Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya"

Transkript

1 Inverse Matrix -E Ma Lubov Vassilevskaya

2 Inverse Matrix: Beispiel Um die inverse der Matrix A mit Gauß-Jordan-Algorithmus zu bestimmen, wird eine Folge von elementaren Zeilenoperationen durchgeführt. Aus der Matrix A und der Einheitsmatrix E wird eine sog. Blockmatrix A E gebildet Z 2 Z 3 Z Die linke Seite der Blockmatrix, die Matrix A, wird durch eine Folge von elementaren Zeilenoperationen in die Einheitsmatrix umgeformt. 0 0 * * * 0 0 * * * 0 0 * * * 6- Ma Lubov Vassilevskaya

3 Inverse Matrix: Beispiel Erzeugung der Nullen der. Spalte: für die Null der 2. Zeile addieren wir die. und die 2. Zeile, die Null der 3. Zeile erhalten wir durch Abziehen der. von der 3. Zeile und 3. Zeilen werden vertauscht für die beim Element 2, Von der 3. Zeile wird das 3-fache der 2. Zeile abgezogen: Die 3. Zeile wird durch 5 geteilt: /5 /5 3 /5 6-2 Ma Lubov Vassilevskaya

4 Inverse Matrix: Beispiel 5 Zur 2. Zeile wird die 3. Zeile addiert, und von der. Zeile wird das 2-fache der 3. Zeile abgezogen /5 2/5 6 /5 0 0 /5 /5 2/ /5 /5 3/ , A = Ma Lubov Vassilevskaya

5 Inverse Matrix: Allgemeine Formel Zu jeder regulären n, n-matrix gibt es genau eine inverse Matrix A = det A A A2... An A 2 A A n 2 A n A 2 n... A n n A i k ist das Algebraische Komplement von a i k in A: Dabei ist U i k A i k = i +k U i k die Unterdeterminante n -ter Ordnung. Die Verwendung von Determinanten eröffnet eine weitere Möglichkeit, für eine gebene Matrix die zugehörige inverse Matrix zu berechnen. 7- Ma Lubov Vassilevskaya

6 Inverse Matrix: Allgemeine Formel a a 2 a 3 a 2 a 22 a 23 a 3 a 32 a 33, det A A A 2 A 3 A 2 A 22 A 32 A 3 A 23 A 33 = A = + U a a a 32 a 33, A 2 = 2+ U 2 = a a 2 3 a 32 a 33, = A 3 = 3+ U a a a 22 a 23, A 2 = +2 U 2 = a a 2 23 a 3 a 33, A 22 = 2+2 U 22 = a a 3 a 3 a 33, A 32 = 3+2 U 3 2 = a a 3 a 2 a 23, A 3 = +3 U 3 = a 2 a 22 a 3 a 32, A 23 = 2+3 U 23 = a a 2 a 3 a 32, A 33 = 3+3 U 33 = a a 2 a 2 a Ma Lubov Vassilevskaya

7 Inverse Matrix: Beispiel 2 In diesem Beispiel wird die Inverse der Matrix A bestimmt: , A = det A A A 2 A 3 A 2 A 22 A 32 A 3 A 23 A 33 = A = + U a a a 32 a 33 = = 5 A 2 = 2+ U 2 = a 2 a 3 a 32 a 33 = 4 5 = 9 A 3 = 3+ U 3 = a 2 a 3 a 22 a 23 = = 37 A 2 = +2 U 2 = a 2 a 23 a 3 a 3 = 3 3 = 0 A 22 = 2+2 U 2 2 = a a 3 a 3 a 33 = 2 4 = Ma Lubov Vassilevskaya

8 Inverse Matrix: Beispiel A 32 = 3+2 U 3 2 = a a 3 a 2 a 23 = = 6 A 3 = +3 U 3= a a 2 22 a 3 a 32 = = 5 A 23 = 2+3 U 23 = a a 2 a 3 a 32 = 2 5 = 9 A 33 = 3+3 U 33 = a a 2 a 2 a 22 = = 7 det 0, A = Ma Lubov Vassilevskaya

9 Inverse Matrix: Aufgaben 5, 6 Bestimmen Sie die inverse Matrix folgender Matrizen: Aufgabe 5: a 0 0, B = 0 0, C = 0 2 0, D = 0 b c Aufgabe 6: , B = 2 0 2, C = , D = 0 0, F = 0 3 0, G = Ma Lubov Vassilevskaya

10 Inverse Matrix: Lösung , det, 0 0 A = B = , det B =, 0 0 B = C = , det C = 6, C = D = a b c, det D = a b c, D = = 0 0 a 0 0 b 0 0 c Ma Lubov Vassilevskaya

11 Inverse einer diagonalen Matrix a a a 33, det a a 22 a 33, a a 22 0 a 33 Hier kann man die Form der inversen Matrix gut verstehen. Bestimmt man, z.b., die inverse Matrix mit Hilfe des Gaußschen Algorithmus, so wird jede Zeile der Matrix A E durch das entsprechende Diagonalelement dividiert. Noch direkter sieht man natürlich, dass das Matrixprodukt der beiden obigen Matrizen die Einheitsmatrix ergibt. 9-3 Ma Lubov Vassilevskaya

12 Inverse Matrix: Lösung , det 6, A = B = , det B = 3, B = C = 0 2 0, det C = 2, C = = D = 0, det D = 0 Z = 2Z 3 Die Inverse der Matrix D existiert nicht, die Zeilen sind nicht linear unabhängig, det D = Ma Lubov Vassilevskaya

13 Inverse Matrix: Lösung 6 F = 0 3 0, det F = 2, F = G = , det G = 32, G = Ma Lubov Vassilevskaya

14 Inverse Matrix: Aufgaben 7, 8 Aufgabe 7: Für welche reelle a ist Matrix M singulär? a M = , b M = 2 6 a 0 0 2a a 2, c M = 2 4 a 0 2 a 0 a a Aufgabe 8: Bestimmen Sie die inverse Matrix folgender Matrizen: , B = Ma Lubov Vassilevskaya

15 Inverse Matrix: Lösung 7 a M = a, det M = 2 a + 22, det M a = = 0 det M = 0 : 2 a + = 0, a = Die Matrix M singulär für a = -. b M = a a 2, det M = 4 a a 2, det M = 0 : 2 4 det M = 0 : a a 2 = 0, a = 0, a 2 = 2 Die Matrix M singulär für a = 0 und a = 2. c M = a 0 2a 0 a a, det M = a a2 + 2 a = aa 2 det M = 0 : a a 2 = 0, a = 0, a 2 = Die Matrix M singulär für a = 0 und a =. 0-2 Ma Lubov Vassilevskaya

16 Inverse Matrix: Lösung , det 8, A = B = , det B = 4, B = Ma Lubov Vassilevskaya

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya

Inverse Matrix. 1-E Ma 1 Lubov Vassilevskaya Inverse Matrix -E Ma Lubov Vassilevskaya Inverse Matrix Eine n-reihige, quadratische Matrix heißt regulär, wenn ihre Determinante einen von Null verschiedenen Wert besitzt. Anderenfalls heißt sie singulär.

Mehr

Rang einer Matrix. 1-E1 Ma 1 Lubov Vassilevskaya

Rang einer Matrix. 1-E1 Ma 1 Lubov Vassilevskaya Rang einer Matrix 1-E1 Ma 1 Lubov Vassilevskaya Unterdeterminante einer nichtquadratischen Matrix M ist eine nichtquadratische 2,3-Matrix: M = 6 2 3 0 5 7 Durch Streichen einer der drei Spalten kann man

Mehr

Determinanten 3. Ordnung. 1-E Ma 1 Lubov Vassilevskaya

Determinanten 3. Ordnung. 1-E Ma 1 Lubov Vassilevskaya Determinanten 3. Ordnung 1-E Ma 1 Lubov Vassilevskaya ) ( Determinanten 3. Ordnung a 11 x 1 + a 12 x 2 + a 13 x 3 c 1 a 21 x 1 + a 22 x 2 + a 23 x 3 c 2 a 31 x 1 + a 32 x 2 + a 33 x 3 c 3 ( a11 a12 a13

Mehr

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.3 Ergänzungen

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.3 Ergänzungen Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 83 Ergänzungen wwwmathethzch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof Dr Erich Walter Farkas http://wwwmathethzch/ farkas

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof Dr Erich Walter Farkas Kapitel 7: Lineare Algebra 73 Ergänzungen Prof Dr Erich Walter Farkas Mathematik I+II, 73 Ergänzungen 1 / 17 1 Reguläre Matrizen Prof Dr

Mehr

Tutorium: Analysis und Lineare Algebra

Tutorium: Analysis und Lineare Algebra Tutorium: Analysis und Lineare Algebra Vorbereitung der Bonusklausur am 14.5.218 (Teil 2) 9. Mai 218 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 218 Steven Köhler 9. Mai 218 3 c 218

Mehr

1 Bestimmung der inversen Matrix

1 Bestimmung der inversen Matrix Inhaltsverzeichnis 1 Bestimmung der inversen Matrix Die inverse Matrix A 1 zu einer Matrix A kann nur bestimmt werden, wenn die Determinante der Matrix A von Null verschieden ist. Im folgenden wird die

Mehr

Wir stellen uns das Ziel, wesentliche Information über. Determinanten haben auch eine geometrische Bedeutung: Volumenbestimmung eines Parallelepipeds

Wir stellen uns das Ziel, wesentliche Information über. Determinanten haben auch eine geometrische Bedeutung: Volumenbestimmung eines Parallelepipeds 39 Determinanten 391 Motivation Wir stellen uns das Ziel, wesentliche Information über die Invertierbarkeit einer n n-matrix das Lösungsverhalten zugehöriger linearer Gleichungssysteme möglichst kompakt

Mehr

Multiplikation von Matrizen

Multiplikation von Matrizen Multiplikation von Matrizen Die Regeln der Multiplikation von Zahlen können nicht direkt auf die Multiplikation von Matrizen übertragen werden. 2-E Ma Lubov Vassilevskaya Multiplikation ccvon Matrizen

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

Matrizen und Determinanten, Aufgaben

Matrizen und Determinanten, Aufgaben Matrizen und Determinanten, Aufgaben Inhaltsverzeichnis 1 Multiplikation von Matrizen 1 11 Lösungen 3 2 Determinanten 6 21 Lösungen 7 3 Inverse Matrix 8 31 Lösungen 9 4 Matrizengleichungen 11 41 Lösungen

Mehr

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Inhaltsverzeichnis Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Auf dieser Seite werden Matrizen und Vektoren fett gedruckt, um sie von Zahlen zu unterscheiden. Betrachtet wird das

Mehr

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten

8. Elemente der linearen Algebra 8.5 Quadratische Matrizen und Determinanten Einheitsmatrix Die quadratische Einheitsmatrix I n M n,n ist definiert durch I n = 1 0 0 0 1 0 0 0 1 (Auf der Hauptdiagonalen stehen Einsen, außerhalb Nullen Durch Ausmultiplizieren sieht man I n A = A

Mehr

Lineare Gleichungssysteme. 1-E Ma 1 Lubov Vassilevskaya

Lineare Gleichungssysteme. 1-E Ma 1 Lubov Vassilevskaya Lineare Gleichungssysteme 1-E Ma 1 Lubov Vassilevskaya Systeme linearer Funktionen und Gleichungen y = a 1 a 2... a n lineare Funktion Funktion ersten Grades,,..., unabhängige Variablen y abhängige Variable

Mehr

a i j (B + C ) j k = n (a i j b j k + a i j b j k ) =

a i j (B + C ) j k = n (a i j b j k + a i j b j k ) = Lösungen Lineare Algebra für Physiker, Serie 2 Abgabe am 25.10.2007 1. Es seien A K m n, B,C K n p und D K p q gegeben. 9 P (a) Beweisen Sie das Distributivgesetz A(B + C ) = A B + AC. (b) Beweisen Sie

Mehr

Basistext Determinanten

Basistext Determinanten Basistext Determinanten Definition In der Linearen Algebra ist die Determinante eine Funktion die einer quadratischen Matrix eine Zahl zuordnet. Die Funktion wird mit det abgekürzt. Die runden Matrixklammern

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg Lineare : Einführung Beispiele linearer a) b) c) 2x 1 3x 2 = 1 x 1 + x 2 =

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

3 Lineare Gleichungen

3 Lineare Gleichungen Aufgabe 3. Man löse die lineare Gleichung a 2 x b 2 a a(b ax) b + b2 a = a, a b nach der Unbekannten x auf und diskutiere die möglichen Fälle. a 2 x b 2 a a(b ax) b + b2 a = a a b a 2 bx b 3 a 2 b + a

Mehr

Lineare Gleichungen mit absoluten Beträgen. 1 E1 Ma 1 Lubov Vassilevskaya

Lineare Gleichungen mit absoluten Beträgen. 1 E1 Ma 1 Lubov Vassilevskaya Lineare Gleichungen mit absoluten Beträgen 1 E1 Ma 1 Lubov Vassilevskaya Lineare Gleichungen mit absoluten Beträgen Gleichungen, bei denen von der Variablen direkt oder indirekt der absolute Betrag angegeben

Mehr

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.2 Determinanten

Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.2 Determinanten Mathematik I Herbstsemester 2014 Kapitel 8: Lineare Algebra 8.2 Determinanten www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung

Kapitel 2: Matrizen. 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung Kapitel 2: Matrizen 2.1 Matrizen 2.2 Determinanten 2.3 Inverse 2.4 Lineare Gleichungssysteme 2.5 Eigenwerte 2.6 Diagonalisierung 2.1 Matrizen M = n = 3 m = 3 n = m quadratisch M ij : Eintrag von M in i-ter

Mehr

A wird in diesem Fall invertierbar oder regulär genannt. Beispiel

A wird in diesem Fall invertierbar oder regulär genannt. Beispiel Inverse Matrizen Definition Sei A eine quadratische Matrix vom yp (n,n) Existiert zu A eine Matrix X gleichen yps mit AX = XA = E (E: (n,n) Einheitsmatrix), so nennt man X die zu A inverse Matrix, oder

Mehr

Rückwärts-Einsetzen. Bei einem linearen Gleichungssystem in oberer Dreiecksform, nacheinander bestimmt werden: r n,n x n = b n. = x n = b n /r n,n

Rückwärts-Einsetzen. Bei einem linearen Gleichungssystem in oberer Dreiecksform, nacheinander bestimmt werden: r n,n x n = b n. = x n = b n /r n,n Rückwärts-Einsetzen Bei einem linearen Gleichungssystem in oberer Dreiecksform, r 1,1 r 1,n x 1 b 1..... =., } 0 {{ r n,n } x n b n R mit det R = r 1,1 r n,n 0 können die Unbekannten x n,..., x 1 nacheinander

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

1 Einführung Gleichungen und 2 Unbekannte Gleichungen und 3 Unbekannte... 4

1 Einführung Gleichungen und 2 Unbekannte Gleichungen und 3 Unbekannte... 4 Wirtschaftswissenschaftliches Zentrum 3 Universität Basel Mathematik 2 Dr Thomas Zehrt Lineare Gleichungssysteme Inhaltsverzeichnis Einführung 2 2 Gleichungen und 2 Unbekannte 2 2 3 Gleichungen und 3 Unbekannte

Mehr

( ) Lineare Gleichungssysteme

( ) Lineare Gleichungssysteme 102 III. LINEARE ALGEBRA Aufgabe 13.37 Berechne die Eigenwerte der folgenden Matrizen: ( ) 1 1 0 1 1 2 0 3 0 0, 2 1 1 1 2 1. 1 1 0 3 Aufgabe 13.38 Überprüfe, ob die folgenden symmetrischen Matrizen positiv

Mehr

Mathematik I Herbstsemester 2018 Kapitel 8: Lineare Algebra 8.2 Determinanten

Mathematik I Herbstsemester 2018 Kapitel 8: Lineare Algebra 8.2 Determinanten Mathematik I Herbstsemester 2018 Kapitel 8: Lineare Algebra 8.2 Determinanten Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/ farkas 1 / 44 8. Lineare Algebra: 2. Determinanten Ein einführendes

Mehr

Kapitel 4. Determinante. Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24

Kapitel 4. Determinante. Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24 Kapitel 4 Determinante Josef Leydold Mathematik für VW WS 2017/18 4 Determinante 1 / 24 Was ist eine Determinante? Wir wollen messen, ob n Vektoren im R n linear abhängig sind bzw. wie weit sie davon entfernt

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R. Käppeli L. Herrmann W. Wu Herbstsemester 2016 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 6 Aufgabe 6.1 Berechnen Sie die Determinanten der beiden

Mehr

Matrizen: Grundbegriffe. 1-E Ma 1 Lubov Vassilevskaya

Matrizen: Grundbegriffe. 1-E Ma 1 Lubov Vassilevskaya Matrizen: Grundbegriffe -E Ma Lubov Vassilevskaya Lineares Gleichungssystem Abb. : Der Schnittpunkt P der beiden Geraden ist die graphische Lösung des linearen Gleichungssystem g : y = x, g 2 : y = 3 x,

Mehr

a 21 a 22 a 21 a 22 = a 11a 22 a 21 a 12. Nun zur Denition und Berechnung von n n-determinanten: ( ) a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 A =

a 21 a 22 a 21 a 22 = a 11a 22 a 21 a 12. Nun zur Denition und Berechnung von n n-determinanten: ( ) a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 A = 3 Determinanten Man bestimmt Determinanten nur von quadratischen Matrizen Wir werden die Berechnung von Determinanten rekursiv durchfuhren, dh wir denieren wie man eine 2 2-Determinante berechnet und fuhren

Mehr

Lösungsskizzen zum Buch Mathematik für Informatiker Kapitel 8 Peter Hartmann

Lösungsskizzen zum Buch Mathematik für Informatiker Kapitel 8 Peter Hartmann 1. Bestimmen Sie jeweils den Rang der folgenden Matrizen: 1 2 5 4 1 2 2 1 1 2 2 1 1 4 1 5 1 2 0 4 4 5 5 7,,,. 1 4 2 4 8 7 2 11 5 8 1 6 1 2 7 6 1 2 1 9 10 1 2 2 5 8 Die Ränge der Matrizen sind der Reihe

Mehr

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2012/13 Hochschule Augsburg Lineare : Einführung Beispiele linearer a) b) c) 2x 1 3x 2 = 1 x 1 +

Mehr

In allen Fällen spielt die 'Determinante' einer Matrix eine zentrale Rolle.

In allen Fällen spielt die 'Determinante' einer Matrix eine zentrale Rolle. Nachschlag:Transposition von Matrizen Sei Explizit: Def: "Transponierte v. A": (tausche Zeilen mit Spalten d.h., spiegle in der Diagonale) m Reihen, n Spalten n Reihen, m Spalten z.b. m=2,n=3: Eigenschaft:

Mehr

4. Übungsblatt zur Mathematik II für Inf, WInf

4. Übungsblatt zur Mathematik II für Inf, WInf Fachbereich Mathematik Prof Dr Streicher Dr Sergiy Nesenenko Pavol Safarik SS 010 11 15 Mai 4 Übungsblatt zur Mathematik II für Inf, WInf Gruppenübung Aufgabe G13 (Basistransformation) ( ) 15 05 Die lineare

Mehr

Lineare Algebra für Ingenieure

Lineare Algebra für Ingenieure TECHNISCHE UNIVERSITÄT BERLIN SS 4 Fakultät II - Mathematik J Liesen/F Lutz/R Seiler Lineare Algebra für Ingenieure Lösungen zur Juli-Klausur Stand: 4 September 4 Rechenteil Aufgabe (8 Punkte Berechnen

Mehr

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema:

a 11 a 12 a 1(m 1) a 1m a n1 a n2 a n(m 1) a nm Matrizen Betrachten wir das nachfolgende Rechteckschema: Matrizen Betrachten wir das nachfolgende Rechteckschema: a 12 a 1(m 1 a 1m a n1 a n2 a n(m 1 a nm Ein solches Schema nennt man (n m-matrix, da es aus n Zeilen und m Spalten besteht Jeder einzelne Eintrag

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 3 und lineare Gleichungssysteme und

Mehr

Tutorium: Diskrete Mathematik. Matrizen

Tutorium: Diskrete Mathematik. Matrizen Tutorium: Diskrete Mathematik Matrizen Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de Definition I Eine Matrix ist eine rechteckige Anordnung (Tabelle) von Elementen, mit denen man in bestimmter

Mehr

B - 8 Gauß - Elimination (1850) Lineare Systeme in zwei Variablen

B - 8 Gauß - Elimination (1850) Lineare Systeme in zwei Variablen B - 8 Die Grundlage dieses Verfahrens ist die Beobachtung, daß für zwei Funktionen f (x) und g(x) eines Vektors x und jeden beliebigen Skalar λ gilt: f (x) = 0 f (x) = 0 g(x) = 0 g(x) λf (x) = 0 } {{ }

Mehr

Serie 8: Online-Test

Serie 8: Online-Test D-MAVT Lineare Algebra I HS 017 Prof Dr N Hungerbühler Serie 8: Online-Test Einsendeschluss: Freitag, der 4 November um 14:00 Uhr Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen

Mehr

Ökonometrische Analyse

Ökonometrische Analyse Institut für Statistik und Ökonometrie, Freie Universität Berlin Ökonometrische Analyse Dieter Nautz, Gunda-Alexandra Detmers Rechenregeln für Matrizen Notation und Matrixeigenschaften: Eine Matrix A der

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Serie 8: Online-Test

Serie 8: Online-Test D-MAVT Lineare Algebra I HS 018 Prof Dr N Hungerbühler Serie 8: Online-Test Schicken Sie Ihre Lösung bis spätestens Freitag, den 3 November um 14:00 Uhr ab Diese Serie besteht nur aus Multiple-Choice-Aufgaben

Mehr

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte

Matrizen. a12 a1. a11. a1n a 21. a 2 j. a 22. a 2n. A = (a i j ) (m, n) = i te Zeile. a i 1. a i 2. a i n. a i j. a m1 a m 2 a m j a m n] j te Spalte Mathematik I Matrizen In diesem Kapitel werden wir lernen was Matrizen sind und wie man mit Matrizen rechnet. Matrizen ermöglichen eine kompakte Darstellungsform vieler mathematischer Strukturen. Zum Darstellung

Mehr

Serie 10: Inverse Matrix und Determinante

Serie 10: Inverse Matrix und Determinante D-ERDW, D-HEST, D-USYS Mathematik I HS 5 Dr Ana Cannas Serie 0: Inverse Matrix und Determinante Bemerkung: Die Aufgaben dieser Serie bilden den Fokus der Übungsgruppen vom und 5 November Gegeben sind die

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

1 Matrizenrechnung zweiter Teil

1 Matrizenrechnung zweiter Teil MLAN1 1 Literatur: K. Nipp/D. Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4. Auflage, 1998, oder neuer. 1 Matrizenrechnung zweiter Teil 1.1 Transponieren einer Matrix Wir betrachten

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 1 Einführung Lineare Gleichungen Definition

Mehr

Spezialfall: Die Gleichung ax = b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a = a 1 gelöst werden:

Spezialfall: Die Gleichung ax = b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a = a 1 gelöst werden: Inverse Matritzen Spezialfall: Die Gleichung ax b mit einer Unbekannten x kann mit Hilfe des Kehrwerts 1 a a 1 gelöst werden: ax b x b a a 1 b. Verallgemeinerung auf Ax b mit einer n nmatrix A: Wenn es

Mehr

a ij i - te Gleichung (Zeile), i = 1,2,3,..., m

a ij i - te Gleichung (Zeile), i = 1,2,3,..., m I) MATRIZEN Der Start: Lineare Gleichungen y ax+ a2x2 + a3x3 y2 a2x+ a22x2 + a23x3... Koeffizienten a ij i - te Gleichung (Zeile), i,2,3,..., m j - te Variable (Spalte), j,2,3,..., n Definition m x n Matrix

Mehr

und Unterdeterminante

und Unterdeterminante Zusammenfassung: Determinanten Definition: Entwicklungssätze: mit und Unterdeterminante (streiche Zeile i & Spalte j v. A, bilde dann die Determinante) Eigenschaften v. Determinanten: Multilinearität,

Mehr

und Unterdeterminante

und Unterdeterminante Zusammenfassung: Determinanten Definition: Entwicklungssätze: mit und Unterdeterminante (streiche Zeile i & Spalte j v. A, bilde dann die Determinante) Eigenschaften v. Determinanten: Multilinearität,

Mehr

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema

1 Lineare Algebra. 1.1 Matrizen und Vektoren. Slide 3. Matrizen. Eine Matrix ist ein rechteckiges Zahlenschema 1 Lineare Algebra 1.1 Matrizen und Vektoren Slide 3 Matrizen Eine Matrix ist ein rechteckiges Zahlenschema eine n m-matrix A besteht aus n Zeilen und m Spalten mit den Matrixelementen a ij, i=1...n und

Mehr

Theoretische Fragen zu ausgewählten Themen in Lineare Algebra

Theoretische Fragen zu ausgewählten Themen in Lineare Algebra Theoretische Fragen zu ausgewählten Themen in Lineare Algebra { Oren Halvani, Jonathan Weinberger } TU Darmstadt 25. Juni 2009 Inhaltsverzeichnis 1 Determinanten................................................

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Technische Universität München Christoph Niehoff Ferienkurs Lineare Algebra für Physiker Vorlesung Mittwoch WS 009/00 Die beiden Hauptthemen von diesem Teil des Ferienkurses sind Lineare Gleichungssysteme

Mehr

Lösungshinweise zu den Hausaufgaben:

Lösungshinweise zu den Hausaufgaben: S. Hagh Shenas Noshari, 9. Gruppenübung zur Vorlesung S. Nitsche, C. Rösinger, A. Thumm, D. Zimmermann Höhere Mathematik Wintersemester 8/9 M. Stroppel Lösungshinweise zu den Hausaufgaben: Aufgabe H 33.

Mehr

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.4 Lineare Gleichungssysteme

Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 8.4 Lineare Gleichungssysteme Mathematik II Frühlingsemester 2015 Kapitel 8: Lineare Algebra 84 Lineare Gleichungssysteme wwwmathethzch/education/bachelor/lectures/fs2015/other/mathematik2 biol Prof Dr Erich Walter Farkas http://wwwmathethzch/

Mehr

Matrizen und Determinanten

Matrizen und Determinanten Matrizen und Determinanten 1 Matrizen und Determinanten 1 Einführung in den Matrizenbegriff Zur Beschreibung und Lösung vieler physikalischer Probleme ist die Vektorrechnung vonnöten Durch Verwendung von

Mehr

Mathematik II Frühjahrssemester 2013

Mathematik II Frühjahrssemester 2013 Mathematik II Frühjahrssemester 2013 Prof Dr Erich Walter Farkas Kapitel 7: Lineare Algebra 74 Lineare Gleichungssysteme Prof Dr Erich Walter Farkas Mathematik I+II, 74 Lin Glsyst 1 / 83 1 Allgemeine Vorbetrachtungen

Mehr

(also ) Oft wird Zusammenhang zwischen und mit einem Index angedeutet, z.b. wird der Eigenvektor v. durch gekennzeichnet.

(also ) Oft wird Zusammenhang zwischen und mit einem Index angedeutet, z.b. wird der Eigenvektor v. durch gekennzeichnet. L7 Diagonalisierung einer Matrix: Eigenwerte und Eigenvektoren Anwendungen in der Physik: Bestimmung der - Haupträgheitsmomente eines starren Körpers durch Diagonalisierung des Trägheitstensors - Normalmoden

Mehr

Lösung Semesterendprüfung

Lösung Semesterendprüfung MLAE Mathematik: Lineare Algebra für Ingenieure Herbstsemester Dr. Christoph Kirsch ZHAW Winterthur Lösung Semesterendprüfung Aufgabe : a Mit dem Distributivgesetz multiplizieren wir aus: und lösen nach

Mehr

Lineare Gleichungssystem

Lineare Gleichungssystem Lineare Gleichungssystem 8. Juli 07 Inhaltsverzeichnis Einleitung Der Gauß-Algorithmus 4 3 Lösbarkeit von Gleichungssystemen 6 Einleitung Wir haben uns bisher hauptsächlich mit dem Finden von Nullstellen

Mehr

Mathematik 2 für Naturwissenschaften

Mathematik 2 für Naturwissenschaften Hans Walser Mathematik 2 für Naturwissenschaften Modul 212 Determinanten Hans Walser: Modul 212, Determinanten ii Modul 212 für die Lehrveranstaltung Mathematik 2 für Naturwissenschaften Sommer 2003 Probeausgabe

Mehr

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21

5.1 Determinanten der Ordnung 2 und 3. a 11 a 12 a 21 a 22. det(a) =a 11 a 22 a 12 a 21. a 11 a 21 5. Determinanten 5.1 Determinanten der Ordnung 2 und 3 Als Determinante der zweireihigen Matrix A = a 11 a 12 bezeichnet man die Zahl =a 11 a 22 a 12 a 21. Man verwendet auch die Bezeichnung = A = a 11

Mehr

1 Lineare Unabhängigkeit Äquivalente Definition Geometrische Interpretation Vektorräume und Basen 6

1 Lineare Unabhängigkeit Äquivalente Definition Geometrische Interpretation Vektorräume und Basen 6 Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik Dr. Thomas Zehrt Vektorräume und Rang einer Matrix Inhaltsverzeichnis Lineare Unabhängigkeit. Äquivalente Definition.............................

Mehr

a a a a a a a a a a a a a a a

a a a a a a a a a a a a a a a 7 Lineare lgebra 7.1 Matrizen a a a k a a a a a a a a a a a a a 11 12 1 1n 21 22 2k 2n i1 i2 in m1 m2 mk mn i-te Zeile m Zeilen n Spalten k-te Spalte a : Matrixelement i 1,2,...,m k 1,2,...,n i: Zeilenindex

Mehr

Musterlösung 11. D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung

Musterlösung 11. D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung D-INFK Lineare Algebra HS 27 Özlem Imamoglu Olga Sorkine-Hornung Musterlösung. Wir bezeichnen die Spalten von A als A (a a 2 a 3 ) und die Spalten des Resultats der QR-Zerlegung mit Q (q q 2 q 3 ), R (r

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2010/11 2 Rechenoperationen und Gesetze Gleichheit

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 12 8. Juni 2010 Kapitel 10. Lineare Gleichungssysteme (Fortsetzung) Umformung auf obere Dreiecksgestalt Determinantenberechnung mit dem Gauß-Verfahren

Mehr

Lineare Algebra - Übungen 7 WS 2017/18

Lineare Algebra - Übungen 7 WS 2017/18 Prof. Dr. A. Maas Institut für Physik N A W I G R A Z Lineare Algebra - Übungen 7 WS 017/18 Aufgabe P0: Paulimatrizen Präsenzaufgaben 14. Dezember 017 Berechnen Sie für die Paulimatrizen σ 1 = ( ) 0 1,

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 13. Übung: Woche vom (Lin.Alg.

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 13. Übung: Woche vom (Lin.Alg. Übungsaufgaben 13. Übung: Woche vom 23. 1.-27. 1. 2017 (Lin.Alg. II): Heft Ü 3: 1.1.3; 1.1.7 (a,b); 1.1.8; 1.1.11; 3.4.3 (b); 1.3.3 (c); 1.2.3 (b,d); Hinweis 1: 3. Test (Integration, analyt. Geom.) ist

Mehr

4 Vorlesung: 21.11. 2005 Matrix und Determinante

4 Vorlesung: 21.11. 2005 Matrix und Determinante 4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer

Mehr

L7 Diagonalisierung einer Matrix: Eigenwerte und Eigenvektoren. Gegeben. Gesucht: Diagonalform: Finde und! Definition: Eigenvektor, Eigenwert

L7 Diagonalisierung einer Matrix: Eigenwerte und Eigenvektoren. Gegeben. Gesucht: Diagonalform: Finde und! Definition: Eigenvektor, Eigenwert L7 Diagonalisierung einer Matrix: Eigenwerte und Eigenvektoren Viele Anwendungen in der Physik: z.b. Bestimmung der - Haupträgheitsmomente eines starren Körpers durch Diagonalisierung des Trägheitstensors

Mehr

5.4 Basis, Lineare Abhängigkeit

5.4 Basis, Lineare Abhängigkeit die allgemeine Lösung des homogenen Systems. Wieder ist 2 0 L i = L h + 0 1 Wir fassen noch einmal zusammen: Ein homogenes lineares Gleichungssystem A x = 0 mit m Gleichungen und n Unbekannten hat n Rang(A)

Mehr

5 Lineare Gleichungssysteme und Determinanten

5 Lineare Gleichungssysteme und Determinanten 5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von

Mehr

Lineare Algebra. 12. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching

Lineare Algebra. 12. Übungsstunde. Steven Battilana. stevenb student.ethz.ch battilana.uk/teaching Lineare Algebra 12. Übungsstunde Steven Battilana stevenb student.ethz.ch battilana.uk/teaching December 14, 2017 1 Erinnerung: Determinanten, Orthogonale/unitäre Matrizen Sei A R 2 2, dann kann die Inverse

Mehr

Nur Matrizen gleicher Dimension können addiert oder subtrahiert werden. Zur Berechnung werden zwei Matrizen A und B in den Matrix-Editor eingegeben.

Nur Matrizen gleicher Dimension können addiert oder subtrahiert werden. Zur Berechnung werden zwei Matrizen A und B in den Matrix-Editor eingegeben. R. Brinkmann http://brinkmann-du.de Seite 1 14.02.2014 Casio fx-cg20 Operationen mit Matrizen Bei nachfolgend beschriebenen Matrizenoperationen wird davon ausgegangen, dass die Eingabe von Matrizen in

Mehr

Cramersche Regel. Satz Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei. A j := (a 1,...,a j 1,b,a j+1,...

Cramersche Regel. Satz Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei. A j := (a 1,...,a j 1,b,a j+1,... Cramersche Regel Satz 2.4. Es sei A R n n eine quadratische Matrix mit det(a) 0. Für ein LGS Ax = b sei A j := (a,...,a j,b,a j+,...,a n ) also die Matrix, die entsteht, wenn in A die j-spalte durch den

Mehr

Quadratische Matrizen

Quadratische Matrizen Quadratische Matrizen (n n)-matrizen heißen quadratische Die entsprechenden linearen Abbildungen sind laut Definition Endomorphismen des R n (weil f A : R n R n ) Das Produkt von (n n)- Matrizen ist auch

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Ingenieure II, SS 9 Freitag 6 $Id: jordantex,v 7 9/6/ :8:5 hk Exp $ 5 Eigenwerte und die Jordansche Normalform 5 Die Jordansche Normalform Nachdem wir bisher das Vorgehen zur Berechnung

Mehr

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Serie 11

D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung. Serie 11 D-INFK Lineare Algebra HS 2017 Özlem Imamoglu Olga Sorkine-Hornung Serie 11 1. Wir betrachten das überbestimmte Gleichungssystem Ax = y mit 1 1 1 1 A := 1 1 0 1 0 1, y := 2 3 0 0 1 4 Berechnen Sie die

Mehr

Übungen zur Linearen Algebra, Kap. 1 bis Kap. 3

Übungen zur Linearen Algebra, Kap. 1 bis Kap. 3 Übungen zur Linearen Algebra, Kap. bis Kap. 3. Gegeben seien die beiden Matrizen Berechnen Sie Lösungen zu Übung 6 3 4, B = ( 3 5 4 A B, B A, (A B, (B A Dies ist fast eine reine Rechenaufgabe. Wir wollen

Mehr

Matrix: Eine rechteckige Anordnung reeller Zahlen a ij (i = 1,..., n i ; j = 1,..., m) in Zeilen und Spalten. Die a ij heiÿen Elemente von A.

Matrix: Eine rechteckige Anordnung reeller Zahlen a ij (i = 1,..., n i ; j = 1,..., m) in Zeilen und Spalten. Die a ij heiÿen Elemente von A. Matrizenrechnung Matrix: Eine rechteckige Anordnung reeller Zahlen a ij i = 1,..., n i ; j = 1,..., m in Zeilen und Spalten. Die a ij heiÿen Elemente von A. a 11 a 12... a ij... a 1m a 21 a 22.........

Mehr

Serie 8: Fakultativer Online-Test

Serie 8: Fakultativer Online-Test Prof Norbert Hungerbühler Lineare Algebra I Serie 8: Fakultativer Online-Test ETH Zürich - D-MAVT HS 215 1 Diese Serie besteht nur aus Multiple-Choice-Aufgaben und wird nicht vorbesprochen Die Nachbesprechung

Mehr

3 Lineare Gleichungssysteme

3 Lineare Gleichungssysteme Lineare Gleichungssysteme Wir wissen bereits, dass ein lineares Gleichungssystem genau dann eindeutig lösbar ist, wenn die zugehörige Matrix regulär ist. In diesem Kapitel lernen wir unterschiedliche Verfahren

Mehr

Berechnung der Determinante

Berechnung der Determinante Berechnung der Determinante Verhalten der Determinante unter elementaren Zeilenoperationen: Das Vertauschen zweier Zeilen/Spalten der Matrix A ändert nur das Vorzeichen der Determinante, d.h: i, j {1,...,

Mehr

mit "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor"

mit Skalarprodukt aus i-tem Zeilenvektor und j-tem Spaltenvektor Zusammenfassung Matrizen Transponierte: Addition: mit Skalare Multiplikation: Matrixmultiplikation: m x p m x n n x p mit ES "Skalarprodukt" aus i-tem "Zeilenvektor" und j-tem "Spaltenvektor" "Determinante"

Mehr

Exkurs: Eigenwertproblem

Exkurs: Eigenwertproblem 1 von 7 29.11.2008 16:09 Exkurs: Eigenwertproblem Bei der Faktorenanalyse tritt das Eigenwertproblem auf. Man spricht von einem Eigenwertproblem wenn das Produkt zwischen einer Matrix und einem Vektor

Mehr

Lösungen zum 5. Aufgabenblatt

Lösungen zum 5. Aufgabenblatt SS 2012, Lineare Algebra 1 Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com

Mehr

Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren

Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren Kommentiertes Beispiel für das Gaußsche Eliminationsverfahren oder: Wie rechnet eigentlich der TI 84, wenn lineare Gleichungssysteme gelöst werden? Hier wird an einem Beispiel das Gaußsche Verfahren zum

Mehr

3 Determinanten, Eigenwerte, Normalformen

3 Determinanten, Eigenwerte, Normalformen Determinanten, Eigenwerte, Normalformen.1 Determinanten Beispiel. Betrachte folgendes Parallelogramm in der Ebene R 2 : y (a + c, b + d) (c, d) (a, b) x Man rechnet leicht nach, dass die Fläche F dieses

Mehr

Lineare Algebra. Wintersemester 2018/19. Berechnen Sie die Determinanten der folgenden Matrizen mit Einträgen in R: 4 2 = = 18.

Lineare Algebra. Wintersemester 2018/19. Berechnen Sie die Determinanten der folgenden Matrizen mit Einträgen in R: 4 2 = = 18. Goethe-Universität Frankfurt Institut für Mathematik Lineare Algebra Wintersemester 218/19 Prof Dr Jakob Stix Martin Lüdtke Übungsblatt 11 15 Januar 219 Aufgabe 1 (5=1+1+1,5+1,5 Punkte) Berechnen Sie die

Mehr

7 Matrizen über R und C

7 Matrizen über R und C $Id: matrix.tex,v. 0/0/0 5:7:7 hk Exp $ 7 Matrizen über R und C 7. Inverse Matrizen und reguläre lineare Gleichungssysteme In der letzten Sitzung hatten wir eine quadratische Matrix A regulär oder invertierbar

Mehr

Zusammenfassung und Beispiellösungen. zur Linearen Algebra

Zusammenfassung und Beispiellösungen. zur Linearen Algebra Zusammenfassung und Beispiellösungen zur Linearen Algebra Inhaltsverzeichnis TI Taschenrechner Funktionen für Matrizen... n*m Matrix... Diagonal und Dreiecksmatrix... Transponierte der Matrix A (AT)...

Mehr

D-MAVT Lineare Algebra I HS 2018 Prof. Dr. N. Hungerbühler. Lösungen 10

D-MAVT Lineare Algebra I HS 2018 Prof. Dr. N. Hungerbühler. Lösungen 10 D-MAVT Lineare Algebra I HS 2018 Prof. Dr. N. Hungerbühler Lösungen 10 1. Für a 1 : 1 1 0, a 2 : 1 1, a 3 : 1 1 1, b : 2 2 2 1 und A : (a 1, a 2, a 3 ) gelten welche der folgenden Aussagen? (a) det(a)

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 22.10.2013 Alexander Lytchak 1 / 16 Wiederholung des Beispiels 3x 6 + x 7 = 2 2x 2 + 4x 4 + 6x 5 + 5x 7 = 3 2x 2 + x

Mehr