Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 7. Aufgabe 7.1. ETH Zürich D-MATH. Dr. V. Gradinaru K. Imeri. Herbstsemester 2018

Größe: px
Ab Seite anzeigen:

Download "Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 7. Aufgabe 7.1. ETH Zürich D-MATH. Dr. V. Gradinaru K. Imeri. Herbstsemester 2018"

Transkript

1 Dr V Gradinaru K Imeri Herbstsemester 8 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 7 Aufgabe 7 7a) Welche der folgenden Abbildungen sind linear: (i) F : x ax + b mit x, a, b R Falsch F(x + y) = ax + ay + b ax + ay + b = F(x) + F(y) für b (ii) F : x Ax + b mit x R n, A R m n und b R m Falsch F(x + y) = Ax + Ay + b Ax + Ay + b = F(x) + F(y) für b (iii) F : x Ax mit x R n, A R m n Richtig Für alle A R m n, x, y R n, α R gilt: F(x + y) = A(x + y) = Ax + Ay = F(x) + F(y) F(αx) = A(αx) = α(ax) = αf(x) (iv) F : x x + x mit x R Falsch F(x + y) = (x + y) + (x + y) x + x + y + y = F(x) + F(y) für mindestens ein x, y (v) F : x exp(x) mit x R Falsch F(x + y) = exp(x + y) = exp(x) exp(y) exp(x) + exp(y) = F(x) + F(y) für mindestens ein x, y (vi) F nimmt eine Funktion f aus der Menge der stetigen Funktion von [, ] nach R, notiert als C([, ]), und gibt die Funktion x x f(t)dt in C([, ]) zurück Richtig Für alle f, g C([, ]) und alle α R gilt: ( x ) F(f + g) = x f(t) + g(t)dt = F(αf) = ( x x ( x x ) ( αf(t)dt = x α f(t)dt + x x ) g(t)dt = F(f) + F(g) ) f(t)dt = αf(f) Seite

2 7b) Wir betrachten die Ebene E in R, gegeben durch x = x, und die lineare Abbildung F : R R, die jedes x R senkrecht auf E projiziert Welche Aussagen treffen zu? (i) Die Matrix A, welche F bezüglich der Standardbasis beschreibt, lautet (ii) Die Matrix A, welche F bezüglich der Standardbasis beschreibt, lautet Lösung: Betrachte die Standardbasis e (), e (), e () Da e () bereits in E liegt, folgt: ( F e ()) = e () = =: a () Um F(e () ), F(e () ) zu bestimmen, betrachte die Ebene {x = (siehe Bild) Die Abbildung F projiziert e () (bzw e () ) senkrecht auf E (also parallel zu (,, ) ) Es folgt aus dem Bild (zb mit Pythagoras) und aus Symmetriegründen, dass ( F e ()) ( = F e ()) = =: a () = a () Es folgt A = Seite

3 7c) Gegeben ist ein Autokonstruktionsroboter, welcher immer die gleiche Drehung mit einem Stoss durchführt, um ein Element in die Karosserie einzufügen Die dazugehörige lineare Abbildung ist F : R R, die jedes (x, x, x ) R x auf x abbildet Nun, der Roboter operiert x 5 nicht bezüglich unserer Standardbasis, sondern bezüglich der Basis, 5, Welche Aussagen 7 treffen zu? (i) Die Matrix A, welche F bezüglich der Standardbasis beschreibt, lautet (ii) Die Matrix A, welche F bezüglich der Standardbasis beschreibt, lautet Lösung: Sei k B der Basiswechsel der einem Vektor inder Standardbasis die Koordinaten in der vom 5 Roboter gehandhabten Basis, also B =, 5,, wiedergibt Damit haben wir folgendes Diagramm: 7 R B k B F R B k B R Ges lin Abb Std Basis R Std Basis Um k B zu bestimmen, nutzen wir, dass B bereits in der Standardbasis ausgedrückt wird, das heisst k B ((,, ) ) = (,, ), k B ((,, ) ) = (5, 5, 7), k B ((,, ) ) = (,, ) Somit ist die zu k B zugehörige Matrix 5 5 Somit folgt, dass die zu k B zugehörige Matrix, die Inverse zu der Matrix von k B ist Die 7 Inverse finden wir durch Lösen von Mittels Gausselimination erhalten wir Dies ist die Matrix, bezüglich k B Um die gesuchte 5 5 lineare Abbildung zu erhalten, folgen wir dem Diagramm und erkennen, dass die lineare Abbildung durch k B F k B ausgedrückt wird Die dazugehörige Matrix erhalten wir also durch = Bemerkung: Die falsche Matrix in der Aufgabe stammt aus der Berechnung von k B F k B Seite

4 Aufgabe 7 Koordinatentransformation zur geometrischen Interpretation Gegeben sei der Vektorraum V = R mit der Standardbasis Die Matrix 5/6 /6 / A = /6 5/6 / / / / definiert eine lineare Abbildung von V nach V 7a) Durch die Wahl der neuen Basis,, werden neue Koordinaten eingeführt Bestimmen Sie die Matrix T der Koordinatentransformation, welche neue Koordinaten in alte überführt Lösung: Bezeichne mit x die alten Koordinaten und mit y die neuen: x = T y = y t () + y t () + y t () y = y + y + y = y {{ y =:T 7b) Durch welche Matrix à wird die lineare Abbildung in den neuen Koordinaten (in W = R mit der neuen Basis in W ) beschrieben? Lösung: Es gilt also à = T AT, wobei AT = x V T y W A à x V T y W = Statt T zu berechnen, lösen wir T à = AT mit Gausselimination nach à auf (das ist effizienter!): (E) 6 Durch Rückwärtseinsetzen erhalten wir (E) à = Seite 4 5

5 7c) Interpretieren Sie die Abbildung in den ursprünglichen Koordinaten (in V ) geometrisch Lösung: à ist die Darstellung der linearen Abbildung in den neuen Koordinaten Aus der Diagonalform von à kann man sehen, dass es sich in diesen neuen Koordinaten um eine Projektion entlang des Basisvektors e () auf die Ebene, die durch die zwei Basisvektoren e () und e () aufgespannt wird, gefolgt durch eine Punktspiegelung um den Nullpunkt handelt In den alten Koordinaten ist A somit eine Projektion entlang t () = auf die Ebene { span t (), t () = span,, gefolgt durch eine Punktspiegelung um den Nullpunkt (oder äquivalent dazu, da t () orthogonal zu t () und t () steht: gefolgt durch eine Drehung um 8 Grad um die t () -Achse) Aufgabe 7 Matrixdarstellung einer linearen Polynomabbildung Seien G = span{, t, t 4 und U = span{t, t zwei Vektorräume Betrachten Sie die folgende Abbildung A von G nach U : A : G U x tx 7a) Zeigen Sie, dass A eine lineare Abbildung ist Lösung: Zunächst ist A wohldefiniert in den angegebenen Räumen, da t() = U, t(t ) = t U und t(t 4 ) = t U Ausserdem gilt für alle x, y G, α R, dass Somit ist A linear A(x + αy) = t(x + αy ) = tx + αty = Ax + αay 7b) Durch welche Matrix A wird A beschrieben, wenn wir die Monome als Basen in beiden Räumen verwenden? Lösung: Es gilt und somit A =, At = t, At 4 = t A = [ ] 7c) Zeigen Sie, dass {p, p, p und {q, q Basen von G beziehungsweise U sind, wobei p (t) = + t, p (t) = t, p (t) = + t + t 4, q (t) = t und q (t) = t + t Lösung: Es gilt = (p +p )/, t = (p p )/ und t 4 = p t = p (p +p )/ (p p )/, sowie t = q, t = (q q )/ Somit ist span{p, p, p = span{, t, t 4 = G und span{q, q = span{t, t = U Da dim G = und dim U =, muss es sich um Basen handeln Um zu zeigen, dass dim G =, ist es hinreichend, lineare Unabhängigkeit von, t und t 4 nachzuweisen Nehmen wir also an, dass α, β, γ R existieren, so dass α + βt + γt 4 = G für alle t R Indem wir t = setzen, erhalten wir α =, das heisst, t (β + t γ) =, t R Dies impliziert β = γt für alle t, was ein Widerspruch ist Analog zeigt man dim U = Seite 5

6 7d) Welches ist die neue Matrix B, die A nach diesem Basiswechsel (die neuen Basen sind in Teilaufgabe 7c) gegeben) beschreibt? Lösung: Die (neue) Basis q, q schreibt sich in der (alten) Basis t, t mittels der Matrix [ ] C = und analog beschreibt D = die (neue) Basis p, p, p mittels (der alten), t, t 4 Wir erhalten für die Darstellung B von A in den neuen Basen [ ] B = C 6 AD = 6 Aufgabe 74 Polynomielle Projektion In dieser Aufgabe betrachten wir den Polynomraum P d ([, ]) der Polynome vom Grad kleiner oder gleich d auf dem Interval [, ] für d N Er ist ausgestattet mit dem Skalarprodukt und der Monombasis p, q := p(t)q(t) dt, für alle p, q P d ([, ]), {t, t t, t t,, t t d Weiter seien die linearen Abbildungen L d : P d ([, ]) R definiert durch [ ] p( ) L d (p) =, p P p() d ([, ]) Schliesslich sind die ersten drei der sogenannten Legendre-Polynome gegeben durch P (t) =, P (t) = t, P (t) = 5 (t ) Wir betrachten nun Konzepte, wie sie im Zusammenhang mit der Diskussion linearer Abbildungen in der Vorlesung besprochen worden sind, für diesen Polynomraum 74a) Geben Sie die Matrixdarstellung L von L bezüglich der monomialen Basis von P ([, ]) und der Standardbasis von R an Lösung: Es ist und somit gilt [ ] { L d (t i ( ) i ) = i = [ ] i gerade ] i ungerade, L = [ ] Seite 6

7 74b) Zeigen Sie, dass P i, P i = für i = {,, und P i, P j = für i j { i = j Lösung: Wir müssen zeigen, dass P i, P j = für i, j =,, Da das Skalarprodukt symmetrisch ist, genügt es, die Fälle i j i j anzuschauen: P, P = P, P = dt = t t= t t dt = t = + = t= = + = 5 P, P = 8 (t ) dt = 5 9t 4 6t + dt 8 = 9 8 t5 8 t t = 9 t= = P, P = t dt = 4 t = t= P, P = 4 (t ) dt = 4 t 4 t = t= 5 5 P, P = 4 (t t) = 4 ( 4 t4 t ) = 74c) Bestimmen Sie nun die Matrixdarstellung L von L bezüglich der Basis {P, P, P von P ([, ]) und der Standardbasis des R Lösung: Wir können entweder einen Basiswechsel mit dem Resultat aus 74a) durchführen oder erhalten durch einfaches Einsetzen der Basis in die Funktion, dass 5 L = 5 t= 74d) Der Rang einer linearen Abbildung f : V W zwischen zwei Vektorräumen V und W ist definiert als die Dimension ihres Bildes f(v ) als Unterraum von W (siehe Vorlesung) Er entspricht dem Rang jeder zugehörigen Abbildungsmatrix Was ist für allgemeines d der Rang von L d? Begründen Sie Ihre Antwort [ ] ( ) Lösung: Wie wir in Aufgabe 74a) gesehen haben, gilt L d (t i i ) = Mit Gausselimination erhalten wir L d = [ ] i [ wobei L d R (d+) die Abbildungsmatrix von L d bezüglich der monomialen Basis von P d ([, ]) und der Standardbasis von R darstellt Weil der Rang von L d mit demjenigen jeder beliebigen Abbildungsmatrix von L d übereinstimmt (das heisst, es kommt nicht auf die Wahl der jeweiligen Basen an), folgt {, d = Rang L d = Rang L d =, d ], Seite 7

8 74e) Zeigen Sie, dass für d B Kern = {t t, t t( t ), t t ( t ),, t t d ( t ) eine Basis von Kern(L d ) ist Hinweis: Bestimmen Sie zunächst dim Kern(L d ) mithilfe der Dimensionsformel und Teilaufgabe 74d) Zeigen Sie dann, dass B Kern im Kern enthalten und linear unabhängig ist Lösung: Mithilfe von 74d) und der Dimensionsformel erhalten wir: dim P d ([, ]) = dim Kern(L d ) + dim Bild(L d ) {{ =Rang L d dim Kern(L d ) = dim P d ([, ]) Rang L d = d + = d Es bleibt also nur noch zu zeigen, dass B Kern = {p (t) = t, p (t) = t( t ), p (t) = t ( t ),, p d (t) = t d ( t ) im Kern enthalten und linear unabhängig ist Diese d linear unabhängigen Vektoren bilden dann automatisch eine Basis von Kern(L d ) B Kern Kern(L d ): L d (p i ) = [ ( ) i ( ( ) ] ) i ( = ) B Kern linear unabhängig: Seien α, α,, α d R mit d α i p i = i= Wir müssen zeigen, dass dann α = α = = α d = folgt In der Monombasis erhalten wir das Gleichungssystem α α = α d {{ R d+ d Durch sukzessives Addieren der i-ten zur i + -ten Zeile für i =,, d erhalten wir das äquivalente Gleichungssystem α α [ Id ] α d =, und somit auch die einzige Lösung α i = für i =,, d Seite 8

9 74f) Berechnen Sie für die Vektoren t t n P d ([, ]), n {,,, d, die jeweiligen Orthogonalprojektionen auf P ([, ]), also diejenigen Polynome in P ([, ]), deren Differenz zum ursprünglichen Polynom senkrecht zu P ([, ]), bezüglichen dem obigen Skalarprodukt, steht Hinweis: Verwenden Sie, dass sich die Orthogonalprojektion wegen dem Resultat aus Teilaufgabe 74b) leicht berechnen lassen Lösung: Aus 74b) wissen wir: B = {P, P, P ist Orthonormalbasis von P ([, ]) Somit ist die Orthogonalprojektion auf P ([, ]) für jedes p P d ([, ]) gegeben durch P P ([,])(p) = p, P j P j, j= P P ([,])(t t n ) = t t n, P P + t t n, P P + t t n, P P = ( ) also Wir berechnen { t t n, P = t n dt = n+ n gerade n ungerade { t t n, P = t n+ dt = n gerade 6 n+ n ungerade t t n, P = 5 t n (t ) dt = 5 t n+ t n dt = 5 ( n + tn+ n + tn+ ) t= { 5 = ( n+ n+ ) n gerade n ungerade und somit ( ) = = { n ( n+ n+ )(t ) n gerade + n+ t + n ungerade { 9 4(n+) 5 4(n+) ( n+ n+ )t n gerade n+ t n ungerade Aufgabe 75 Zirkulante Matrizen In dieser Aufgabe betrachten wir eine spezielle Menge von Matrizen, die sogenannten zirkulanten Matrizen, die in Anwendungen, zum Beispiel in der digitalen Signalverarbeitung, eine grosse Rolle spielen Definition Eine quadratische Matrix Z R n n, n N, heisst zirkulant, wenn { (Z) i,j, falls j {,, n, (Z) i,j = i {,, n (75) (Z) i,n, falls j =, Seite 9

10 75a) Lösung: Schreiben Sie die Menge der zirkulanten - und -Matrizen in parameterisierter Form [ ] a a R, a a a a a a a a R, a a a a i R 75b) Wie erhält man eine Zeile bzw Spalte einer zirkulanten Matrix aus der darüber bzw links davon stehenden? Hinweis: Bringen Sie in Erfahrung, was man unter einer zyklischen Permutation versteht Lösung: Auszug aus Wikipedia: Das erste Element des Zyklus wird dabei auf das zweite abgebildet, das zweite Element auf das dritte, und so weiter bis hin zum letzten Element, das wieder auf das erste abgebildet wird Wir ersetzen Zyklus durch darüber liegende Zeile (oder vorangehende Spalte), das entspricht genau der Definition 75c) Zeigen Sie, dass die Menge Zirk n der zirkulanten n n-matrizen ein Unterraum von R n n ist Lösung: Damit Zirk n ein Unterraum aller n n-matrizen ist, muss gelten: Für Z, Y Zirk n ist auch Z + Y Zirk n Für Z Zirk n, α R ist auch αz Zirk n Beweis: W := Z + Y Einsetzen in (75) ergibt: { (Y + Z) (Z + Y ) i,j = i,j, falls j {,, n, i {,, n (Y + Z) i,n, falls j =, { (W ) i,j, falls j {,, n, (W ) i,j = i {,, n (W ) i,n, falls j =, Wir setzen W := αz und benutzen (75) analog zum vorherigen Schritt 75d) Bestimmen Sie eine Basis von Zirk n und damit dim Zirk n Lösung: Als Einstieg bestimmen wir eine Basis für die zyklischen -Matrizen Jede zyklische - Matrix lässt sich schreiben als Z = a + a + a Folglich gilt Zirk = span {[ ], [ ], [ ] Sei nun circmat(z,, z n ) die zyklische n n-matrix, welche in der ersten Zeile die Einträge z,, z n stehen hat Eine Basis für Zirk n lässt sich dann ablesen aus { Zirk n = span circmat(e () ),, circmat(e (n) ), wobei e (i) der i-te Einheitsvektor aus R n ist Seite

11 75e) Zeigen Sie, dass Z Y Zirk n Z, Y Zirk n Hinweis: Wenden Sie direkt Definition an und betrachten Sie ein Element des Matrixprodukts mit allgemeinen Indizes i und j Verifizieren Sie dann durch Nachrechnen (75) Lösung: Man zeigt, dass Z Y die Definition einer zirkulaten Matrix (75) erfüllt Für i, j : n n (ZY ) i,j = (Z) i,k (Y ) k,j = ((Z) i,k (Y ) k,j ) + (Z) i,n (Y ) n,j = (ZY ) i,j k= Für i, j = : (ZY ) i, = k= n (Z) i,k (Y ) k, = k= n (Z) i,k (Y ) k,n + (Z) i,n (Y ) n,n = (ZY ) i,n k= 75f) ist Zeigen Sie, dass die Inverse einer invertierbaren zirkulanten Matrix wieder eine zirkulante Matrix Hinweis: Betrachten Sie die j-te Spalte der Inversen Z einer zirkulanten Matrix Z, die natürlich erfüllt, dass Z(Z ) :,j = e (j), wobei e (j) der j-te Einheitsvektor ist Nehmen Sie nun an, dass Z zirkulant ist und erinnern Sie sich an Teilaufgabe 75b), die Ihnen sagt, wie man die (j + )-te Spalte von Z aus der j-ten erhält Was müssen Sie dann für Z(Z ) :,j+ zeigen? Verwenden Sie für Ihre Überlegungen, dass die Inverse einer Matrix eindeutig ist Lösung: Die zyklische Permutation angewandt auf einen Vektor x lässt sich als Matrix-Vektor-Operation P x schreiben: x x n x = x {{ x n x n =:P Es lässt sich leicht einsehen, dass P T P = I Man nimmt nun an, dass Z zirkulant ist und Z(Z ) :,j = e (j) erfüllt Die (j+)-te Spalte aus Z ergibt sich aus der zyklischen Permutation der j-ten Spalte (Z ) :,j+ = P (Z ) :,j Beachten Sie, dass eine zyklische Permutation angewandt auf die Spalten, gefolgt von einer zyklischen Permutation angewandt auf die Zeilen einer zirkulanten Matrix Z, wieder die Matrix Z ergibt Somit ist P T ZP = Z, siehe auch Abbildung 7 Aus diesen Überlegungen folgt P T {{ ZP (Z ) :,j = e (j) =Z P P T ZP (Z ) :,j = P e (j) (j) P {{ P T Z P (Z ) :,j = P {{{{ e =I (Z e ) (j+) :,j+ Z(Z ) :,j+ = e (j+) Induktion, die Eindeutigkeit der Inverse einer Matrix, sowie die Tatsache, dass die rechtsseitige Inverse gleich der linksseitigen Inverse einer Matrix ist, zeigen folglich, dass die Inverse einer invertierbaren, zirkulanten Matrix wieder eine zirkulante Matrix ist Seite

12 (a) Z (b) P T Z (c) P T ZP = Z Abbildung 7: Zyklische Permutation P angewandt auf eine zirkulante Matrix Z Seite

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 25 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 8 Aufgabe 8 Basen für Bild und Kern Gegeben sind die beiden 2 Matrizen:

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 6. Aufgabe 6.1. Dr. V. Gradinaru K. Imeri. Herbstsemester 2018.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 6. Aufgabe 6.1. Dr. V. Gradinaru K. Imeri. Herbstsemester 2018. Dr. V. Gradinaru K. Imeri Herbstsemester 8 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 6 Aufgabe 6. Multiple Choice: Online abzugeben. 6.a) (i) Welche der folgenden

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D. Dr. V. Gradinaru D. Devaud Herbstsemester 5 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie Aufgabe..a Bezüglich des euklidischen Skalarprodukts in R ist die Orthogonalprojektion

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 8. Aufgabe 8.1. Dr. V. Gradinaru T. Welti. Herbstsemester 2017.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 8. Aufgabe 8.1. Dr. V. Gradinaru T. Welti. Herbstsemester 2017. Dr. V. Gradinaru T. Welti Herbstsemester 7 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 8 Aufgabe 8. Multiple Choice: Online abzugeben. 8.a) (i) Welche der folgenden

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 5 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie Aufgabe. Skalarprodukt und Orthogonalität.a) Bezüglich des euklidischen

Mehr

Serie 5. ETH Zürich - D-MAVT Lineare Algebra II. Prof. Norbert Hungerbühler

Serie 5. ETH Zürich - D-MAVT Lineare Algebra II. Prof. Norbert Hungerbühler Prof. Norbert Hungerbühler Serie 5 ETH Zürich - D-MAVT Lineare Algebra II. a) Die Abbildung V n R n, v [v] B, die jedem Vektor seinen Koordinatenvektor bezüglich einer Basis B zuordnet, ist linear. Sei

Mehr

Lösungen Serie 5. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler

Lösungen Serie 5. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler D-MAVT Lineare Algebra II S 8 Prof. Dr. N. Hungerbühler Lösungen Serie 5. Die Abbildung V n R n, v [v] B, die jedem Vektor seinen Koordinatenvektor bezüglich einer Basis B zuordnet, ist linear. Sei B =

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmann W Wu Herbstsemester 6 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie Aufgabe Das Kreuzprodukt als lineare Abbildung Oft findet man

Mehr

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT

Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Winter 6 Lösungen zur Prüfung Lineare Algebra I/II für D-MAVT. Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in das entsprechende

Mehr

D-MATH Lineare Algebra und Numerische Mathematik HS 2013 Prof. R. Hiptmair. Serie 9

D-MATH Lineare Algebra und Numerische Mathematik HS 2013 Prof. R. Hiptmair. Serie 9 D-MATH Lineare Algebra und Numerische Mathematik HS 213 Prof. R. Hiptmair Serie 9 Die Aufgaben 1. bis 6. behandeln lineare Abbildungen und deren Matrixdarstellungen bezüglich geeigneter Basen. Die Theorie

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru T. Welti

Lineare Algebra für D-ITET, D-MATL, RW. Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru T. Welti Dr. V. Gradinaru T. Welti Herbstsemester 27 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Serie Aufgabe. Multiple Choice: Online abzugeben..a) Bezüglich des euklidischen Skalarprodukts in R

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG. Winter 2016 Typ B

Lineare Algebra und Numerische Mathematik für D-BAUG. Winter 2016 Typ B R. Käppeli T. Welti F. Weber Herbstsemester 2015 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Prüfung Winter 2016 Typ B Name a a Note Vorname Leginummer Datum 03.02.2017 1 2 3

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 12 Aufgabe 121 Matrixpotenzen und Eigenwerte Diese Aufgabe ist

Mehr

Lösung zu Serie [Aufgabe] Zeige: Das folgende Diagramm kommutiert insgesamt genau dann, wenn alle 6 Teilquadrate kommutieren.

Lösung zu Serie [Aufgabe] Zeige: Das folgende Diagramm kommutiert insgesamt genau dann, wenn alle 6 Teilquadrate kommutieren. Lineare Algebra D-MATH, HS 2014 Prof. Richard Pink Lösung zu Serie 8 1. [Aufgabe] Zeige: Das folgende Diagramm kommutiert insgesamt genau dann, wenn alle 6 Teilquadrate kommutieren. a 1 A 1 a 2 A 2 a 3

Mehr

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41. : x i R, 1 i n x n

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41. : x i R, 1 i n x n Kapitel Vektorräume Josef Leydold Mathematik für VW WS 07/8 Vektorräume / 4 Reeller Vektorraum Die Menge aller Vektoren x mit n Komponenten bezeichnen wir mit x R n =. : x i R, i n x n und wird als n-dimensionaler

Mehr

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41

Kapitel 3. Vektorräume. Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41 Kapitel 3 Vektorräume Josef Leydold Mathematik für VW WS 2017/18 3 Vektorräume 1 / 41 Reeller Vektorraum Die Menge aller Vektoren x mit n Komponenten bezeichnen wir mit R n = x 1. x n : x i R, 1 i n und

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG. Sommer 2016

Lineare Algebra und Numerische Mathematik für D-BAUG. Sommer 2016 P. Grohs T. Welti F. Weber Herbstsemester 2015 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Name a a Note Vorname Leginummer Datum 19.08.2016 1 2 3 4 5 6 Total 7P 11P 10P 11P

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmann W Wu Herbstsemester Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie Aufgabe Beispiel einer Koordinatentransformation Gegeben seien zwei

Mehr

Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT

Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Sommer 4 Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT. [ Punkte] Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmann W Wu Herbstsemester Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 9 Aufgabe 9 Finden Sie eine Basis des Lösungsraums L R 5 des linearen

Mehr

Probeprüfung Lineare Algebra I/II für D-MAVT

Probeprüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Frühling 018 Probeprüfung Lineare Algebra I/II für D-MAVT Die Prüfung dauert 10 Minuten. Sie dient der Selbstevaluation. Die Musterlösungen folgen. Die Multiple Choice

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG. Serie 13

Lineare Algebra und Numerische Mathematik für D-BAUG. Serie 13 P. Grohs T. Welti F. Weber Herbstsemester 2015 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Serie 13 Diese letzte Serie des Semesters befasst sich noch einmal mit wichtigen Themen

Mehr

Für die Matrikelnummer M = Dann sind durch A =

Für die Matrikelnummer M = Dann sind durch A = Musterlösung zum. Blatt 9. Aufgabe: Gegeben seien m 3 + 2 m m 3 m 2 m 4 + m 7 m 3 A := m m 2 m 2 + 2 m 2 m 4 + m 5 und b := m 6 m 4 + a) Finden Sie eine Lösung x R 7 für die Gleichung Ax =. b) Finden Sie

Mehr

LINEARE ALGEBRA II. FÜR PHYSIKER

LINEARE ALGEBRA II. FÜR PHYSIKER LINEARE ALGEBRA II FÜR PHYSIKER BÁLINT FARKAS 4 Rechnen mit Matrizen In diesem Kapitel werden wir zunächst die so genannten elementaren Umformungen studieren, die es ermöglichen eine Matrix auf besonders

Mehr

Herbstsemester a b 1. c d. e 0 f B = (iii) e = 0 (iv) ) 2 + ( 1. Das Skalarprodukt des ersten und zweiten Spaltenvektors muss null ergeben:

Herbstsemester a b 1. c d. e 0 f B = (iii) e = 0 (iv) ) 2 + ( 1. Das Skalarprodukt des ersten und zweiten Spaltenvektors muss null ergeben: Dr V Gradinaru D Devaud Herbstsemester 5 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 5 Aufgabe 5 Multiple Choice: Online abzugeben Gegeben sei die orthogonale Matrix

Mehr

Musterlösung 7 Lineare Algebra für die Naturwissenschaften

Musterlösung 7 Lineare Algebra für die Naturwissenschaften Musterlösung 7 Lineare Algebra für die Naturwissenschaften Aufgabe Entscheiden Sie, ob folgende Abbildungen linear sind, und geben sie für die linearen Abbildungen eine Matrixdarstellung (in einer Basis

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

Herbstsemester ist es.

Herbstsemester ist es. Dr V Gradinaru K Imeri Herbstsemester 8 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 4 Aufgabe 4 Multiple Choice: Online abzugeben 4a) Gegeben seien: Dann gilt: (i)

Mehr

1. Übungsblatt: Lineare Algebra I Abgabe: 1. November 2001 in den Übungsgruppen

1. Übungsblatt: Lineare Algebra I Abgabe: 1. November 2001 in den Übungsgruppen Hannover, den 25. Oktober 200. Übungsblatt: Lineare Algebra I Abgabe:. November 200 in den Übungsgruppen (je 3 Punkte) Beweisen oder widerlegen Sie die folgenden Aussagen über Mengen. a) A (B C) = (A B)

Mehr

32 2 Lineare Algebra

32 2 Lineare Algebra 3 Lineare Algebra Definition i Die Vektoren a,, a k R n, k N, heißen linear unabhängig genau dann, wenn für alle λ,, λ k R aus der Eigenschaft λ i a i λ a + + λ k a k folgt λ λ k Anderenfalls heißen die

Mehr

Klausurvorbereitungsblatt Lineare Algebra

Klausurvorbereitungsblatt Lineare Algebra Klausurvorbereitungsblatt Lineare Algebra Sommersemester 25 Aufgabe 2 2 Sei A 3 3 8 2 4 3 R4 5. 5 2 a) Bestimmen Sie die Lösungsmenge des linearen Gleichungssystems Ax b) Ist Ax b mit b lösbar? (Begründen

Mehr

Lineare Algebra. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra 7. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching November 9, 27 Erinnerung 2 Vektoräume Sei V ein Vektorraum, U V, U {}. U hiesst Untervektorraum, Unterraum,

Mehr

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $ Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Wintersemester 2014/15 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax

Mehr

Übungen zur Linearen Algebra 1

Übungen zur Linearen Algebra 1 Übungen zur Linearen Algebra 1 Wintersemester 2014/201 Universität Heidelberg - IWR Prof. Dr. Guido Kanschat Dr. Dörte Beigel Philipp Siehr Blatt 10 Abgabetermin: Freitag, 16.01.201, 11 Uhr Lösungen der

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 6

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 6 6. (Herbst, Thema, Aufgabe 4) Der Vektorraum R 4 sei mit dem Standard Skalarprodukt versehen. Der Unterraum

Mehr

3. Übungsblatt zur Lineare Algebra I für Physiker

3. Übungsblatt zur Lineare Algebra I für Physiker Fachbereich Mathematik Prof. Dr. Mirjam Dür Dipl. Math. Stefan Bundfuss. Übungsblatt zur Lineare Algebra I für Physiker WS 5/6 6. Dezember 5 Gruppenübung Aufgabe G (Basis und Erzeugendensystem) Betrachte

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Sommersemester 2010 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax = b

Mehr

Dr. V. Gradinaru D-ITET, D-MATL, RW Winter Basisprüfung Lineare Algebra Total 6 P 6 P 6 P 6 P 6 P 6 P 36 P

Dr. V. Gradinaru D-ITET, D-MATL, RW Winter Basisprüfung Lineare Algebra Total 6 P 6 P 6 P 6 P 6 P 6 P 36 P Dr. V. Gradinaru D-ITET, D-MATL, RW Winter 2018 Basisprüfung Lineare Algebra Name Vorname Studiengang Leginummer Datum Montag, 5. Februar 2018 Note 1 2 3 4 5 6 Total 6 P 6 P 6 P 6 P 6 P 6 P 36 P Wichtige

Mehr

Grundlagen der Mathematik 1

Grundlagen der Mathematik 1 Fachbereich Mathematik Sommersemester 2010, Blatt 14 Thomas Markwig Stefan Steidel Grundlagen der Mathematik 1 Die Lösungen müssen nicht eingereicht werden und werden auch nicht korrigiert. Die Aufgaben

Mehr

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 6

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 6 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 6): Lineare Algebra und analytische Geometrie 6 6. (Herbst, Thema, Aufgabe 4) Der Vektorraum R 4 sei mit dem Standard Skalarprodukt versehen. Der Unterraum

Mehr

(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt.

(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt. () In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt. a) Es seien A und B beliebige n n-matrizen mit Einträgen in einem Körper K.

Mehr

Nachklausur (Modulprüfung) zum Lehrerweiterbildungskurs 6 Lineare Algebra/Analytische Geometrie I WiSe 2016/17

Nachklausur (Modulprüfung) zum Lehrerweiterbildungskurs 6 Lineare Algebra/Analytische Geometrie I WiSe 2016/17 Name, Vorname Matrikel-Nr. Aufg.1 Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Nachklausur (Modulprüfung) zum Lehrerweiterbildungskurs 6 Lineare Algebra/Analytische Geometrie I WiSe 2016/17 Bearbeiten

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R. Käppeli L. Herrmann W. Wu Herbstsemester 16 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Prüfung Name a a Note Vorname Leginummer Datum 18.8.17 1 3 4 Total 1P 1P 1P 1P 1P P

Mehr

Lösungsskizzen der Klausur zur Linearen Algebra im Herbst 2015

Lösungsskizzen der Klausur zur Linearen Algebra im Herbst 2015 sskizzen der Klausur zur Linearen Algebra im Herbst 5 Aufgabe I. Es sei (G, ) eine Gruppe mit neutralem Element e und M {x G x x e}. Zeigen Sie: (a) Ist G kommutativ, so ist M eine Untergruppe von G. (b)

Mehr

auf C[; ] sind linear III Formale Dierentiation und Integration: Die Abbildungen und a + a t + + a n t n a + a t + + na n t n a + a t + + a n t n an a

auf C[; ] sind linear III Formale Dierentiation und Integration: Die Abbildungen und a + a t + + a n t n a + a t + + na n t n a + a t + + a n t n an a x LINEARE ABBILDUNGEN Denition: Seien V; V Vektorraume Eine Abbildung f heit linear, falls (i) (ii) f(x + y) f(x) + f(y) (x; y V ) f(x) f(x) ( R; x V ) Bemerkungen: I (i) und (ii) oben sind aquivalent

Mehr

Technische Universität Berlin Fakultät II Institut für Mathematik WS 05/06 Prof. Dr. Michael Scheutzow 20. Februar 2006

Technische Universität Berlin Fakultät II Institut für Mathematik WS 05/06 Prof. Dr. Michael Scheutzow 20. Februar 2006 Technische Universität Berlin Fakultät II Institut für Mathematik WS 5/6 Prof. Dr. Michael Scheutzow 2. Februar 26 Februar Klausur Lineare Algebra I Name:.............................. Vorname:..............................

Mehr

Lösung Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung

Lösung Serie 11: Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung D-MATH/D-PHYS Lineare Algebra I HS 06 Dr. Meike Akveld Lösung Serie : Lineare Gleichungssysteme, Gauss-Elimination & LR-Zerlegung. Um zu zeigen, dass es sich bei den gegebenen Vektoren um Basen handelt,

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,

Mehr

9 Eigenwerte und Eigenvektoren

9 Eigenwerte und Eigenvektoren 92 9 Eigenwerte und Eigenvektoren Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R n nach R n durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl

Mehr

9 Eigenwerte und Eigenvektoren

9 Eigenwerte und Eigenvektoren 92 9 Eigenwerte und Eigenvektoren Wir haben im vorhergehenden Kapitel gesehen, dass eine lineare Abbildung von R n nach R n durch verschiedene Darstellungsmatrizen beschrieben werden kann (je nach Wahl

Mehr

Lösung zum 2. Übungsblatt

Lösung zum 2. Übungsblatt MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Prof. Dr. D. Rost SoSe 25 Blatt 2 3.5.25 Lösung zum 2. Übungsblatt. Gegeben seien die Vektoren v = 2, v 2 =, v 3 = in R 3 3 2 und ( ) ( ) w =, w 2 2 =, w

Mehr

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2016): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 6): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 8. Aufgabe 8.1. Dr. V. Gradinaru D. Devaud A. Hiltebrand. Herbstsemester 2014

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 8. Aufgabe 8.1. Dr. V. Gradinaru D. Devaud A. Hiltebrand. Herbstsemester 2014 Dr. V. Gradinaru D. Devaud A. Hiltebrand Herbstsemester 014 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 8 Aufgabe 8.1 8.1a) Sei die QR-Zerlegung der m n Matrix A (m

Mehr

5 Lineare Algebra (Teil 3): Skalarprodukt

5 Lineare Algebra (Teil 3): Skalarprodukt 5 Lineare Algebra (Teil 3): Skalarprodukt Der Begriff der linearen Abhängigkeit ermöglicht die Definition, wann zwei Vektoren parallel sind und wann drei Vektoren in einer Ebene liegen. Daß aber reale

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 15. April 2018 1/46 Die Dimension eines Vektorraums Satz 2.27 (Basisergänzungssatz) Sei V ein Vektorraum über einem Körper K. Weiter seien v 1,...,

Mehr

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung Kapitel 3 Lineare Abbildungen Lineare Abbildungen sind eine natürliche Klasse von Abbildungen zwischen zwei Vektorräumen, denn sie vertragen sich per definitionem mit der Struktur linearer Räume Viele

Mehr

Lineare Algebra. 1 Lineare Abbildungen

Lineare Algebra. 1 Lineare Abbildungen Lineare Algebra Die lineare Algebra ist ein Teilgebiet der Mathematik, welches u. A. zur Beschreibung geometrischer Abbildungen und diverser Prozesse und zum Lösen linearer Gleichungssysteme mit Hilfe

Mehr

Lösbarkeit linearer Gleichungssysteme

Lösbarkeit linearer Gleichungssysteme Lösbarkeit linearer Gleichungssysteme Lineares Gleichungssystem: Ax b, A R m n, x R n, b R m L R m R n Lx Ax Bemerkung b 0 R m Das Gleichungssystem heißt homogen a A0 0 Das LGS ist stets lösbar b Wenn

Mehr

Aufgaben zur linearen Algebra und analytischen Geometrie I

Aufgaben zur linearen Algebra und analytischen Geometrie I Aufgaben zur linearen Algebra und analytischen Geometrie I Es werden folgende Themen behandelt:. Formale und logische Grundlagen 2. Algebraische Grundlagen 3. Vektorräume und LGS 4. Homomorphismen und

Mehr

Lineare Algebra II 11. Übungsblatt

Lineare Algebra II 11. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross 9 / Juni Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Minitest (Bearbeitung innerhalb von Minuten und ohne Benutzung des

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 12. Aufgabe Herbstsemester Dr. V. Gradinaru D. Devaud.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 12. Aufgabe Herbstsemester Dr. V. Gradinaru D. Devaud. Dr. V. Gradinaru D. Devaud Herbstsemester 15 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie 1 Aufgabe 1.1 1.1a) Sei A eine n n-matrix. Das Gleichungssystem Ax = b sei

Mehr

Lineare Abbildungen (Teschl/Teschl 10.3, 11.2)

Lineare Abbildungen (Teschl/Teschl 10.3, 11.2) Lineare Abbildungen (Teschl/Teschl.3,.2 Eine lineare Abbildung ist eine Abbildung zwischen zwei Vektorräumen, die mit den Vektoroperationen Addition und Multiplikation mit Skalaren verträglich ist. Formal:

Mehr

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen

1. Übungsblatt: Lineare Algebra II Abgabe: 8./ in den Übungsgruppen Hannover, den 7. Februar 2002 Aufgabe. Übungsblatt: Lineare Algebra II Abgabe: 8./9.4.2002 in den Übungsgruppen (2, 2, 3 Punkte) Der Vektorraum V = C[, ] sei mit dem üblichen Skalarprodukt f, g = f(t)g(t)

Mehr

8 Euklidische und unitäre Vektorräume. Skalarprodukte Orthogonalität Matrizen

8 Euklidische und unitäre Vektorräume. Skalarprodukte Orthogonalität Matrizen 8 Euklidische und unitäre Vektorräume Skalarprodukte Orthogonalität Matrizen 8 Euklidische und unitäre Vektorräume Skalarprodukte Orthogonalität Matrizen In diesem Kapitel werden nur endlich dimensionale

Mehr

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (WS 2015/16): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (WS 5/6): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

Übungen zur Linearen Algebra 1 Probeklausur Musterlösung: Aufgabe A

Übungen zur Linearen Algebra 1 Probeklausur Musterlösung: Aufgabe A Musterlösung: Aufgabe A Wir betrachten die Matrix A = 1 4 1 1 3 1 4 5 2 M(3 3, Q) und die dazugehörige Abbildung f : Q 3 Q 3 ; v A v. Für j = 1, 2, 3 bezeichne v j Q 3 die j-te Spalte von A. Teilaufgabe

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmann W Wu Herbstsemester 26 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 2 Aufgabe 2 Welche der folgenden Aussagen sind korrekt? (i) Jedes

Mehr

T := {σ S 4 σ 3 = Id}. a) Es seien V ein Vektorraum und Φ ein Endomorphismus von V, sodass

T := {σ S 4 σ 3 = Id}. a) Es seien V ein Vektorraum und Φ ein Endomorphismus von V, sodass I. a) Es sei (G, ) eine abelsche Gruppe mit neutralem Element e G. Zeigen Sie, dass U := {g G g 3 = e G } eine Untergruppe von G ist. b) In der symmetrischen Gruppe S 4 definieren wir analog zu a) die

Mehr

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau

4.3 Bilinearformen. 312 LinAlg II Version Juni 2006 c Rudolf Scharlau 312 LinAlg II Version 0 20. Juni 2006 c Rudolf Scharlau 4.3 Bilinearformen Bilinearformen wurden bereits im Abschnitt 2.8 eingeführt; siehe die Definition 2.8.1. Die dort behandelten Skalarprodukte sind

Mehr

Aufgabenpool. Woche 1 Aussagenlogik. Woche 2 Mengen und Funktionen. Lineare Algebra und Geometrie I SS 2015

Aufgabenpool. Woche 1 Aussagenlogik. Woche 2 Mengen und Funktionen. Lineare Algebra und Geometrie I SS 2015 Lineare Algebra und Geometrie I SS 05 Woche Aussagenlogik Aufgabenpool Aufgabe #.5 Die Aussage A sei 5 > 9, die Aussage B sei Gerhard Schröder ist eine Frau. Vervollständigen Sie die folgende Wahrheitstabelle.

Mehr

4 Lineare Abbildungen und Matrizen

4 Lineare Abbildungen und Matrizen Mathematik I für inf/swt, Wintersemester /, Seite 8 4 Lineare Abbildungen und Matrizen 4 Kern und Injektivität 4 Definition: Sei : V W linear Kern : {v V : v } ist linearer eilraum von V Ü68 und heißt

Mehr

Aufgaben zur Vorlesung: Lineare Algebra und analytische Geometrie I

Aufgaben zur Vorlesung: Lineare Algebra und analytische Geometrie I Institut für Mathematik Blatt Prof. Dr. B. Martin, H. Süß Abgabe: 0.4. Aufgaben zur Vorlesung: Lineare Algebra und analytische Geometrie I Aufgabe : 2 Punkte Stellen Sie die Gleichung der Ebene auf, in

Mehr

42 Orthogonalität Motivation Definition: Orthogonalität Beispiel

42 Orthogonalität Motivation Definition: Orthogonalität Beispiel 4 Orthogonalität 4. Motivation Im euklidischen Raum ist das euklidische Produkt zweier Vektoren u, v IR n gleich, wenn die Vektoren orthogonal zueinander sind. Für beliebige Vektoren lässt sich sogar der

Mehr

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden?

7. Wie lautet die Inverse der Verkettung zweier linearer Abbildungen? 9. Wie kann die Matrixdarstellung einer linearen Abbildung aufgestellt werden? Kapitel Lineare Abbildungen Verständnisfragen Sachfragen Was ist eine lineare Abbildung? Erläutern Sie den Zusammenhang zwischen Unterräumen, linearer Unabhängigkeit und linearen Abbildungen! 3 Was ist

Mehr

2.2 Kern und Bild; Basiswechsel

2.2 Kern und Bild; Basiswechsel 22 Kern und Bild; Basiswechsel 22 Kern und Bild; Basiswechsel 35 Jede lineare Abbildung definiert charakteristische Unterräume, sowohl im Ausgangsraum als auch im Bildraum 22 Satz Sei L: V W eine lineare

Mehr

Fachhochschule Nordwestschweiz (FHNW) Hochschule Technik Lösungen Serie 10 (Lineare Abbildungen)

Fachhochschule Nordwestschweiz (FHNW) Hochschule Technik Lösungen Serie 10 (Lineare Abbildungen) Fachhochschule Nordwestschweiz (FHNW) Hochschule Technik Lösungen Serie (Lineare Abbildungen) Dozent/in: R. Burkhardt Büro:.6 Klasse: Semester: Datum: HS 8/9. Aufgabe Zeige, dass die folgenden Abbildungen

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

8 Lineare Abbildungen und Matrizen

8 Lineare Abbildungen und Matrizen 8 Lineare Abbildungen und Matrizen 8.1 Lineare Abbildungen Wir beschäftigen uns nun mit Abbildungen zwischen linearen Räumen. Von besonderem Interesse sind Abbildungen, die die Struktur der linearen Räume

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P. Grohs T. Welti F. Weber Herbstsemester 215 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 5 Aufgabe 5.1 Kommutierende Matrizen In der Vorlesung und vergangenen

Mehr

Mathematik I. Vorlesung 12. Lineare Abbildungen

Mathematik I. Vorlesung 12. Lineare Abbildungen Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 12 Lineare Abbildungen Definition 12.1. Es sei K ein Körper und es seien V und W K-Vektorräume. Eine Abbildung heißt lineare Abbildung,

Mehr

Hauptachsentransformation: Eigenwerte und Eigenvektoren

Hauptachsentransformation: Eigenwerte und Eigenvektoren Hauptachsentransformation: Eigenwerte und Eigenvektoren die bisherigen Betrachtungen beziehen sich im Wesentlichen auf die Standardbasis des R n Nun soll aufgezeigt werden, wie man sich von dieser Einschränkung

Mehr

Vektorräume und Lineare Abbildungen

Vektorräume und Lineare Abbildungen Vektorräume und Lineare Abbildungen Patricia Doll, Selmar Binder, Lukas Bischoff, Claude Denier ETHZ D-MATL SS 07 11.04.2007 1 Vektorräume 1.1 Definition des Vektorraumes (VR) 1.1.1 Grundoperationen Um

Mehr

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5

Klausurenkurs zum Staatsexamen (SS 2015): Lineare Algebra und analytische Geometrie 5 Dr. Erwin Schörner Klausurenkurs zum Staatsexamen (SS 5): Lineare Algebra und analytische Geometrie 5 5. (Herbst 9, Thema 3, Aufgabe ) Betrachtet werde die Matrix A := 3 4 5 5 7 7 9 und die lineare Abbildung

Mehr

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2,

a b Q = b a 0 ) existiert ein Element p Q, so dass gilt: q 1 q 2 = 2 b 1 b 2 a 1 b 2 a 2 b 1 a 1 a 2 b 1 b 2 a 1 b 2 a 2 b 1 a b p = 1 det(q) C 2 2, Aufgabe I Es sei Q die folgende Teilmenge von C 2 2 : { ( ) a b Q a, b C b a Hier bezeichnet der Querstrich die komplexe Konjugation Zeigen Sie: (a) Mit den üblichen Verknüpfungen + und für Matrizen ist

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 2015/16

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 2015/16 Name, Vorname Matrikel-Nr. Aufg. Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 25/6 Bearbeiten Sie bitte

Mehr

β 1 x :=., und b :=. K n β m

β 1 x :=., und b :=. K n β m 44 Lineare Gleichungssysteme, Notations Betrachte das lineare Gleichungssystem ( ) Sei A = (α ij ) i=,,m j=,n α x + α x + + α n x n = β α x + α x + + α n x n = β α m x + α m x + + α mn x n = β m die Koeffizientenmatrix

Mehr

12 Lineare Algebra - Übersicht. Themen: Unterräume Lineare Abbbildungen Gauß-Algorithmus Eigenwerte und Normalformen

12 Lineare Algebra - Übersicht. Themen: Unterräume Lineare Abbbildungen Gauß-Algorithmus Eigenwerte und Normalformen 12 Lineare Algebra - Übersicht Themen: Unterräume Lineare Abbbildungen Gauß-Algorithmus Eigenwerte und Normalformen Unterräume Sei X ein Vektorraum über Ã. Eine Teilmenge M X heißt Unterraum von X, wenn

Mehr

Höhere Mathematik I. Variante B

Höhere Mathematik I. Variante B Lehrstuhl II für Mathematik Prof. Dr. E. Triesch Höhere Mathematik I SoSe Variante B Zugelassene Hilfsmittel: Als Hilfsmittel zugelassen sind zehn handbeschriebene DinA-Blätter (Vorder- und Rückseite beschriftet,

Mehr

Kapitel 3 Lineare Algebra

Kapitel 3 Lineare Algebra Kapitel 3 Lineare Algebra Inhaltsverzeichnis VEKTOREN... 3 VEKTORRÄUME... 3 LINEARE UNABHÄNGIGKEIT UND BASEN... 4 MATRIZEN... 6 RECHNEN MIT MATRIZEN... 6 INVERTIERBARE MATRIZEN... 6 RANG EINER MATRIX UND

Mehr

Lineare Algebra und Numerische Mathematik D-BAUG Sommer 2014 Prof. R. Hiptmair. Name a a Note Vorname Studiengang Leginummer Datum

Lineare Algebra und Numerische Mathematik D-BAUG Sommer 2014 Prof. R. Hiptmair. Name a a Note Vorname Studiengang Leginummer Datum Prüfung Lineare Algebra und Numerische Mathematik D-BAUG Sommer 2014 Prof. R. Hiptmair Name a a Note Vorname Studiengang Leginummer Datum 13.08.2014 1 2 3 4 Total 12P 24P 26P 22P 84P Bitte füllen Sie zuerst

Mehr

Lineare Algebra für Ingenieure

Lineare Algebra für Ingenieure TECHNISCHE UNIVERSITÄT BERLIN SS 4 Fakultät II - Mathematik J Liesen/F Lutz/R Seiler Lineare Algebra für Ingenieure Lösungen zur Juli-Klausur Stand: 4 September 4 Rechenteil Aufgabe (8 Punkte Berechnen

Mehr

Lineare Algebra für PhysikerInnen Teil 2

Lineare Algebra für PhysikerInnen Teil 2 Übungen Lineare Algebra für PhysikerInnen Teil WS 9/ M. Hoffmann-Ostenhof 5. (a) Begründen Sie warum der Vektorraum P (R) nicht endlich dimensional ist und warum dim P n (R) = n + ist. (b) Zeigen Sie,

Mehr

Tutorium: Analysis und Lineare Algebra

Tutorium: Analysis und Lineare Algebra Tutorium: Analysis und Lineare Algebra Vorbereitung der Bonusklausur am 14.5.218 (Teil 2) 9. Mai 218 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 218 Steven Köhler 9. Mai 218 3 c 218

Mehr

7.3 Unitäre Operatoren

7.3 Unitäre Operatoren Wir können jeden Operator T wie folgt schreiben: Dabei gilt T = 1 2 (T + T ) + i( 1 2 i (T T )) (T + T ) = T + T sowie ( 1 2 i (T T )) = 1 2 i (T T) = 1 2 i (T T ). Wir können T also in zwei lineare Operatoren

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN. Basisdarstellung und das Skalarprodukt (Teil 2)

TECHNISCHE UNIVERSITÄT MÜNCHEN. Basisdarstellung und das Skalarprodukt (Teil 2) TECHNISCHE UNIERSITÄT MÜNCHEN Zentrum Mathematik Prof. Dr. Friedrich Roesler Ralf Franken, PhD Max Lein Lineare Algebra 1 WS 006/07 en Blatt 11 15.01.007 Basisdarstellung und das Skalarprodukt (Teil )

Mehr

Musterlösung Serie 8

Musterlösung Serie 8 D-MATH Lineare Algebra I HS 018 Prof. Richard Pink Musterlösung Serie 8 Dimension, Direkte Summe & Komplemente 1. Zeige: Für jedes Erzeugendensystem E eines Vektorraums V und jede linear unabhängige Teilmenge

Mehr

Lineare Algebra I Zusammenfassung

Lineare Algebra I Zusammenfassung Prof. Dr. Urs Hartl WiSe 10/11 Lineare Algebra I Zusammenfassung 1 Vektorräume 1.1 Mengen und Abbildungen injektive, surjektive, bijektive Abbildungen 1.2 Gruppen 1.3 Körper 1.4 Vektorräume Definition

Mehr

1. Übungsblatt: Lineare Algebra II Abgabe: 24./ in den Übungsgruppen

1. Übungsblatt: Lineare Algebra II Abgabe: 24./ in den Übungsgruppen Hannover, den 0. April 2006. Übungsblatt: Lineare Algebra II Abgabe: 24./25.4.2006 in den Übungsgruppen ( ) 2 5 a) Zeigen Sie, dass A = und B = 2 ( 7 6 invertierbare Matrix T an mit T AT = B. b) Zeigen

Mehr

Diagonalisierbarkeit symmetrischer Matrizen

Diagonalisierbarkeit symmetrischer Matrizen ¾ Diagonalisierbarkeit symmetrischer Matrizen a) Eigenwerte und Eigenvektoren Die Matrix einer linearen Abbildung ³: Î Î bezüglich einer Basis ( Ò ) ist genau dann eine Diagonalmatrix wenn jeder der Basisvektoren

Mehr