Exponentialfunktion, Logarithmus



Ähnliche Dokumente
f : x 2 x f : x 1 Exponentialfunktion zur Basis a. Für alle Exponentialfunktionen gelten die Gleichungen (1) a x a y = a x+y (2) ax a y = ax y

Der natürliche Logarithmus. logarithmus naturalis

2. Mathematische Grundlagen

Wir gehen in dieser Vorlesung mit folgenden Zahlbereichen um: zweier ganzer Zahlen p und q schreiben kann.

3. DER NATÜRLICHE LOGARITHMUS

Exponential- u. Logarithmusfunktionen. Funktionen. Exponentialfunktion u. Logarithmusfunktionen. Los geht s Klick auf mich!

Exponential- und Logarithmusfunktion. Biostatistik, WS 2010/2011. Inhalt. Matthias Birkner Mehr zur Eulerschen Zahl und natürliche

Mathematik für Anwender I

11 Spezielle Funktionen und ihre Eigenschaften

Exponential und Logarithmusfunktion. Wachstum und Zerfall

Biostatistik, WS 2010/2011 Exponential- und Logarithmusfunktion

(3) Wurzelfunktionen. Definition Sei f : D R eine Funktion. Eine Funktion g : D R heißt Umkehrfunktion von f, wenn für alle (x, y) R 2 die Äquivalenz

Inhaltsverzeichnis. Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden. Mathematischer Vorkurs.

Mathematischer Vorbereitungskurs für Ökonomen. Exponentialfunktionen und Logarithmen

F u n k t i o n e n Potenzfunktionen

Biostatistik, WS 2017/18 Exponential- und Logarithmusfunktion

2.4 Exponential - und Logarithmus - Funktionen

Mathematik für Wirtschaftswissenschaftler

Das Rechnen mit Logarithmen

Exponentialfunktionen, Eulersche Zahl, Logarithmen

Kapitel 3 EXPONENTIAL- UND LOGARITHMUS-FUNKTION

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag

Potenzen - Wurzeln - Logarithmen

Beispiel: Bestimmung des Werts 3 2 ( 2 1, 4142) Es gilt 3 1,41 = 3 141/100 = , 707. Es gilt 3 1,42 = 3 142/100 = , 759.

Logarithmusfunktion zur Basis 2, Aufgaben. 7-E Vorkurs, Mathematik

17 Logarithmus und allgemeine Potenz

FH Gießen-Friedberg, Sommersemester 2010 Skript 9 Diskrete Mathematik (Informatik) 30. April 2010 Prof. Dr. Hans-Rudolf Metz.

Basistext Funktionen. Eine Funktion f ordnet jedem Element x aus einer Definitionsmenge D f genau ein Wert y zu.

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

2015, MNZ. Jürgen Schmidt. 3.Tag. Vorkurs. Mathematik FUNKTIONEN WS 2015/16

Exponential- & Logarithmusfunktionen

Exponentialfunktionen. Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik

Vorlesung. Mathematik 1. Prof. Dr. M Herty (IGPM) MATHEMATIK 1 8. SEPTEMBER / 30

Rekursionen (Teschl/Teschl 8.1/8.2)

10 - Elementare Funktionen

19. Weitere elementare Funktionen

Umkehrfunktion Logarithmus Logarithmusfunktion. Mathematik W10. Mag. Rainer Sickinger LMM, BR. v 1 Mag. Rainer Sickinger Mathematik W10 1 / 33

Klausurenkurs zum Staatsexamen (WS 2016/17): Differential und Integralrechnung 3

Exponentialfunktionen, Eulersche Zahl, Logarithmen

Mathematik für Naturwissenschaftler I WS 2009/2010

Thema: Der Logarithmus und die Logarithmusfunktion - Sportgymnasium Dresden Schüler: L. Beer und R. Rost Klasse: 10/2.

4.1. Grundlegende Definitionen. Elemente der Analysis I Kapitel 4: Funktionen einer Variablen. 4.2 Graphen von Funktionen

7. Einige Typen von speziellen Funktionen [Kö 8]

Klausurenkurs zum Staatsexamen (WS 2015/16): Differential und Integralrechnung 3

Kapitel 15: Stetigkeit

Numerische Verfahren und Grundlagen der Analysis

Exponentialfunktion & Logarithmus

5 Kontinuierliches Wachstum

LS Informatik 4 & Funktionen. Buchholz / Rudolph: MafI 2 88

A5 Exponentialfunktion und Logarithmusfunktion

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014

Abitur 2011 G8 Musterabitur Mathematik Infinitesimalrechnung

Mathematik für Studierende der Biologie und des Lehramtes Chemie

Kapitel 6. Funktionen. Josef Leydold Mathematik für VW WS 2017/18 6 Funktionen 1 / 49

e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme sin(x+y) = cos(x) sin(y)+sin(x) cos(y). und f. Für eine reelle Zahl x R gilt e ix = 1.

Exponentielles Wachstum und Logarithmus

Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 5 Version 1.0 (11.

x A, x / A x ist (nicht) Element von A. A B, A B A ist (nicht) Teilmenge von B. A B, A B A ist (nicht) echte Teilmenge von B.

SBP Mathe Grundkurs 1 # 0 by Clifford Wolf. SBP Mathe Grundkurs 1

2.3 Exponential- und Logarithmusfunktionen

Funktionenfolgen, Potenzreihen, Exponentialfunktion

Aufgabe 1. Multiple Choice (4 Punkte). Kreuzen Sie die richtige(n) Antwort(en) an.

2.5 Komplexe Wurzeln. Mathematik für Naturwissenschaftler I 2.5

Abitur 2010 Mathematik GK Infinitesimalrechnung I

Mathematischer Vorkurs

Mathematik für Studierende der Biologie Wintersemester 2018/19. Grundlagentutorium 4 Lösungen

Systemwissenschaften, Mathematik und Statistik

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $

Betragsfunktion 6-E1. Vorkurs, Mathematik

Biostatistik, Winter 2011/12

lim Der Zwischenwertsatz besagt folgendes:

Wöchentliche Aufgabe zur Vorbereitung des Vortrags Zahlen / Algebra. Feedback zur 3. wöchentlichen Aufgabe (Zahlen und Algebra)

Die Fakultät. Thomas Peters Thomas Mathe-Seiten 2. Mai 2010

α π r² Achtung: Das Grundwissen steht im Lehrplan! 1. Kreis und Kugel

Der lange Weg zu den Potenz- und Logarithmengesetzen

Man schreibt dann lim. = bzw. lim

1 Beschreibung der Grundlagen

2.3 Exponential- und Logarithmusfunktionen

Wirtschaftsmathematik für International Management (BA)

Die Umkehrung des Potenzierens ist das Logarithmieren.

Lösung - Serie 3. D-MAVT/D-MATL Analysis I HS 2018 Dr. Andreas Steiger. MC-Aufgaben (Online-Abgabe)

Kapitel 6. Exponentialfunktion

(a) Wie gross ist der Ameisenstaat ungefähr nach 1, 2, 3 oder allgemein n Wochen?

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis

Spezielle Funktionen. Definition 8.1 : Sei D C eine Kreisscheibe f : D C heißt Lipschitz (-stetig) oder dehnungsbeschränkt auf D

differenzierbare Funktionen

Mathematische und statistische Methoden für Pharmazeuten

Elementare Funktionen. Analysis I November 28, / 101

Brückenkurs Mathematik. Dienstag Freitag

Mathematik für Wirtschaftsinformatiker

Mathematik für Biologen

{, wenn n gerade ist,, wenn n ungerade ist.

4 Reihen und Finanzmathematik

Analysis I Lösung von Serie 9

Vorlesung Analysis I WS 07/08

Transkript:

Exponentialfunktion, Logarithmus. Die Exponentialfunktion zu einer Basis > 0 Bei Exponentialfunktionen ist die Basis konstant und der Exponent variabel... Die Exponentialfunktion zu einer Basis > 0. Sei a eine streng positive reelle Zahl (a > 0). Dann wird die Funktion die Exponentialfunktion zur Basis a genannt. Achten Sie darauf, dass keine Exponentialfunktion zu einer negativen Basis oder zur Basis Null definiert wird!.. Die eulersche Zahl e. Es gibt in der Mathematik eine sehr wichtige Zahl, die eulersche Zahl e =, 788... (diese Zahl hat unendlich viele Dezimalstellen: Wenn wir e schreiben dann verstehen wir die exakte reelle Zahl; wenn wir, 788 oder, 7 schreiben, handelt es sich nur um eine Approximation). Die Funktion f(x) = e x = exp(x), also die Exponentialfunktion zur Basis e, heißt die Exponentialfunktion. Da diese Exponentialfunktion am häufigsten benutzt wird, hat die auch eine spezielle Notation der Vorteil ist, dass man den Exponenten besser lesen kann, z.b. e = exp( )... Einige wichtige Rechenregeln. Hier sind a, b, x, y reelle Zahlen mit a, b > 0. a x > 0 a x a y = a x+y (a x ) y = a x y a x = a x = ( a ) x a x b x = (ab) x a x ( a ) x b = x b. Die Graphen der Exponentialfunktionen.. Die drei verschiedenen Fälle. Es gibt drei Fälle für die Exponentialfunktion zu einer positiver Basis: Falls a =, dann ist x = für alle x, also haben wir die konstante Funktion f : R {} f(x) = x = Falls a >, dann ist die Exponentialfunktion zur Basis a eine streng monoton wachsende Funktion, die als Werte alle streng positiven reellen Zahlen annimmt (jeden Wert genau einmal): f : R R >0

Falls 0 < a <, dann ist die Exponentialfunktion zur Basis a eine streng monoton fallende Funktion, die als Werte auch alle streng positiven reellen Zahlen annimmt (jeden Wert genau einmal): f : R R >0 e x x = x ( )x.. Werte an der Stelle 0. Für alle a > 0 ist a 0 =. Deswegen ist der Wert der Exponentialfunktion zur Basis a im Punkt x = 0 gleich. Auf dem Graphen abgelesen: Der Schnittpunkt der Funktion mit der y-achse ist immer der Punkt (0, )... Werte an der Stelle. Für alle a > 0 ist a = a. Deswegen ist der Wert der Exponentialfunktion zur Basis a im Punkt x = gleich a. Auf dem Graphen abgelesen: Wenn wir wissen wollen, was für eine Basis es sich handelt dann müssen wir den Graphen in x = ablesen, da es sich um den Punkt (, a) handelt. Wenn wir nur wissen wollen, ob die Basis gleich ist, > ist oder zwischen 0 und liegt, dann müssen wir nur sehen, ob der Graph der Exponentialfunktion konstant ist oder steigt oder fällt. Je größer die Basis >, umso schneller steigt die Funktion. Je kleiner die Basis 0 < a <, umso schneller fällt die Funktion..4. Grenzwerte. Für die drei Fälle: Falls die Basis a > ist: für x + ist a x + und für x ist a x 0. Falls die Basis 0 < a < ist: für x + ist a x 0 und für x ist a x +. Falls die Basis a = ist: für alle x ist x =..5. Beispiele von Werten der Exponentialfunktionen. =, = 8, = 8, =, 8 = 8 =, () 4 = 5 4 = 4, ( 4 ) = 6 9, (0.5) = 0.5 = 4.

. Der Logarithmus zu einer Basis > 0 und.. Eine Notation/Definition. Sei a eine streng positive reelle Zahl, die von verschieden ist (a > 0 und a ). Sei b > 0. Mit log a (b) meinen wir die reelle Zahl r, sodass a r = b. Einige Beispiele sind: log 0 0 =, log 0 000 =, log 0 0.00 = log = log 0 000 0 0 =, log 0 0 =... Die Logarithmusfunktion zu einer Basis > 0 und. Sei a eine von verschiedene streng positive reelle Zahl (a > 0 und a ). Dann heißt die Funktion f(x) = log a (x) die Logarithmusfunktion zur Basis a. Achten Sie darauf, dass keine Logarithmusfunktion zu einer negativen Basis oder zur Basis Null oder zur Basis definiert wird. Achten Sie darauf, dass die reelle Zahl x streng positiv sein muß... Der dekadische Logarithmus. Die Funktion f(x) = log 0 (x) = log(x), also die Logarithmusfunktion zur Basis 0, heißt der dekadische Logarithmus, mit Notation log oder lg..4. Der natürliche Logarithmus. Die Funktion f(x) = log e (x) = ln(x), also die Logarithmusfunktion zur Basis e (die berühmte eulersche Zahl) heißt der natürliche Logarithmus. Da er sehr häufig benutzt wird, hat man auch die kürzere Notation ln (aus logarithmus naturalis ) eingeführt. Verwechslunggefahr: Manchmal schreibt man log für log e, eine ganz schlechte Gewohnheit..5. Der Zweierlogarithmus. Die Funktion f(x) = log (x), also die Logarithmusfunktion zur Basis, heißt der Zweierlogarithmus (auch binärer Logarithmus), mit Notation ld (aus logarithmus duales ). Man muß diese Notation kennen, aber die Basis wird nicht so oft benutzt..6. Exponential und Logarithmus. Man kann den Logarithmus zur Basis a als Umkehrfunktion der Exponentialfunktion zur Basis a sehen. In der Tat gilt für a > 0 und a log a (y) = x, falls y = a x a y = x, falls x > 0 und y = log a (x)

4. Eigenschaften der Logarithmen 4.. Regeln der Logarithmen. Sei a > 0 und a. Seien x, y > 0 und r eine reelle Zahl. Aus der Eigenschaften der Exponentialfunktion folgen: log a () = 0, weil a 0 = log a (a) =, weil a = a log a (x r ) = r log a (x) ( ) log a = log x a (x) [Spezialfall r = ] log a (x y) = log a (x) + log a (y) ( x ) log a = log y a (x) log a (y) [Konsequenz der obigen Eigenschaften] 4.. Umrechnung zwischen Basis: Seien a, b > 0 und a, b. Sei x > 0. Es gilt: log b (a) = log a (b) log b (x) = log b (a) log a (x) = log a(x) log a (b) Um die richtige Formel zu benutzen (um Fehler zu vermeiden), testen Sie die mit den Basen 0 und 00. Für die erste Formel: Da 00 = 0 und 0 = 00 gilt: log 0 (00) = log 00 (0) = Für die zweite Formel: Es gilt.000.000 = 0 6 = 00. Daher: log 0 (.000.000) = 6 log 0 (00) = log 00 (.000.000) = Aufgabe: Seien a > 0 und a und s 0. Verstehen Sie warum log a s(x s ) = log a (x). (Hinweis: (a s ) r = x s und a r = x sind äquivalent). 5. Die Graphen der Logarithmusfunktionen 5.. Die zwei verschiedenen Fälle. Es gibt zwei Fälle für die Logarithmusfunktion zu einer positiven Basis: Falls a >, dann ist die Logarithmusfunktion zur Basis a eine streng monoton wachsende Funktion, die als Werte alle reellen Zahlen annimmt (jeden Wert genau einmal): f : R >0 R f(x) = log a (x) Falls 0 < a <, dann ist die Logarithmusfunktion zur Basis a eine streng monoton fallende Funktion, die als Werte alle reellen Zahlen annimmt (jeden Wert genau einmal): f : R >0 R f(x) = log a (x) 4

ln(x) log 0 (x) 4 5 4 5 log (x) log 0.5 (x) 4 5 4 5 Anmerkung: Die Graphen berühren niemals die y-achse. Das ist nur eine optische Täuschung. 5.. Der Wert an der Stelle. Für alle a > 0 und a ist log a () = 0. Deswegen ist der Wert der Logarithmusfunktion zur Basis a im Punkt x = gleich 0. Auf dem Graphen abgelesen: Der Schnittpunkt der Funktion mit der x-achse ist der Punkt (, 0). 5.. Der Wert an der Stelle der Basis. Für alle a > 0 und a ist log a (a) =. Deswegen ist der Wert der Logarithmusfunktion zur Basis a im Punkt x = a gleich. Auf dem Graphen abgelesen: Wenn wir wissen wollen, um welche Basis es sich handelt, dann müssen wir nur den Graphen in y = ablesen, da es sich um den Punkt (a, ) handelt. Wenn wir nur wissen wollen, ob die Basis > ist oder zwischen 0 und liegt, dann müssen wir nur sehen, ob der Graph der Logarithmusfunktion steigt oder fällt. Je größer die Basis >, umso langsamer steigt die Funktion. Je kleiner die Basis 0 < a <, umso langsamer fällt die Funktion. 5.4. Grenzwerte. Falls die Basis a > ist: für x + ist log a (x) + und für x 0 ist log a (x). Falls die Basis 0 < a < ist: Für x + ist log a (x) und für x 0 ist log a (x) +. 5.5. Beispiele. Einige Beispiele von Werten der Logarithmusfunktionen: log 0 0 =, log 0 = 0, log 0 00 =, log 0 0000 = 4, log 0 0. = log =, log 0 0 0 0.0 = log =, log 0 00 0 0 =. Und auch: ln(e) =, ln(e ) =, ln( e ) =. Was ist log 0 (4)? und ln(4)? Für die meisten reellen Zahlen können wir den Logarithmus nicht exakt berechnen (also nur approximieren). Was wir sofort sagen können, ist 0 < log 0 4 < (da < 4 < 0) und < ln(4) < (da e <, 8 < 4 < (, 7) < e ). Wir können mit dem Computer bessere Abschätzungen berechnen. 5