Der Vierscheitelsatz und Eigenschaften einfach geschlossener ebener konvexer Kurven

Größe: px
Ab Seite anzeigen:

Download "Der Vierscheitelsatz und Eigenschaften einfach geschlossener ebener konvexer Kurven"

Transkript

1 Der Vierscheitelsatz und Eigenschaften einfach geschlossener ebener konvexer Kurven im Rahmen des Proseminars Kurven WS 212/ 213 Prof. Dr. Franz Pedit Dr. Allison Tanguay Universität Tübingen Ayhan Kayabasi Februar 213 1

2 Definition 1: (Periode einer geschlossenen Kurve) Eine nach Bogenlänge parametrisierte Kurve c : R! R 2 ist periodisch mit Periode L, wenn gilt: c(t + L) c(t) 8t 2 R, L > Zudem gibt es kein <K<Lmit c(t + K) c(t) 8t 2 R. EineKurve heißt geschlossen, wenn sie eine periodische reguläre Parametrisierung besitzt. Definition 2: (einfach geschlossene Kurven) Eine Kurve c :[,L]! R 2 heißt einfach geschlossen, wennsieeineperiodische reguläre Parametrisierung besitzt und zudem gilt: 1. c() c(l) 2. Die Abbildung c :[,L)! R 2 ist injektiv. Abbildung 1 einfach geschlossen nicht einfach geschossen Definition 3: (konvexe Kurven) Eine einfach geschlossene Kurve c :[,L]! R 2 ist konvex, wenn8t 2 [,L] die Spur von c ganz auf einer Seite der abgeschlossenen Halbebene liegt, die durch die Tangente in t bestimmt ist. Abbildung 2 konvexe Kurve nicht konvexe Kurve 2

3 Definition 4: (Scheitel) Ein Scheitel einer Kurve c : [,L]! R 2 ist ein Punkt t 2 [,L]mit apple (t), wobei apple :[,L]! R die Krümmung von c angibt. (Bemerkung: Da c periodisch und einfach geschlossen ist mit c() c(l), ist auch apple periodisch und apple() apple(l).) Lemma 1: Schneidet eine Gerade eine einfach geschlossene ebene konvexe Kurve in mehr als zwei Punkten, so schneidet die Gerade die Kurve tangential und es gibt unendlich viele Schnittpunkte. Beweis: c( 1 ),c( 2 )undc( 3 )(mit 1 < 2 < 3 ) seien die Schnittpunkte einer Gerade G mit der einfach geschlossenen konvexen Kurve c :[,L]! R 2. Aufgrund der Konvexität von c muss die Tangente in dem Zwischenpunkt, o.b.d.a. in c( 2 ), mit G übereinstimmen. Da G die Tangente des Punktes c( 2 )ist und deshalb nach Definition 3 die Spur von c komplett auf einer Seite der durch G bestimmten Halbebene liegt, kann G die Punkte c( 1 )undc( 3 ) ebenfalls nur tangential schneiden. Aufgrund der Konvexität muss G auch sämtliche Punkte zwischen c( 1 )undc( 3 ) tangential schneiden und hat somit unendlich viele Schnittpunkte mit c. q.e.d. Folgerung: Schneidet eine Gerade eine einfach geschlossene konvexe Kurve in mehr als einem Punkt tangential, so gibt es unendlich viele Schnittpunkte. Lemma 2: Sei c :[,L]! R 2 eine nach Bogenlänge parametrisierte, ebene geschlossene Kurve und seien A, B, C 2 R beliebig. Dann gilt: (Ax + By + C) dapple dt dt wobei x x(t) undy y(t) gegeben sind durch c(t) (x(t),y(t)) und apple apple(t) diekrümmung von c ist. Beweis: 1. C dapple dt C(apple(L) apple()) dt 3

4 2. x dapple dt dt hc(t),e 1 i dapple dt dt [hc(t),e 1 i apple(t)] L hc (t),e {z} 1 iapple(t)dt T ht,e 1 iapple(t)dt h applet, e 1 idt hn,e 1 idt hn(l),e 1 i hn(),e 1 i 3. y dapple dt dt hc(t),e 2 i dapple dt dt [hc(t),e 2 i apple(t)] L hc (t),e {z} 2 iapple(t)dt T ht,e 2 iapple(t)dt h applet, e 2 idt hn,e 2 idt hn(l),e 2 i hn(),e 2 i 4

5 4. (Ax + By + C) dapple dt dt A x dapple dt dt +B y dapple dt dt + Der Vierscheitelsatz: Eine einfach geschlossene konvexe Kurve hat mindestens vier Scheitel. C dapple dt dt q.e.d. Beweis: Da apple eine stetige Funktion ist, nimmt sie Maximum und Minimum auf dem Intervall [,L] an. Seien o.b.d.a. t undt t 2 (,L)diesePunkte, also gilt apple () und apple (t ). Daraus folgt, dass c nach Definition 4 mindestens 2 Scheitel besitzt, nämlich in c() und c(t ). Es sei G die Gerade durch die Punkte c() und c(t )undsei Ax + By + C die Gleichung von G. Würde G die Spur von c nur tangential in den Punkten c() und c(t ) schneiden, so hätte G unendlich viele Schnittpunkte mit c und es gälte apple(t) [,t ]. Da c in und t Maximum und Minimum hat, wäre aber apple im gesamten Intervall [,L]. (Widerspruch, da c einfach geschlossen ist und deswegen gekrümmt sein muss.) Also haben G und c zwei Schnittpunkte und die Spur von c wird in 2 Bögen und geteilt. Für die Punkte t 2 (,t ) von gelte Ax+By+C >, für die Punkte t 2 (t,l) von gelte Ax + By + C<. Abbildung 3 5

6 Angenommen, es gäbe keine weiteren Scheitel. Dann hat apple auf jedem der beiden Bögen und konstantes Vorzeichen. Daraus folgt: 1. Fall 1: 2. Fall 2: apple > ) apple < ) (Ax + By + C)apple dt apple < ) apple > ) (Ax + By + C)apple dt Z t + > (Ax + By + C)apple dt > (Ax + By + C)apple dt t > Widerspruch zu Lemma 2 Z t + < (Ax + By + C)apple dt < (Ax + By + C)apple dt t < Widerspruch zu Lemma 2 Also muss es noch einen weiteren Scheitelpunkt geben, o.b.d.a. in t 1 2 (,t )mitapple (t 1 ). Wäre apple(t 1 ) ein Sattelpunkt, so würde apple sein Vorzeichen nicht wechseln und es würde wieder zu einem Widerspruch beim Berechnen des Integrals führen. apple hat in und in t sein Maximum bzw. sein Minimum und in t 1 eine Extremstelle. Deshalb muss es mindestens noch eine weitere Extremstelle t 2 2 (,t ) geben, also wechselt apple auf zwei mal sein Vorzeichen und c hat mindestens vier Scheitel. Beispiele für die Berechnung der Scheitelpunkte Vorbemerkung: Für die Krümmung einer Kurve c :[,L]! R 2 gilt q.e.d. apple(t) det(c (t),c (t)) k c (t) k 3 6

7 1. Beispiel c :[, 2 ]! R 2, t 7! apple(t) det@ cos(t) sin(t) sin(t) cos(t) cos(t) sin(t) k@ sin(t) cos(t) ) apple (t) 8 t 2 [, 2 ] 1 A 1 1 Ak 3 ) unendlich viele Scheitelpunkte 2. Beispiel (Ellipse) c :[, 2 ]! R 2, t 7! apple(t) det@ asin(t) acos(t) bcos(t) bsin(t) k@ asin(t) bcos(t) acos(t), <a,b2r bsin(t) 1 A 1 ab (a Ak 2 sin(t) 2 +b 2 cos(t) 2 ) apple (t) 3 2 ab(a2 sin(t) 2 + b 2 cos(t) 2 ) 5 2 (2a 2 sin(t)cos(t) 2b 2 sin(t)cos(t)) apple (t) () (2a 2 sin(t)cos(t) 2b 2 sin(t)cos(t)) () sin(t) cos(t) () t 2 Z 2 Im Intervall [, 2 ] istapple (t) für t 2{, 2,, 3 2, 2 } und die Scheitelpunkte von c lauten a c() c(2 ), c( a 2 ), c( ), c( 3 b 2 ) b 7

8 Lemma 3 Sei c :[,L]! R 2 eine einfach geschlossene und nach Bogenlänge parametrisierte Kurve mit Normalenfeld n. Dann ist c genau dann konvex, wenn 8t, t 2 [,L] gilt: oder hc(t) c(t ),n(t )i hc(t) c(t ),n(t )iapple Abbildung 4 Beweis Wir wissen: hc(t) c(t ),n(t )i () c(t) c(t )p c (t) für p 2 R (Definition Standardskalarprodukt im R n ) Gilt jetzt bei einer konvexen Kurve für feste t 1,t 2 2 [,L] sowohl hc(t) c(t 1 ),n(t 1 )iapple als auch hc(t) c(t 2 ),n(t 2 )i 8t 2 [,L], so muss es aus Stetigkeitsgründen ein t 3 2 [,L]mithc(t) c(t 3 ),n(t 3 )i geben. Damit alle drei Gleichungen erfüllt sind, muss c eine Gerade sein, was im Widerspruch zur Definition von c steht. q.e.d. Satz Sei c :[,L]! R 2 eine einfach geschlossene konvexe Kurve, die nach der Bogenlänge parametrisiert ist, apple :[,L]! R die Krümmung. Die Kurve ist genau dann konvex, wenn 8t 2 [,L]stetsapple(t) apple oderapple(t) gilt. 8

9 Beweis a) Durch eine Taylorentwicklung von c(t) umdenpunktt 2 [,L]erhält man: c(t) c(t )+c (t )(t t )+ 1 2 c (t )(t t ) 2 + O( t t 3 ) Durch beidseitige Subtraktion von c(t )undeinfügen des Skalarprodukts mit n(t )erhält man (unter Berücksichtigung von hc (t),n(t )i ): hc(t) c(t ),n(t )i 1 2 hc (t ),n(t )i(t t ) 2 + O( t t 3 ) Aufgrund der Konvexität von c gilt eine der Gleichungen aus Lemma 3 : 1. Fall 1: hc(t) c(t ),n(t )i ) applehc(t) c(t ),n(t )i 1 2 hc (t ),n(t )i(t t ) 2 + O( t t 3 ) ) apple 1 2 h c (t ),n(t )i + O( t t ) apple(t )n(t ) Für t! t erhält man: apple apple(t ) 2. Fall 2 hc(t) c(t ),n(t )iapple ) hc(t) c(t ),n(t )i 1 2 hc (t ),n(t )i(t t ) 2 + O( t t 3 ) 1 ) 2 h c (t ),n(t )i + O( t t ) apple(t )n(t ) Hier erhält man für t! t : apple(t ) In beiden Fällen wechselt apple sein Vorzeichen also nicht. b) Gelte für die Krümmung der geschlossenen Kurve nun o.b.d.a. apple. Wenn die Kurve nicht konvex ist, gibt es ein t 2 [,L] und eine Funktion mit : R! R, (t) hc(t) c(t ),n(t )i (t) hc (t),n(t )i nimmt sowohl positive als auch negative Werte an. Aufgrund der Periodizität der Kurve c hat sein Minimum in einem Punkt t 1 und sein Maximum in einem Punkt t 2, wir haben also: (t 1 ) < (t ) < (t 2 ) (1) 9

10 Da in t 1 eine Nullstelle besitzt, folgt (t 1 )hc (t 1 ),n(t )i, und damit c (t 1 )±c (t ). Ebenso haben wir c (t 2 )±c (t ). Von den drei Vektoren c (t ),c (t 1 ),c (t 2 ) stimmen also mindestens zwei überein. Wähle s 1,s 2 (s 1 <s 2 ) aus {t,t 1,t 2 } mit c (s 1 )c (s 2 ). Sei # : R! R die Winkelfunktion von c. DurchEinsetzenderbeiden Punkte erhält man #(s 2 ) #(s 1 )2 k (k 2 Z). Aus # apple folgt, dass # monoton wächst und #(s 2 ) #(s 1 ), also ist k 2 N. Analog gilt #(s 1 + L) #(s 2 )2 l mit l 2 N. Aus k und l ergibt sich die Umlaufzahl der Kurve, n c k + l( ). Da c eine einfach geschlossene Kurve ist, folgt mit dem Umlaufsatz n c 1, also gilt k oderl. Sei nun k. Auf dem Intervall [s 1,s 2 ]istapple # undc parametrisiert auf diesem Intervall somit eine Gerade. Also gilt für alle s 2 [s 1,s 2 ] c(s) c(s 1 )+(s s 1 )c (s 1 )c(s 1 ) ± (s s 1 )c (t ) Durch Einsetzen dieser Formel in erhält man für s 2 [s 1,s 2 ]: (s) hc(s) c(t ),n(t )i hc(s 1 ) ± (s s 1 )c (t ) c(t ),n(t )i hc(s 1 ) c(t ),n(t )i ist also konstant auf [s 1,s 2 ]. Da aber mindestens zwei der drei Werte t,t 1 und t 2 in [s 1,s 2 ] liegen, widerspricht dies Gleichung (1), c ist also konvex. q.e.d. 1

11 Literatur Bär, Christian: Elementare Di erentialgeometrie. De Gruyter, 21 Bobenko, Alexander: Mitschrift seiner Vorlesung über Di erentialgeometrie von Kurven und Flächen an der TU Berlin, 26 do Carmo, Manfredo P. : Di erentialgeometrie von Kurven und Flächen. Vieweg, 3. Auflage, 1993 Modler, Florian und Kreh, Martin: Tutorium Analysis 2 und Lineare Algebra 2. Spektrum, 2. Auflage, 212 Bildnachweis Abbildung 1: vgl. Bobenko, Seite 32 Abbildung 2: vgl. do Carmo, Seite 52 Abbildung 3: vgl. Bobenko, Seite 34 Abbildung 4: vgl. Bär, Seite 52 11

Analysis II WS 11/12 Serie 9 Musterlösung

Analysis II WS 11/12 Serie 9 Musterlösung Analysis II WS / Serie 9 Musterlösung Aufgabe Bestimmen Sie die kritischen Punkte und die lokalen Extrema der folgenden Funktionen f : R R: a fx, y = x + y xy b fx, y = cos x cos y Entscheiden Sie bei

Mehr

Technische Universität München Zentrum Mathematik. Übungsblatt 4

Technische Universität München Zentrum Mathematik. Übungsblatt 4 Technische Universität München Zentrum Mathematik Mathematik (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 4 Hausaufgaben Aufgabe 4. Gegeben sei die Funktion f : D R mit f(x) :=

Mehr

Tutorium Mathematik II, M Lösungen

Tutorium Mathematik II, M Lösungen Tutorium Mathematik II, M Lösungen März 03 *Aufgabe Bestimmen Sie durch Hauptachsentransformation Lage und Typ der Kegelschnitte (a) 3x + 4x x + 3x 4x = 0, (b) 3x + 4x x + 3x 4x 6 = 0, (c) 3x + 4x x +

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

Zusammenfassung Mathematik 2012 Claudia Fabricius

Zusammenfassung Mathematik 2012 Claudia Fabricius Zusammenfassung Mathematik Claudia Fabricius Funktion: Eine Funktion f ordnet jedem Element x einer Definitionsmenge D genau ein Element y eines Wertebereiches W zu. Polynom: f(x = a n x n + a n- x n-

Mehr

1.3 Flüsse. Y (t) = f(y(t))

1.3 Flüsse. Y (t) = f(y(t)) 18 Kapitel 1. Gewöhnliche Differentialgleichungen 1.3 Flüsse Sei jetzt F:D R n R n ein stetig differenzierbares Vektorfeld. Dann erfüllt F die Voraussetzungen des Existenz- und Eindeutigkeitssatzes. Das

Mehr

Demo: Mathe-CD. Prüfungsaufgaben Mündliches Abitur. Analysis. Teilbereich 1: Ganzrationale Funktionen 1. März 2002

Demo: Mathe-CD. Prüfungsaufgaben Mündliches Abitur. Analysis. Teilbereich 1: Ganzrationale Funktionen 1. März 2002 Prüfungsaufgaben Mündliches Abitur Analysis Teilbereich : Ganzrationale Funktionen Hier nur Aufgaben als Demo Datei Nr. 9 März 00 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Vorwort Die in dieser Reihe von

Mehr

Definition: Differenzierbare Funktionen

Definition: Differenzierbare Funktionen Definition: Differenzierbare Funktionen 1/12 Definition. Sei f :]a, b[ R eine Funktion. Sie heißt an der Stelle ξ ]a, b[ differenzierbar, wenn der Grenzwert existiert. f(ξ + h) f(ξ) lim h 0 h = lim x ξ

Mehr

Taylor-Entwicklung der Exponentialfunktion.

Taylor-Entwicklung der Exponentialfunktion. Taylor-Entwicklung der Exponentialfunktion. Betrachte die Exponentialfunktion f(x) = exp(x). Zunächst gilt: f (x) = d dx exp(x) = exp(x). Mit dem Satz von Taylor gilt um den Entwicklungspunkt x 0 = 0 die

Mehr

Lösungen Kapitel A: Wahrscheinlichkeiten

Lösungen Kapitel A: Wahrscheinlichkeiten Lösungen Kapitel A: Wahrscheinlichkeiten Arbeitsblatt 01: Kombinatorische Zählverfahren (1) Junge, Junge, Mädchen, Mädchen (2) Junge, Mädchen, Junge, Mädchen (3) Junge, Mädchen, Mädchen, Junge (4) Mädchen,

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f.

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f. Stetige Funktionen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume), spielen eine zentrale Rolle in der Mathematik. In der Analysis sind Abbildungen

Mehr

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n

2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n 2. VEKTORANALYSIS 2.1 Kurven Definition: Ein Weg ist eine stetige Abbildung aus einem Intervall I = [a; b] R in den R n : f : I R n f ist in dem Fall ein Weg in R n. Das Bild f(t) des Weges wird als Kurve

Mehr

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt:

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt: Aufgabe 1 1.1. Bestimmung von D max : 1. Bedingung: x >0 ; da ln(x) nur für x > 0 definiert ist. 2. Bedingung: Somit ist die Funktion f a nur für x > 0 definiert und sie besitzt eine Definitionslücke an

Mehr

Gleitspiegelung und Verkettungen von Spiegelung und Parallelverschiebung

Gleitspiegelung und Verkettungen von Spiegelung und Parallelverschiebung Gleitspiegelung und Verkettungen von Spiegelung und Parallelverschiebung Def. Eine Gleitspiegelung ist eine Spiegelung an einer Geraden (Spiegelachse) verknüpft mit einer Translation parallel zu dieser

Mehr

Kapitel 5 Untermannigfaltigkeiten. 5.1 Glatte Flächen in R 3

Kapitel 5 Untermannigfaltigkeiten. 5.1 Glatte Flächen in R 3 Kapitel 5 Untermannigfaltigkeiten 5.1 Glatte Flächen in R 3 Bisher haben wir unter einem glatten Weg im R n stets eine differenzierbare Abbildung γ:i R n, definiert auf einem Intervall I R, verstanden.

Mehr

1 Einleitung. 1.1 Motivation. 6 Differentialgeometrie: Grundlagen Vorlesung 1

1 Einleitung. 1.1 Motivation. 6 Differentialgeometrie: Grundlagen Vorlesung 1 6 Differentialgeometrie: Grundlagen Vorlesung Einleitung. Motivation.. Name of the game Geometer bezeichnet klassisch einen Landvermesser (heute ist eher Geodät gebräuchlich. Die klassische Differentialgeometrie

Mehr

Mathematik Abitur Zusammenfassung Marius Buila

Mathematik Abitur Zusammenfassung Marius Buila Mathematik Abitur Zusammenfassung Marius Buila 1.Analysis 1.1 Grundlagen: Ableitung f (u) ist Steigung in Punkt P (u/f(u)) auf K f(x) = a * x r f (x) = a * r * x r-1 Tangentengleichung: y= f (u) * (x-u)

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

Lösung der Prüfung Sommer 2009

Lösung der Prüfung Sommer 2009 Prof. D. Salamon Analysis I/II D-MATH, D-PHYS, D-CHAB ETH Zürich. Juni 9 Lösung der Prüfung Sommer 9. Berechnen Sie folgende Grenzwerte: (a) (b) Hinweis: Regel von de l Hospital. ( ( )) lim n n cos n lim

Mehr

WS 2010/ Januar Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch

WS 2010/ Januar Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch Mathematisches Institut der Universität München Prof. Dr. Rudolf Fritsch WS 2010/2011 14. Januar 2011 Geometrie mit Übungen Übungsblatt 9, Musterlösungen Aufgabe 33. Es werden Kreise in der Euklidischen

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

3 Nichtlineare Gleichungssysteme

3 Nichtlineare Gleichungssysteme 3 Nichtlineare Gleichungsssteme 3.1 Eine Gleichung in einer Unbekannten Problemstellung: Gegeben sei die stetige Funktion f(). Gesucht ist die Lösung der Gleichung f() = 0. f() f() a) f ( ) 0 b) f ( )

Mehr

Differenzengleichungen. und Polynome

Differenzengleichungen. und Polynome Lineare Differenzengleichungen und Polynome Franz Pauer Institut für Mathematik, Universität Innsbruck Technikerstr. 13/7, A-600 Innsbruck, Österreich franz.pauer@uibk.ac.at 1 Einleitung Mit linearen Differenzengleichungen

Mehr

ToDo-Liste für s Mathe-Abi 2009

ToDo-Liste für s Mathe-Abi 2009 ToDo-Liste für s Mathe-Abi 2009 7. Februar 2009 1 Grenzwerte und Folgen 1. Unterschied arithmetische Folge zu geometrische Folge 2. Rekursive Darstellung von Zerfalls- und Wachstumsvorgängen (a) lineares

Mehr

Serie 13: Online Test

Serie 13: Online Test D-ERDW, D-HEST, D-USYS Mathematik I HS 3 Dr. Ana Cannas Serie 3: Online Test Einsendeschluss: 3. Januar 4 Bei allen Aufgaben ist genau eine Antwort richtig. Lösens des Tests eine Formelsammlung verwenden.

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Lineare (Un-)Gleichungen und lineare Optimierung

Lineare (Un-)Gleichungen und lineare Optimierung Lineare (Un-)Gleichungen und lineare Optimierung Franz Pauer Institut für Mathematik Universität Innsbruck Lehrer/innen/fortbildungstag Wien 2010 9. April 2010 Eine Maximumsaufgabe Eine Firma stellt aus

Mehr

Ingenieurmathematik für Maschinenbau, Blatt 1

Ingenieurmathematik für Maschinenbau, Blatt 1 Ingenieurmathematik für Maschinenbau, Blatt 1 Probeklausur Ingenieurmathematik für Maschinenbau Studiengang Prüfungsfach Prüfer Prüfungstermin Prüfungsdauer Prüfungsunterlagen Hilfsmittel Maschinenbau

Mehr

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s

klar. Um die zweite Bedingung zu zeigen, betrachte u i U i mit u i = 0. Das mittlere -Zeichen liefert s Nachtrag zur allgemeinen Vektorraum-Theorie. 1.5.15. Direkte Summen. Sei V ein Vektorraum, seien U 1,..., U t Unterräume, wir schreiben V = U 1 U 2 U t = t i=1 U i falls die folgenden beiden Bedingungen

Mehr

Differenzialrechnung

Differenzialrechnung Mathe Differenzialrechnung Differenzialrechnung 1. Grenzwerte von Funktionen Idee: Gegeben eine Funktion: Gesucht: y = f(x) lim f(x) = g s = Wert gegen den die Funktion streben soll (meist 0 oder ) g =

Mehr

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1

Abschlussprüfung Realschule Bayern II / III: 2009 Haupttermin B 1.0 B 1.1 B 1.0 B 1.1 L: Wir wissen von, dass sie den Scheitel hat und durch den Punkt läuft. Was nichts bringt, ist beide Punkte in die allgemeine Parabelgleichung einzusetzen und das Gleichungssystem zu lösen,

Mehr

8 Tangenten an Quadriken

8 Tangenten an Quadriken 8 Tangenten an Quadriken A Geraden auf Quadriken: Sei A 0 eine symmetrische n n Matri und Q : t A + b t + c = 0 eine nicht leere Quadrik im R n, b R n, c R. g = p + R v R n ist die Gerade durch p mit Richtung

Mehr

1. Klausur. für bau immo tpbau

1. Klausur. für bau immo tpbau 1. Klausur Höhere Mathematik I/II für bau immo tpbau Wichtige Hinweise Die Bearbeitungszeit beträgt 120 Minuten. Verlangt und gewertet werden alle 6 Aufgaben. Bei Aufgabe 1 2 sind alle Lösungswege und

Mehr

Urs Wyder, 4057 Basel Funktionen. f x x x x 2

Urs Wyder, 4057 Basel Funktionen. f x x x x 2 Urs Wyder, 4057 Basel Urs.Wyder@edubs.ch Funktionen f 3 ( ) = + f ( ) = sin(4 ) Inhaltsverzeichnis DEFINITION DES FUNKTIONSBEGRIFFS...3. NOTATION...3. STETIGKEIT...3.3 ABSCHNITTSWEISE DEFINIERTE FUNKTIONEN...4

Mehr

Bachelorarbeit: E-Learning-Modul zum Thema Kegelschnitte

Bachelorarbeit: E-Learning-Modul zum Thema Kegelschnitte Bachelorarbeit: E-Learning-Modul zum Thema Kegelschnitte Roman Gächter 27. Februar 2008 Inhaltsverzeichnis 1 Vorwort 3 2 Oberfläche 4 2.1 Einführung................................ 4 2.2 Geometrie und

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit f(x) = x sin( x + ) Aufgabe : ( VP) Berechnen Sie das Integral

Mehr

x 0 0,5 1 2 3 4 0,5 1 2. Die Quadratfunktion ist für x 0 streng monoton fallend und für x 0 streng monoton steigend.

x 0 0,5 1 2 3 4 0,5 1 2. Die Quadratfunktion ist für x 0 streng monoton fallend und für x 0 streng monoton steigend. Quadratische Funktionen ================================================================= 1. Die Normalparabel Die Funktion f : x y = x 2, D = R, heißt Quadratfunktion. Ihr Graph heißt Normalparabel. Wertetabelle

Mehr

Ein Halbkreis im Viertelkreis

Ein Halbkreis im Viertelkreis 1 Ein Halbkreis im Viertelkreis ätselaufgabe aus mathsoftpuzzle bbildung 1 zeigt den Kreis k 1 mit dem adius r = 1 und einen Viertelkreisbogen k mit dem adius =. Im Punkt D liegt die Tangente g 1 am Kreis

Mehr

2. Stetige lineare Funktionale

2. Stetige lineare Funktionale -21-2. Stetige lineare Funktionale Die am Ende von 1 angedeutete Eigenschaft, die ein lineares Funktional T : D(ú) 6 verallgemeinerten Funktion macht, ist die Stetigkeit von T in jedem n 0 0 D(ú). Wenn

Mehr

Lineare Abhängigkeit

Lineare Abhängigkeit Lineare Abhängigkeit Vorbemerkung. Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung I X, i x i. I heißt dabei Indexmenge. Man verwendet dabei oft die Schreibweise (x i ) oder (x

Mehr

Pflichtteil - Exponentialfunktion

Pflichtteil - Exponentialfunktion Pflichtteil - Eponentialfunktion Aufgabe (Ableiten) Bestimme die. und. Ableitung der folgenden Funktionen: a) f() = ln() + b) g() = e Aufgabe (Integrieren) Berechnen Sie die Integrale: a) e d b) c) h()

Mehr

Classpad 300 / Classpad 330 (Casio) Der Taschenrechner CAS:

Classpad 300 / Classpad 330 (Casio) Der Taschenrechner CAS: Der Taschenrechner CAS: Classpad 300 / Classpad 330 (Casio) Übersicht: 1. Katalog (wichtige Funktionen und wie man sie aufruft) 2. Funktionen definieren (einspeichern mit und ohne Parameter) 3. Nullstellen

Mehr

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis)

Lösung zu den Testaufgaben zur Mathematik für Chemiker II (Analysis) Universität D U I S B U R G E S S E N Campus Essen, Mathematik PD Dr. L. Strüngmann Informationen zur Veranstaltung unter: http://www.uni-due.de/algebra-logic/struengmann.shtml SS 7 Lösung zu den Testaufgaben

Mehr

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1 .1 Dr. Jürgen Roth Fachbereich 6: Abteilung Didaktik der Mathematik Elemente der Algebra . Inhaltsverzeichnis Elemente der Algebra & Argumentationsgrundlagen, Gleichungen und Gleichungssysteme Quadratische

Mehr

Differentialrechnung

Differentialrechnung Kapitel 7 Differentialrechnung Josef Leydold Mathematik für VW WS 205/6 7 Differentialrechnung / 56 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f = f ( 0 + ) f ( 0 ) = f () f ( 0) 0 heißt

Mehr

ε δ Definition der Stetigkeit.

ε δ Definition der Stetigkeit. ε δ Definition der Stetigkeit. Beweis a) b): Annahme: ε > 0 : δ > 0 : x δ D : x δ x 0 < δ f (x δ f (x 0 ) ε Die Wahl δ = 1 n (n N) generiert eine Folge (x n) n N, x n D mit x n x 0 < 1 n f (x n ) f (x

Mehr

lim Der Zwischenwertsatz besagt folgendes:

lim Der Zwischenwertsatz besagt folgendes: 2.3. Grenzwerte von Funktionen und Stetigkeit 35 Wir stellen nun die wichtigsten Sätze über stetige Funktionen auf abgeschlossenen Intervallen zusammen. Wenn man sagt, eine Funktion f:[a,b] R, definiert

Mehr

Funktionsgrenzwerte, Stetigkeit

Funktionsgrenzwerte, Stetigkeit Funktionsgrenzwerte, Stetigkeit Häufig tauchen in der Mathematik Ausdrücke der Form lim f(x) auf. x x0 Derartigen Ausdrücken wollen wir jetzt eine präzise Bedeutung zuweisen. Definition. b = lim f(x) wenn

Mehr

Aufgaben zum Vorkurs Mathematik: Allgemeine Übungsaufgaben

Aufgaben zum Vorkurs Mathematik: Allgemeine Übungsaufgaben Aufgaben zum Vorkurs Mathematik: Allgemeine Übungsaufgaben Fachbereich Mathematik Vorkurs Mathematik WS 2012/13 Dies ist eine Sammlung von Aufgaben, die hauptsächlich Mittelstufenstoff wiederholen. Dabei

Mehr

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist.

Matrizennorm. Definition 1. Sei A M r,s (R). Dann heißt A := sup die Matrixnorm. Wir wissen zunächst nicht, ob A eine reelle Zahl ist. Matrizennorm Es seien r,s N Mit M r,s (R bezeichnen wir die Menge der reellen r s- Matrizen (also der linearen Abbildungen R s R r, und setze M s (R := M s,s (R (also die Menge der linearen Abbildungen

Mehr

Charakteristikenmethode im Beispiel

Charakteristikenmethode im Beispiel Charakteristikenmethode im Wir betrachten die PDE in drei Variablen xu x + yu y + (x + y )u z = 0. Das charakteristische System lautet dann ẋ = x ẏ = y ż = x + y und besitzt die allgemeine Lösung x(t)

Mehr

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 26.2.24 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 28 5 5 2 6 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 2 4 5 3 3 4 3 Punkte WT Ana A.a b A.c Summe P. (max 7 5

Mehr

Kausalität. Seminar zur Lorentz Geometrie. Jonas Haferkamp 9. Juni 2016

Kausalität. Seminar zur Lorentz Geometrie. Jonas Haferkamp 9. Juni 2016 Kausalität Seminar zur Lorentz Geometrie Jonas Haferkamp 9. Juni 2016 1 Einleitung Kausalität ist das Prinzip von Ursache und Wirkung. Um dieses Konzept zu formalisieren, ist offenbar ein sinnvoller Zeitbegriff

Mehr

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar.

Lineare Algebra I. Prof. Dr. M. Rost. Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar. Lineare Algebra I Prof. Dr. M. Rost Übungen Blatt 10 (WS 2010/2011) Abgabetermin: Donnerstag, 13. Januar http://www.math.uni-bielefeld.de/~rost/la1 Erinnerungen und Ergänzungen zur Vorlesung: Hinweis:

Mehr

Tropische Kurven zählen. Enumerative Geometrie. Alg. Geometrie. Beispiel Strategie. Geometrie. Kurven Multiplizität Correspondence Theorem Ergebnisse

Tropische Kurven zählen. Enumerative Geometrie. Alg. Geometrie. Beispiel Strategie. Geometrie. Kurven Multiplizität Correspondence Theorem Ergebnisse Alg. Ebene e Hannah Markwig Technische Universität Kaiserslautern 6. Juli 2006 Alg. Inhalt 1 () 2 3 Der Algorithmus zum Zählen ebener 4 Der Algorithmus Alg. Algebraische Geometrische Objekte sind Nullstellengebilde

Mehr

Für die Parameter t und ϕ sind das im angegebenen Bereich Funktionen, d.h. zu jedem Parameterwert gehört genau ein Punkt.

Für die Parameter t und ϕ sind das im angegebenen Bereich Funktionen, d.h. zu jedem Parameterwert gehört genau ein Punkt. PARAMETERFUNKTIONEN Zwei Beispiele: gsave currentpoint translate 21 4 div setlin 1 1 x = 2t 2 1 y = t < t

Mehr

Numerische Ableitung

Numerische Ableitung Numerische Ableitung Die Ableitung kann angenähert werden durch den Differentenquotient: f (x) f(x + h) f(x) h oder f(x + h) f(x h) 2h für h > 0, aber h 0. Beim numerischen Rechnen ist folgendes zu beachten:

Mehr

Ebene algebraische Kurven

Ebene algebraische Kurven Ebene algebraische Kurven Tangenten und Singularitäten Meyrer Claudine 4. November 010 Inhaltsverzeichnis 1 Lokale Eigenschaften an-algebraischer Kurven (in C ) 1.1 Denitionen..............................

Mehr

74 Gewöhnliche Differentialgleichungen / Sommersemester 2008

74 Gewöhnliche Differentialgleichungen / Sommersemester 2008 74 Gewöhnliche Differentialgleichungen / Sommersemester 2008 15 Flüsse Bisher wurde im wesentlichen die Abhängigkeit der Lösungen autonomer Systeme von der Zeit bei festem Anfangswert untersucht. Nun wird

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

K2 MATHEMATIK KLAUSUR 3

K2 MATHEMATIK KLAUSUR 3 K2 MATHEMATIK KLAUSUR 3 NACHTERMIN 2..23 Aufgabe PT WTA WTGS Gesamtpunktzahl Punkte (max 3 5 5 6 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 3 4 5 3 4 4 3 Punkte WT Ana a b c Summe P. (max 8 4 3

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Simulation einer mündlichen Prüfung (Analysis schriftl., affine Geometrie / lineare Algebra mündl.) Das komplette Material finden

Mehr

Funktionen (linear, quadratisch)

Funktionen (linear, quadratisch) Funktionen (linear, quadratisch) 1. Definitionsbereich Bestimme den Definitionsbereich der Funktion f(x) = 16 x 2 2x + 4 2. Umkehrfunktionen Wie lauten die Umkehrfunktionen der folgenden Funktionen? (a)

Mehr

1 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 11

1 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 11 Inhalt A Differenzialrechnung 8 Grundlagen 8 Funktionen 8 Differenzenquotient und Änderungsrate 9 Ableitung 2 Ableitungsregeln 2 Potenzregel 2 Konstantenregel 3 Summenregel 4 Produktregel 4 Quotientenregel

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Grundlagen der Integralrechnung: Übungsaufgaben zur Berechnung unbestimmter und bestimmter Integrale Das komplette Material finden

Mehr

Inhalt. Vorwort Mittelwertsatz der Integralrechnung... 31

Inhalt. Vorwort Mittelwertsatz der Integralrechnung... 31 Inhalt Vorwort... 5 1 Stammfunktionen... 7 1.1 Erklärung der Stammfunktionen........................................... 7 1.2 Eigenschaften der Stammfunktionen.................................... 10 1.3

Mehr

Mathematik für Anwender I. Beispielklausur I mit Lösungen

Mathematik für Anwender I. Beispielklausur I mit Lösungen Fachbereich Mathematik/Informatik Prof. Dr. H. Brenner Mathematik für Anwender I Beispielklausur I mit en Dauer: Zwei volle Stunden + 10 Minuten Orientierung, in denen noch nicht geschrieben werden darf.

Mehr

6. Funktionen von mehreren Variablen

6. Funktionen von mehreren Variablen 6. Funktionen von mehreren Variablen Prof. Dr. Erich Walter Farkas 24.11.2011 Seite 1 Funktionen von mehreren Variablen n {1, 2, 3,...} =: N. R n := {(x 1,..., x n) x 1,..., x n R} = Menge aller n-tupel

Mehr

Neues Thema: Inversion am Kreis (Kreisspiegelung)

Neues Thema: Inversion am Kreis (Kreisspiegelung) Neues Thema: Inversion am Kreis (Kreisspiegelung) Wir arbeiten in ( R 2,, standard ). Def. Betrachte einen Kreis um O vom Radius r > 0. Inversion (bzgl. des Kreises) ist eine Abbildung I O,r : R 2 \ {O}

Mehr

Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren. Man nennt die Untersuchung von Funktionen auch Kurvendiskussion.

Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren. Man nennt die Untersuchung von Funktionen auch Kurvendiskussion. Tutorium Mathe 1 MT I Funktionen: Funktionen lassen sich durch verschiedene Eigenschaften charakterisieren Man nennt die Untersuchung von Funktionen auch Kurvendiskussion 1 Definitionsbereich/Wertebereich

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Universität Bonn, Institut für Angewandte Mathematik. WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW

Universität Bonn, Institut für Angewandte Mathematik. WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW Universität Bonn, Institut für Angewandte Mathematik Dr. Antje Kiesel WS 2012/2013 Prüfung Angewandte Mathematik und Statistik - Agrarwiss. /ELW 08.03.2013 Matrikelnummer Platz Name Vorname 1 2 3 4 5 6

Mehr

12 M-Gk1/5 Led Übungen zur 1. Klausur 3. September Kurvendiskussion. Im Folgenden sei die Funktion f(x) = 1 6 x3 1 2 x 1 3 gegeben!

12 M-Gk1/5 Led Übungen zur 1. Klausur 3. September Kurvendiskussion. Im Folgenden sei die Funktion f(x) = 1 6 x3 1 2 x 1 3 gegeben! 12 M-Gk1/5 Led Übungen zur 1. Klausur 3. September 2008 1. Kurvendiskussion. Im Folgenden sei die Funktion f(x) = 1 6 x3 1 2 x 1 3 gegeben! a) Untersuche den Graphen von f(x) auf Standardsymmetrien (Punktsymmetrie

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder

Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder DGL Schwingung Physikalische Felder Mathematik-Tutorium für Maschinenbauer II: Differentialgleichungen und Vektorfelder Johannes Wiedersich 23. April 2008 http://www.e13.physik.tu-muenchen.de/wiedersich/

Mehr

Anwendungen des Fréchet-Abstandes Das Constrained Free Space Diagram zur Analyse von Körperbewegungen

Anwendungen des Fréchet-Abstandes Das Constrained Free Space Diagram zur Analyse von Körperbewegungen Anwendungen des Fréchet-Abstandes Das Constrained Free Space Diagram zur Analyse von Körperbewegungen David Knötel Freie Universität Berlin, Institut für Informatik Seminar über Algorithmen Leitfaden Wiederholung

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2

Übungen zur Vorlesung Funktionentheorie Sommersemester Lösungshinweise zum Klausurvorbereitungsblatt. (z) i f. 2xe (x2 +y 2) i2ye (x2 +y 2 ) 2 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6. MATHEMATIK Prof. Dr. Roland Speicher M.Sc. Tobias Mai Übungen zur Vorlesung Funktionentheorie Sommersemester 0 Lösungshinweise zum Klausurvorbereitungsblatt (3

Mehr

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation

Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation Mathematik II Frühlingsemester 2015 Kap. 9: Funktionen von mehreren Variablen 9.2 Partielle Differentiation www.math.ethz.ch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof. Dr. Erich Walter

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Lösungen Wintersemester 2016/17 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2016 Steven Köhler Wintersemester 2016/17 Kapitel I: Mengen Aufgabe

Mehr

27 Taylor-Formel und Taylor-Entwicklungen

27 Taylor-Formel und Taylor-Entwicklungen 136 IV. Unendliche Reihen und Taylor-Formel 27 Taylor-Formel und Taylor-Entwicklungen Lernziele: Konzepte: klein o - und groß O -Bedingungen Resultate: Taylor-Formel Kompetenzen: Bestimmung von Taylor-Reihen

Mehr

Einführung in das mathematische Arbeiten im SS 2007. Geraden und Ebenen

Einführung in das mathematische Arbeiten im SS 2007. Geraden und Ebenen Workshops zur VO Einführung in das mathematische Arbeiten im SS 2007 Geraden und Ebenen Handout von Thérèse Tomiska (Oktober 2006) überarbeitet von Evelina Erlacher 9. & 13. März 2007 1 Geradengleichungen

Mehr

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben.

Bitte unbedingt beachten: a) Gewertet werden alle acht gestellten Aufgaben. Mathematik I für Wirtschaftswissenschaftler Klausur für alle gemeldeten Fachrichtungen außer Immobilientechnik und Immobilienwirtschaft am 9..9, 9... Bitte unbedingt beachten: a) Gewertet werden alle acht

Mehr

Übungsmaterial Polynome

Übungsmaterial Polynome Prof Dr W Rosenheinrich 010011 Fachbereich Grundlagenwissenschaften Fachhochschule Jena Übungsmaterial Polynome Aufgaben: 1 Diskutieren Sie den Wahrheitsgehalt der folgenden Aussagen! (a) Wenn ein Polynom

Mehr

Analysis II (FS 2015): Vektorfelder und Flüsse

Analysis II (FS 2015): Vektorfelder und Flüsse Analysis II (FS 215): Vektorfelder und Flüsse Dietmar A. Salamon ETH-Zürich 7. April 215 1 Der Fluss eines Vektorfeldes Sei U R n eine offene Menge und sei f : U R n eine lokal Lipschitz-stetige Abbildung.

Mehr

Lösungsvorschläge Blatt 4

Lösungsvorschläge Blatt 4 Theoretische Informatik Departement Informatik Prof. Dr. Juraj Hromkovič http://www.ita.inf.ethz.ch/theoinf16 Lösungsvorschläge Blatt 4 Zürich, 21. Oktober 2016 Lösung zu Aufgabe 10 (a) Wir zeigen mit

Mehr

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html

Mehr

Mathematik I für Wirtschaftswissenschaftler

Mathematik I für Wirtschaftswissenschaftler 1 Mathematik I für Wirtschaftswissenschaftler Lösungsvorschläge zur Klausur am 01.08.2003. Bitte unbedingt beachten: a) Verlangt und gewertet werden alle vier gestellten Aufgaben. Alle Aufgaben sind gleichwertig.

Mehr

Die Exponentialfunktion. exp(x)

Die Exponentialfunktion. exp(x) Die Exponentialfunktion exp(x) Wir erinnern: Ist f : R R eine glatte Funktion, dann bezeichnet f (x) die Steigung von f im Punkt x. f (x) x x 0 x Wie sehen Funktionen aus mit 3 2 f f (x) = f(x) -3-2 -1

Mehr

Lösung zur Übung 19 SS 2012

Lösung zur Übung 19 SS 2012 Lösung zur Übung 19 SS 01 69) Beim radioaktiven Zerfall ist die Anzahl der pro Zeiteinheit zerfallenden Kerne dn/dt direkt proportional zur momentanen Anzahl der Kerne N(t). a) Formulieren Sie dazu die

Mehr

Caputo fraktionale Differentialgleichungen. 1 Riemann Liouville fraktionale Differentialgleichungen

Caputo fraktionale Differentialgleichungen. 1 Riemann Liouville fraktionale Differentialgleichungen Seminar Fraktionale Differentialgleichungen Prof. Dr. P.E. Kloeden, WS1000/2001 Caputo fraktionale Differentialgleichungen Lars Grüne, 25.1.2001 Basierend auf Fractional Differential Equations, Theory

Mehr

Mathematik Übungsblatt - Lösung. b) x=2

Mathematik Übungsblatt - Lösung. b) x=2 Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Sommersemester 204 Technische Informatik Bachelor IT2 Vorlesung Mathematik 2 Mathematik 2 4. Übungsblatt - Lösung Differentialrechnung

Mehr

Hauptprüfung Fachhochschulreife 2015. Baden-Württemberg

Hauptprüfung Fachhochschulreife 2015. Baden-Württemberg Baden-Württemberg: Fachhochschulreie 2015 www.mathe-augaben.com Hauptprüung Fachhochschulreie 2015 Baden-Württemberg Augabe 1 Analysis Hilsmittel: graikähiger Taschenrechner Beruskolleg Alexander Schwarz

Mehr

9. Vorlesung Wintersemester

9. Vorlesung Wintersemester 9. Vorlesung Wintersemester 1 Die Phase der angeregten Schwingung Wertebereich: bei der oben abgeleiteten Formel tan φ = β ω ω ω0. (1) ist noch zu sehen, in welchem Bereich der Winkel liegt. Aus der ursprünglichen

Mehr

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind Vorbereitungsaufgaben Mathematik. Bruchrechnung.. Grundlagen: gebrochene Zahl gemeiner Bruch Zähler Nenner Dezimalbruch Ganze, Zehntel Hundertstel Tausendstel Kürzen: Zähler und Nenner durch dieselbe Zahl

Mehr

Vorlesung 12 22. bzw. 23. Januar 2014. Determinanten 1. Cramersche Regel

Vorlesung 12 22. bzw. 23. Januar 2014. Determinanten 1. Cramersche Regel Vorlesung 2 22 bzw 23 Januar 204 Lineares Gleichungssystem a a 2 b b 2 = F a a 2 a 3 b b 2 b 3 c c 2 c 3 = V V =< a, b c > c b a b a F V Seite 70 a x + a 2 x 2 + a 3 x 3 b = 0 < a x + a 2 x 2 + a 3 x 3

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Kurvendiskussion Ganzrationale Funktion Aufgaben und Lösungen

Kurvendiskussion Ganzrationale Funktion Aufgaben und Lösungen Kurvendiskussion Ganzrationale Funktion Aufgaben und http://www.fersch.de Klemens Fersch 9. August 0 Inhaltsverzeichnis Ganzrationale Funktion Quadratische Funktionen f x) = ax + bx + c 8. Aufgaben...................................................

Mehr