MODULPRÜFUNG MODUL MA 1302 Einführung in die Numerik

Größe: px
Ab Seite anzeigen:

Download "MODULPRÜFUNG MODUL MA 1302 Einführung in die Numerik"

Transkript

1 Note Nae Vornae 1 I II Matrikelnuer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 Obige Angaben sind richtig: Unterschrift der Kandidatin/des Kandidaten 3 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Matheatik MODULPRÜFUNG MODUL MA 1302 Einführung in die Nuerik August 2010, 09:00-10:00 Uhr Prüfer: Prof. Dr. O. Junge Hörsaal: Reihe: Platz: I Erstkorrektur Nur von der Aufsicht auszufüllen: II Zweitkorrektur Hörsaal verlassen von bis Vorzeitig abgegeben u Besondere Beerkungen:

2 (15 in.) Aufgabe 1 (Verschiedene kurze Aufgaben) Es sind kurze und richtige Begründungen gefragt. (a) Es sei eine QR-Zerlegung der nichtsingulären Matri A R n n gegeben. Weiter sei b R n. Eistiert ein Algorithus, welcher das lineare Gleichungssyste A = b in O(n 2 ) Flops löst? Ja, y = Q b, = R 1 y. Beide Operationen sind in O(n 2 ) Flops realisierbar. (b) Geben Sie zwei Gleitpunktzahlen, y G b,t, y an, für welche eine der Ungleichungen 0.5 ( y) y in Gleitkoaarithetik verletzt ist. Sei b = 10 und t = 2. Die Ungleichung wird wegen der Rundung verletzt. Sei = y = 9.9. Dann haben wir y = fl(19.8) = 20, dait 0.5 ( y) = 10 y. (c) Sei A R n n nichtsingulär. Berechnet das Progra function = prog(a) [L,R]=lu(A); =prod(diag(r)); die Deterinante von A? Wäre L eine unipotente Matri, würde gelten: n L ii =1 det(a) = det(l) det(r) = Da aber Matlab pivotisiert, wenn das nötig ist, wird PL statt L zurückgegeben. Bei der Pivotisierung können Zeilen von L perutiert werden, so dass det(pl) = 1 ist. Siehe z.b. A = [0 1; 1 1]. Also die Antwort ist nein. n R ii. 1

3 (12 in.) Aufgabe 2 (Approiation der Ableitung) Für die nuerische Berechnung der Ableitung der Funktion f R R an der Stelle = 0 wird die Approiation f () = (a) Zeigen Sie für f () = e : f () f (0) verwendet. f () 1 = O() für 0, (b) Wir stellen ε i () = f i () f i (0) für = 100, 10 1,..., und f 1 () = e, f 2 () = sin() und f 3 () = 2 graphisch dar. Ordnen Sie die Funktionen den Graphen in der Legende zu, und begründen Sie unten Ihre Zuordnung. Hinweis: Es wird doppeltlogarithisch geplottet. (c) Berechnen Sie ohne zuhilfenahe des Graphen die Steigung des it gekennzeichneten Graphen aus (b). Legende (a). 1. Möglichkeit: Wir setzen in die Reihenentwicklung von e ein: e 1 = O(2 ) 1 = 1 + O(). Ugeordnet folgt die Behauptung. 2. Möglichkeit: Wir wissen, dass eine Funktion h erfüllt h() = O() für 0, falls gilt. Das rechnen wir nach. li sup 0 li sup 0 h() = c < e 1 1 e = li sup 1 e 0 2 = li = li e 0 2 = 1 2, nachde an zweial die l Hospital-Regel anwendet. 2

4 (b). Die Instabilität bei e ist klar zu erkennen. Die Auslöschung in e 1 resultiert einen großen relativen Fehler, welcher durch die Division it weitertransportiert wird. Sonst beobachten wir 2 0 = und sin() 0 = O( 2 ) (beide ohne Auslöschung). Also zu sin() gehört die untere Kurve, da O( 2 ) schneller als O() ist. (c). Es gilt log(ε 2 ()) = log(c 2 ) = log(c) + 2 log(). Dait hat die Kurve Steigung 2. 3

5 (8 in.) Aufgabe 3 (Lineares Ausgleichsproble) In der Modellfunktion w(t) = p 1 + p 2 t sollen die unbekannten Paraeter p 1, p 2 anhand von Messungen (t i, w i ), i = 1,..., über das lineare Ausgleichsproble (p 1 + p 2 t i w i ) 2 = in! bestit werden. Man kann das Proble in der For Ap b 2 2 = in!, p = (p 1, p 2 ) T schreiben. (a) Geben Sie A und b an. (b) Zeigen Sie ohne Verwendung der QR-Zerlegung, dass der Paraetervektor p = (p 1, p 2 ) T die folgende Gleichung erfüllt: it i = i. ( t i t i t 2 ) ( p 1 ) = ( w i ), i p 2 t i w i (a). 1 t 1 w 1 A =, b =. 1 t w (b). 1. Möglichkeit: Aus der Noralengleichung A A ( p 1 p 2 ) = A b folgt die Behauptung. 2. Möglichkeit: Der Ausdruck f (p) = (p 1 + p 2 t i w i ) 2 ist inial, wenn ihre Ableitung nach p 1 und nach p 2 verschwindet. Also Das war zu zeigen. 0! = f p 1 = 0! = f p 2 = 2(p 1 + p 2 t i w i ), 2(p 1 + p 2 t i w i )t i. 4

6 (10 in.) Aufgabe 4 (Iterationsverfahren) Es sei die Funktion f () = log() + 2 gegeben (s. Bild). Sie hat zwei Nullstellen l und r it l < 1 < r. (a) U die Nullstellen von f zu bestien, verwenden wir eine Fipunktiteration it der Funktion φ() = log() + 2; d.h. wir erzeugen die Folge k+1 = φ( k ), k = 0, 1, 2,.... Für 0 = 0.5 konvergiert die Fipunkiteration gegen ein = φ( ). Entscheiden Sie, ob = l oder = r und begründen Sie Ihre Antwort. (b) Schätzen Sie die Konvergenzrate für die Iteration aus (a). Begründen Sie Ihre Schätzung. (c) Wir wissen, dass es ein b > 0 gibt, so dass das Newton-Verfahren für 0 (0, b) gegen l konvergiert. Geben Sie eine geoetrische Bedingung an b an, aus welcher an b ausrechnen könnte. Hinweis: Lassen Sie sich vo Bild inspirieren. (a). Nach Satz 5.6 aus der Vorlesung (lokale Konvergenz) gilt: Die Fipunktiteration konvergiert genau dann gegen, falls φ ( ) < 1 gilt. Da φ () = 1, ist φ( l ) > 1 und 0 < φ ( r ) < 1. Dait gilt = r. (b). Wir lesen ganz grob r 3 ab. Dait ist nach einer Tutoraufgabe die Konvergenzrate gleich der Steigung i Fipunkt, also φ ( r ) Hier ist nicht die Konvergenzordnung p gefragt! Anerkung: Satz 5.5 aus der Vorlesung (Globaler Konvergenzsatz) ist nicht anwendbar, da hier kein eindeutiger Fipunkt eistiert (siehe φ( l ) = l, φ( r ) = r ). (c). Graphisch sieht ein Schritt bei Newton-Verfahren so aus, dass der Punkt k+1 gerade der Schnittpunkt von der -Achse it der Tangente an graph( f ) i Punkt ( k, f ( k )) ist. I Bild sieht an, dass wenn 0 von l startend ier größer wird, 1 ier weiter in Richtung 0 wandert. Wir haben b erreicht, wenn die Tangente an graph( f ) i Punkt (b, f (b)) durch (0, 0) geht. Ein Punkt oberhalb ist nicht öglich, da die Tangente sonst die negative -Achse schneidet, wo f () nicht definiert ist. 5

7 (15 in.) Aufgabe 5 (Interpolation) Wir wollen eine Funktion f C (R) auf [0, 1] interpolieren. Es sei ein Polyno p n P n durch p (k) n (0) = f (k) (0), k = 0,..., n, gegeben, wo f (k) die k-te Ableitung von f bezeichnet. (a) Zeigen Sie, dass p n it de Taylorpolyno n-ten Grades von f it Entwicklungspunkt 0 übereinstit. (b) Bezeichne g = a [0,1] g() die Maiusnor. Zeigen Sie, dass für f () = und alle n 0 gilt f p n 1 2. Hinweis: Reihenentwicklung von f. (a). Sei p n () = n l=0 c l l. Dann gilt p (k) n (0) = k!c k. Daraus folgt c k = f (k) (0) k!, und soit n f p n () = (l) (0) l! l. l=0 (b). Es gilt für < 1. Soit ist f () = p n () = l=0 n/2 l=0 ( 2 ) l ( 2 ) l. Wir haben also p n (1) {0, 1}, während f (1) = 1/2. Daraus folgt die Behauptung. 6

MODULPRÜFUNG MODUL MA 1302 Einführung in die Numerik

MODULPRÜFUNG MODUL MA 1302 Einführung in die Numerik ................ Note Name Vorname 1 I II Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 Obige Angaben sind richtig: Unterschrift der Kandidatin/des Kandidaten 3 TECHNISCHE UNIVERSITÄT

Mehr

NUMERIK 1. Sommersemester 2016

NUMERIK 1. Sommersemester 2016 NUMERIK 1 Soerseester 2016 KLAUSUR LÖSUNGSVORSCHLAG Aufgabe 1 (Multiple Choice) (ca. 20 Minuten, 8 Punkte) Kreuzen Sie korrekte Aussagen an. Es können ehrere Antworten richtig sein, indestens eine ist

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Grundlagen der Nichtlinearen Optimierung. Klausur zur Vorlesung WS 2008/09

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Grundlagen der Nichtlinearen Optimierung. Klausur zur Vorlesung WS 2008/09 ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 Obige Angaben sind richtig: Unterschrift der Kandidatin/des Kandidaten 3 TECHNISCHE UNIVERSITÄT

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Wiederholungsklausur Mathematik für Physiker 3 (Analysis 2) I... II...

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Wiederholungsklausur Mathematik für Physiker 3 (Analysis 2) I... II... ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 2 Nichtlineare Gleichungssysteme Problem: Für vorgegebene Abbildung f : D R n R n finde R n mit oder ausführlicher f() = 0 (21) f 1 ( 1,, n ) = 0, f n ( 1,, n ) = 0 Einerseits führt die mathematische

Mehr

LINEARE AUSGLEICHSPROBLEME

LINEARE AUSGLEICHSPROBLEME 5 LINEARE AUSGLEICHSPROBLEME Beispiel 51 Bestiung eines unbekannten Widerstands x aus Messungen für die Strostärke t und die Spannung b Angenoen,esliegen Messungen (b i,t i, i =1,,,it 1, t b x Abb 51:

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Lineare Algebra 1 Prof. Dr. F. Roesler

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Lineare Algebra 1 Prof. Dr. F. Roesler ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 Unterschrift der Kandidatin/des Kandidaten 3 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Kapitel 5 Nichtlineare Gleichungssysteme und Iterationen

Kapitel 5 Nichtlineare Gleichungssysteme und Iterationen Kapitel 5 Nichtlineare Gleichungssysteme und Iterationen Wir betrachten das System f() = 0 von n skalaren Gleichungen f i ( 1,..., n ) = 0, i = 1,..., n. Gesucht: Nullstelle von f() = 0. Es sei (0) eine

Mehr

Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV 6.8.005 1 Aufgabe N1 Gegeben seien A = 5-10 -5-10 8-10 -5-10 13 R 3 3 und b = a) Überprüfen Sie, ob die Matrix A positiv definit ist. b) Bestimmen

Mehr

3 Nichtlineare Gleichungssysteme

3 Nichtlineare Gleichungssysteme 3 Nichtlineare Gleichungsssteme 3.1 Eine Gleichung in einer Unbekannten Problemstellung: Gegeben sei die stetige Funktion f(). Gesucht ist die Lösung der Gleichung f() = 0. f() f() a) f ( ) 0 b) f ( )

Mehr

Ma 10 / 11 Das Newton-Verfahren Na - 4. September 2014

Ma 10 / 11 Das Newton-Verfahren Na - 4. September 2014 Was ist das Newton-Verfahren? Das Newton-Verfahren ist ein nuerisches Verfahren zur näherungsweisen Bestiung einer Nullstelle einer gegeben Funktion. Analytisch exakt können Nullstellen von Geraden von

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Klausur Mathematik für Physiker 3 (Analysis 2) I... II...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Klausur Mathematik für Physiker 3 (Analysis 2) I... II... ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

5 Numerische Mathematik

5 Numerische Mathematik 6 5 Numerische Mathematik Die Numerische Mathematik setzt sich aus mehreren Einzelmodulen zusammen Für alle Studierenden ist das Modul Numerische Mathematik I: Grundlagen verpflichtend In diesem Modul

Mehr

Numerische Methoden 6. Übungsblatt

Numerische Methoden 6. Übungsblatt Karlsruher Institut für Technologie (KIT) SS 202 Institut für Analysis Prof. Dr. Michael Plu Dipl.-Math.techn. Rainer Mandel Nuerische Methoden 6. Übungsblatt Aufgabe 3: Newton-Verfahren I Ziel dieser

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale (Wiederholung) HÖHERE MATHEMATIK 3 für Chemieingenieurwesen

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale (Wiederholung) HÖHERE MATHEMATIK 3 für Chemieingenieurwesen ................ Note I II Name Vorname 1 Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf.

VF-2: 2. Es seien x = 1 3 und y = π Bei der Berechnung von sin(x) sin(y) in M(10, 12, 99, 99) tritt. Auslöschung auf. IGPM RWTH Aachen Verständnisfragen-Teil NumaMB H11 (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Es müssen mindestens zwei

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Nichtlineare Gleichungssysteme Jetzt: Numerische Behandlung nichtlinearer GS f 1 (x 1,..., x n ) =0. f n (x 1,..., x n ) =0 oder kurz f(x) = 0 mit f : R n R n Bemerkung: Neben dem direkten Entstehen bei

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Wiederholungsklausur Mathematik für Physiker 3 (Analysis 2) I... II...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Wiederholungsklausur Mathematik für Physiker 3 (Analysis 2) I... II... ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV Aufgabe N1 (LR-Zerlegung mit Pivotisierung) Gegeben seien R 3.

Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV Aufgabe N1 (LR-Zerlegung mit Pivotisierung) Gegeben seien R 3. Lösung der Diplom-Vorprüfung Höhere Mathematik III/IV 7.7.6 Aufgabe N (LR-Zerlegung mit Pivotisierung) Gegeben seien 6 8 A = 8 6 R und b = 6 R. a) Berechnen Sie die LR-Zerlegung von A mit Spaltenpivotisierung.

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Probeklausur Mathematik 4 für Physik (Analysis 3) I... ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

a = 70 (1 1,01) )

a = 70 (1 1,01) ) Matheatik I für Naturwissenschaften Dr. Christine Zehrt 20.09.8 Übung (für Phara/Geo/Bio) Uni Basel Besprechung der Lösungen: 24. Septeber 208 in den Übungsstunden Aufgabe Berechnen Sie die Zahl ( a =

Mehr

MAV-NUM Applied Numerics Frühlingssemester Serie 14. a) (1 Punkt) Berechnen Sie die LR-Zerlegung der Matrix und geben Sie L, R und P an.

MAV-NUM Applied Numerics Frühlingssemester Serie 14. a) (1 Punkt) Berechnen Sie die LR-Zerlegung der Matrix und geben Sie L, R und P an. MAV-NUM Applied Numerics Frühlingssemester 208 Dr. Evelyne Knapp ZHAW Winterthur Aufgabe (6 Punkte): Serie 4 a) ( Punkt) Berechnen Sie die LR-Zerlegung der Matrix und geben Sie L, R und P an. 6 2 5 A =

Mehr

Iterative Lösung von nichtlinearen Gleichungen und Gleichungssystemen

Iterative Lösung von nichtlinearen Gleichungen und Gleichungssystemen Kapitel 5 Iterative Lösung von nichtlinearen Gleichungen und Gleichungssstemen 5.1 Iterationsverfahren zur Lösung einer reellen nichtlinearen Gleichung Es sei g() eine im Intervall I definierte reellwertige

Mehr

Aufgaben zu den Ableitungsregeln

Aufgaben zu den Ableitungsregeln Aufgaben zu den Ableitungsregeln 1.0 Bestimmen Sie die Gleichung der Tangente im Punkt P(2;?) an den Graphen der folgenden Funktionen. 1.1 f(x) = x 2 2x 1.2 f(x) = (x + 1 2 )2 1.3 f(x) = 1 2 x2 3x 1 2.

Mehr

Leseprobe. Hans-Jochen Bartsch. Taschenbuch mathematischer Formeln für Ingenieure und Naturwissenschaftler. ISBN (Buch):

Leseprobe. Hans-Jochen Bartsch. Taschenbuch mathematischer Formeln für Ingenieure und Naturwissenschaftler. ISBN (Buch): Leseprobe Hans-Jochen Bartsch Taschenbuch mathematischer Formeln für Ingenieure und Naturwissenschaftler ISBN (Buch): 978-3-446-43800-2 ISBN (E-Book): 978-3-446-43735-7 Weitere Informationen oder Bestellungen

Mehr

Nichtlineare Ausgleichsrechnung

Nichtlineare Ausgleichsrechnung 10. Großübung Nichtlineare Ausgleichsrechnung Allgemeines Problem: Wir betrachten ein nichtlineares System F : R n R m mit (m > n, d.h. das System ist überbestimmt und F i (x g(t i ; x g i! 0 i 1,.., m.

Mehr

Klausur Numerische Mathematik (für Elektrotechniker), 24. Februar 2016

Klausur Numerische Mathematik (für Elektrotechniker), 24. Februar 2016 Verständnisfragen-Teil ( Punkte) Jeder der Verständnisfragenblöcke besteht aus Verständnisfragen. Werden alle Fragen in einem Verständnisfragenblock richtig beantwortet, so gibt es für diesen Block Punkte.

Mehr

Technische Universität München Fakultät für Mathematik Algorithmische Diskrete Mathematik WS 2012/2013 Prof. Dr. P. Gritzmann 22.

Technische Universität München Fakultät für Mathematik Algorithmische Diskrete Mathematik WS 2012/2013 Prof. Dr. P. Gritzmann 22. Note: Name Vorname Matrikelnummer Studiengang Unterschrift der Kandidatin/des Kandidaten Hörsaal Reihe Platz Technische Universität München Fakultät für Mathematik Algorithmische Diskrete Mathematik WS

Mehr

Nichtlineare Gleichungen in einer und mehreren Unbekannten

Nichtlineare Gleichungen in einer und mehreren Unbekannten (MUL) 1. März 2012 1 / 37 Nichtlineare Gleichungen in einer und mehreren Unbekannten 2. Vorlesung 170 004 Numerische Methoden I Clemens Brand MUL 1. März 2012 Gliederung 1 Wiederholung Begriffe, Verfahren

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Wiederholungsklausur Mathematik 4 für Physiker (Analysis 3)

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Wiederholungsklausur Mathematik 4 für Physiker (Analysis 3) ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Institut für Geometrie und Praktische Mathematik Multiple-Choice-Test NumaMB F08 (30 Punkte) Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine

Mehr

Nichtlineare Gleichungen in einer und mehreren Unbekannten

Nichtlineare Gleichungen in einer und mehreren Unbekannten Gleichungen in einer und mehreren Unbekannten 2. Vorlesung 170004 Numerische Methoden I Clemens Brand 26. Februar 2009, Gliederung,, Gleichungen in einer Variablen Was ist... Wie geht... eine lineare (nichtlineare,

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Klausur Mathematik 3 für Physiker (Analysis 2)

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Klausur Mathematik 3 für Physiker (Analysis 2) ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Brückenkurs Rechentechniken

Brückenkurs Rechentechniken Brückenkurs Rechentechniken Dr. Jörg Horst Technische Universität Dortmund Fakultät für Mathematik SS 2014 1 Vollständige Induktion Vollständige Induktion 2 Funktionenfolgen Punktweise Konvergenz Gleichmäßige

Mehr

(b) Bestimmen Sie mit Hilfe des Newton-Verfahrens eine Nullstelle von f auf 6 Nachkommastellen

(b) Bestimmen Sie mit Hilfe des Newton-Verfahrens eine Nullstelle von f auf 6 Nachkommastellen Mathematik I für Naturwissenschaften Dr. Christine Zehrt 5.10.18 Übung 6 (für Pharma/Geo/Bio) Uni Basel Besprechung der Lösungen: 9. Oktober 018 in den Übungsstunden Aufgabe 1 GebenSieohneTaschenrechnereineNäherungvon

Mehr

Lineare Funktionen. Die lineare Funktion

Lineare Funktionen. Die lineare Funktion 1 Die lineare Funktion Für alle m, t, aus der Zahlenmenge Q heißt die Funktion f: x m x + t lineare Funktion. Die Definitionsmenge ist Q (oder je nach Zusammenhang ein Teil davon). Der Graph der linearen

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik

TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik ................ Note Name Vorname I II Matrikelnummer Studiengang 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik Klausur Funktionentheorie MA2006

Mehr

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Mathematik 4 für Physik (Analysis 3) I...

Musterlösung. TECHNISCHE UNIVERSITÄT MÜNCHEN Fakultät für Mathematik. Semestrale Mathematik 4 für Physik (Analysis 3) I... ................ Note I II Name Vorname Matrikelnummer Studiengang (Hauptfach) Fachrichtung (Nebenfach) 2 3 Unterschrift der Kandidatin/des Kandidaten 4 TECHNISCHE UNIVESITÄT MÜNCHEN Fakultät für Mathematik

Mehr

Modulprüfung Numerische Mathematik 1

Modulprüfung Numerische Mathematik 1 Prof. Dr. Klaus Höllig 18. März 2011 Modulprüfung Numerische Mathematik 1 Lösungen Aufgabe 1 Geben Sie (ohne Beweis an, welche der folgenden Aussagen richtig und welche falsch sind. 1. Die Trapezregel

Mehr

Zusammengesetzte Übungsaufgaben lineare Funktionen

Zusammengesetzte Übungsaufgaben lineare Funktionen Zusammengesetzte Übungsaufgaben lineare Funktionen Nr Aufgabe Lösung 1 Gegeben ist die Funktion g mit g ( x ) = 3 x + 9 a) Geben Sie die Steigung und den y- Achsenabschnitt an. (Begründung) c) Bestimmen

Mehr

Nullstellen von algebraischen Gleichungen

Nullstellen von algebraischen Gleichungen Kapitel 2 Nullstellen von algebraischen Gleichungen 2.1 Vorbemerkungen Suche Lösung der Gleichung f(x) = 0 (2.1) Dies ist die Standardform für eine Dimension. - typisch nichtlineare Gleichung, sonst elementar

Mehr

Klausur Numerische Mathematik (für Elektrotechniker), Samstag, 19. August 2017

Klausur Numerische Mathematik (für Elektrotechniker), Samstag, 19. August 2017 Verständnisfragen-Teil (5 Punkte) Jeder der 5 Verständnisfragenblöcke besteht aus 5 Verständnisfragen. Werden alle 5 Fragen in einem Verständnisfragenblock richtig beantwortet, so gibt es für diesen Block

Mehr

Numerische Mathematik

Numerische Mathematik Numerische Mathematik SS 999 Augabe 6 Punkte Das Integral I ln d soll numerisch bis au eine Genauigkeit von mindestens - approimiert werden. a Wie groß muss die Anzahl N der Teilintervalle sein damit mit

Mehr

Gegeben ist die Funktion mit 2 4. Bestimme die Punkte des Graphen von, dessen Tangenten durch den Punkt 1 2 verlaufen.

Gegeben ist die Funktion mit 2 4. Bestimme die Punkte des Graphen von, dessen Tangenten durch den Punkt 1 2 verlaufen. Dokument mit 16 Aufgaben Aufgabe A1 Gegeben ist die Funktion mit 6. a) Bestimme die Gleichung der Tangente an den Graphen von im Punkt 1,21,2. b) Bestimme alle Tangenten an den Graphen, die zu parallel

Mehr

Klasse WI06b MLAN2 zweite-klausur 13. Juni 2007

Klasse WI06b MLAN2 zweite-klausur 13. Juni 2007 Klasse WI6b MLAN zweite-klausur 3. Juni 7 Name: Aufgabe Gegeben sind die beiden harmonischen Schwingungen ( y = f (t) = +3 sin ωt + π ) (), ( 4 y = f (t) = 8 cos ωt + π ) (). 4 a) Bestimmen Sie mit Hilfe

Mehr

Prüfung zur Vorlesung Mathematik I/II

Prüfung zur Vorlesung Mathematik I/II Dr. A. Caspar ETH Zürich, August 06 D-BIOL, D-CHAB, D-HEST Prüfung zur Vorlesung Mathematik I/II Bitte ausfüllen! Name: Vorname: Legi-Nr.: Nicht ausfüllen! Aufgabe Punkte Kontrolle MC Total MC Total 3

Mehr

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning

Karlsruher Institut für Technologie (KIT) WS 2012/13 Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning Karlsruher Institut für Technologie (KIT) WS 202/3 Institut für Analysis 26..202 Prof. Dr. Tobias Lamm Dr. Patrick Breuning Höhere Mathematik I für die Fachrichtung Physik 7. Übungsblatt Aufgabe Untersuchen

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr

Analysis einer Variablen Lösungen zur Klausur vom F. Merkl

Analysis einer Variablen Lösungen zur Klausur vom F. Merkl Analysis einer Variablen Lösungen zur Klausur vo 8..7 F. Merkl. Gegeben sei eine Folge (f n ) n N von Funktionen f n : R R und eine weitere Funktion f : R R. (a) Definieren Sie, wann f n für n punktweise

Mehr

Aufgabe 2: Analysis (WTR)

Aufgabe 2: Analysis (WTR) Abitur Mathematik: Nordrhein-Westfalen 2013 Aufgabe 2 a) (1) STARTPUNKT BERECHNEN Der x Wert des Startpunktes ist mit 8 gegeben. Der zugehörige y Wert ist 8 1 50 8 3 106 8 4,24. 4 25 Der Startpunkt liegt

Mehr

Aufgaben für Klausuren und Abschlussprüfungen

Aufgaben für Klausuren und Abschlussprüfungen Grundlagenwissen: Ableitungen, Flächen unter Kurven, Nullstellen, Etremwerte, Wendepunkte.. Bestimmen Sie die Stammfunktion F() der folgenden Funktionen. Die Konstante C darf weggelassen werden. a) f()

Mehr

Diplom VP Numerik 28. August 2006

Diplom VP Numerik 28. August 2006 Diplom VP Numerik 8. August 6 Multiple-Choice-Test Punkte) Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine einzige Aussage angekreuzt, gilt diese Aufgabe

Mehr

ist über C diagonalisierbar.

ist über C diagonalisierbar. Prüfungsaufgaben A 1. (10 Punkte) Kreuzen Sie direkt auf de Aufgabenblatt an, ob die Behauptungen WAHR oder FALSCH sind. Sie üssen Ihre Antworten nicht begründen! Für jede richtige Antwort gibt es 1 Punkt.

Mehr

1.2 Weisen Sie rechnerisch nach, dass das Schaubild der Funktion mit 4P! bei 1 einen Sattelpunkt aufweist.

1.2 Weisen Sie rechnerisch nach, dass das Schaubild der Funktion mit 4P! bei 1 einen Sattelpunkt aufweist. Aufgabe A1 1.1 Erläutere anhand einer Skizze, ob das Integral 3P größer, kleiner oder gleich Null ist. 1.2 Für eine Funktion gilt: (1) 0 für 2 und 1 (2) 23 (3) 13 (4) 2 (5) 1 6 Welche Aussagen lassen sich

Mehr

Übungsaufgaben Analysis hilfsmittelfrei

Übungsaufgaben Analysis hilfsmittelfrei Übungsaufgaben Analysis hilfsmittelfrei Aufgabe 1 Der Graph der Funktion f (x) = 0,5x3+ 1,5x2+ 4,5x 3,5 hat im Punkt T( 1 6) einen relativen (lokalen) Tiefpunkt und im Punkt H(3 10) einen relativen (lokalen)

Mehr

D-ITET, D-MATL. Prüfung Numerische Methoden, Sommer 2012 Dr. Lars Kielhorn

D-ITET, D-MATL. Prüfung Numerische Methoden, Sommer 2012 Dr. Lars Kielhorn Name: Wichtige Hinweise D-ITET, D-MATL Prüfung Numerische Methoden, Sommer 2012 Dr. Lars Kielhorn Prüfungsdauer: 90 Minuten. Nur begründete Resultate werden bewertet. Zugelassene Hilfsmittel: 10 A4-Seiten

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen IGPM RWTH Aachen Institut für Geometrie und Praktische Mathematik Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen

Mehr

Über Potenzsummenpolynome

Über Potenzsummenpolynome Über Potenzsuenpolynoe Jörg Feldvoss I Sande 4b, D-21369 Nahrendorf Gerany Einleitung Für jede natürliche Zahl n bezeichnen wir it P n das n-te Potenzsuenpolyno, welches dadurch gegeben ist, dass es für

Mehr

Aufgabe 1 Zeigen Sie mittels vollständiger Induktion, dass für alle n N. n(n + 1)(2n + 1) 6. j 2 = gilt.

Aufgabe 1 Zeigen Sie mittels vollständiger Induktion, dass für alle n N. n(n + 1)(2n + 1) 6. j 2 = gilt. Aufgabe Zeigen Sie mittels vollständiger Induktion, dass für alle n N j 2 j n(n + )(2n + ) gilt. Der Beweis wird mit Hilfe vollständiger Induktion geführt. Wir verifizieren daher zunächst den Induktionsanfang,

Mehr

Fixpunkt-Iterationen

Fixpunkt-Iterationen Fixpunkt-Iterationen 2. Vorlesung 170 004 Numerische Methoden I Clemens Brand und Erika Hausenblas Montanuniversität Leoben 27. Februar 2014 Gliederung Wiederholung: Gleichungstypen, Lösungsverfahren Grundprinzip

Mehr

D-ITET Analysis II FS 13 Prof. Horst Knörrer. Musterlösung 1. 3xy 2 = 2 x 2. y y. 3 y y. 3 x v x + v = 2 3 v v.

D-ITET Analysis II FS 13 Prof. Horst Knörrer. Musterlösung 1. 3xy 2 = 2 x 2. y y. 3 y y. 3 x v x + v = 2 3 v v. D-ITET Analysis II FS 3 Prof. Horst Knörrer Musterlösung. a) Es gilt: dy d 3 + y 3 3y 3 y + y 3. Dies ist eine homogene Differentialgleichung, das heisst y hängt nur von y ab. Setze v : y y() v() y v +

Mehr

Musterlösungen zu Blatt 15, Analysis I

Musterlösungen zu Blatt 15, Analysis I Musterlösungen zu Blatt 5, Analysis I WS 3/4 Inhaltsverzeichnis Aufgabe 85: Konvergenzradien Aufgabe 86: Approimation von ep() durch Polynome Aufgabe 87: Taylorreihen von cos 3 und sin Aufgabe 88: Differenzenquotienten

Mehr

Kapitel 4: Nichtlineare Nullstellenprobleme

Kapitel 4: Nichtlineare Nullstellenprobleme Vorlesung Höhere Mathematik: Numerik (für Ingenieure) Kapitel 4: Nichtlineare Nullstellenprobleme Jun.-Prof. Dr. Stephan Trenn AG Technomathematik, TU Kaiserslautern Sommersemester 2015 HM: Numerik (SS

Mehr

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge

(x, x + y 2, x y 2 + z 3. = e x sin y. sin y. Nach dem Umkehrsatz besitzt f dann genau auf der Menge ÜBUNGSBLATT 0 LÖSUNGEN MAT/MAT3 ANALYSIS II FRÜHJAHRSSEMESTER 0 PROF DR CAMILLO DE LELLIS Aufgabe Finden Sie für folgende Funktionen jene Punkte im Bildraum, in welchen sie sich lokal umkehren lassen,

Mehr

Öffnen Sie den Klausurbogen erst nach Aufforderung! Mathematische Grundlagen II (CES) SS 2017 Klausur

Öffnen Sie den Klausurbogen erst nach Aufforderung! Mathematische Grundlagen II (CES) SS 2017 Klausur Prof. Dr. Manuel Torrilhon Prof. Dr. Sebastian Noelle Öffnen Sie den Klausurbogen erst nach Aufforderung! Zugelassene Hilfsmittel: Mathematische Grundlagen II (CES) SS 2017 Klausur 07.08.2017 Dokumentenechtes

Mehr

2.6 Lokale Extrema und Mittelwertsatz

2.6 Lokale Extrema und Mittelwertsatz 2.6. Lokale Etrema und Mittelwertsatz 49 2.6 Lokale Etrema und Mittelwertsatz In diesem Kapitel bezeichne f stets eine reellwertige Funktion, definiert auf einem abgeschlossenen Intervall [a, b]. Unter

Mehr

Übungsaufgaben zur Kurvendiskussion

Übungsaufgaben zur Kurvendiskussion SZ Neustadt Mathematik Torsten Warncke FOS 12c 30.01.2008 Übungsaufgaben zur Kurvendiskussion 1. Gegeben ist die Funktion f(x) = x(x 3) 2. (a) Untersuchen Sie die Funktion auf Symmetrie. (b) Bestimmen

Mehr

Diskussion einzelner Funktionen

Diskussion einzelner Funktionen Diskussion einzelner Funktionen. Wir betrachten die Funktion f mit f() = cos sin (a) Berechne f() für { π, π, π, π, } 5π und zeichne den Grafen von f im - Intervall [ π, ] 5π. Einheiten: cm auf der y-achse,

Mehr

Technische Universität München Fakultät für Mathematik Mathematik 1 (Elektrotechnik) Probeklausur Prof. Dr. Anusch Taraz 24.

Technische Universität München Fakultät für Mathematik Mathematik 1 (Elektrotechnik) Probeklausur Prof. Dr. Anusch Taraz 24. Note: Name Vorname Lerngruppen-Nummer Tutorübung-Nr. Hiermit bestätige ich, dass ich vor Prüfungsbeginn darüber in Kenntnis gesetzt wurde, dass ich im Falle einer plötzlich während der Prüfung auftretenden

Mehr

Fehlerabschätzung für Taylorpolynome der e-funktion

Fehlerabschätzung für Taylorpolynome der e-funktion Fehlerabschätzung für Talorpolnome der e-funktion f() = e R () = e g() = ++ - -. Wir approimieren die Funktion f() = e durch g() = +! +! und schätzen den Fehler R() auf dem Intervall [,] ab. Sei also e

Mehr

Prüfungsteil 1, Aufgabe 3. Analysis. Nordrhein-Westfalen 2012 GK. Aufgabe a (1) Aufgabe a (2) Abitur Mathematik: Musterlösung

Prüfungsteil 1, Aufgabe 3. Analysis. Nordrhein-Westfalen 2012 GK. Aufgabe a (1) Aufgabe a (2) Abitur Mathematik: Musterlösung Abitur Mathematik: Prüfungsteil 1, Aufgabe 3 Nordrhein-Westfalen 2012 GK Aufgabe a (1) 1. SCHRITT: BEDINGUNG FÜR PUNKTSYMMETRIE ZUM URSPRUNG PRÜFEN Der Graph der Funktion : ist genau dann punktsymmetrisch

Mehr

10 Der Satz über implizite Funktionen und Umkehrfunktionen

10 Der Satz über implizite Funktionen und Umkehrfunktionen Vorlesung SS 9 Analsis Prof. Dr. Siegfried Echterhoff SATZ ÜBER IMPLIZITE FKT UND UMKEHRFKT Der Satz über implizite Funktionen und Umkehrfunktionen Motivation: Sei F : U R R eine differenzierbare Funktion

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Verständnisfragen-Teil Institut für Geometrie und Praktische Mathematik (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben).

Mehr

Die Zahlen e und π sind irrational.

Die Zahlen e und π sind irrational. Die Zahlen e und π sind irrational. Eva Gressung 2. Feruar 27 Die Zahl e ist irrational Zu Beginn dieses Aschnitts definieren wir die Eulersche Zahl e und zeigen anschließend, dass e irrational ist. Definition.

Mehr

Wiederholungsklausur Numerisches Rechnen ( ) (Musterlösung)

Wiederholungsklausur Numerisches Rechnen ( ) (Musterlösung) Rheinisch-Westfälische Technische Hochschule Aachen Institut für Geometrie und Praktische Mathematik Numerisches Rechnen WS 2010/2011 Prof. Dr. Martin Grepl Jens Berger, Jörn Thies Frings Wiederholungsklausur

Mehr

1. Aufgabe 8 Punkte. f (x) = (x 2 + 1) e x2. Es gilt. f (x) = 2xe x2 + ( x ) e x2 ( 2x) = 2x 3 e x2.

1. Aufgabe 8 Punkte. f (x) = (x 2 + 1) e x2. Es gilt. f (x) = 2xe x2 + ( x ) e x2 ( 2x) = 2x 3 e x2. 1. Aufgabe 8 Punkte Geben Sie die Bereiche, auf denen die Funktion f : R R mit f (x) = (x + 1) e x monoton wachsend oder fallend ist, an, und untersuchen Sie die Funktion auf lokale und globale Extrema.

Mehr

Teil I Auswahlfragen

Teil I Auswahlfragen UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Dominik Faas Grundlagen der Analysis Sommersemester 010 Klausur vom 07.09.010 Teil I Auswahlfragen Name: Hinweise: Bei den folgenden Auswahlfragen

Mehr

Klausur Höhere Mathematik I für die Fachrichtung Physik

Klausur Höhere Mathematik I für die Fachrichtung Physik Karlsruher Institut für Technologie (KIT Institut für Analysis Prof. Dr. Tobias Lamm Dr. Patrick Breuning WS /3 4.3.3 Klausur Höhere Mathematik I für die Fachrichtung Physik Aufgabe ((4+3+3 Punkte a Welche

Mehr

Nachklausur zur Analysis 1, WiSe 2016/17

Nachklausur zur Analysis 1, WiSe 2016/17 BERGISCHE UNIVERSITÄT WUPPERTAL 04.04.7 Fakultät 4 - Mathematik und Naturwissenschaften Prof. N. V. Shcherbina Dr. T. P. Pawlaschyk www.kana.uni-wuppertal.de Nachklausur zur Analysis, WiSe 06/7 Aufgabe

Mehr

VI. Iterationsverfahren

VI. Iterationsverfahren VI. Iterationsverahren To ininity and beyond Falls eine direte Lösung des Problems nicht möglich oder ineizient ist. 6... Problemstellung: 6.. Fipuntgleichungen Iterationsuntion Φ Iteration: R Startwert,

Mehr

Bayern Teil 1. Aufgabe 1. Abitur Mathematik: Musterlösung. Der Term unter der Wurzel darf nicht negativ werden. Es muss also gelten:

Bayern Teil 1. Aufgabe 1. Abitur Mathematik: Musterlösung. Der Term unter der Wurzel darf nicht negativ werden. Es muss also gelten: Abitur Mathematik: Bayern 2013 Teil 1 Aufgabe 1 a) 1. SCHRITT: DEFINITIONSMENGE BESTIMMEN Der Term unter der Wurzel darf nicht negativ werden. Es muss also gelten: 3x + 9 0 x 3 2. SCHRITT: NULLSTELLEN

Mehr

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk,

Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS12/13 Dipl.-Math. T. Pawlaschyk, Musterlo sungen zu Blatt Kleingruppen zur Service-Veranstaltung Mathematik I fu r Ingenieure bei Prof. Dr. G. Herbort im WS2/ Dipl.-Math. T. Pawlaschyk, 29.0.2 Thema: Wiederholung Aufgabe Zeigen Sie, dass

Mehr

Computergrafik Inhalt Achtung! Kapitel ist relevant für CG-2!

Computergrafik Inhalt Achtung! Kapitel ist relevant für CG-2! Coputergrafik Inhalt Achtung! Kapitel ist relevant für CG-2! 1 2 3 4 5 6 7 8 Historie, Überblick, Beispiele Begriffe und Grundlagen Objekttransforationen Objektrepräsentation und -Modellierung Sichttransforationen

Mehr

Übungen zur Vorlesung. Einführung in Dynamische Systeme. Musterlösungen zu Aufgabenblatt 1

Übungen zur Vorlesung. Einführung in Dynamische Systeme. Musterlösungen zu Aufgabenblatt 1 Prof. Roland Gunesch Sommersemester 00 Übungen zur Vorlesung Einführung in Dnamische Ssteme Musterlösungen zu Aufgabenblatt Aufgabe : Sei A 0 4. a Bestimmen Sie für jeden Anfangswert 0 R das Verhalten

Mehr

Grundlagen der Mathematik (BSc Maschinenbau)

Grundlagen der Mathematik (BSc Maschinenbau) Priv.-Doz. Dr. J. Ruppenthal Wuppertal, 5.9.7 Grundlagen der Mathematik (BSc Maschinenbau) Aufgabe. (6+8+6 Punkte) a) Zeigen Sie durch Induktion nach n N: n (k ) = n k= b) Stellen Sie die folgenden Mengen

Mehr

1 Höhere Ableitungen 2. 2 Mittelwertsatz und Monotonie 3. 3 Konvexe und konkave Funktionen 5. 4 Lokale und globale Extremalstellen 7

1 Höhere Ableitungen 2. 2 Mittelwertsatz und Monotonie 3. 3 Konvexe und konkave Funktionen 5. 4 Lokale und globale Extremalstellen 7 Universität Basel 4 Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematik 1 Dr. Thomas Zehrt Kurvendiskussionen Inhaltsverzeichnis 1 Höhere Ableitungen 2 2 Mittelwertsatz und

Mehr

dx nf(x 0). dx f(n 1) (x 0 ) = dn

dx nf(x 0). dx f(n 1) (x 0 ) = dn 4.3. Höhere Ableitungen, Konveität, Newtonverfahren 65 4.3 Höhere Ableitungen, Konveität, Newtonverfahren Ist f:i R differenzierbar auf einem Intervall I, so erhalten wir eine neue Funktion auf I, nämlich

Mehr

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 4

D-MAVT/D-MATL Analysis I HS 2017 Dr. Andreas Steiger. Lösung - Serie 4 D-MAVT/D-MATL Analysis I HS 07 Dr. Andreas Steiger Lösung - Serie 4. MC-Aufgaben Online-Abgabe). Es sei f : [a, b] R eine Funktion. Welche der folgenden Aussagen ist richtig? a) b) f ist stetig f ist differenzierbar.

Mehr

Weitere Anwendungen der Differentialrechnung

Weitere Anwendungen der Differentialrechnung Weitere Anwendungen der Differentialrechnung Informationsblatt Aus der großen Zahl von Anwendungsmöglichkeiten der Differentialrechnung werden das Newton sche Näherungsverfahren und die Taylor-Reihen vorgestellt.

Mehr

Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan :00-14:00 (120 min)

Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan :00-14:00 (120 min) Lehrstuhl für Angewandte Mathematik Montanuniversität Leoben 70 004 Numerische Methoden I Schriftliche Prüfung Gruppe A 23. Jan. 207 2:00-4:00 (20 min) Name Matrikelnummer Mündliche Prüfung: Bitte markieren

Mehr

7. Nichtlineare Gleichngssysteme. Problem 7: Sei f : R n R n stetig. Löse f(x) = 0.

7. Nichtlineare Gleichngssysteme. Problem 7: Sei f : R n R n stetig. Löse f(x) = 0. 7. Nichtlineare Gleichngssysteme Problem 7: Sei f : R n R n stetig. Löse f(x) = 0. Das Gleichungssystem f(x) = 0 lässt sich in die Fixpunktgleichung x = φ(x) umschreiben, wobei φ : D R n R n. Beispielsweise

Mehr

Aufgabe A2 1.1 Die Funktion ist gegeben durch 3P 21 mit Berechne die Gleichung der Tangente an das Schaubild von im Schnittpunkt mit der -Achse. 1.2 E

Aufgabe A2 1.1 Die Funktion ist gegeben durch 3P 21 mit Berechne die Gleichung der Tangente an das Schaubild von im Schnittpunkt mit der -Achse. 1.2 E Aufgabe A1 1.1 Erläutere anhand einer Skizze, ob das Integral 3P größer, kleiner oder gleich Null ist. 1.2 Für eine Funktion gilt: (1) 0 für 2 und 1 (2) 23 (3) 13 (4) 2 (5) 1 6 Welche Aussagen lassen sich

Mehr

Flächenberechnungen mit Integralen. Aufgaben und Lösungen.

Flächenberechnungen mit Integralen. Aufgaben und Lösungen. Flächenberechnungen mit Integralen Aufgaben und Lösungen http://www.elearning-freiburg.de 2 Aufgabe 1: Gegeben sei die Funktion f = 2 + 4 + 4. f = 2 + 4 + 4 a) Berechnen Sie die Fläche, die die Kurve mit

Mehr

Institut für Geometrie und Praktische Mathematik

Institut für Geometrie und Praktische Mathematik RWTH Aachen Institut für Geometrie und Praktische Mathematik Diplom VP Numerik 13. September 004 Aufgabe 1 10 0 40 Gegeben sei die Matrix A = 80 10 10. 10 5 5 (6 Punkte) a) Skalieren (Zeilenäquilibrierung)

Mehr

Freie Universität Berlin Wintersemester 11/12 Fachbereich Mathematik und Informatik Institut für Mathematik Dr. A. Linke

Freie Universität Berlin Wintersemester 11/12 Fachbereich Mathematik und Informatik Institut für Mathematik Dr. A. Linke Freie Universität Berlin Wintersemester / Fachbereich Mathematik und Informatik Institut für Mathematik Dr. A. Linke Musterlösung zum. Übungsblatt zur Vorlesung Mathematik für Physiker I Differenzierbarkeit,

Mehr

Modul Lineare Gleichungen

Modul Lineare Gleichungen Modul Lineare Gleichungen Stellen Sie sich vor, Sie haben einen Hund und eine Leine gekauft und vergessen, was wieviel gekostet hat. Sie wissen nur noch, daß Hund und Leine zusaen 0 gekostet haben. Also

Mehr

Diplom VP Numerik 27. August 2007

Diplom VP Numerik 27. August 2007 Diplom VP Numerik 27. August 2007 Multiple-Choice-Test 30 Punkte Bei jeder MC-Aufgabe ist mindestens eine Aussage korrekt. Wird dennoch bei einer MC-Aufgabe keine einzige Aussage angekreuzt, gilt diese

Mehr

Mathematik IT 3 (Analysis)

Mathematik IT 3 (Analysis) Lehrstuhl Mathematik, insbesondere Numerische und Angewandte Mathematik Prof. Dr. L. Cromme Mathematik IT (Analysis) für die Studiengänge Informatik, IMT und ebusiness im Wintersemester 0/04 Geben Sie

Mehr

Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1

Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1 Probe-Klausur 1 Mathematik f. Bau-Ing + Chem. Modul1 1. (a) Lösen Sie das lineare Gleichungssystem für die Werte a = 1, b = 2. x + 3y + 2z = 0 2x + ay + 3z = 1 3x + 4y + z = b (b) Für welche Werte von

Mehr

Lineare Funktionen Arbeitsblatt 1

Lineare Funktionen Arbeitsblatt 1 Lineare Funktionen Arbeitsblatt 1 Eine Funktion mit der Gleichung y = m x + b heißt lineare Funktion. Ihr Graph ist eine Gerade mit der Steigung m. Die Gerade schneidet die y-achse im Punkt P(0 b). Man

Mehr