Eine Herleitung des Kapazitätserweiterungsfaktors im Lohmann-Ruchti-Effekt

Größe: px
Ab Seite anzeigen:

Download "Eine Herleitung des Kapazitätserweiterungsfaktors im Lohmann-Ruchti-Effekt"

Transkript

1 Eine Herleitung des Kapazitätserweiterungsfaktors im Lohmann-Ruchti-Effekt von Prof Dr Claus-Michael Langenbahn und Prof Dr Claus Neidhardt Der Kapazitätserweiterungseffekt durch Abschreibungsgegenwerte, in der einschlägigen Literatur auch Lohmann-Ruchti-Effekt genannt, entsteht, wenn durch Abschreibungen freigesetzte Finanzmittel zum Zwecke der Ausweitung der Produktionskapazität in zusätzliche Anlagen investiert werden Die Entdeckung des Effekts, welcher der klassischen betriebswirtschaftlichen Disziplin der Investition und Finanzierung zuzuordnen ist, geht auf Hans Ruchti [14] und Martin Lohmann [10] zurück Es stellt sich heraus, dass der Kapazitätserweiterungsfaktor mit KEF = n n + 1 angegeben werden kann, wobei die Zahl n für die Nutzungsdauer einer Anlage in Jahren steht Betriebswirtschaftliche Standardwerke nennen den Erweiterungsfaktor in der Regel ohne Beweis (z B Wöhe [0], S73, Gräfer/Beike/Scheld [4], S 60-63, Jahrmann [6], S ), nur mit heuristischen Begründung (z B Thommen [18], S 750, Wöhe/Bilstein [1], S ), oder sie verweisen auf ein Werk von Kosiol [8] aus dem Jahr 1955 (z B Schierenbeck [16], S59, Däumler [], S , Olfert/Reichel [1], S ) Kosiol seinerseit verweist auf eine Dissertation von Langen [9], in der ein elementar gehaltener, sehr umfangreicher und teilweise umständlicher Beweis gegeben wird Auch ein Studium der Quelltexte inklusive der Dokumente der fünfziger Jahre (siehe Literaturverzeichnis) führt zu keinen anderen Ergebnissen Tatsächlich lässt sich ein sehr knapper und übersichtlicher Beweis der Formel für den Kapazitätserweiterungsfaktor des Lohmann-Ruchti-Effekts geben, der die Struktur des Abschreibungsmechanismus aufzeigt und auch die Bestimmung des Kapazitätserweiterungsfaktors in allgemeineren Abschreibungssituationen erlaubt Im ersten Abschnitt der vorliegenden Arbeit wird der Kapazitätserweiterungsfaktor an einem Beispiel illustriert Der darauf folgende zweite Abschnitt liefert diesen Beweis Abschreibungsbeispiel Ein Betrieb schafft fünf Maschinen an Eine Maschine kostet 4000 e Die Nutzungs- bzw Abschreibungsdauer einer Maschine beträgt vier Jahre Legt man den Betrachtungen eine lineare Abschreibung der Wirtschaftsgüter sowie die sonst üblichen Annahmen zum Lohmann-Ruchti- Effekt zugrunde, vgl etwa Schierenbeck [16], S 58 f, so ergibt sich anschließende Tabelle, anhand derer man den Kapazitätserweiterungseffekt nachverfolgen kann:

2 Tabelle 1: Beispiel Finanzierung aus Abschreibungswerten, Thommen [18], S 749 Maschinen in Betriebsjahr Jahr insg Sachwert Abschreibung Geldmittel Investition Der Kapazitätserweiterungsfaktor hat den Wert n n + 1 = = 8 5 = 1,6 Demnach lässt sich die Kapazität durch Reinvestition der verdienten Abschreibungen von fünf auf acht Maschinen um dauerhaft 60 % steigern Beweis der Formel für den Kapazitätserweiterungsfaktor Da der Abschreibungsprozess nach einem stets gleichförmigen Mechanismus über n Jahre hinweg abläuft, liegt der Versuch nahe, ihn durch eine Vektoriteration im R n zu beschreiben Die resultierende Iteration ist strukturell identisch mit dem Übergangsprozess einer Markov-Kette mit n Zuständen, so dass die Konvergenztheorie der Markov-Ketten mit endlichem Zustandsraum benutzt werden kann Die folgende Tabelle fasst die verwendeten Symbole und Abkürzungen zusammen: Tabelle : Symbole und Abkürzungen Symbol Bedeutung n Lebensdauer einer Maschine, Nutzungs- bzw Abschreibungsdauer a s Abschreibungen, Reinvestitionsbetrag in neue Maschinen zum Zeitpunkt s > 0 a 0 Wert der Startinvestition, ursprüngliche Investitionssumme

3 3 Man stellt fest, dass für den Reinvestitionsbetrag die folgende Rekursionsvorschrift gilt: a s+1 = a s n+1 + a s n+ + + a s 1 + a s, n wobei Investitionsvolumen a s k vor Beginn des Prozesses auf 0 gesetzt werden Fasst man die Investitionen der vergangenen n Jahre im Vektor v s = (a s n+1, a s n+,, a s 1, a s ) T R n zusammen, so kann man den Prozess durch die folgende Vektoriteration darstellen: v s+1 = Av s, A = n n 1 1 n n R n n Iteration der Vorschrift v s+1 = Av s führt zu v s+k = A k v s Daher untersuchen wir nun die Potenzen der Matrix A Für eine relle Matrix M verwenden wir dabei die Notation M > 0, falls alle Komponenten von M nicht-negativ sind, und M 0, falls alle Komponenten positiv sind Offensichtlich gilt A > 0; überdies ist A eine Matrix mit konstanter Zeilensumme 1 Der folgende Hilfssatz fasst einige weitere elementare Eigenschaften der Matrix A zusammen: Hilfssatz 1 1 Für jedes m N ist A m eine Matrix mit konstanter Zeilensumme 1 A n 0 3 A hat den Eigenwert 1 Ein zugehöriger Rechts-Eigenvektor ist w = (1,1,, 1) T (d h Aw = w), ein zugehöriger Links-Eigenvektor ist z = (1,,3,, n) (d h za = z) 4 Sämtliche Eigenwerte λ 1 von A sind betragsmäßig kleiner als 1 Begründung 1 Seien P, Q zwei beliebige n n-matrizen mit Zeilensumme 1 und sei R = P Q Dann gilt für i {1,, n} r i j = j=1 p ik q k j = j=1 p ik q k j = j=1 p ik = 1 Da A eine Matrix mit Zeilensumme 1 ist, gilt dies auch für A = A A, dann aber auch für A 3 = A A und induktiv folgt die Behauptung

4 4 Sei B = A n Für i, j {1,, n} ergibt sich die Komponente b i j von B als Summe von Produkten der Form a i,k1 a k1,k a kn,k n 1 a kn 1, j, (k 1,, k n 1 ) {1,, n} n 1 Da alle Komponenten von A nicht-negativ sind, ist b i j sicherlich bereits dann positiv, wenn eines dieser Produkte positiv ist Dies erfüllt jedoch zb für i < n das Produkt a i,i+1 a i+1,i+ a n 1,n a i 1 nn, und für i = n das Produkt a n nn 3 Dies ergibt sich durch elementare Berechnung 4 Sei I die n n-einheitsmatrix Für λ > 1 ist die Matrix A λi strikt diagonaldominant, also invertierbar Für λ = 1, λ 1 ist A irreduzibel diagonaldominant, also ebenfalls invertierbar Daher kann ein λ 1 mit λ 1 kein Eigenwert von A sein Satz lim k Ak =: P = n(n + 1) Begründung Aus dem vorangegangenen Hilfssatz folgt, dass A die Voraussetzungen von Karlin/Taylor [7], Appendix, Theorem 3 mit λ 0 = 1, x = 1 n w = 1 n (1,,, 1)T und f = n+1 z = n+1 (1,,, n) erfüllt Daher konvergiert A k für k gegen die Matrix P = x f = n(n + 1) 1 1 (1,,, n) = n(n + 1) Satz 3 a 0 Die Folge (a s ) s N ist konvergent mit Grenzwert lim a s = s n(n + 1)

5 5 Begründung a s ist die n-te Komponente des Vektors v s in der Vektoriteration v s = A s 1 v 1 mit Startvektor v 1 = (0,, 0, a 0 ) T Daher gilt lim a ( ) ( s = lim A s 1 v 1 = lim s s n s As 1 v 1 )n = (Pv 1 ) n = n(n + 1) na 0 = a 0 n + 1 ein Zu- Bei einer Nutzungsdauer von n Jahren ergibt sich aus dem jährlichen Betrag von a 0 n+1 wachs von KEF = n n + 1, wodurch die Formel für den Kapazitätserweiterungsfaktor bewiesen ist Unter Verwendung von Satz kann der Kapazitätserweiterungsfaktor auch für den Fall bestimmt werden, in dem die Anfangsinvestition über mehrere Jahre verteilt wurde Nehmen wir an, dass a 1,, a n die Investitionen in den Jahren 1 bis n bezeichnen und dass zukünftige Investitionen sich auf die Abschreibungsbeträge beschränken Der langfristig jährlich zur Verfügung stehende Investitionsbetrag a = lim s a s ergibt sich dann aus der Vektoriteration mit Startvektor v 1 = (a 1,, a n ) T Hierfür erhalten wir analog zum Beweis von Satz 3: a = (Pv 1 ) n = n(n + 1) (a 1 + a + 3a na n ) = n(n + 1) ka k Bei n-jähriger Nutzungsdauer ergibt sich daher ein langfristiges Gesamtvolumen von GV = n + 1 ka k Literaturverzeichnis [1] Buchner: Das Problem der Kapazitätsausweitung durch laufende Reinvestition in Höhe des Abschreibungsaufwandes, Diss Frankfurt a M 1960 [] Däumler: Betriebliche Finanzwirtschaft, 8 Aufl, Berlin 00, S [3] Engels/Marx: Der Briefwechsel zwischen Friedrich Engels und Karl Marx , hrsg v Bebel/Bernstein, Bd 3, Stuttgart 1913, S394 ff, auch in: ZfhF 1958, S ff [4] Gräfer/Beike/Scheld: Finanzierung, 5 Aufl, Berlin 001, S [5] Hax: Langfristige Finanz- und Investitionsentscheidungen, in: Handbuch der Wirtschaftswissenschaften, Bd 1, Betriebswirtschaft, hrsg von Hax/Wessels, Aufl, Köln/Opladen 1966, S 455 f

6 6 [6] Jahrmann: Finanzierung, 5 Aufl, Berlin 003, S [7] Karlin/Taylor: A first course in stochastic processes, nd Edition, Academic Press 1975 [8] Kosiol: Anlagenrechnung, Aufl, Wiesbaden 1955 [9] Langen: Die Kapazitätsausweitung durch Reinvestition liquider Mittel aus Abschreibungen, Diss FU Berlin 195 [10] Lohmann: Abschreibungen - Was sie sind und was sie nicht sind, in: Der Wirtschaftsprüfer 1949, S 56 ff [11] Lohmann: Einführung in die Betriebswirtschaftslehre, 4 Aufl, Tübingen 1964, S 187 ff [1] Olfert/Reichel: Finanzierung, 13 Aufl, Ludwigshafen 005, S [13] Perridon/Steiner: Finanzwirtschaft, 13 Aufl, München 004, S [14] Ruchti: Die Bedeutung der Abschreibung für den Betrieb, Berlin 194 [15] Ruchti: Die Abschreibung Ihre grundsätzliche Bedeutung als Aufwands-, Ertrags-, Finanzierungsfaktor, Stuttgart 1953, S 91 ff [16] Schierenbeck/Wöhle: Grundzüge der Betriebswirtschaftslehre, 17 Aufl, München 008 [17] Schneider: Investition, Finanzierung, Besteuerung, 7 Aufl, Wiesbaden 199, S 161 ff [18] Thommen: Betriebswirtschaftslehre, 6 Aufl, Zürich 004, S [19] Walterspiel: Betriebswachstum aus Abschreibungen?, Wiesbaden 1977 [0] Wöhe: Einführung in die Allgemeine Betriebswirtschaftslehre, Aufl, München 005 [1] Wöhe/Bilstein: Unternehmensfinanzierung, 9 Aufl, München 00, S

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

Iterative Verfahren, Splittingmethoden

Iterative Verfahren, Splittingmethoden Iterative Verfahren, Splittingmethoden Theodor Müller 19. April 2005 Sei ein lineares Gleichungssystem der Form Ax = b b C n, A C n n ( ) gegeben. Es sind direkte Verfahren bekannt, die ein solches Gleichungssystem

Mehr

BONUS MALUS SYSTEME UND MARKOV KETTEN

BONUS MALUS SYSTEME UND MARKOV KETTEN Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik, Institut für Mathematische Stochastik BONUS MALUS SYSTEME UND MARKOV KETTEN Klaus D. Schmidt Ringvorlesung TU Dresden Fakultät MN,

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung Kapitel 2: Matrizen 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung 2.1 Matrizen M = n = 3 m = 3 n = m quadratisch M ij : Eintrag von M in i-ter

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Hinweis:

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

4 Lineare Algebra (Teil 2): Quadratische Matrizen

4 Lineare Algebra (Teil 2): Quadratische Matrizen 4 Lineare Algebra (Teil : Quadratische Matrizen Def.: Eine (n n-matrix, die also ebensoviele Zeilen wie Spalten hat, heißt quadratisch. Hat sie außerdem den Rang n, sind also ihre n Spalten linear unabhängig,

Mehr

Mathematik für Wirtschaftswissenschaftler, WS 10/11 Musterlösungen zu Aufgabenblatt 11

Mathematik für Wirtschaftswissenschaftler, WS 10/11 Musterlösungen zu Aufgabenblatt 11 Mathematik für Wirtschaftswissenschaftler, WS / Musterlösungen zu Aufgabenblatt Aufgabe 76: Bestimmen Sie mittels Gauß-Elimination die allgemeine Lösung der folgenden linearen Gleichungssysteme Ax b: a)

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I 22. Februar 2008

KLAUSUR ZUR LINEAREN ALGEBRA I 22. Februar 2008 KLAUSUR ZUR LINEAREN ALGEBRA I. Februar 008 MUSTERLÖSUNG Diese Klausur wurde je nach Sitzreihe in zwei verschiedenen Versionen geschrieben. Die andere Version unterscheidet sich von der vorliegenden jedoch

Mehr

Liquidität vor Rentabilität Teil 1. eine Kaufmannsweisheit, auch für Zahnärzte.

Liquidität vor Rentabilität Teil 1. eine Kaufmannsweisheit, auch für Zahnärzte. Liquidität vor Rentabilität Teil 1 eine Kaufmannsweisheit, auch für Zahnärzte. Im Rahmen der Praxisführung stellt sich für jeden niedergelassenen Zahnarzt immer wieder die Frage, an welchen Kennzahlen

Mehr

Inhalt. Finanzierungsmöglichkeiten (Übersicht) Selbstfinanzierung

Inhalt. Finanzierungsmöglichkeiten (Übersicht) Selbstfinanzierung Innenfinanzierung Inhalt Finanzierungsmöglichkeiten (Übersicht) Selbstfinanzierung Offene Selbstfinanzierung Stille Selbstfinanzierung Finanzierung aus Abschreibungen Finanzierung aus Rückstellungen Vermögensumschichtung

Mehr

11. Folgen und Reihen.

11. Folgen und Reihen. - Funktionen Folgen und Reihen Folgen Eine Folge reeller Zahlen ist eine Abbildung a: N R Statt a(n) für n N schreibt man meist a n ; es handelt sich also bei einer Folge um die Angabe der Zahlen a, a

Mehr

Mathematik Matrizenrechnung

Mathematik Matrizenrechnung Mathematik Matrizenrechnung Einstufige Prozesse Rechenregeln für Matrizen Mehrstufige Prozesse Inverse Matrix Stochastische Prozesse 6 Zyklisches Verhalten Einstufige Prozesse Einstufige Prozesse Zur Beschreibung

Mehr

Grundzüge der Allgemeinen Betriebswirtschaftslehre

Grundzüge der Allgemeinen Betriebswirtschaftslehre II. Betriebsmittel 1. Definition und Arten Definition: Betriebsmittel sind Güter, die sich langfristig im Unternehmen befinden und beim Produktionsprozess genutzt werden. Bilanz: Anlagevermögen unter Sachanlagen

Mehr

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen

Kapitel III. Stetige Funktionen. 14 Stetigkeit und Rechenregeln für stetige Funktionen. 15 Hauptsätze über stetige Funktionen Kapitel III Stetige Funktionen 14 Stetigkeit und Rechenregeln für stetige Funktionen 15 Hauptsätze über stetige Funktionen 16 Konvergenz von Funktionen 17 Logarithmus und allgemeine Potenz C 1 14 Stetigkeit

Mehr

Lineare Algebra I Klausur. Klausur - Musterlösung

Lineare Algebra I Klausur. Klausur - Musterlösung Prof. Dr. B. Hanke Dr. J. Bowden Lineare Algebra I Klausur Klausur - Musterlösung 20. Februar 203 Aufgabe - Lösung Aussage wahr falsch (Z, +, 0) ist eine abelsche Gruppe. Der Ring Z/24Z ist nullteilerfrei.

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

Kapitel 17. Determinanten

Kapitel 17. Determinanten Kapitel 17. Determinanten Vorschau: Determinanten Es gibt drei Problemfelder, für die Determinanten von großem Nutzen sind: die formelmäßige Überprüfung der linearen Unabhängigkeit eines Systems von n

Mehr

MC-Serie 11: Eigenwerte

MC-Serie 11: Eigenwerte D-ERDW, D-HEST, D-USYS Mathematik I HS 14 Dr. Ana Cannas MC-Serie 11: Eigenwerte Einsendeschluss: 12. Dezember 2014 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Ebene algebraische Kurven

Ebene algebraische Kurven Ebene algebraische Kurven Tangenten und Singularitäten Meyrer Claudine 4. November 010 Inhaltsverzeichnis 1 Lokale Eigenschaften an-algebraischer Kurven (in C ) 1.1 Denitionen..............................

Mehr

Jeweils am Montag um 18:30 treffen sich Studenten in Seminarraum 3 zum gemeinsamen Lernen.

Jeweils am Montag um 18:30 treffen sich Studenten in Seminarraum 3 zum gemeinsamen Lernen. Jeweils am Montag um 18:30 treffen sich Studenten in Seminarraum 3 zum gemeinsamen Lernen. Betrachtungen zu Sprache, Logik und Beweisen Sprache Wir gehen von unserem Alphabet einigen Zusatzsymbolen aus.

Mehr

Rekursionen (Teschl/Teschl 8.1-8.2)

Rekursionen (Teschl/Teschl 8.1-8.2) Rekursionen (Teschl/Teschl 8.1-8.2) Eine Rekursion kter Ordnung für k N ist eine Folge x 1, x 2, x 3,... deniert durch eine Rekursionsvorschrift x n = f n (x n 1,..., x n k ) für n > k, d. h. jedes Folgenglied

Mehr

4.4. Rang und Inversion einer Matrix

4.4. Rang und Inversion einer Matrix 44 Rang und Inversion einer Matrix Der Rang einer Matrix ist die Dimension ihres Zeilenraumes also die Maximalzahl linear unabhängiger Zeilen Daß der Rang sich bei elementaren Zeilenumformungen nicht ändert

Mehr

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben:

Korrelationsmatrix. Statistische Bindungen zwischen den N Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben: Korrelationsmatrix Bisher wurden nur statistische Bindungen zwischen zwei (skalaren) Zufallsgrößen betrachtet. Für den allgemeineren Fall einer Zufallsgröße mit N Dimensionen bietet sich zweckmäßiger Weise

Mehr

Partitionen II. 1 Geometrische Repräsentation von Partitionen

Partitionen II. 1 Geometrische Repräsentation von Partitionen Partitionen II Vortrag zum Seminar zur Höheren Funktionentheorie, 09.07.2008 Oliver Delpy In diesem Vortrag geht es um Partitionen, also um Aufteilung von natürlichen Zahlen in Summen. Er setzt den Vortrag

Mehr

Stetige Funktionen, Binomischer Lehrsatz

Stetige Funktionen, Binomischer Lehrsatz Vorlesung 13 Stetige Funktionen, Binomischer Lehrsatz 13.1 Funktionenfolgen Wir verbinden nun den Grenzwertbegriff mit dem Funktionsbegriff. Es seien (a n ) n N eine reelle Folge und f : R R eine Funktion.

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Aufgaben zu Kapitel 14

Aufgaben zu Kapitel 14 Aufgaben zu Kapitel 14 1 Aufgaben zu Kapitel 14 Verständnisfragen Aufgabe 14.1 Haben (reelle) lineare Gleichungssysteme mit zwei verschiedenen Lösungen stets unendlich viele Lösungen? Aufgabe 14.2 Gibt

Mehr

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.)

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.) 3. Untergruppen 19 3. Untergruppen Nachdem wir nun einige grundlegende Gruppen kennengelernt haben, wollen wir in diesem Kapitel eine einfache Möglichkeit untersuchen, mit der man aus bereits bekannten

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83

9.2. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 9.. DER SATZ ÜBER IMPLIZITE FUNKTIONEN 83 Die Grundfrage bei der Anwendung des Satzes über implizite Funktionen betrifft immer die folgende Situation: Wir haben eine Funktion f : V W und eine Stelle x

Mehr

2. Repräsentationen von Graphen in Computern

2. Repräsentationen von Graphen in Computern 2. Repräsentationen von Graphen in Computern Kapitelinhalt 2. Repräsentationen von Graphen in Computern Matrizen- und Listendarstellung von Graphen Berechnung der Anzahl der verschiedenen Kantenzüge zwischen

Mehr

Lineare Abhängigkeit

Lineare Abhängigkeit Lineare Abhängigkeit Vorbemerkung. Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung I X, i x i. I heißt dabei Indexmenge. Man verwendet dabei oft die Schreibweise (x i ) oder (x

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

3.3 Klassifikation quadratischer Formen auf R n

3.3 Klassifikation quadratischer Formen auf R n 3.3. Klassifikation quadratischer Formen auf R n 61 3.3 Klassifikation quadratischer Formen auf R n Wir können den Hauptsatz über symmetrische Matrizen verwenden, um uns einen Überblick über die Lösungsmengen

Mehr

Lösungsvorschlag zu den Hausaufgaben der 8. Übung

Lösungsvorschlag zu den Hausaufgaben der 8. Übung FAKULTÄT FÜR MATHEMATIK Prof Dr Patrizio Ne Frank Osterbrink Johannes Lankeit 9503 Lösungsvorschlag zu den Hausaufgaben der 8 Übung Hausaufgabe : Beweise den Satz über die Parallelogrammgleichung Sei H

Mehr

LANGZEITVERHALTEN VON MARKOW-KETTEN

LANGZEITVERHALTEN VON MARKOW-KETTEN LANGZEITVERHALTEN VON MARKOW-KETTEN NORA LOOSE. Buchstabensalat und Definition Andrei Andreewitsch Markow berechnete Anfang des 20. Jahrhunderts die Buchstabensequenzen in russischer Literatur. 93 untersuchte

Mehr

Determinanten. a e b f a c b d. b) x = , y = c) zu einem Spaltenvektor das Vielfache des anderen Spaltenvektors addiert wird,

Determinanten. a e b f a c b d. b) x = , y = c) zu einem Spaltenvektor das Vielfache des anderen Spaltenvektors addiert wird, Determinanten Wir entwickeln eine Lösungsformel für Gleichungssysteme mit zwei Variablen. ax + cy = e b bx + y = f a } abx bcy = be + abx + ay = af ya bc = af be Man schreibt y = af be a bc = a e b f analog

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

Lineare Algebra II 5. Übungsblatt

Lineare Algebra II 5. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross / Mai Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Algebraisch abgeschlossener Körper) Ein Körper heißt algebraisch abgeschlossen,

Mehr

Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls

Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls Kriterien für Invertierbarkeit einer Matrix Eine lineare Abbildung ist bijektiv, d.h. ihre Matrix ist invertierbar, falls und nur falls (i) für jede Basis, die Bildvektoren auch eine Basis, bilden; (intuitiv

Mehr

y x x y ( 2x 3y + z x + z

y x x y ( 2x 3y + z x + z Matrizen Aufgabe Sei f R R 3 definiert durch ( ) x 3y x f = x + y y x Berechnen Sie die Matrix Darstellung von f Aufgabe Eine lineare Funktion f hat die Matrix Darstellung A = 0 4 0 0 0 0 0 Berechnen Sie

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Timo Stöcker Erstsemestereinführung Informatik TU Dortmund 22. März 2011 Heute Themen Lineare Gleichungssysteme Matrizen Timo Stöcker https://fsinfo.cs.tu-dortmund.de/studis/ese/vorkurse/mathe

Mehr

Algorithmus zur Berechnung der Jordannormalform

Algorithmus zur Berechnung der Jordannormalform Algorithmus zur Berechnung der Jordannormalform Olivier Sète 19. Januar 2011 Inhaltsverzeichnis 1 Motivation 1 2 Algorithmus Wie und warum funktioniert das? 2 2.1 Zutat 1 Für einen Jordanblock.........................

Mehr

Und so weiter... Annäherung an das Unendliche Lösungshinweise

Und so weiter... Annäherung an das Unendliche Lösungshinweise Stefanie Anzenhofer, Hans-Georg Weigand, Jan Wörler Numerisch und graphisch. Umfang einer Quadratischen Flocke Abbildung : Quadratische Flocke mit Seitenlänge s = 9. Der Umfang U der Figur beträgt aufgrund

Mehr

27 Taylor-Formel und Taylor-Entwicklungen

27 Taylor-Formel und Taylor-Entwicklungen 136 IV. Unendliche Reihen und Taylor-Formel 27 Taylor-Formel und Taylor-Entwicklungen Lernziele: Konzepte: klein o - und groß O -Bedingungen Resultate: Taylor-Formel Kompetenzen: Bestimmung von Taylor-Reihen

Mehr

Wirtschaftlichkeitsrechnung (SS 2009)

Wirtschaftlichkeitsrechnung (SS 2009) Wirtschaftlichkeitsrechnung (SS 2009) GuV und Abschreibungen (2009-06-10) Veranstaltungskonzept Kostenarten-, Kostenstellenund Kostenträgerrechnung Buchführung + Inhalte des GB Statische Verfahren Bilanz

Mehr

Kapitel 12. Lineare Abbildungen und Matrizen

Kapitel 12. Lineare Abbildungen und Matrizen Kapitel 12 Lineare Abbildungen und Matrizen Lineare Abbildungen f : R n R m Wir wissen schon: Eine lineare Abbildung f : R n R m ist eindeutig durch ein n-tupel von Vektoren v 1, v 2,, v n des R m bestimmt

Mehr

Musterlösungen zur Linearen Algebra II Blatt 5

Musterlösungen zur Linearen Algebra II Blatt 5 Musterlösungen zur Linearen Algebra II Blatt 5 Aufgabe. Man betrachte die Matrix A := über dem Körper R und über dem Körper F und bestimme jeweils die Jordan- Normalform. Beweis. Das charakteristische

Mehr

5 Iterationsverfahren für lineare Gleichungssysteme

5 Iterationsverfahren für lineare Gleichungssysteme 5 Iterationsverfahren für lineare Gleichungssysteme Klassische Iterationsverfahren Sei A R N N und b R N. Wir wollen nun das LGS Ax = b iterativ lösen. Dazu betrachten wir die Komponenten m = 1,...,N:

Mehr

Aufgabe 1: Bestimmen Sie Zahlen a b. ,, für die. = b. und gleichzeitig a + b + 1 = 0 gilt. Lösung zu Aufgabe 1:

Aufgabe 1: Bestimmen Sie Zahlen a b. ,, für die. = b. und gleichzeitig a + b + 1 = 0 gilt. Lösung zu Aufgabe 1: WS 99/99 Aufgabe : Bestimmen Sie Zahlen a b,, für die 6 b a und gleichzeitig a + b + gilt. Lösung zu Aufgabe : WS 99/99 Aufgabe : Ein Unernehmen stellt aus ohstoffen (,,, ) Zwischenprodukte ( Z, Z, Z )

Mehr

Degressive Abschreibung Zusammenfassung. August 2016

Degressive Abschreibung Zusammenfassung. August 2016 Degressive Abschreibung Zusammenfassung August 2016 Degressive Abschreibung Zusammenfassung Bei einer linearen Abschreibung wird der Wertverlust des Vermögensgegenstandes gleichmäßig auf die Nutzungsdauer

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

2.2 Kern und Bild; Basiswechsel

2.2 Kern und Bild; Basiswechsel 22 Kern und Bild; Basiswechsel 22 Kern und Bild; Basiswechsel 35 Jede lineare Abbildung definiert charakteristische Unterräume, sowohl im Ausgangsraum als auch im Bildraum 22 Satz Sei L: V W eine lineare

Mehr

Lineare Gleichungssysteme (Teschl/Teschl 11.1)

Lineare Gleichungssysteme (Teschl/Teschl 11.1) Lineare Gleichungssysteme (Teschl/Teschl.) Ein Lineares Gleichungssystem (LGS) besteht aus m Gleichungen mit n Unbekannten x,...,x n und hat die Form a x + a 2 x 2 +... + a n x n b a 2 x + a 22 x 2 +...

Mehr

4 Reihen. s n = a 1 + a 2 + + a n = Die Folge (s n ) n N der Partialsummen heißt eine (unendliche) Reihe und wird auch als a k. k=1. )n N geschrieben.

4 Reihen. s n = a 1 + a 2 + + a n = Die Folge (s n ) n N der Partialsummen heißt eine (unendliche) Reihe und wird auch als a k. k=1. )n N geschrieben. 4 Reihen Aus Folgen lassen sich durch Aufaddieren weitere Folgen konstruieren. Das sind die sogenannten Reihen, sie spielen in der Finanzmathematik eine wichtige Rolle. Sei (a k ) k N eine Folge. Wir definieren

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG KLAUSUR ZUR LINEAREN ALGEBRA I Wiederholungsprüfung MUSTERLÖSUNG. April 2008 Name: Studiengang: Aufgabe 2 3 4 5 6 Summe Punktzahl /50 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter

Mehr

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48

Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48 Am Dienstag, den 16. Dezember, ist Eulenfest. 1/48 Grundbegriffe der Informatik Einheit 12: Erste Algorithmen in Graphen Thomas Worsch Universität Karlsruhe, Fakultät für Informatik Wintersemester 2008/2009

Mehr

Leseprobe. Investition und Finanzierung

Leseprobe. Investition und Finanzierung Investition und Finanzierung Kapitel 2 - Investitionsrechnung 2.1 Methoden der Investitionsrechnung 2.2 Statische Investitionsrechnung - Kosten- und Gewinnvergleichsverfahren 2.2.1 Kostenvergleichsverfahren

Mehr

Ein Beispiel für eine lineare Abbildung

Ein Beispiel für eine lineare Abbildung Inhaltsverzeichnis Ein Beispiel für eine lineare Abbildung Lothar Melching Vorbemerkungen 2 Ein Beispiel 2 2 Definition der Abbildung f 2 22 Die Abbildungsmatrix 3 23 Anwendung 3 Eigenwerte 3 Die neue

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof Dr Erich Walter Farkas Kapitel 7: Lineare Algebra 73 Ergänzungen Prof Dr Erich Walter Farkas Mathematik I+II, 73 Ergänzungen 1 / 17 1 Reguläre Matrizen Prof Dr

Mehr

3.4 Asymptotische Evaluierung von Sch atzer Konsistenz Konsistenz Definition 3.4.1: konsistente Folge von Sch atzer

3.4 Asymptotische Evaluierung von Sch atzer Konsistenz Konsistenz Definition 3.4.1: konsistente Folge von Sch atzer 3.4 Asymptotische Evaluierung von Schätzer 3.4.1 Konsistenz Bis jetzt haben wir Kriterien basierend auf endlichen Stichproben betrachtet. Konsistenz ist ein asymptotisches Kriterium (n ) und bezieht sich

Mehr

Stetigkeit. Kapitel 4. Stetigkeit. Peter Becker (H-BRS) Analysis Sommersemester / 543

Stetigkeit. Kapitel 4. Stetigkeit. Peter Becker (H-BRS) Analysis Sommersemester / 543 Kapitel 4 Stetigkeit Peter Becker (H-BRS) Analysis Sommersemester 2016 254 / 543 Inhalt Inhalt 4 Stetigkeit Eigenschaften stetiger Funktionen Funktionenfolgen und gleichmäßige Konvergenz Umkehrfunktionen

Mehr

Investitionsentscheidungen vorbereiten und treffen

Investitionsentscheidungen vorbereiten und treffen Kapitelübersicht Investitionsprozess 1. Anregung 2. Zielfestlegung 3. Suche nach Alternativen 4. Bewertung von Alternativen 5. Entscheidung für eine Alternative 6. Durchführung 7. Kontrolle Investitionsentscheidungen

Mehr

Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.2012

Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.2012 Musterlösung zur Klausur Lineare Algebra II für Lehramt 30.07.0 Aufgabe : Entscheiden Sie in dieser Aufgabe, ob die Aussagen wahr oder falsch sind. Begründungen sind nicht erforderlich. Ein korrekt gesetztes

Mehr

3 Vom Zählen zur Induktion

3 Vom Zählen zur Induktion 7 3 Vom Zählen zur Induktion 3.1 Natürliche Zahlen und Induktions-Prinzip Seit unserer Kindheit kennen wir die Zahlen 1,, 3, 4, usw. Diese Zahlen gebrauchen wir zum Zählen, und sie sind uns so vertraut,

Mehr

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2.

1 Definition. 2 Besondere Typen. 2.1 Vektoren und transponieren A = 2.2 Quadratische Matrix. 2.3 Diagonalmatrix. 2. Definition Die rechteckige Anordnung von m n Elementen a ij in m Zeilen und n Spalten heißt m n- Matrix. Gewöhnlich handelt es sich bei den Elementen a ij der Matrix um reelle Zahlen. Man nennt das Paar

Mehr

Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ).

Aufgabe 1. Sei A Mat(n n, R) mit Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A + 3E n ). Aufgabe Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(3A E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Kern(A 3E n ). Sei A Mat(n n, R) Eigenwert 3. Dann gilt: Eig(A, 3) = Bild(A

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

(geometrische) Anschauung

(geometrische) Anschauung (geometrische) Anschauung Marcus Page Juni 28 In dieser Lerneinheit widmen wir uns dem schon oft angesprochenen Zusammenhang zwischen Matrizen und linearen Abbildungen. Außerdem untersuchen wir Funktionen,

Mehr

Die Perron Frobenius Tabelle der Deutschen Fußballbundesliga

Die Perron Frobenius Tabelle der Deutschen Fußballbundesliga Die Perron Frobenius Tabelle der Deutschen Fußballbundesliga Günter Czichowski, Dirk Frettlöh Institut für Mathematik und Informatik Universität Greifswald Jahnstr. 15a 17487 Greifswald In der Fußballbundesliga

Mehr

Jacobi- und Gauß-Seidel-Verfahren, Jacobi-Relaxationsverfahren

Jacobi- und Gauß-Seidel-Verfahren, Jacobi-Relaxationsverfahren Universität Hamburg SS 2005 Proseminar Numerik Leitung: Prof. W. Hofmann Vortrag von Markus Stürzekarn zum Thema: Jacobi- und Gauß-Seidel-Verfahren, Jacobi-Relaxationsverfahren Gegeben sei ein lineares

Mehr

Buchhaltung Vorlesung am Buchungsvorgänge auf Seite 23

Buchhaltung Vorlesung am Buchungsvorgänge auf Seite 23 Buchhaltung Vorlesung am 18.11.2003 Dozent: Prof. Dr. Hölzli Buchungsvorgänge auf Seite 23 1. Maschine 1.000.000 an Verbndlichk. a. LL 1.160.000 VSt 160.000 Abschreibungsvolumen 2. Abschreibungsplan lineare

Mehr

00. Einiges zum Vektorraum R n

00. Einiges zum Vektorraum R n 00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen

Mehr

Vektorgeometrie Layout: Tibor Stolz

Vektorgeometrie Layout: Tibor Stolz Hanspeter Horlacher Vektorgeometrie Layout: Tibor Stolz 1. Einführung Eine Grösse, zu deren Festlegung ausser einer Zahl auch noch die Angabe einer Richtung nötig ist, heisst VEKTOR. P 2 P 1 P 1 P 2 P

Mehr

2 Geradengleichungen in Parameterform. Länge und Skalarprodukt

2 Geradengleichungen in Parameterform. Länge und Skalarprodukt 2 Geradengleichungen in Parameterform. Länge und Skalarprodukt Jörn Loviscach Versionsstand: 19. März 2011, 15:33 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen in der Vorlesung. Videos dazu:

Mehr

Eigenwerte und Eigenvektoren von Matrizen

Eigenwerte und Eigenvektoren von Matrizen Eigenwerte und Eigenvektoren von Matrizen Das Eigenwertproblem Sei A eine quadratische Matrix vom Typ m,m. Die Aufgabe, eine Zahl λ und einen dazugehörigen Vektor x zu finden, damit Ax = λx ist, nennt

Mehr

4 Reihen und Finanzmathematik

4 Reihen und Finanzmathematik 4 Reihen und Finanzmathematik 4. Reihen Aus Folgen lassen sich durch Aufaddieren weitere Folgen konstruieren. Das sind die sogenannten Reihen, sie spielen in der Finanzmathematik eine wichtige Rolle. Sei

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

Fachhochschule Nordwestschweiz (FHNW) Hochschule Technik Lösungen Serie 10 (Lineare Abbildungen)

Fachhochschule Nordwestschweiz (FHNW) Hochschule Technik Lösungen Serie 10 (Lineare Abbildungen) Fachhochschule Nordwestschweiz (FHNW) Hochschule Technik Lösungen Serie (Lineare Abbildungen) Dozent/in: R. Burkhardt Büro:.6 Klasse: Semester: Datum: HS 8/9. Aufgabe Zeige, dass die folgenden Abbildungen

Mehr

Investitionsrechnung

Investitionsrechnung Investitionsrechnung Vorlesung Allgemeine Betriebswirtschaftslehre Wissenschaftszentrum Weihenstephan Sommersemester 2008 Technische Universität München Univ.-Prof. Frank-Martin Belz Inhaltsübersicht Teil

Mehr

35 Stetige lineare Abbildungen

35 Stetige lineare Abbildungen 171 35 Stetige lineare Abbildungen Lernziele: Konzepte: Lineare Operatoren und ihre Normen Resultate: Abschätzungen für Matrizennormen Kompetenzen: Abschätzung von Operatornormen 35.1 Lineare Abbildungen.

Mehr

Oberstufe (11, 12, 13)

Oberstufe (11, 12, 13) Department Mathematik Tag der Mathematik 1. Oktober 009 Oberstufe (11, 1, 1) Aufgabe 1 (8+7 Punkte). (a) Die dänische Flagge besteht aus einem weißen Kreuz auf rotem Untergrund, vgl. die (nicht maßstabsgerechte)

Mehr

2. Stetige lineare Funktionale

2. Stetige lineare Funktionale -21-2. Stetige lineare Funktionale Die am Ende von 1 angedeutete Eigenschaft, die ein lineares Funktional T : D(ú) 6 verallgemeinerten Funktion macht, ist die Stetigkeit von T in jedem n 0 0 D(ú). Wenn

Mehr

7. Ringe und Körper. 7. Ringe und Körper 49

7. Ringe und Körper. 7. Ringe und Körper 49 7. Ringe und Körper 49 7. Ringe und Körper In den bisherigen Kapiteln haben wir nur Gruppen, also insbesondere nur Mengen mit lediglich einer Verknüpfung, untersucht. In der Praxis gibt es aber natürlich

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Ergänzung Eigenwerte und Eigenvektoren Motivation Definitionen Beispiele im IR 2 Beispiele im IR 3 Eigenwerte und Eigenvektoren Motivation Lineare Abbildungen, Ausgangsvektor und Bildvektor Lineare Abbildungen

Mehr

Ergänzung zu Brealey & Myers Kapitel 6.2: Investitionsentscheidung und Steuern. Literatur

Ergänzung zu Brealey & Myers Kapitel 6.2: Investitionsentscheidung und Steuern. Literatur Ergänzung zu Brealey & Myers Kapitel 6.2: Investitionsentscheidung und Steuern Literatur Blohm, Hans und Klaus Lüder: Investition. 8. Auflage, München 1995, S. 120-37. 35 Symbolverzeichnis Die Symbole

Mehr

Satz 16 (Multiplikationssatz)

Satz 16 (Multiplikationssatz) Häufig verwendet man die Definition der bedingten Wahrscheinlichkeit in der Form Damit: Pr[A B] = Pr[B A] Pr[A] = Pr[A B] Pr[B]. (1) Satz 16 (Multiplikationssatz) Seien die Ereignisse A 1,..., A n gegeben.

Mehr

Übung IV Innenfinanzierung

Übung IV Innenfinanzierung KfW-Stiftungslehrstuhl für Entrepreneurial Finance Wintersemester 2010/11 Übung Einführung in die BWL aus finanzwirtschaftlicher Sicht Übung IV Innenfinanzierung Wiederholung wesentlicher Punkte aus Übung

Mehr

5. Vorlesung. Das Ranking Problem PageRank HITS (Hubs & Authorities) Markov Ketten und Random Walks PageRank und HITS Berechnung

5. Vorlesung. Das Ranking Problem PageRank HITS (Hubs & Authorities) Markov Ketten und Random Walks PageRank und HITS Berechnung 5. Vorlesung Das Ranking Problem PageRank HITS (Hubs & Authorities) Markov Ketten und Random Walks PageRank und HITS Berechnung Seite 120 The Ranking Problem Eingabe: D: Dokumentkollektion Q: Anfrageraum

Mehr

Lösung (die Geraden laufen parallel) oder unendlich viele Lösungen.

Lösung (die Geraden laufen parallel) oder unendlich viele Lösungen. 1 Albert Ludwigs Universität Freiburg Abteilung Empirische Forschung und Ökonometrie Mathematik für Wirtschaftswissenschaftler Dr. Sevtap Kestel Winter 2008 Kapitel 16 Determinanten und inverse Matrizen

Mehr

Das Kryptosystem von McEliece. auf der Basis von linearen Codes

Das Kryptosystem von McEliece. auf der Basis von linearen Codes Das Kryptosystem von McEliece auf der Basis von linearen Codes Anforderungen Public-Key Kryptosysteme E e (m) = c Verschlüsselung D d (c) = m Entschlüsselung mit Schl. effizient effizient 2/25 Anforderungen

Mehr

Vektorgeometrie. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden)

Vektorgeometrie. Inhaltsverzeichnis. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden) fua3673 Fragen und Antworten Vektorgeometrie (bitte nur für den Eigengebrauch verwenden) Inhaltsverzeichnis Vektorgeometrie im Raum. Fragen................................................. Allgemeines..........................................

Mehr