt der beiden Restriktionen bei: x = 57/6 =,9... x = 6/ =,76... Ermitteln Sie aus den beiden bindenden Restriktionen (mit Intelligenz) diejenige Restriktion, bei der der Polyeder der zulässigen Lösungen durch Weglassen des nicht ganzzahligen Anteils des absoluten Glieds am meisten reduziert wird: x + 6x multipliziert mit α =... 6x + 5x 7 multipliziert mit α =... und aufaddiert zu:... 6 x + 6 x...,9 Dividiert durch:... 6 neue Restriktion:... x + x...,96 (mit nicht ganzz. abs. Glied) neue Restriktion:... x + x... (mit ganzz. abs. Glied)

8 Zur Produktion von Zellstoff (Gadow, Bredenkamp, 99) Ein Zellstoffwerk kann drei verschiedene Arten von Zellstoff produzieren:. Zellstoff aus Laubholz (LH). Zellstoff aus Nadelholz (NH). sog. Kraftzellstoff (KR). Folgende Daten sind gegeben: Zellstoff Art Verkaufspreis in GE pro Tonne Rundholzbedarf in Tonnen pro produzierter Tonne Zellstoff LH 50, NH 0,0 KR 5 0,8 Laubholz und 0,8 Nadelholz Der Kraftzellstoff wird nicht etwa aus LH und NH gemischt sondern in einem eigenen Produktionsgang hergestellt. Nur die Ausgangsstoffe werden gemischt. Eine Tonne Laubrundholz kostet 50 GE, eine Tonne Nadelrundholz kostet 5 GE, jeweils frei Werk. Das Zellstoffwerk rechnet damit, daß im folgenden Jahr nicht mehr als Tonnen Laubrundholz und Tonnen Nadelrundholz eingekauft werden können. Zur Produktion wird ein sogenannter Boiler benötigt. Der läuft rund um die Uhr, 50 Tage pro Jahr, Stunden täglich, also 8.00 Stunden im Jahr. Die Produkte haben im Boiler unterschiedliche Fertigungszeiten. Zur Produktion von je 000 Tonnen werden folgende Boilerzeiten benötigt: Zellstoff Art LH NH KR Fertigungszeit für 000 Tonnen,9 Stunden,9 Stunden 0, Stunden Das Unternehmen rechnet für das folgende Jahr mit fixen Kosten in Höhe von GE. Geben Sie das zugehörige Anfangstableau an: Z max LH NH KR Rel. rechte Seite, 0, , ,09 0,09 0, = 0

9 Einbeziehung eines synergetischen Effekts in ein Lineares Produktionsprogramm Der folgende Ansatz für ein Lineares Produktionsprogramm ist bekannt: Z max x x y y y RS Dieser Ansatz soll um den folgenden synergetischen Effekt erweitert werden: Immer wenn beide Produkte zusammen angeboten werden können, erhöht sich der Deckungsbeitrag um GE pro Paar. Erweitern Sie das obige Lineare Programm um diesen Effekt, ohne die Linearität des Modells zu stören: 6 Z max x x x y y y RS

10 Über die Eigenschaft einer Variablen, im Laufe des Simplexverfahrens Basis- oder Nichtbasisvariable zu sein Empirische Untersuchungen haben gezeigt, daß die Anzahl der zu erwartenden Iterationen für die klassische Simplexmethode mit folgender Formel beschrieben werden kann m n I = + c m a n + m Dabei bezeichnet der erste Summand die Anzahl der notwendigen Iterationen und der zweite Summand die Anzahl derjenigen Iterationen, die letztendlich der Ineffizienz des Verfahrens zuzuschreiben ist.. Geben Sie an, wie es zu der Formel für die Anzahl der notwendigen Iterationen kommt: Folgende Basislösung liegt vor: x x n, y y m. Anzahl der Variablen: n+m. Die Wahrscheinlichkeit, dass eine Basisvariable in den Bereich n der Strukturvariablen fällt, ist. Da aber insgesamt m n+ m n Basisvariablen vorliegen, gilt: m. q.e.d. n + m. Bei Anwendung des steepest ascent Kriteriums haben die beiden verfahrensspezifischen Koeffizienten folgende Werte: c = 0,0778 a =,890 Wir betrachten im weiteren einen Simplexansatz mit Strukturvariablen und Restriktionen. Dann sind 7 notwendige Iterationen und 576 verfahrensspezifische (letztendlich unnötige) Iterationen, also insgesamt 68 Iterationen zu erwarten. Unnötige Iterationen bedeuten, daß eine Variable, die zur Basisvariablen wird, im weiteren Verfahren wieder zur Nichtbasisvariablen wird, dann wieder zur Basisvariablen usw. Geben Sie die durchschnittliche zu erwartende Anzahl an, mit der eine Strukturvariable im Verlauf des Verfahrens ihre Eigenschaft von Nichtbasisvariable in Basisvariable wechselt: 576 Zeichnen Sie bitte in Anwendung dieses Ergebnisses in das folgende Koordinatensystem ein, wie sich der Variablenwert einer Strukturvariablen der Tendenz nach im Laufe des Verfahrens ändert, wenn sie schlußendlich in der Optimallösung Basisvariable ist: Wert der betr. Strukturvariablen 68 Anzahl der Iterationen

11 Über die Rechenungenauigkeit und deren Bekämpfung Zeichnen Sie in das folgende Koordinatensystem den ungefähren Verlauf der Funktion der (wie auch immer gemessenen) Rechenungenauigkeit bei einer PC-gestützten Lösung eines Linearen Programms mit der Simplexmethode ein: Rechenungenauigkeit notw. Anzahl tatsächl. Anzahl Anzahl der Iterationen Die Rechenungenauigkeit, die sich bis zur Anzahl der notwendigen Iterationen einstellt, ist mehr oder weniger unvermeidlich. Wie könnte man die Rechenungenauigkeit insgesamt auf die zuvor genannte Rechenungenauigkeit reduzieren, wenn das rechenungenaue Optimum ermittelt ist oder rechenbegleitend nach jeweils einer bestimmten Anzahl von Iterationen? (Hinweis zur Lösung: Gauß scher Algorithmus). Wenn das rechenungenaue Optimum erreicht ist, weiß man ja, welche Variablen NBV sind. Diese setzt man im Anfangstableau auf 0 und rechnet das lineare Gleichungssystem aus.

12 Ermittlung der zweitbesten Lösung bei Degeneration - ein diffiziles Problem Die folgende degenerierte Optimallösung ist gegeben: max Z x x x y y = KdR / -/ -5/ 0 -/ / / / 6 5/ 0 8 Geben Sie alle nicht identischen Tableaus an: - ¾ -5/ 0 -/ / / 5/ 0 / -/ 6 / -/ 8 -/5 /5 -/5 0 /5 /5 /5 6 /5 /5 /5 8 Geben Sie die Variablenwerte der zweitbesten Lösung (= zweitbeste Ecke) an: x = 6 y = 0 6 x = 6 y = 0 x = 0 Z =

13 . Dualisierung eines Simplextableaus Bilden Sie für das folgende Primaltableau Z min x x x f.v. - - y y y RS f.v. = freie Variable das zugehörige Dualtableau: 8 Z max λ λ λ λ π π RS Geben Sie an, welche Dualvariable als freie Variable zu behandeln sind: λ

4.3.3 Simplexiteration

4.3.3 Simplexiteration 7. Januar 2013 53 4.3.3 Simplexiteration Eine Simplexiteration entspricht dem Übergang von einer Ecke des zulässigen Bereiches in eine benachbarte Ecke Dabei wird genau eine Nichtbasisvariable (die zugehörige

Mehr

1 Der Simplex Algorithmus I

1 Der Simplex Algorithmus I 1 Nicoletta Andri 1 Der Simplex Algorithmus I 1.1 Einführungsbeispiel In einer Papiermühle wird aus Altpapier und anderen Vorstoffen feines und grobes Papier hergestellt. Der Erlös pro Tonne feines Papier

Mehr

Fachakademie für Wirtschaft der FHM A2: Lineare Optimierung und das Simplexverfahren

Fachakademie für Wirtschaft der FHM A2: Lineare Optimierung und das Simplexverfahren A2.1 Lineare Optimierung mit dem Simplexverfahren Wenn ein Unternehmen ermitteln möchte, wie viele Mengeneinheiten von verschiedenen Produkten zu produzieren sind, damit bei gegebenen Verkaufspreisen der

Mehr

Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten)

Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten) HTW Dresden 11. Februar 2014 FB Informatik/Mathematik Prof. Dr. J. Resch Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten) Name, Vorname: Matr.-nr.: Anzahl der abge-

Mehr

10.2 Dualitätstheorie Operations Research. In der Standardform eines Maximierungsproblem: b e ) mit ( w) + a ej ) x j + x g = ( b g + g G

10.2 Dualitätstheorie Operations Research. In der Standardform eines Maximierungsproblem: b e ) mit ( w) + a ej ) x j + x g = ( b g + g G 48 0 Operations Research In der Standardform eines Maximierungsproblem: Max ( w) mit ( w) + u. d. N. z + x l + n ( a gj + j= g G e E n d j x j = z 0 j= n a l j x j = b l für alle l L j= x g n + a gj x

Mehr

2.3 ELEMENTARE BERECHNUNGEN 2.3.1 Grundlagen

2.3 ELEMENTARE BERECHNUNGEN 2.3.1 Grundlagen Fabianca BWL III Elementare Berechnungen 2-17 2.3 ELEMENTARE BERECHNUNGEN 2.3.1 Grundlagen Die in diesem Abschnitt vorgestellten grundlegenden Berechnungen werden Ihnen in jeder Klausur wieder begegnen.

Mehr

Der Simplex-Algorithmus

Der Simplex-Algorithmus 5 Lineare Programmierung Simplex-Algorithmus Der Simplex-Algorithmus Standardverfahren zur Lösung von LPs, von G B Dantzig entwickelt Grundidee: Versuche ausgehend von einer Startecke mit einer Ausgangsbasis

Mehr

Lineares Optimieren. W. Kippels 12. April Inhaltsverzeichnis. 1 Einleitung 2. 2 Die Beispielaufgabe 2. 3 Einführung von Schlupfvariablen 2

Lineares Optimieren. W. Kippels 12. April Inhaltsverzeichnis. 1 Einleitung 2. 2 Die Beispielaufgabe 2. 3 Einführung von Schlupfvariablen 2 Lineares Optimieren W. Kippels 1. April 015 Inhaltsverzeichnis 1 Einleitung Die Beispielaufgabe Einführung von Schlupfvariablen 4 Die Simplex-Methode 5 Das Basis-Austauschverfahren 4 6 Fortsetzung der

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 1.4 a) {( 1)} b) { } c) unendlich viele Lösungen d) {(4 )} e) {( 4)} f) { } 1.7 a) x = ; y = b) x = 4; y = c) x = _ ; y = 4 1.8 Zu diesen Aufgaben gibt es jeweils viele mögliche

Mehr

1. Funktionen. 1.3 Steigung von Funktionsgraphen

1. Funktionen. 1.3 Steigung von Funktionsgraphen Klasse 8 Algebra.3 Steigung von Funktionsgraphen. Funktionen y Ist jedem Element einer Menge A genau ein E- lement einer Menge B zugeordnet, so nennt man die Zuordnung eindeutig. 3 5 6 8 Dies ist eine

Mehr

1 Lineare Optimierung, Simplex-Verfahren

1 Lineare Optimierung, Simplex-Verfahren 1 Lineare Optimierung, Simplex-Verfahren 1.1 Einführung Beispiel: In einer Fabrik werden n Produkte A 1, A 2,..., A n hergestellt. Dazu werden m Rohstoffe B 1, B 2,..., B m (inklusive Arbeitskräfte und

Mehr

2 Die Dimension eines Vektorraums

2 Die Dimension eines Vektorraums 2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1

Mehr

Mathematikreferat. von. Matthias Faß FG 99

Mathematikreferat. von. Matthias Faß FG 99 Mathematikreferat von Matthias Faß FG 99 im Mai 2002 Inhaltsverzeichnis: Seite 1. Einleitung: Was ist eigentlich lineare Optimierung? 1 2. Geschichte der linearen Optimierung 1 3. Graphisches Verfahren

Mehr

Lineare Optimierungsmodelle

Lineare Optimierungsmodelle Lineare Optimierungsmodelle Simplex-Methode Vortragender: Michael Schneider Agenda Motivation Operations Research Aufbau linearer Optimierungsmodelle Simplex-Methode Ausblick 2 Problemstellung Futtermischung

Mehr

(Technisch: Setze alle Skalarprodukte der allgemeinen Lösung mit den Basisvektoren des Kerns gleich Null eindeutige leastsqares Lösung)

(Technisch: Setze alle Skalarprodukte der allgemeinen Lösung mit den Basisvektoren des Kerns gleich Null eindeutige leastsqares Lösung) Lineare Optimierung Unterbestimmte LGS und Optimierung Bei lösbaren unterbestimmten linearen Gleichungssystemen haben wir die Qual der Wahl in Abhängigkeit von den freien Parametern (Anzahl = Anzahl Unbekannte

Mehr

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am

Prüfungsklausur Mathematik I für Wirtschaftsingenieure am HTWD, Fakultät Informatik/Mathematik Prof. Dr. M. Voigt Prüfungsklausur Mathematik I für Wirtschaftsingenieure am 4.2.24 B Name, Vorname Matr. Nr. Sem. gr. Aufgabe 2 3 4 5 6 7 8 9 gesamt erreichbare P.

Mehr

Aufgabe 1: Bestimmen Sie Zahlen a b. ,, für die. = b. und gleichzeitig a + b + 1 = 0 gilt. Lösung zu Aufgabe 1:

Aufgabe 1: Bestimmen Sie Zahlen a b. ,, für die. = b. und gleichzeitig a + b + 1 = 0 gilt. Lösung zu Aufgabe 1: WS 99/99 Aufgabe : Bestimmen Sie Zahlen a b,, für die 6 b a und gleichzeitig a + b + gilt. Lösung zu Aufgabe : WS 99/99 Aufgabe : Ein Unernehmen stellt aus ohstoffen (,,, ) Zwischenprodukte ( Z, Z, Z )

Mehr

Mathematik für Wirtschaftswissenschaftler im WS 2013/14 Lösungen zu den Übungsaufgaben (Vortragsübung) Blatt 7

Mathematik für Wirtschaftswissenschaftler im WS 2013/14 Lösungen zu den Übungsaufgaben (Vortragsübung) Blatt 7 Mathematik für Wirtschaftswissenschaftler im WS 203/4 Lösungen zu den Übungsaufgaben (Vortragsübung) Blatt 7 Aufgabe 27 Sei eine lineare Abbildung f : R 4 R 3 gegeben durch f(x, x 2, x 3 ) = (2 x 3 x 2

Mehr

Übungsbuch Beschaffung, Produktion und Logistik

Übungsbuch Beschaffung, Produktion und Logistik Vahlens Übungsbücher der Wirtschafts- und Sozialwissenschaften Übungsbuch Beschaffung, Produktion und Logistik Aufgaben, Lösungen und Implementierung in Excel von Prof. Dr. Dr. h.c. Hans-Ulrich Küpper,

Mehr

4. Dualität Dualität 4.1 Dualität von LPs und der Dualitätssatz. Die duale Form eines LP in allgemeiner Form. Herleitung der dualen Form

4. Dualität Dualität 4.1 Dualität von LPs und der Dualitätssatz. Die duale Form eines LP in allgemeiner Form. Herleitung der dualen Form 2... 22 4.2 Die Bedingungen vom komplementären Schlupf... 23 4.3 Das Kürzeste-Wege-Problem und zugehörige duale Problem... 24 4.4 Das Farkas Lemma... 25 4.5 Duale Information im Tableau... 26 4.6 Der duale

Mehr

Erzeugende Funktionen

Erzeugende Funktionen Hallo! Erzeugende Funktionen sind ein Mittel um lineare Rekursionen schneller ausrechnen zu können. Es soll die Funktion nicht mehr als Rekursion angeschrieben werden, sondern so, dass man nur n einsetzen

Mehr

Lineare Optimierung Ergänzungskurs

Lineare Optimierung Ergänzungskurs Lineare Optimierung Ergänzungskurs Wintersemester 2015/16 Julia Lange, M.Sc. Literatur Werner, F.; Sotskov, Y.N. (2006): Mathematics of Economics and Business; Routledge; London Bemerkungen Diese Unterlagen

Mehr

Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 3. Vorlesung

Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 3. Vorlesung Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 3. Vorlesung Rainer Hufnagel / Laura Wahrig 2006 Diese Woche LO - Sensitivitätsanalyse Simulation Beispiel Differenzengleichungen

Mehr

Grundwissen Mathematik Klasse 8. Beispiel: m= 2,50 1 = 5,00. Gleichung: y=2,50 x. Beispiel: c=1,5 160=2,5 96=3 80=6 40=240.

Grundwissen Mathematik Klasse 8. Beispiel: m= 2,50 1 = 5,00. Gleichung: y=2,50 x. Beispiel: c=1,5 160=2,5 96=3 80=6 40=240. I. Funktionen 1. Direkt proportionale Zuordnungen Grundwissen Mathematik Klasse x und y sind direkt proportional, wenn zum n fachen Wert für x der n fache Wert für y gehört, die Wertepaare quotientengleich

Mehr

A2.3 Lineare Gleichungssysteme

A2.3 Lineare Gleichungssysteme A2.3 Lineare Gleichungssysteme Schnittpunkte von Graphen Bereits weiter oben wurden die Schnittpunkte von Funktionsgraphen mit den Koordinatenachsen besprochen. Wenn sich zwei Geraden schneiden, dann müssen

Mehr

3 Optimierung mehrdimensionaler Funktionen f : R n R

3 Optimierung mehrdimensionaler Funktionen f : R n R 3 Optimierung mehrdimensionaler Funktionen f : R n R 31 Optimierung ohne Nebenbedingungen Optimierung heißt eigentlich: Wir suchen ein x R n so, dass f(x ) f(x) für alle x R n (dann heißt x globales Minimum)

Mehr

Optimieren unter Nebenbedingungen

Optimieren unter Nebenbedingungen Optimieren unter Nebenbedingungen Hier sucht man die lokalen Extrema einer Funktion f(x 1,, x n ) unter der Nebenbedingung dass g(x 1,, x n ) = 0 gilt Die Funktion f heißt Zielfunktion Beispiel: Gesucht

Mehr

Einführung in die Lineare Programmierung

Einführung in die Lineare Programmierung Einführung in die Lineare Programmierung Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 RWTH Aachen 28. Mai 2008 Elementares Beispiel Die kanonische Form Die algebraische Gleichungsform Gegeben seien

Mehr

Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler

Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler Wintersemester 2007/08 27.2.2008 Dr. Sascha Kurz Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler Bitte lesbar ausfüllen, Zutreffendes ankreuzen Herr Frau Name, Vorname: Anschrift:

Mehr

Übungsblatt 1. a) Wie können diese drei Bereiche weiter unterteilt werden?

Übungsblatt 1. a) Wie können diese drei Bereiche weiter unterteilt werden? INSTITUT FÜR BETRIEBSWIRTSCHAFTLICHE PRODUKTIONS- UND INVESTITIONSFORSCHUNG Georg-August-Universität Göttingen Abteilung für Unternehmensplanung Prof. Dr. Dr. h. c. Jürgen Bloech Aufgabe. (Produktionsfaktorsystem)

Mehr

Corinne Schenka Vorkurs Mathematik WiSe 2012/13

Corinne Schenka Vorkurs Mathematik WiSe 2012/13 4. Lineare Gleichungssysteme Ein lineares Gleichungssystem ist ein System aus Gleichungen mit Unbekannten, die nur linear vorkommen. Dieses kann abkürzend auch in Matrizenschreibweise 1 notiert werden:

Mehr

Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok

Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok Kurs über Lineare Gleichungssysteme PD Dr. Karin Halupczok Mathematisches Institut Albert-Ludwigs-Universität Freiburg http://home.mathematik.unifreiburg.de/halupczok/diverses.html karin.halupczok@math.uni-freiburg.de

Mehr

Gleichsetzungsverfahren

Gleichsetzungsverfahren Funktion Eine Funktion ist eine Zuordnung, bei der zu jeder Größe eines ersten Bereichs (Ein gabegröße) genau eine Größe eines zweiten Bereichs (Ausgabegröße) gehört. Eine Funktion wird durch eine Funktionsvorschrift

Mehr

WHB11 - Mathematik Klausurübungen für die Klausur Nr. 3 AFS 3 Analysis: Ökonomische lineare Funktionen

WHB11 - Mathematik Klausurübungen für die Klausur Nr. 3 AFS 3 Analysis: Ökonomische lineare Funktionen Basiswissen für die Klausur Fixkosten sind Kosten, die unabhängig von der produzierten Menge anfallen, d.h. sie sind immer gleich, egal ob 20 oder 50 oder 100 Stück von einem Gut produziert werden. Man

Mehr

Lineare Optimierung Lehrbuch mit Aufgaben und Lösungen

Lineare Optimierung Lehrbuch mit Aufgaben und Lösungen Lineare Optimierung Lehrbuch mit Aufgaben und Lösungen Dipl.-Math. Alexander Schwarz E-Mail: aschwarz@mathe-aufgaben.com Homepage: www.mathe-aufgaben.com Wichtiger Hinweis: Ich bitte den Eigentümer dieser

Mehr

Angewandte Mathematik 9. Mai 2014 Korrekturheft Teil A + Teil B (Cluster 8)

Angewandte Mathematik 9. Mai 2014 Korrekturheft Teil A + Teil B (Cluster 8) Standardisierte kompetenzorientierte schriftliche Reife- und Diplomprüfung Angewandte Mathematik 9. Mai 2014 Korrekturheft Teil A + Teil B (Cluster 8) Aufgabe 1 a) x Masse der Rosinen oder Mandeln in Kilogramm

Mehr

Kapitel 2: Lineare Optimierung

Kapitel 2: Lineare Optimierung Kapitel 2: Lineare Optimierung Aufgabe 2.1: Lösen Sie zeichnerisch die folgenden LP-Modelle: a) Max. F(x,y) = 4x + 3y b) Max. F(x,y) = x + y c) Max. F(x,y) = x y x + 3y 9 5x + y 1 2x y x + 2y 2 x + 2y

Mehr

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R

9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 9 Optimierung mehrdimensionaler reeller Funktionen f : R n R 91 Optimierung ohne Nebenbedingungen Ein Optimum zu suchen heißt, den größten oder den kleinsten Wert zu suchen Wir suchen also ein x R n, sodass

Mehr

AUFGABEN. Klausur: Modul Optimierungsmethoden des Operations Research. Termin:

AUFGABEN. Klausur: Modul Optimierungsmethoden des Operations Research. Termin: Lehrstuhl für Betriebswirtschaftslehre, insb. Quantitative Methoden und Wirtschaftsmathematik Prof. Dr. Andreas Kleine AUFGABEN Klausur: Modul 32621 Optimierungsmethoden des Operations Research Termin:

Mehr

1.7. Die indirekte (umgekehrte) Proportionalität. a x heisst umgekehrte (indirekte) Proportionalität.

1.7. Die indirekte (umgekehrte) Proportionalität. a x heisst umgekehrte (indirekte) Proportionalität. 34 1.7. Die indirekte (umgekehrte) Proportionalität a Die Funktion f : y = a 0, 0 heisst umgekehrte (indirekte) Proportionalität. Spezialfall a = 1: f: Bilde den Kehrwert der gegebenen Zahl. An der Stelle

Mehr

Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 2. Vorlesung

Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 2. Vorlesung Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 2. Vorlesung Rainer Hufnagel / Laura Wahrig 2006 Diese Woche LO - Rechnerische Lösung - Simplex- Algorithmus LO - Auswertung des

Mehr

Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber

Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Sitzplatznr.: Wiederholungsklausur zur Vorlesung Operations Research im Wintersemester

Mehr

Unimodularität. Kapitel 1. Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206

Unimodularität. Kapitel 1. Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206 Kapitel 1 Unimodularität Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206 Inhalt 1 Unimodularität Total unimodulare Matrizen Inzidenzmatrix Optimierungsprobleme auf Graphen Peter

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Christian Serpé Universität Münster 14. September 2011 Christian Serpé (Universität Münster) 14. September 2011 1 / 56 Gliederung 1 Motivation Beispiele Allgemeines Vorgehen 2 Der Vektorraum R n 3 Lineare

Mehr

2. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner

2. Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner . Mathematik-Schularbeit für die 5. Klasse Autor: Gottfried Gurtner Arbeitszeit: 50 Minuten Lernstoff: Mathematische Grundkompetenzen: AG1.1 Wissen über die Zahlenmengen,,, verständig einsetzen können

Mehr

Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten)

Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten) HTW Dresden 9. Februar 2012 FB Informatik/Mathematik Prof. Dr. J. Resch Prüfungsklausur Wirtschaftsmathematik I Studiengang Wirtschaftsinformatik, (180 Minuten) Name, Vorname: Matr.-nr.: Anzahl der abge-

Mehr

KOSTEN- UND PREISTHEORIE

KOSTEN- UND PREISTHEORIE KOSTEN- UND PREISTHEORIE Fikosten, variable Kosten und Grenzkosten Jedes Unternehmen hat einerseits Fikosten (Kf, sind immer gleich und hängen nicht von der Anzahl der produzierten Waren ab, z.b. Miete,

Mehr

Maximiere Gesamtgewinn aus verschiedenen Produkten unter Restriktionen an Produktmenge (Lagermenge, Transportmenge)

Maximiere Gesamtgewinn aus verschiedenen Produkten unter Restriktionen an Produktmenge (Lagermenge, Transportmenge) Beispiel: Produktionsplanung Maximiere Gesamtgewinn aus verschiedenen Produkten unter Restriktionen an Produktmenge (Lagermenge, Transportmenge) Produktionskapazität Ressourcenmenge bei als fest angenommenem

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Übungsaufgaben II zur Klausur 1

Übungsaufgaben II zur Klausur 1 Übungsaufgaben II zur Klausur. Ableitungen 0. Führen Sie für g mit f ( +,9 8 eine vollständige Kurvendiskussion (siehe S. 9f durch. Markieren Sie alle von Ihnen bestimmten Punkte in der abschließenden

Mehr

1 /40. dargestellt werden.

1 /40. dargestellt werden. Abschlussprüfung Fachoberschule 0 () Aufgabenvorschlag B /40 Auf der Berliner Stadtautobahn A00 / Autobahndreieck Charlottenburg wurde über einen bestimmten Zeitraum die Staulänge l in Abhängigkeit von

Mehr

Direkt und indirekt proportionale Größen

Direkt und indirekt proportionale Größen 8.1 Grundwissen Mathematik Algebra Klasse 8 Direkt und indirekt proportionale Größen Direkte Proportionalität x und y sind direkt proportional, wenn zum doppelten, dreifachen,, n-fachen Wert für x der

Mehr

Einstufige Deckungsbeitragsrechnung (erhöhter Schwierigkeitsgrad)

Einstufige Deckungsbeitragsrechnung (erhöhter Schwierigkeitsgrad) Aufgabe 01 Für ein Einproduktunternehmen liegen folgende Daten vor: Monat Produktions- und Absatzmenge Gesamtkosten Umsatzerlöse Januar 36.430 Stück 1.018.385,00 1.001.825,00 Februar 42.580 Stück 1.138.310,00

Mehr

Das Linear Ordering Problem Exakte Lösungsverfahren. für NP-schwierige. VO Algorithm Engineering

Das Linear Ordering Problem Exakte Lösungsverfahren. für NP-schwierige. VO Algorithm Engineering Das Linear Ordering Problem Exakte Lösungsverfahren VO Algorithm Engineering für NP-schwierige Professor Dr. Petra Mutzel kombinatorische Lehrstuhl für Algorithm Engineering, LS11 Optimierungsprobleme

Mehr

Sensitivitätsanalyse in der Linearen Optimierung

Sensitivitätsanalyse in der Linearen Optimierung Sensitivitätsanalyse in der Linearen Optimierung Bei der Sensitivitätsanalyse werden i. allg. Größen des Ausgangsproblems variiert, und es wird untersucht, welche Wirkung eine derartige Modifikation auf

Mehr

Lineare Programmierung Teil I

Lineare Programmierung Teil I Seminar über Algorithmen Prof. Dr. Helmut Alt Lineare Programmierung Teil I Lena Schlipf, Benjamin Jankovic Lena Schlipf, Benjamin Jankovic Seminar über Algorithmen SS05 1 Struktur des Vortrags 1. Was

Mehr

Übungsbeispiel 1: Quadratische Modellierung

Übungsbeispiel 1: Quadratische Modellierung Übungsbeispiel 1: Quadratische Modellierung Ein Uhrenhersteller möchte den Preis für sein neues Modell festlegen und führt dazu eine Marktanalyse durch. Das Ergebnis lautet: Bei einem Preis von 60 ist

Mehr

Lösung allgemeiner linearer Programme

Lösung allgemeiner linearer Programme Lösung allgemeiner linearer Programme Bisher: Für Anwendung des Simplexalgorithmus muss eine primal oder eine dual zulässige Basislösung vorliegen. Für allgemeine lineare Programme können wir dies direkt

Mehr

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen 3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange

Mehr

WHB11 - Mathematik Klausur Nr. 3 AFS 3 Ökonomische Anwendungen linearer Funktionen

WHB11 - Mathematik Klausur Nr. 3 AFS 3 Ökonomische Anwendungen linearer Funktionen Name: Note: Punkte: von 50 (in %: ) Unterschrift des Lehrers : Zugelassene Hilfsmittel: Taschenrechner, Geodreieck, Lineal Wichtig: Schreiben Sie Ihren Namen oben auf das Klausurblatt und geben Sie dieses

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2008 / 2009

Abschlussprüfung an der Fachoberschule im Schuljahr 2008 / 2009 Senatsverwaltung für Bildung, Wissenschaft und Forschung Abschlussprüfung an der Fachoberschule im Schuljahr 008 / 009 Fach Mathematik (B) Name, Vorname Klasse Prüfungstag 7. Mai 009 Prüfungszeit Zugelassene

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Algebra: Lineare Gleichungssysteme und Matrizen

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lineare Algebra: Lineare Gleichungssysteme und Matrizen Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lineare Algebra: Lineare Gleichungssysteme und Matrizen Das komplette Material finden Sie hier: School-Scout.de Thema: Lineare Algebra:

Mehr

Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV.

Lineare Funktionen y = m x + n Sekundarstufe I u. II Funktion ist monoton fallend, verläuft vom II. in den IV. LINEARE FUNKTIONEN heißt Anstieg oder Steigung heißt y-achsenabschnitt Graphen linearer Funktionen sind stets Geraden Konstante Funktionen Spezialfall Graphen sind waagerechte Geraden (parallel zur x-achse)

Mehr

Aufgabe des Monats Januar 2012

Aufgabe des Monats Januar 2012 Aufgabe des Monats Januar 2012 Ein Unternehmen stellt Kaffeemaschinen her, für die es jeweils einen Preis von 100 Euro (p = 100) verlangt. Die damit verbundene Kostenfunktion ist gegeben durch: C = 5q

Mehr

Netzwerk-Simplex. MinCostFlow als Lineares Programm. 1 of 12 Netzwerksimplex

Netzwerk-Simplex. MinCostFlow als Lineares Programm. 1 of 12 Netzwerksimplex Netzwerk-Simplex MinCostFlow als Lineares Programm of 2 Netzwerksimplex MinCostFlow geg: gerichteter Graph G, Kapazitäten u R R 0 { }, Bedarfe b V R, Pfeilkosten c R R ges: zulässiger b-fluss f mit minimalen

Mehr

WM.3.1 Die Polynomfunktion 1. Grades

WM.3.1 Die Polynomfunktion 1. Grades WM.3.1 Die Polynomfunktion 1. Grades Wenn zwischen den Elementen zweier Mengen D und W eine eindeutige Zuordnungsvorschrift vorliegt, dann ist damit eine Funktion definiert (s. Abb1.), Abb1. wobei D als

Mehr

Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte.

Allgemeines Gleichungssystem mit zwei Gleichungen und zwei Variablen. Der erste Index bezeichnet die Nummer der Zeile, der zweite die der Spalte. Lineare Gleichungssysteme. Einleitung Lineare Gleichungssysteme sind in der Theorie und in den Anwendungen ein wichtiges Thema. Theoretisch werden sie in der Linearen Algebra untersucht. Die Numerische

Mehr

Operations Research. Linearoptimierung. Bearbeitet von Peter Stingl

Operations Research. Linearoptimierung. Bearbeitet von Peter Stingl Operations Research Linearoptimierung earbeitet von Peter Stingl Auflage 22 uch 76 S Hardcover ISN 978 446 228 8 Format ( x L): 4,5 x 2 cm Gewicht: 26 g Wirtschaft > etriebswirtschaft: Theorie & Allgemeines

Mehr

Lösungen zum 5. Aufgabenblatt

Lösungen zum 5. Aufgabenblatt SS 2012, Lineare Algebra 1 Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com

Mehr

Kosten-Leistungsrechnung Rechenweg Optimales Produktionsprogramm

Kosten-Leistungsrechnung Rechenweg Optimales Produktionsprogramm Um was geht es? Gegeben sei ein Produktionsprogramm mit beispielsweise 5 Aufträgen, die nacheinander auf vier unterschiedlichen Maschinen durchgeführt werden sollen: Auftrag 1 Auftrag 2 Auftrag 3 Auftrag

Mehr

Übungsaufgaben! In einem Fertigungsbetrieb wurden in 2 Abrechnungsperioden hergestellt: Stück Gesamtkosten DM

Übungsaufgaben! In einem Fertigungsbetrieb wurden in 2 Abrechnungsperioden hergestellt: Stück Gesamtkosten DM Übungsaufgaben! Aufgabe 1) In einem Fertigungsbetrieb wurden in 2 Abrechnungsperioden hergestellt: Stück Gesamtkosten 500 280.000 DM 200 220.000 DM Der Barverkaufspreis je Stück beträgt 700 DM a) Berechnen

Mehr

Fit in Mathe. August Klassenstufe 10 Lineare Gleichungssysteme

Fit in Mathe. August Klassenstufe 10 Lineare Gleichungssysteme Thema Musterlösung 1 Lineare Gleichungssysteme Zeichne die Geraden g i i=1,...6 in ein kartesisches Koordinatensystem, deren Koordinaten folgende Bedingungen erfüllen: 1) y = x 1 ) y = x 1 3) x y = 1 4)

Mehr

λ i x i λ i 0, x i X, nur endlich viele λ i 0}.

λ i x i λ i 0, x i X, nur endlich viele λ i 0}. jobname LinOpt Sommer Aufgabe a) Sei X R n. Dann ist b) Cone X = { x i X λ i x i λ i, x i X, nur endlich viele λ i }. x Cone S = Lin S x Lin S = Cone S. Also gibt es nicht-negative Koeffizienten µ i von

Mehr

2. Schulaufgabe aus der Mathematik Lösungshinweise

2. Schulaufgabe aus der Mathematik Lösungshinweise 2. Schulaufgabe aus der Mathematik Lösungshinweise Gruppe A (a) Allgemein ist eine Geradengleichung in der Form g(x) = m x+b gegeben, wobei m die Steigung der Geraden und b der y-achsenabschnitt, also

Mehr

Algorithmik WS 07/ Vorlesung, Andreas Jakoby Universität zu Lübeck

Algorithmik WS 07/ Vorlesung, Andreas Jakoby Universität zu Lübeck Lemma 15 KLP 1 ist genau dann lösbar, wenn das dazugehörige LP KLP 2 eine Lösung mit dem Wert Z = 0 besitzt. Ist Z = 0 für x 0, x 0, dann ist x eine zulässige Lösung von KLP 1. Beweis von Lemma 15: Nach

Mehr

y = K(x) = 0,5x³ 3,9x² + 12,4x + 20,4

y = K(x) = 0,5x³ 3,9x² + 12,4x + 20,4 2. Übungsaufgabe zur Untersuchung ökonomischer Funktionen Ein Unternehmen kann sein Produkt zum Preis von 12 GE / ME verkaufen. Die Produktionskosten lassen sich durch die folgende Kostenfunktion beschreiben:

Mehr

3. Schnittebenenverfahren

3. Schnittebenenverfahren 3. Schnittebenenverfahren Themen 3. Schnittebenenverfahren Ganzzahlige lineare Programmierung Schnittebenenverfahren Konstruktion von Schnittebenen Auswahl von Schnittrestriktionen Operations Research

Mehr

Aufgaben zu Kapitel 14

Aufgaben zu Kapitel 14 Aufgaben zu Kapitel 14 1 Aufgaben zu Kapitel 14 Verständnisfragen Aufgabe 14.1 Haben (reelle) lineare Gleichungssysteme mit zwei verschiedenen Lösungen stets unendlich viele Lösungen? Aufgabe 14.2 Gibt

Mehr

Analysis in der Ökonomie (Teil 1) Aufgaben

Analysis in der Ökonomie (Teil 1) Aufgaben Analysis in der Ökonomie (Teil 1) Aufgaben 1 In einer Fabrik, die Farbfernseher produziert, fallen monatlich fie Kosten in Höhe von 1 Mio an Die variablen Kosten betragen für jeden produzierten Fernseher

Mehr

Inhaltsverzeichnis. 4 Praxisbeispiel 7

Inhaltsverzeichnis. 4 Praxisbeispiel 7 Inhaltsverzeichnis Geschichte und Entwicklung. Grundidee................................2 George B. Dantzig...........................3 Diäten-Problem von G.J. Stigler.................. 2.4 John von Neumann

Mehr

Quadratische Funktion

Quadratische Funktion Quadratische Funktion sind Funktionen die nur eine Variable enthalten, deren Exponent 2 ist und keine Variable die einen Exponenten enthält, der größer ist als 2. Zum Beispiel die quadratische Funktion

Mehr

Fall 3: Mehrere Kapazitätsengpässe

Fall 3: Mehrere Kapazitätsengpässe Fall 3: Mehrere Kapazitätsengpässe ei Vorliegen mehrerer Engpässe ist zunächst zu prüfen, ob ein Engpass die anderen Engpässe dominiert. Ist dies der Fall, reduziert sich das Optimierungsproblem auf den

Mehr

Vorkurs Mathematik B

Vorkurs Mathematik B Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 20. September 2011 Definition (R n ) Wir definieren: 1 Der R 2 sei die Menge aller Punkte in der Ebene. Jeder Punkt wird in ein

Mehr

Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag,

Lineare Funktionen. Klasse 8 Aufgabenblatt für Lineare Funktionen Datum: Donnerstag, Lineare Funktionen Aufgabe 1: Welche der folgenden Abbildungen stellen eine Funktion dar? Welche Abbildungen stellen eine lineare Funktion dar? Ermittle für die linearen Funktionen eine Funktionsgleichung.

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmann-du.de Seite 9..8 Linearen Funktion Aus der Sekundarstufe I sind Ihnen die Graphen linearer Funktionen als Geraden bekannt und deren Funktionsgleichungen als Geradengleichungen.

Mehr

Kapitel 4. Optimierungsalgorithmen. Technische Universität Wien. Gunnar Klau Technische Universität Wien. Institut für Computergraphik und Algorithmen

Kapitel 4. Optimierungsalgorithmen. Technische Universität Wien. Gunnar Klau Technische Universität Wien. Institut für Computergraphik und Algorithmen Kapitel 4 Optimierungsalgorithmen Gunnar Klau Institut für Computergraphik und Algorithmen 1 Gliederung Kombinatorische vs. Ganzzahlige Optimierung Exakte Verfahren Branch-and-Bound Schnittebenenverfahren

Mehr

Technischer Fachwirt:

Technischer Fachwirt: IHK-Kurs, Geprüfter Technischer Fachwirt, Skript KLR Seite 1 Technischer Fachwirt: Kosten-Leistungsrechnung, Skript 5.1 Inhalt Break Even Analyse zu Vollkosten Dr. W. Grasser, Stand November 2012 IHK-Kurs,

Mehr

Parabeln - quadratische Funktionen

Parabeln - quadratische Funktionen Parabeln - quadratische Funktionen Roland Heynkes 9.11.005, Aachen Das Gleichsetzungsverfahren und die davon abgeleiteten Einsetzungs- und Additionsverfahren kennen wir als Methoden zur Lösung linearer

Mehr

Basistext Lineare Gleichungssysteme. Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=%

Basistext Lineare Gleichungssysteme. Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=% Basistext Lineare Gleichungssysteme Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=% Mit zwei Unbekannten gibt es die allgemeine Form:! #+% '=( Gelten mehrere dieser Gleichungen

Mehr

Kaufmännische Berufsmatura 2007 Kanton Zürich Serie 1

Kaufmännische Berufsmatura 2007 Kanton Zürich Serie 1 Serie 1 Prüfungsdauer: 150 Minuten Hilfsmittel: Netzunabhängiger Taschenrechner Beigelegte Formelsammlung Bedingungen: Dokumentieren Sie den Lösungsweg auf dem Aufgabenblatt Unbelegte Resultate werden

Mehr

Wirtschaftsmathematik-Klausur vom 03.07.2014 und Finanzmathematik-Klausur vom 11.07.2014 und

Wirtschaftsmathematik-Klausur vom 03.07.2014 und Finanzmathematik-Klausur vom 11.07.2014 und Wirtschaftsmathematik-Klausur vom 03.07.2014 und Finanzmathematik-Klausur vom 11.07.2014 und Bearbeitungszeit: W-Mathe 60 Minuten, F-Mathe 45 Minuten Aufgabe 1 a) Gegeben ist das folgende Gleichungssystem:

Mehr

Gleichungsarten. Quadratische Gleichungen

Gleichungsarten. Quadratische Gleichungen Gleichungsarten Quadratische Gleichungen Normalform: Dividiert man die allgemeine Form einer quadratischen Gleichung durch a, erhält man die Normalform der quadratischen Gleichung. x 2 +px+q=0 Lösungsformel:

Mehr

Lineare Optimierung. Master 1. Semester

Lineare Optimierung. Master 1. Semester Prof. Dr.-Ing. Fritz Nikolai Rudolph Fachhochschule Trier Fachbereich Informatik Master 1. Semester Inhaltsverzeichnis 1 Einleitung... 2 1.1 Lineare Gleichungssysteme... 2 1.2 sprobleme... 3 2 Standardform...

Mehr

Der Lehrling Jürgen soll täglich für den Biernachschub für die Kollegen auf der Baustelle sorgen.

Der Lehrling Jürgen soll täglich für den Biernachschub für die Kollegen auf der Baustelle sorgen. Aufgabe 1: Der Lehrling Jürgen soll täglich für den Biernachschub für die Kollegen auf der Baustelle sorgen. Normalerweise wird der sehr günstige Getränkehändler bevorzugt, bei dem eine Kiste Bier (20

Mehr

Lösungen lineare Funktionen

Lösungen lineare Funktionen lineare Funktionen Lösungen 1 Lösungen lineare Funktionen Schnittpunkt gegeben bestimme Funktionsvorschrift. Flächeninhalt von eingeschlossenem Dreieck berechnen. Schnittwinkel gegeben, berechne Steigung.

Mehr

Aufgabensammlung zum Üben Blatt 1

Aufgabensammlung zum Üben Blatt 1 Aufgabensammlung zum Üben Blatt 1 Seite 1 Lineare Funktionen ohne Parameter: 1. Die Gerade g ist durch die Punkte A ( 3 4 ) und B( 2 1 ) festgelegt, die Gerade h durch die Punkte C ( 5 3 ) und D ( -2-2

Mehr

Aufstellen der Funktionsgleichung aus gegebenen Bedingungen

Aufstellen der Funktionsgleichung aus gegebenen Bedingungen R. Brinkmann http://brinkmann-du.de Seite.0.0 Aufstellen der Funktionsgleichung aus gegebenen Bedingungen Drei unterschiedliche Punkte, die alle auf einer Parabel liegen sollen sind gegeben. Daraus soll

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

6. Übungsblatt zur Mathematik I für Maschinenbau

6. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 6. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS 2/ 25..-.2. Aufgabe G (Lineare Gleichungssysteme)

Mehr

1.1 Direkte Proportionalität

1.1 Direkte Proportionalität Beziehungen zwischen Größen. Direkte Proportionalität Bei einer direkten Proportionalität wird dem doppelten, dreifachen,...wert der einen Größe x der doppelte, dreifache,... Wert der anderen Größe y zugeordnet.

Mehr