Folgen und Reihen. Thomas Blasi

Ähnliche Dokumente
3. Folgen und Reihen. 3.1 Folgen und Grenzwerte. Denition 3.1 (Folge) Kapitelgliederung

Reihen, Exponentialfunktion Vorlesung

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen Definition: Eine Folge ist eine geordnete Menge von Elementen an (den sogenannten Gliedern ), die

Folgen, Reihen, Potenzreihen, Exponentialfunktion

D-INFK Analysis I FS 2017 Prof. Dr. Özlem Imamoglu. MC-Fragen Serie 1. Einsendeschluss: Freitag, der :00 Uhr

Ferienkurs Analysis 1

GRUNDLAGEN MATHEMATIK

Kapitel 5 Reihen 196

Kap. 10: Folgen und Reihen. Eine Funktion a : N Ñ R

2 Folgen und Reihen. 2.1 Folgen in C Konvergenz von Folgen. := f(n)

Wenn man eine Folge gegeben hat, so kann man auch versuchen, eine Summe. a 0 + a 1 + a 2 +

= (n 2 ) 1 (Kurzschreibweise: a n = n 2 ) ergibt die Zahlenfolge 1, 4, 9, 16, 25, 36,.

INGENIEURMATHEMATIK. 8. Reihen. Sommersemester Prof. Dr. Gunar Matthies

7 KONVERGENTE FOLGEN 35. inf M = Infimum von M. bezeichnet haben. Definition. Sei (a n ) n N eine beschränkte Folge in R. Dann heißt.

10 Aus der Analysis. Themen: Konvergenz von Zahlenfolgen Unendliche Reihen Stetigkeit Differenzierbarkeit

KAPITEL 2. Folgen und Reihen

1 Reihen von Zahlen. Inhalt:

Ferienkurs Analysis 1, SoSe Unendliche Reihen. Florian Beye August 15, 2008

Vorlesung: Analysis I für Ingenieure

Häufungspunkte und Satz von Bolzano und Weierstraß.

Folgen und Reihen. Kapitel Folgen und Grenzwerte

Spickzettel Mathe C1

n=1 a n mit reellen Zahlen a n einen

Beispiel. Gegeben sei die Folge (a n ) n N mit. a n := n 2 + 5n + 1 n. Es gilt. (n 2 + 5n + 1) n 2 = n2 + 5n + 1 n) n2 + 5n n, woraus folgt

HM I Tutorien 6 und 7

Numerische Verfahren und Grundlagen der Analysis

HM I Tutorium 5. Lucas Kunz. 24. November 2016

Zusammenfassung zur Konvergenz von Folgen

,...) ist eine Folge, deren Glieder der Null beliebig nahe kommen. (iii) Die Folge a n = ( 1) n + 1 n oder (a n) = (0, 3 2, 2 3, 5 4, 4 5

Folgen und Reihen. Mathematik-Repetitorium

Absolute Konvergenz. Definition 3.8. Beispiel 3.9. Eine Reihe. a n. konvergent ist. Die alternierende harmonische Reihe aber nicht absolut konvergent.

11. Folgen und Reihen.

Folgen. Eine (unendliche) (Zahlen)folge ist eine Abbildung. dann als. notiert, und das wird abgekürzt mit. nennt man die Folgenglieder.

Folgen und Reihen. 1 Konvergenz

5. Reihen. k=1 x k = s. Oft startet man die Folge/Reihe auch bei k =0oder einem anderen Wert. Für Konvergenzfragen macht das keinen Unterschied.

Reihen. Kapitel 3. Reihen, Potenzreihen und elementare Funktionen. Peter Becker (H-BRS) Analysis Sommersemester / 543

10 Kriterien für absolute Konvergenz von Reihen

Folgen und Reihen. Bernhard Ganter. Institut für Algebra TU Dresden D Dresden

Lösungen zur Probeklausur zur Vorlesung Analysis I, WS08/09, Samstag, (Version A)

Konvergenz einer Folge. 1-E1 Ma 1 Lubov Vassilevskaya

x k = s k=1 y k = y konvergent. Dann folgt (cx k ) = cx für c K. Partialsummenfolge konvergiert

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 4. Übungsblatt

eine reelle oder komplexe Folge ist, kann man daraus eine neue Folge {s n } n=0 konstruieren durch s n = a 0 + a a n, a k.

Thema 3 Folgen, Grenzwerte

Folgen und Reihen. Folgen. Inhalt. Mathematik für Chemiker Teil 1: Analysis. Folgen und Reihen. Reelle Funktionen. Vorlesung im Wintersemester 2014

Folgen und Reihen. Christoph Laabs, n s k und ist Grenzwert dieser Reihe.

1 Folgen und Stetigkeit

TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik

Vorlesung Mathematik für Ingenieure (WS 11/12, SS 12, WS 12/13)

Wirtschaftsmathematik

Folgen und Reihen. Kapitel Zahlenfolgen

Kapitel 4. Reihen 4.1. Definition und Beispiele

a 0, a 1, a 2, a 3,... Dabei stehen die drei Pünktchen für unendlich oft so weiter.

Ferienkurs Analysis 1 - Wintersemester 2014/15. 1 Aussage, Mengen, Induktion, Quantoren

Kapitel 5 KONVERGENZ

Folgen, Reihen, Grenzwerte u. Stetigkeit

9 Konvergenz und absolute Konvergenz von Reihen

$Id: folgen.tex,v /05/31 12:40:06 hk Exp $ an 1 2 n 1 ist gerade, 3a n 1 + 1, a n 1 ist ungerade.

Zusammenfassung der Vorlesung Einführung in die Analysis

Die alternierende harmonische Reihe.

Die Topologie von R, C und R n

Mathematik I. Vorlesung 24. Reihen

1 Einleitung. 2 Reelle Zahlen. 3 Konvergenz von Folgen

Modul Grundbildung Analysis WiSe 10/11. A.: Wurde in diesem Kapitel behandelt. C.: Weitere Fragen (Nicht nur für die Klausur interessant)

Mathematische Anwendersysteme Einführung in MuPAD

Kapitel 3. Folgen und Reihen. 3.1 Folgen

3.3. KONVERGENZKRITERIEN 67. n+1. a p und a n. beide nicht konvergent, so gilt die Aussage des Satzes 3.2.6

Vorlesung Mathematik 1 für Ingenieure (Wintersemester 2015/16)

Cauchy-Folgen und Kompaktheit. 1 Cauchy-Folgen und Beschränktheit

Klausur - Analysis I Lösungsskizzen

Das Newton Verfahren.

3.3 Konvergenzkriterien für reelle Folgen

Kapitel 4 Folgen und Reihen

Analysis I - Einige Lösungen und Ergänzungen

Kapitel 4. Folgen Körper der reellen Zahlen. Wir kennen schon den Körper Q der rationalen Zahlen: : a, b Z, b 0}. Q = { a b

6 - Unendliche Reihen

Folgen und Reihen. Katharina Brazda 9. März 2007

Kapitel 3. Folgen Körper der reellen Zahlen. Wir kennen schon den Körper Q der rationalen Zahlen: : a, b Z, b 0}. Q = { a b

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba.

Potenzreihenentwicklung im Reellen und Komplexen

Lösungen 4.Übungsblatt

Folgen und Reihen. Wirtschaftswissenschaftliches Zentrum Universität Basel. Mathematik für Ökonomen 1 Dr. Thomas Zehrt

Konvergenz von Folgen

V.1 Konvergenz, Grenzwert und Häufungspunkte

6 Reelle und komplexe Zahlenfolgen

Analysis I für Studierende der Ingenieurwissenschaften

Eine zentrale Aufgabe der Analysis ist die Untersuchung von Konvergenz. Zur Motivation betrachten wir die Folge von rationalen Zahlen

Übungen Analysis I WS 03/04

2 - Konvergenz und Limes

Definition Eine Metrik d auf der Menge X ist eine Abbildung d : X X IR

Nachklausur Analysis 1

Rechenoperationen mit Folgen. Rekursion und Iteration.

Vorlesungen Analysis von B. Bank

Mathematik I. Vorlesung 7. Folgen in einem angeordneten Körper

4. Reihen. Im Folgenden sei K = R oder K = C und (x k ), (y k ),... Folgen in K Definition. Wir schreiben. x k = s. und sagen, die Reihe

eine Folge in R, für die man auch hätte schreiben können, wenn wir alle richtig raten, was auf dem Pünktchen stehen sollte.

Kapitel V. Folgen und Konvergenz. V.1 Konvergenz von Zahlenfolgen

Mathematik I - Woche 10

Einführung in die Analysis

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Transkript:

Folgen und Reihen Thomas Blasi 02.03.2009 Inhaltsverzeichnis Folgen und Grenzwerte 2. Definitionen und Bemerkungen............................. 2.2 Konvergenz und Beschränktheit............................. 3.3 Rechenregeln konvergenter Folgen............................ 4 2 Reihen 4 2. Reihen - Folgen von Partialsummen.......................... 4 2.2 Konvergenz-Kriterien für Reihen............................ 5 2.3 Potenzreihen....................................... 7

FOLGEN UND GRENZWERTE 2 Folgen und Grenzwerte. Definitionen und Bemerkungen Definition. Unter einer Folge reeller Zahlen versteht man eine Abbildung N R. Jedem n N ist also ein a n R zugeordnet. Man schreibt hierfür (a n ) n N, (a 0, a, a 2, a 3,... ) oder kurz (a n ). Beispiele:. Sei a n = a für alle n N. Man erhält die konstante Folge (a, a, a, a,... ). 2. Sei a n = n, n. Dies ergibt die Folge (, 2, 3, 4,... ). 3. Für a n = ( ) n ist (a n ) n N = (+,, +,, +,,... ). Definition 2. Sei (a n ) n N eine Folge reeler Zahlen. Die Folge heißt konvergent gegen a R, falls gilt: Zu jedem ɛ > 0 existiert ein N N, so dass a n a < ɛ für alle n N. Bemerkungen:. Man beachte, dass die Zahl N von ɛ abhängt. Im Allgemeinen wird man N umso größer wählen müssen, je kleiner ɛ ist. 2. Konvergiert (a n ) gegen a, so nennt man a den Grenzwert oder den Limes der Folge und schreibt lim n a n = a oder a n a für n. 3. Viele Größen können nicht durch einen in endlich vielen Schritte exakt berechenbaren Ausdruck gegeben werden, sondern nur mit beliebiger Genauigkeit approximiert werden. Eine Zahl mit beliebiger Genauigkeit approximieren heißt, sie als Grenzwert einer Folge darstellen. 4. Für ɛ > 0 versteht man unter der ɛ-umgebung von a R die Menge aller Punkte der Zahlengeraden, die von a einen Abstand kleiner als ɛ haben. Die Konvergenz-Bedingung lässt sich nun so formulieren: Zu jedem ɛ > 0 existiert ein N, so dass a n ]a ɛ, a + ɛ[ für alle n N. Die Folge (a n ) n N konvergiert somit genau dann gegen a, wenn in jeder noch so kleinen ɛ-umgebung von a fast alle Glieder der Folge liegen. Dabei bedeutet fast alle : alle bis auf höchstens endlich viele Ausnahmen. 5. Eine Folge die gegen 0 konvergiert, nennt man Nullfolge. 6. Eine Folge (a n ), die nicht konvergiert, heißt divergent. Definition 3. Eine Folge (a n ) n N reeller Zahlen heißt Cauchy-Folge, wenn gilt: Zu jedem ɛ > 0 existiert ein N N, so dass a n a m < ɛ für alle n, m N. Es genügt hier nicht, dass die Differenz a n a n+ zweier aufeinander folgender Folgenglieder beliebig klein wird, sondern die Differenz a n a m muss kleiner als ein beliebiges ɛ > 0 sein, wobei n und m unabhängig voneinander alle natürlichen Zahlen durchlaufen, die größer-gleich einer von ɛ abhängigen Schranke sind.

FOLGEN UND GRENZWERTE 3 Satz 4. Jede konvergente Folge reeller Zahlen ist eine Cauchy-Folge. Beweis. Die Folge (a n ) konvergiere gegen a. Dann gibt es zu jedem ɛ > 0 ein N N, so dass a n a < ɛ 2 für alle n N. Dann gilt für alle n, m N: a n a m = (a n a) (a m a) a n a + a m a < ɛ 2 + ɛ 2 = ɛ. Vollständigkeitsaxiom. In R konvergiert jede Cauchy-Folge. Bei der Cauchy-Folge wird kein Bezug auf den Grenzwert genommen..2 Konvergenz und Beschränktheit Definition 5. Eine Folge (a n ) heißt beschränkt, wenn es eine reelle Konstante M 0 gibt, so dass a n < M für alle n N. Satz 6. Jede konvergente Folge (a n ) n N ist beschränkt. Beweis. Siehe Übung. Bemerkungen:. Aus Satz 6 folgt unmittelbar, dass jede nicht beschränkte Folge auch nicht konvergiert. 2. Die Umkehrung der Aussage von Satz 6 gilt nicht. Z.B. ist die Folge a n = ( ) n, n N beschränkt, aber nicht konvergent. Über beschränkte Folgen kann man aber folgende Aussagen treffen. Definition 7. Sei (a n ) n N eine Folge und n 0 < n < n 2 <... eine aufsteigende Folge natürlicher Zahlen. Dann heißt die Folge (a nk ) k N = (a n0, a n, a n2, ) Teilfolge der Folge (a n ). Satz 8.(Bolzano-Weierstraß) Jede beschränkte Folge (a n ) n N reeller Zahlen besitzt eine konvergente Teilfolge. Definition 9. Eine Zahl a heißt Häufungspunkt einer Folge (a n ) n N, wenn es eine Teilfolge von (a n ) gibt, die gegen a konvergiert. Beispiel: Die Folge (a n ) n N = (+,, +,, +,,... ) mit a n = ( ) n ist beschränkt. Sie besitzt die konvergenten Teilfolgen (a 2n+ ) n N mit a 2n+ = und (a 2n ) n N mit a 2n+ =. Somit sind und die beiden Häufungspunkte von (a n ) n N. Bemerkung : Mit Definition 9 kann der Satz von Bolzano-Weierstraß folgendermaßen formuliert werden: Jede beschränkte Folge reeller Zahlen besitzt mindestens einen Häufungspunkt. Definition 0. Eine Folge (a n ) n N reeller Zahlen heißt. monoton wachsend, falls a n a n+ für alle n N, 2. streng monoton wachsend, falls a n < a n+ für alle n N, 3. monoton fallend, falls a n a n+ für alle n N, 4. streng monoton fallend, falls a n > a n+ für alle n N. Satz. Jede beschränkte monotone Folge (a n ) reeller Zahlen konvergiert.

2 REIHEN 4.3 Rechenregeln konvergenter Folgen Satz 2. Seien (a n ), (b n ), (c n ), n N, konvergente Folgen, mit lim n c n =: c 0. Dann gilt für alle λ R: Der Grenzwert einer Folge ist eindeutig () ( ) ( ) lim (a n + b n ) = lim a n + lim b n (2) n n n ( ) ( ) lim (a nb n ) = lim a n lim b n (3) n n n lim n = λ lim n n n (4) a n = lim n a n c n lim n c n (5) lim n Satz 3.(Einschließungskriterium) Seien (a n ), (b n ) und (c n ) konvergente Folgen reeller Zahlen mit a n b n c n für alle n. Weiter gelte lim n a n = R = lim n c n für ein R R. Dann gilt auch lim n b n = R. 2 Reihen 2. Reihen - Folgen von Partialsummen Definition 4. Sei (a n ) eine Folge reeller Zahlen. Unter der m-ten Partialasumme der Folge (a n ) versteht man m s m := a n = a 0 + a + a 2 + + a m. Bemerkungen:. Die Folge (s m ) m N der Partialsummen heißt (unendliche) Reihe mit den Gliedern a n und wird mit a n bezeichnet. 2. Alle bisherigen Sätze über Folgen gelten auch für Reihen (Reihen sind Folgen von Partialsummen!). 3. Konvergiert die Folge (s m ) m N der Partialsummen, so wird der Grenzwert ebenfalls mit a n bezeichnet und heißt dann Summe oder Wert der Reihe. 4. Vorsicht! Hier besteht Verwechslungsgefahr. a n bezeichnet zwei Dinge. Einerseits die ( m ) Folge a n der Partialsummen, andererseits im Falle der Konvergenz den Grenzwert m N m a n. lim m 5. Auch jede Folge (c n ) n N lässt sich als Reihe darstellen, denn es gilt Beispiele: c n = c 0 + Dies nennt man Teleskopsumme. n (c k c k ) für allen N. k=

2 REIHEN 5. Die geometrische Reihe. Für x < gilt: k=0 x k = + x + x 2 + x 3 + = x. Mittels vollständiger Induktion lässt sich zeigen, dass sich die Partialsumme s m darstellen n lässt als = xn+. Die Grenzwertbildung n liefert obige Formel. x k=0 2. Die harmonische Reihe. Diese divergiert: Zum Beweis, siehe Übung. k= 2.2 Konvergenz-Kriterien für Reihen k = + 2 + 3 + 4 + =. Satz 5.(Cauchy sches Konvergenz-Kriterium) Sei (a n ) eine Folge reeller Zahlen. Die Reihe a n konvergiert genau dann, wenn gilt: Zu jedem ɛ > 0 existiert ein N N, so dass n a k < ɛ für alle n m N. Beweis. Sei S N := N k=0 a k die N-te Partialsumme. So ist S n S m = n k=m a k. Die angegebene Bedingung ist somit gleichbedeutend mit der Aussage, dass die Folge (S n ) der Partialsummen eine Cauchy-Folge ist. Diese konvergiert nach dem Vollständigkeitsaxiom. Satz 6. Aus der Konvergenz der Reihe a n folgt, dass lim n a n = 0. Beweis. Benutze Satz 5. Für n = m gilt dann: a n < ɛ. Daraus folgt die Behauptung. k=m Satz 6 liefert ein starkes Divergenzkriterium. Ist a n a n. keine Nullfolge, so divergiert die Reihe Satz 7. Eine Reihe a n mit a n 0 für alle n N konvergiert genau dann, wenn die Reihe (d.h. die Folge der Partialsummen) beschränkt ist. Beweis. Da a n 0 ist die Folge der Partialsummen S n = n k=0 a k, n N monoton wachsend. Die Behauptung folgt deshalb aus dem Satz über die Konvergenz monotoner beschränkter Folgen (Satz ). Satz 8.(Leibniz sches Konvergenz-Kriterium) Sei (a n ) n N eine monoton fallende Folge nichtnegativer Zahlen mit lim n a n = 0. Dann konvergiert die alternierende Reihe Beispiele: ( ) n a n.. Die alternierende harmonische Reihe 2. Die Leibniz sche Reihe ( ) n 2n +. n= ( ) n. n

2 REIHEN 6 Definition 9. Eine Reihe a n heißt absoult konvergent, falls die Reihe der Absolutbeträge a n konvergiert. Eine absolut konvergente Folge konvergiert auch im gewöhnlichen Sinn. Dies folgt aus dem Cauchy schen Konvergenz-Kriterium und der Dreiecksungleichung. Die Umkehrung gilt nicht, wie an der alternierenden harmonischen Reihe gesehen werden kann. Somit ist die absolute Konvergenz eine schärfere Bedingung als die gewöhnliche Konvergenz. Satz 20. (Integral-Vergleichskriterium) Dies ist ein Vorgriff auf die noch folgende Integration. Sei f : [, [ R + eine monoton fallende Funktion. Dann gilt: f(n) konvergiert n= f(x)dx konvergiert. Beispiel: dx Da das Integral x s für s > konvergiert, konvergiert also die Reihe divergiert für s. n= n s für s > und Satz 2.(Majoranten-Kriterium) Sei c n eine konvergente Reihe mit lauter nich-negativen Gliedern und (a n ) n N eine Folge mit a n c n für alle n N. Dann konvergiert die Reihe a n absolut. Bemerkungen. Man nennt c n eine Majorante von a n. 2. Satz 2 impliziert folgendes Divergenzkriterium: Sei c n eine divergente Reihe mit lauter nicht-negativen Gliedern und (a n ) n N eine Folge mit a n c n für alle n. Dann divergiert auch die Reihe a n. Satz 22.(Quotienten-Kriterium) Sei a n eine Reihe mit a n 0 für alle n n 0. Es gebe eine reelle Zahl θ mit 0 < θ <, so dass a n+ a n Dann konvergiert die Reihe a n absolut. Beispiel: Die Reihe n= a n+ a n = (n + )2 2 n 2 n+ n 2 = 2 θ für alle n n 0. n 2 2 n konvergiert nach Satz 2, da mit a n := n2 2 n für alle n 3 gilt : ( ) + 2 n 2 ( ) + 2 3 = 8 9 =: θ <. Man beachte, dass die Bedingung im Qutientenkriterium ein von n unabhängiges θ < fordert. Die Qutienten dürfen also nicht beliebig nahe an herankommen. an+ a n Satz 23.(Wurzelkriterium) Sei a n eine Reihe mit. Weiter gebe es eine reelle Zahl θ mit 0 < θ <, so dass n an θ für fast alle n N.

2 REIHEN 7 So konvergiert die Reihe a n absolut. Satz 24.(Umordnungssatz) Sei a n eine absolut konvergente Reihe. Dann konvergiert auch jede Umordnung dieser Reihe absolut gegen denselben Grenzwert. 2.3 Potenzreihen Alle Sätze über Reihen und Folgen reeller Zahlen können auch für Reihen und Folgen komplexer Zahlen übernommen werden. Wichtig ist hier noch die folgende Aussage: Satz 25. Sei (c n ) n N eine Folge komplexer Zahlen. Die Folge konvergiert genau dann, wenn die beiden reellen Folgen (R(c n )) n N und (I(c n )) n N konvergieren. Im Falle der Konvergenz gilt lim c n = lim R(c n) + i lim I(c n). n n n Definition 26. Sei (a n ) eine Folge komplexer Zahlen und z A C. Eine Reihe der Form nennt man Potenzreihe. Beispiele: P (z) = a n z n = a 0 + a z + a 2 z 2 + a 3 z 3 +.... Die oben erwähnte geometrische Reihe. 2. Die Exponentialreihe z n n! = + z + z2 2! + z3 3! +... Zu den grundlegenden Eigenschaften einer Potenzreihe gehört die Existenz eines Konvergenzkreises. Der Radius R dieses Kreises, der auch 0 oder sein kann, ist dadurch ausgezeichnet, dass P (z) für z < R konvergiert und für z > R divergiert. Die Existenz eines Konvergenzkreises wird im folgenden Satz gezeigt. Satz 27. Konvergiert die Potenzreihe P in einem Punkt z 0 0, so konvergiert sie absolut in jedem Punkt z C mit z < z 0. Formeln zur Berechnung des Konvergenzradius von a n z n : R = lim sup n a n (Cauchy-Hadamard), R = a n+, falls der Grenzwert existiert (Euler). lim n a n Dabei bedeutet lim sup a n := lim n (sup{a k : k n}). Satz 28.(Cauchy-Produkt) Konvergieren f(z) = i=0 a iz i und g(z) = k=0 b kz k im Punkt z absolut, so gilt ( n ) f(z) g(z) = a k b n k z n. k=0

LITERATUR 8 Literatur [] Forster, Otto, Analysis. Differential- und Integralrechnung einer Veränderlichen, 8., verbesserte Auflage, Vieweg Verlag Wiesbaden 2006 [2] Königsberger, Konrad, Analysis, 6., durchgesehene Auflage, Springer Verlag Berlin Heidelberg New York 2004